Nothing Special   »   [go: up one dir, main page]

JP2012045570A - Method for manufacturing aluminum joined body - Google Patents

Method for manufacturing aluminum joined body Download PDF

Info

Publication number
JP2012045570A
JP2012045570A JP2010189460A JP2010189460A JP2012045570A JP 2012045570 A JP2012045570 A JP 2012045570A JP 2010189460 A JP2010189460 A JP 2010189460A JP 2010189460 A JP2010189460 A JP 2010189460A JP 2012045570 A JP2012045570 A JP 2012045570A
Authority
JP
Japan
Prior art keywords
welded
optical axis
focal
aluminum
reference surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010189460A
Other languages
Japanese (ja)
Inventor
Takeshi Matsumoto
松本  剛
Kazunori Kobayashi
一徳 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2010189460A priority Critical patent/JP2012045570A/en
Publication of JP2012045570A publication Critical patent/JP2012045570A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Laser Beam Processing (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing an aluminum joined body, capable of welding an aluminum material containing Mg at high productivity and making a welded portion excellent in welding quality.SOLUTION: A pair of materials to be welded made of an aluminum material are disposed so as to abut to each other, and the abutting portion is irradiated with a laser beam having two or three focal points on a single optical axis. A first focal point position of a first laser beam is set to be a position within 0.2 mm in an optical axis direction from a datum plane which is the surface of the materials to be welded, a second focal point position of a second laser beam is set to be a position of 0.2-0.9 mm toward the inside of the materials to be welded in the optical axis direction from the datum plane, and a third focal point position of a third laser beam is set to be a position of 0.2-0.5 mm toward the upper part of the materials to be welded in the optical axis direction from the datum plane.

Description

本発明は、アルミニウム又はアルミニウム合金(以下、アルミニウム材という)をレーザ溶接してアルミニウム接合体からなる構造材を製造するアルミニウム接合体の製造方法に関する。   The present invention relates to an aluminum joined body manufacturing method for manufacturing a structural member made of an aluminum joined body by laser welding aluminum or an aluminum alloy (hereinafter referred to as an aluminum material).

携帯電話及び自動車等に使用されるリチウムイオン電池等の電池ケースは、軽量化のために、その素材として、Al−Mn系アルミニウム合金又はJIS A1050等の純アルミニウムからなるアルミニウム材が使用されている。この電池は、電池ケースの筐体の内部に電池部分を収納し、その後、開口部に蓋を溶接により接合して、電池部分を密封することにより、製造されている。この電池ケースは、筐体と蓋とから構成され、いずれも、アルミニウム材により製造されている。   In order to reduce the weight of battery cases such as lithium ion batteries used in mobile phones and automobiles, an aluminum material made of pure aluminum such as Al-Mn based aluminum alloy or JIS A1050 is used. . This battery is manufactured by housing a battery part inside a casing of a battery case, and then joining a lid to the opening by welding to seal the battery part. This battery case is composed of a housing and a lid, both of which are made of an aluminum material.

このような電池ケースにおいては、溶接時に発生するスパッタ、割れ及びブローホール等の欠陥は、電池の品質及び性能を大きく劣化させるため、溶接部の品質の向上及び品質維持には、極めて厳しい管理が要求される。   In such battery cases, defects such as spatter, cracks, and blowholes that occur during welding greatly deteriorate the quality and performance of the battery. Therefore, extremely strict management is required to improve and maintain the quality of welds. Required.

一方、電池ケースに対する軽量化の要求は、ますます強くなっており、携帯電話用電池及び車載用電池のいずれも、高強度の材料が要望されており、この材料の高強度化により、電池ケースの厚さを薄くして軽量化することが試みられている。   On the other hand, the demand for lighter weight for battery cases is increasing, and both high-strength materials are required for both mobile phone batteries and in-vehicle batteries. Attempts have been made to reduce the thickness of the glass by reducing its thickness.

従来のアルミニウム材製の電池ケースとして、筐体と蓋体との封口部をレーザ溶接により融着する際に、溶け込み量が少ない領域を形成して、これを電池内部の圧力の上昇時に開裂する圧力開放部とする密閉型電池が提案されている(特許文献1)。また、楕円又は矩形等の長軸を有する照射スポット形状のレーザ光を、そのスポット中心点を、筐体と蓋体との接合部におき、この接合部が延びる方向にスポットの長軸方向を一致させて、パルスレーザ光を接合部の全周に照射する電池の製造方法が提案されている(特許文献2)。更に、溶接時の熱応力の低減によりクラックの発生を防止するために、外装缶(筐体)の開口縁に、縁部にその周に沿ってリブを有する蓋体を嵌合し、外装缶の開口縁と蓋体の縁部のリブとの間を、レーザ溶接する密閉型電池の製造方法が提案されている(特許文献3)。   As a conventional battery case made of aluminum material, when the sealing part of the casing and the lid is fused by laser welding, a region with a small amount of penetration is formed, and this is cleaved when the pressure inside the battery increases. A sealed battery having a pressure release portion has been proposed (Patent Document 1). In addition, an irradiation spot-shaped laser beam having a major axis such as an ellipse or a rectangle is placed at the junction between the casing and the lid with the spot center point, and the major axis direction of the spot extends in the direction in which the junction extends. There has been proposed a battery manufacturing method in which a pulse laser beam is irradiated to the entire circumference of the joint portion (Patent Document 2). Furthermore, in order to prevent the occurrence of cracks by reducing the thermal stress during welding, a lid having a rib along the circumference is fitted to the opening edge of the outer can (housing), and the outer can A method of manufacturing a sealed battery in which laser welding is performed between the opening edge of the lid and the rib at the edge of the lid has been proposed (Patent Document 3).

特開2001−155698号公報JP 2001-155698 A 特開2004−63406号公報JP 2004-63406 A 特許第3594555号公報Japanese Patent No. 3594555

しかしながら、継手形状の工夫によりある程度の溶接品質の向上は見込まれるものの、電池ケースの強度の向上を図るためには、電池ケースの材料強度自体を向上させる必要がある。アルミニウム材の強度を向上させる元素として、Mg及びCu等があるが、これらの元素を多く含むAl合金、例えば、JIS3004、3104、5052及び5182等のAl合金は、特に、Mg蒸気の発生により、スパッタの発生を抑制できず、また溶接部の割れ、及び溶接部へのブローホールの残留という溶接品質の劣化が問題となり、溶接部強度、溶接作業性、溶接品質の全てが満足できるアルミニウム材ではなかった。   However, although some improvement in welding quality is expected by devising the joint shape, in order to improve the strength of the battery case, it is necessary to improve the material strength of the battery case itself. Elements that improve the strength of the aluminum material include Mg and Cu. Al alloys containing a large amount of these elements, for example, Al alloys such as JIS 3004, 3104, 5052, and 5182 are particularly affected by the generation of Mg vapor. With aluminum materials that cannot suppress spatter generation, and the weld quality deteriorates due to cracks in the weld and residual blowholes in the weld, and the aluminum material satisfies all of the weld strength, welding workability, and weld quality. There wasn't.

また、従来、特に携帯電話機用電池等の薄肉材の接合に使用されているパルスレーザは、溶接割れ等の問題が生じ易く、また、溶接速度も、連続レーザ光に比して著しく遅く、生産性が低いという問題点がある。   In addition, pulse lasers that are conventionally used for joining thin-walled materials such as batteries for mobile phones are prone to problems such as weld cracking, and the welding speed is significantly slower than continuous laser light. There is a problem that the nature is low.

本発明はかかる問題点に鑑みてなされたものであって、Mgを含むアルミニウム材を高生産性で溶接することができ、また溶接部の溶接品質も優れたアルミニウム接合体の製造方法を提供することを目的とする。   The present invention has been made in view of such problems, and provides a method for manufacturing an aluminum joined body that can weld an aluminum material containing Mg with high productivity and that has excellent weld quality of a welded portion. For the purpose.

本発明に係る第1のアルミニウム接合体の製造方法は、アルミニウム材からなる1対の被溶接材同士を溶接すべき態様に配置し、1個の光軸上に2個の焦点位置を有するレーザ光を、前記被溶接材の溶接位置に照射して前記被溶接材を溶融溶接し、このとき、焦点距離が短い方の第1焦点位置を前記被溶接材のいずれか一方の表面を規準表面としてこの規準表面から光軸方向に0.2mm以内の位置となるように設定し、前記焦点距離が長い方の第2焦点位置を前記規準表面から光軸方向の前記被溶接材内部に向けて0.2乃至0.9mmの位置になるように設定することを特徴とする。   A first aluminum joined body manufacturing method according to the present invention is a laser in which a pair of materials to be welded made of an aluminum material are arranged in an aspect to be welded and have two focal positions on one optical axis. Light is irradiated to the welding position of the material to be welded to melt weld the material to be welded. At this time, the first focal position having a shorter focal length is used as a reference surface for one surface of the material to be welded. And the second focal position having the longer focal length is directed from the reference surface toward the inside of the workpiece to be welded in the optical axis direction. The position is set to be 0.2 to 0.9 mm.

本発明に係る第2のアルミニウム接合体の製造方法は、アルミニウム材からなる1対の被溶接材同士を溶接すべき態様に配置し、1個の光軸上に3個の焦点位置を有するレーザ光を、前記被溶接材の溶接位置に照射して前記被溶接材を溶融溶接し、このとき、焦点距離が中間の第1焦点位置を前記被溶接材のいずれか一方の表面を規準表面としてこの規準表面から光軸方向に0.2mm以内の位置となるように設定し、前記焦点距離が長い方の第2焦点位置を前記規準表面から光軸方向の前記被溶接材内部に向けて0.2乃至0.9mmの位置になるように設定し、前記焦点距離が短い方の第3の焦点位置を前記規準表面から光軸方向の前記被溶接材の上方に向けて0.2乃至0.5mmの位置となるように設定することを特徴とする。   According to the second method of manufacturing an aluminum joined body according to the present invention, a pair of welded materials made of an aluminum material are arranged in an aspect to be welded, and a laser having three focal positions on one optical axis. Light is irradiated to the welding position of the material to be welded to melt weld the material to be welded, and at this time, the first focal position having an intermediate focal length is set as one of the surfaces of the material to be welded as a reference surface. The position is set to be within 0.2 mm in the optical axis direction from the reference surface, and the second focal position with the longer focal length is set to 0 from the reference surface toward the inside of the welded material in the optical axis direction. .2 to 0.9 mm, and the third focal position with the shorter focal length is set to 0.2 to 0 from the reference surface to above the workpiece in the optical axis direction. It is set to be a position of 5 mm.

本発明に係る第3のアルミニウム接合体の製造方法は、アルミニウム材からなる1対の被溶接材同士を突合せて配置し、1個の光軸上に2個の焦点位置を有するレーザ光を、前記被溶接材の溶接位置に照射して前記被溶接材を溶融溶接し、このとき、焦点距離が短い方の第1焦点位置を前記被溶接材の表面を規準表面としてこの規準表面から光軸方向に0.2mm以内の位置となるように設定し、前記焦点距離が長い方の第2焦点位置を前記規準表面から光軸方向の前記被溶接材内部に向けて0.2乃至0.9mmの位置になるように設定することを特徴とする。   In the third method for producing an aluminum joined body according to the present invention, a pair of materials to be welded made of an aluminum material are arranged to face each other, and laser light having two focal positions on one optical axis is obtained. The welding position is irradiated to the welding position of the material to be welded, and the welding material is melt-welded. At this time, the first focal position having a shorter focal length is set to the surface of the material to be welded as a reference surface, and the optical axis from the reference surface. The second focal position having the longer focal length is set to 0.2 to 0.9 mm from the reference surface toward the inside of the welded material in the optical axis direction. It is set to become the position of.

本発明に係る第4のアルミニウム接合体の製造方法は、アルミニウム材からなる1対の被溶接材同士を突合せて配置し、1個の光軸上に3個の焦点位置を有するレーザ光を、前記被溶接材の溶接位置に照射して前記被溶接材を溶融溶接し、このとき、焦点距離が中間の第1焦点位置を前記被溶接材の表面を規準表面としてこの規準表面から光軸方向に0.2mm以内の位置となるように設定し、前記焦点距離が長い方の第2焦点位置を前記規準表面から光軸方向の前記被溶接材内部に向けて0.2乃至0.9mmの位置になるように設定し、前記焦点距離が短い方の第3の焦点位置を前記規準表面から光軸方向の前記被溶接材の上方に向けて0.2乃至0.5mmの位置となるように設定することを特徴とする。   In the fourth method for producing an aluminum joined body according to the present invention, a pair of materials to be welded made of an aluminum material are arranged to face each other, and laser light having three focal positions on one optical axis is obtained. Irradiating the welding position of the material to be welded to melt weld the material to be welded. At this time, the first focal position having an intermediate focal length is set to the surface of the material to be welded as a reference surface, and the optical axis direction from the reference surface The second focal position with the longer focal length is set to 0.2 to 0.9 mm from the reference surface toward the inside of the workpiece to be welded in the optical axis direction. The third focal position with the shorter focal length is set to a position of 0.2 to 0.5 mm from the reference surface toward the upper side of the welded material in the optical axis direction. It is characterized by setting to.

これらのアルミニウム接合体の製造方法において、前記アルミニウム材は、例えば、JIS1000系、3000系又は5000系である。   In these methods for producing an aluminum joined body, the aluminum material is, for example, JIS 1000 series, 3000 series or 5000 series.

また、これらのアルミニウム接合体の製造方法において、一方のアルミニウム材をJIS1000系とし、他方のアルミニウム材をJIS3000系又は5000系とし、そして、前記一方のアルミニウム材により電池ケースの蓋を作成し、前記他方のアルミニウム材により電池ケースの筐体を作成して、前記筐体に前記蓋を接合するように構成することができる。   Further, in these aluminum joined body manufacturing methods, one aluminum material is JIS1000 series, the other aluminum material is JIS3000 series or 5000 series, and a battery case lid is made of the one aluminum material, A case of the battery case can be made of the other aluminum material, and the lid can be joined to the case.

本発明によれば、Mgを多量に含むアルミニウム材であっても、高生産性でレーザ溶接することができ、高品質の溶接部を得ることができる。   According to the present invention, even an aluminum material containing a large amount of Mg can be laser-welded with high productivity, and a high-quality weld can be obtained.

本発明の実施形態のアルミニウム接合体の製造方法を示す模式図である。It is a schematic diagram which shows the manufacturing method of the aluminum joined body of embodiment of this invention. 3種のレーザ光の焦点位置を示す図である。It is a figure which shows the focus position of 3 types of laser beams. 被溶接材と溶接部とを示す断面図である。It is sectional drawing which shows a to-be-welded material and a welding part. (a)、(b)は、電池ケースの筐体と蓋との配置関係を示す図である。(A), (b) is a figure which shows the arrangement | positioning relationship between the housing | casing and lid | cover of a battery case. レーザ光の照射により形成された溶融池を示す断面図である。It is sectional drawing which shows the molten pool formed by irradiation of the laser beam. キーホールを示す図である。It is a figure which shows a keyhole. 本発明の効果を示す図であり、(a)は従来の単一焦点の場合、(b)は本発明のダブル焦点の場合の溶融池の大きさを示す。It is a figure which shows the effect of this invention, (a) shows the magnitude | size of the molten pool in the case of the conventional single focus, (b) shows the size of the molten pool in the case of the double focus of this invention.

以下、本発明の実施形態について、添付の図面を参照して具体的に説明する。図1は本発明の実施形態のアルミニウム接合体の製造方法に使用する装置を示す模式図である。レーザ光の光源1には、第1波長の第1レーザ光を出射する発振器2と、第2波長の第2レーザ個を出射する発振器3とが設けられており、この光源1から、第1波長及び第2波長の2種類のレーザ光が出射される。レーザ光の光源4には、第3波長の第3レーザ光を出射する発振器が設けられている。これらの光源1、4からのレーザ光は、光導波路5a、5bを介して光合成器6に供給され、第1乃至第3のレーザ光が同一光軸上に合成される。そして、この光合成器6を出射したレーザ光は、光学系7a,7bにより被溶接材の表面上に収束する。   Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings. FIG. 1 is a schematic view showing an apparatus used in a method for producing an aluminum joined body according to an embodiment of the present invention. The laser light source 1 is provided with an oscillator 2 that emits a first laser beam having a first wavelength, and an oscillator 3 that emits a second laser beam having a second wavelength. Two types of laser light having a wavelength and a second wavelength are emitted. The laser light source 4 is provided with an oscillator that emits a third laser beam having a third wavelength. The laser beams from these light sources 1 and 4 are supplied to the optical combiner 6 through the optical waveguides 5a and 5b, and the first to third laser beams are combined on the same optical axis. The laser light emitted from the light combiner 6 is converged on the surface of the material to be welded by the optical systems 7a and 7b.

このとき、図2に示すように、第1のレーザ光は、被溶接材の加工表面の近傍に焦点位置が設定され、第2のレーザ光は、被溶接材の加工表面よりも材料の内部側に焦点位置が設定され、第3のレーザ光は、被溶接材の加工表面よりも上方に焦点位置が設定される。即ち、第1のレーザ光は第1の焦点位置にて収束し、第2のレーザ光は第2の焦点位置にて収束し、第3のレーザ光は第3の焦点位置にて収束する。これらの第1乃至第3のレーザ光は、光学系7a、7bからは同一光軸上に出射されるが、これらのレーザ光の焦点距離は、第2のレーザ光が最も長く、次いで、第1のレーザ光、第3のレーザ光となり、第2のレーザ光の焦点距離が最も短い。そして、第1のレーザ光の第1の焦点位置は、被溶接材の表面の近傍であり、この被溶接材の表面を規準表面とすると、光軸上において、この規準表面から0.2mm上方の位置から0.2mm下方の位置までの範囲に設定される。第2のレーザ光の第2の焦点位置は、被溶接材の表面から被溶接材の内部に入り込む位置であり、光軸上において、規準表面から0.2乃至0.9mmだけ材料内部に入り込んだ位置である。更に、第3のレーザ光の第3の焦点位置は、被溶接材の表面の上方の位置であり、光軸上において、規準表面から0.2乃至0.5mmだけ材料よりも上方の位置である。なお、レーザ光は、第1及び第2の2種のレーザ光を混合したものを使用してもよいし、第1乃至第3の3種のレーザ光を混合したものを使用してもよい。   At this time, as shown in FIG. 2, the focal point of the first laser beam is set in the vicinity of the processed surface of the workpiece, and the second laser beam is inside the material more than the processed surface of the workpiece. The focal position is set on the side, and the focal position of the third laser beam is set above the processed surface of the workpiece. That is, the first laser beam converges at the first focal position, the second laser beam converges at the second focal position, and the third laser beam converges at the third focal position. These first to third laser beams are emitted from the optical systems 7a and 7b on the same optical axis, but the focal length of these laser beams is the longest for the second laser beam, and then The first laser beam and the third laser beam are the shortest, and the focal length of the second laser beam is the shortest. The first focal position of the first laser beam is in the vicinity of the surface of the welded material. If the surface of the welded material is the reference surface, the optical axis is 0.2 mm above the reference surface. Is set in a range from a position of 0.2 mm to a position 0.2 mm below. The second focal position of the second laser beam is a position that enters the inside of the material to be welded from the surface of the material to be welded, and enters the inside of the material by 0.2 to 0.9 mm from the reference surface on the optical axis. It is a position. Further, the third focal position of the third laser beam is a position above the surface of the material to be welded, and is a position above the material by 0.2 to 0.5 mm from the reference surface on the optical axis. is there. The laser beam may be a mixture of the first and second types of laser beams, or may be a mixture of the first to third types of laser beams. .

この場合、電池ケースは、図4(a)に示すように、筐体10の上端が開口しており、この筐体10の上端開口部の上に蓋11を載置して、矢印にて示すように、蓋11の下面と筐体10の上端との間の位置を接合するか、又は、図4(b)に示すように、蓋11が筐体10の上端開口部内に嵌合する大きさを有していて、蓋11を筐体10に嵌合して、矢印にて示すように、この蓋11の縁部と筐体10の上端内面との間の位置を接合する。   In this case, as shown in FIG. 4A, the battery case has an opening at the upper end of the casing 10, and a lid 11 is placed on the upper end opening of the casing 10, and an arrow indicates As shown, the position between the lower surface of the lid 11 and the upper end of the housing 10 is joined, or the lid 11 is fitted into the upper end opening of the housing 10 as shown in FIG. It has a size, and the lid 11 is fitted into the housing 10, and the position between the edge of the lid 11 and the inner surface of the upper end of the housing 10 is joined as indicated by an arrow.

従って、例えば、図4(b)の場合は、図3に示すように、筐体10の上端面と蓋11の上面端部との間に溶接部12が形成される。そして、これらの被溶接材(蓋11及び筐体10)は、その溶接部において、レーザ光が照射される表面は基本的には面一である。このため、図2に示すように、第1乃至第3のレーザ光の焦点位置を設定するための基準となる被溶接材の基準面の位置は双方の被溶接材で同一である。しかしながら、上述のように、被溶接材の表面が面一でない場合、即ち、両被溶接材の表面に段差がある場合は、第1乃至第3のレーザ光の焦点位置を設定するための基準となる基準面として、いずれか一方の被溶接材の表面を採用する。   Therefore, for example, in the case of FIG. 4B, the welded portion 12 is formed between the upper end surface of the housing 10 and the upper end portion of the lid 11 as shown in FIG. 3. These welded materials (the lid 11 and the housing 10) are basically flush with the surface irradiated with the laser beam in the welded portion. For this reason, as shown in FIG. 2, the position of the reference surface of the welding material used as the reference | standard for setting the focus position of the 1st thru | or 3rd laser beam is the same with both welding materials. However, as described above, when the surfaces of the workpieces are not flush, that is, when there are steps on the surfaces of the workpieces, the reference for setting the focal positions of the first to third laser beams. As the reference surface, the surface of one of the materials to be welded is adopted.

次に、本発明の実施形態の動作について説明する。先ず、例えば、筐体10と蓋11とを図3に示すように配置し、突合せ継手を構成する。そして、図1に示すように、光源1又は光源1及び光源2からレーザ光を出射し、第1の焦点位置をもつ第1のレーザ光と第2の焦点位置をもつ第2のレーザ光を、同一光軸上で、溶接部12に照射するか、第1の焦点位置をもつ第1のレーザ光、第2の焦点位置をもつ第2のレーザ光及び第3の焦点位置をもつ第3のレーザ光を、同一光軸上で、溶接部12に照射する。そして、レーザ光が照射された部分がレーザ光のエネルギにより加熱されて溶融し、溶融池が形成され、レーザ光の照射位置を図3の紙面に垂直の方向である溶接線に沿って移動させることにより、蓋11の縁部がその全域で筐体10の上端部に接合される。   Next, the operation of the embodiment of the present invention will be described. First, for example, the housing 10 and the lid 11 are arranged as shown in FIG. 3 to form a butt joint. Then, as shown in FIG. 1, laser light is emitted from the light source 1 or the light source 1 and the light source 2, and the first laser light having the first focal position and the second laser light having the second focal position are obtained. Irradiating the welded portion 12 on the same optical axis, or a first laser beam having a first focal position, a second laser beam having a second focal position, and a third having a third focal position. Is irradiated to the welded portion 12 on the same optical axis. The portion irradiated with the laser beam is heated and melted by the energy of the laser beam to form a molten pool, and the irradiation position of the laser beam is moved along a welding line that is perpendicular to the paper surface of FIG. Thereby, the edge part of the lid | cover 11 is joined to the upper end part of the housing | casing 10 in the whole region.

レーザ溶接においては、図5に示すように、レーザ光20の照射に伴い、キーホール21が形成され、キーホール21よりもレーザ光の進行方向(溶接方向)の反対方向の位置に溶融池22が形成される。そして、キーホール21の形成過程で気泡24が発生し、この気泡24が溶融池22内で浮上しきれず、溶融池22が凝固したときに溶接金属中に取り込まれると、ポロシティ又はブローホール等の欠陥23が発生する。このとき、Mgを多く含むアルミニウム合金、例えば、JIS3004合金、JIS3104合金、JIS5052合金、又はJIS5182合金は、Mgが蒸発しやすく、このため、Mgの蒸発により発生する気泡24により、ブロイーホール欠陥23が発生しやすい。また、Mgを多量に含むアルミニウム合金は、Mgの蒸発により溶融池の溶湯が跳ねて形成されるスパッタ欠陥も生じ易くなる。更に、レーザ溶接の場合は、急激なエネルギの付与による材料の溶接部の熱膨張収縮により、溶接割れが生じ易い。   In laser welding, as shown in FIG. 5, a keyhole 21 is formed with the irradiation of the laser beam 20, and the molten pool 22 is positioned at a position opposite to the laser beam traveling direction (welding direction) from the keyhole 21. Is formed. Then, bubbles 24 are generated in the formation process of the keyhole 21, and when the bubbles 24 cannot be lifted up in the molten pool 22 and are taken into the weld metal when the molten pool 22 is solidified, porosity or blowhole or the like is generated. A defect 23 occurs. At this time, an aluminum alloy containing a large amount of Mg, for example, JIS 3004 alloy, JIS 3104 alloy, JIS 5052 alloy, or JIS 5182 alloy, tends to evaporate Mg. Therefore, blowy hole defects 23 are caused by bubbles 24 generated by Mg evaporation. Is likely to occur. In addition, an aluminum alloy containing a large amount of Mg is likely to cause sputter defects formed by the molten pool splashing due to Mg evaporation. Furthermore, in the case of laser welding, weld cracking is likely to occur due to thermal expansion and contraction of the welded portion of the material due to sudden application of energy.

従来、このような溶接欠陥又はスパッタの発生を防止するために、レーザ光のエネルギ密度を高くしてビーム径を小さくして溶接したり、逆に、レーザ光をデフォーカスして、ビーム径を大きくして溶接する等の試みがなされていた。しかし、高エネルギ密度のビームで溶接した場合は、上述のスパッタ及び溶接割れの問題が大きくなり、逆に、レーザビームをデフォーカスした場合は、十分な接合強度を得るために必要な溶け込み深さを得にくいという問題点がある。なお、キーホール21は、常に一定形状に維持されているのではなく、レーザ光の移動と共に、図6に示すように、局部的に閉塞したり、拡がったりしている。   Conventionally, in order to prevent the occurrence of such welding defects or spatter, welding is performed by increasing the energy density of the laser beam and decreasing the beam diameter, or conversely, by defocusing the laser beam and reducing the beam diameter. Attempts have been made to make it larger and weld it. However, when welding with a beam having a high energy density, the above-mentioned problems of spatter and weld cracking become large. Conversely, when the laser beam is defocused, the penetration depth necessary to obtain sufficient joint strength is obtained. There is a problem that it is difficult to obtain. Note that the keyhole 21 is not always maintained in a fixed shape, but is locally blocked or expanded as shown in FIG. 6 as the laser beam moves.

本発明においては、特に、Mgを多量に含むアルミニウム材をレーザ溶接する際の上述の問題点を解消するために、焦点位置が異なる2種又は3種のレーザ光を、光軸を同一にして同時に被溶接材に照射する。この焦点位置が異なる2種又は3種のレーザ光を得るために、波長が異なる2種又は3種のレーザ光を重畳させて合成し、同一のレンズを透過させて被溶接材に照射する。これにより、光軸上で、焦点位置が異なる2種又は3種のレーザ光が被溶接材に照射される。   In the present invention, in order to solve the above-mentioned problems when laser welding an aluminum material containing a large amount of Mg, two or three types of laser beams having different focal positions are used with the same optical axis. At the same time, the material to be welded is irradiated. In order to obtain two or three types of laser beams having different focal positions, two or three types of laser beams having different wavelengths are superimposed and combined, and the same lens is transmitted and irradiated onto the material to be welded. Thereby, two or three kinds of laser beams having different focal positions are irradiated on the welded material on the optical axis.

このとき、第1のレーザ光が、その焦点位置が、被溶接材の表面位置の近傍で焦点を結ぶので、被溶接材の表面近傍の部分が加熱され、溶融する。この第1のレーザ光の照射は、エネルギ密度が高いレーザ光(被溶接材の表面で焦点を結び、表面でビーム径が小さい)を被溶接材に照射した場合と同様の作用を有する。一方、同時に、その焦点位置が材料の内部に位置する第2のレーザ光も照射する。これにより、被溶接材の内部が加熱され、溶融する。この第2のレーザ光の照射は、デフォーカスしたレーザ光を照射した場合と同様の作用を有する。このような2種類の焦点位置を有するレーザ光を照射することにより、被溶接材においては、その溶融池の長さが長くなる。即ち、図7(a)に示す従来のシングル焦点の場合は、レーザ進行方向(溶接方向)における溶融池の幅が小さいのに対し、本発明のように焦点位置が2個のダブル焦点である場合は、図7(b)に示すように、溶融池がレーザ進行方向(溶接方向)の後方に延び、レーザ進行方向における溶融池の幅が大きくなる。このように、本発明の場合は、溶融池がレーザ進行方向に長く拡がる結果、発生した気泡は、溶融池内で上昇して、溶融池の表面から離脱しやすくなり、溶融池が凝固した後の溶接部にブローホール及びポロシティ等の欠陥が発生することが抑制される。このため、Mgを多量に含むアルミニウム材であっても、発生した気泡が溶融池から離脱しやすく、凝固後の溶接部にブローホール等の欠陥が発生することが防止される。また、溶融池が拡がることにより、気泡が溶融池内で暴れることが抑制され、スパッタの発生も防止される。   At this time, since the focal position of the first laser beam is in the vicinity of the surface position of the workpiece, the portion near the surface of the workpiece is heated and melted. The irradiation with the first laser beam has the same effect as when the laser beam having a high energy density (focused on the surface of the material to be welded and the beam diameter is small on the surface) is irradiated on the material to be welded. On the other hand, the second laser beam whose focal position is located inside the material is also irradiated. Thereby, the inside of the material to be welded is heated and melted. The irradiation with the second laser beam has the same effect as that when the defocused laser beam is irradiated. By irradiating the laser beam having such two kinds of focal positions, the weld pool becomes longer in the welded material. That is, in the case of the conventional single focus shown in FIG. 7A, the width of the molten pool in the laser traveling direction (welding direction) is small, whereas the focus position is two double focuses as in the present invention. In this case, as shown in FIG. 7B, the molten pool extends rearward in the laser traveling direction (welding direction), and the width of the molten pool in the laser traveling direction is increased. As described above, in the case of the present invention, as a result of the molten pool spreading long in the laser traveling direction, the generated bubbles rise in the molten pool and are easily separated from the surface of the molten pool. The occurrence of defects such as blow holes and porosity in the weld is suppressed. For this reason, even if it is the aluminum material which contains Mg abundantly, the bubble which generate | occur | produced tends to detach | leave from a molten pool and it is prevented that defects, such as a blowhole, generate | occur | produce in the welding part after solidification. In addition, the expansion of the molten pool suppresses bubbles from escaping in the molten pool and prevents spattering.

一方、上記第1及び第2のレーザ光に加えて、焦点距離が短い第3のレーザ光も照射した場合は、更に、デフォーカスしたレーザ光の照射が加わり、溶融池が更に拡がる。これにより、溶接部欠陥を一層低減することができる。更に、スパッタもより一層低減することができる。   On the other hand, when the third laser beam having a short focal length is irradiated in addition to the first and second laser beams, the defocused laser beam is further irradiated to further expand the molten pool. Thereby, a welding part defect can be reduced further. Furthermore, spatter can be further reduced.

次に、本発明の効果を実証する実施例について、本発明の範囲から外れる比較例と比較して説明する。レーザ光源1の発振器2,3から、半導体レーザ光を出射し、レーザ光源4から、連続YAGレーザ光又はパルス発振式YAGレーザ光を出射した。半導体レーザ光は、発振器2,3から出射したものであり、夫々、波長が808nm、940nmである。YAGレーザ光は波長が1064nmである。   Next, examples demonstrating the effects of the present invention will be described in comparison with comparative examples that are out of the scope of the present invention. Semiconductor laser light was emitted from the oscillators 2 and 3 of the laser light source 1, and continuous YAG laser light or pulsed YAG laser light was emitted from the laser light source 4. The semiconductor laser light is emitted from the oscillators 2 and 3 and has wavelengths of 808 nm and 940 nm, respectively. The YAG laser beam has a wavelength of 1064 nm.

半導体レーザの出射条件は、レーザ出力が2.8乃至3.5kW、溶接速度が10m/分、シールドガスがArガスで流量が20リットル/分であり、発振器2,3からレンズ(光学系7a、7b)まで直径が0.4mmの光ファイバ(導波路5a、5b)で伝送した。   The emission conditions of the semiconductor laser are as follows: the laser output is 2.8 to 3.5 kW, the welding speed is 10 m / min, the shielding gas is Ar gas, and the flow rate is 20 liters / min. , 7b) was transmitted by an optical fiber (waveguides 5a, 5b) having a diameter of 0.4 mm.

連続YAGレーザは、レーザ出力が3.0乃至4.0kW、溶接速度が10m/分、シールドガスがArガスで流量が20リットル/分であり、発振器からレンズまで直径が0.4mmの光ファイバで伝送した。パルスYAGレーザは、レーザ出力が300W、溶接速度が1m/分、シールドガスがArガスで流量が20リットル/分であり、発振器からレンズまで直径が0.4mmの光ファイバで伝送した。   A continuous YAG laser is an optical fiber having a laser output of 3.0 to 4.0 kW, a welding speed of 10 m / min, a shielding gas of Ar gas, a flow rate of 20 liters / min, and a diameter of 0.4 mm from the oscillator to the lens. Was transmitted. The pulse YAG laser had a laser output of 300 W, a welding speed of 1 m / min, a shielding gas of Ar gas and a flow rate of 20 liters / min, and was transmitted from an oscillator to a lens by an optical fiber having a diameter of 0.4 mm.

下記表1に示すように、素材を組合せて溶接した。溶接継手は、図3に示す筐体10とこの筐体10の上端開口部に嵌合された蓋11との間に形成されるI開先の下向継手であり、溶接線に垂直の断面はL字形である。蓋11及び筐体10の中で、蓋11は厚板側、筐体10は薄板側であり、厚板側アルミニウム材は厚さが1.0乃至1.5mmであり、薄板側アルミニウム材は厚さが0.3乃至0.8mmである。なお、表1の品種欄は厚板側のアルミニウム材の合金種と薄板側のアルミニウム材の合金種を、JIS記号で表したものである。焦点位置は図2のA,B,Cの位置である。   As shown in Table 1 below, the materials were combined and welded. The weld joint is a downward joint of an I groove formed between the housing 10 shown in FIG. 3 and the lid 11 fitted to the upper end opening of the housing 10, and has a cross section perpendicular to the weld line. Is L-shaped. Among the lid 11 and the housing 10, the lid 11 is on the thick plate side, the housing 10 is on the thin plate side, the thick plate side aluminum material has a thickness of 1.0 to 1.5 mm, and the thin plate side aluminum material is The thickness is 0.3 to 0.8 mm. The type column in Table 1 shows the alloy type of the aluminum material on the thick plate side and the alloy type of the aluminum material on the thin plate side by JIS symbols. The focal positions are positions A, B, and C in FIG.

Figure 2012045570
Figure 2012045570

スパッタ量は、溶接部の外観に付着した球状の溶融金属の凝固物の数を測定した。そして、10mm長あたり、スパッタ粒子が0個の場合を◎、1個以下の場合を○、1個を超え5個以下の場合を△、5個を超えた場合を×としてスパッタ量を評価した。   The amount of spatter was determined by measuring the number of spherical molten metal solidified substances adhering to the appearance of the weld. Then, when the number of sputtered particles is 10 per 10 mm length, the amount of sputter was evaluated as ◎, when it is 1 or less, ◯ when it exceeds 1 and △ when it is 5 or less, and x when it exceeds 5 .

ポロシティ及び溶接割れの判定は、溶接線方向に平行の溶接部断面を研磨し、この溶接前に開先位置であった部分の研磨面を拡大鏡にて10倍に拡大して、ポロシティ及び溶接割れを観察した。そして、ポロシティは、10mm長あたり、0個の場合を◎、1個以下の場合を○、1個を超え5個以下の場合を△、5個を超えた場合を×として評価した。割れは、1個でも存在した場合は、×とした。表1の評価欄は、溶接品質において、◎が2個以上あれば◎、×が2個以上あれば×、×が1個又は△が2個であれば△、×及び△がない場合は○とした。   The determination of porosity and weld cracking is performed by polishing the cross section of the weld parallel to the weld line direction and expanding the polished surface at the groove position before this welding 10 times with a magnifying glass. Cracks were observed. The porosity was evaluated as 0 for a 10 mm length, ◯ for 1 or less, ◯ for 1 or less, and Δ for 5 or less, and x for 5 or less. When even one crack existed, it was set as x. In the evaluation column of Table 1, in the welding quality, ◎ if there are 2 or more, ◎, if there are 2 or more, ×, if X is 1 or if there are 2 △, × and Δ are not present ○.

この表1に示すように、本発明の実施例1乃至12は、溶接品質がいずれも○か◎であり、評価も◎か○であり、優れたものであった。これに対し、本発明の範囲から外れる比較例1乃至14は、いずれかの溶接品質が×か△であり、評価も×か△であった。   As shown in Table 1, Examples 1 to 12 of the present invention were excellent in that the welding quality was either ○ or ◎, and the evaluation was ◎ or ○. On the other hand, in Comparative Examples 1 to 14, which are out of the scope of the present invention, either welding quality was x or Δ, and the evaluation was also x or Δ.

1,4:光源
2,3:発振器
7a,7b:光学系
10:筐体
11:蓋
20:レーザ光
21:キーホール
22:溶融池
23:欠陥(ブローホール)
24:気泡
DESCRIPTION OF SYMBOLS 1,4: Light source 2, 3: Oscillator 7a, 7b: Optical system 10: Housing | casing 11: Lid 20: Laser beam 21: Keyhole 22: Molten pool 23: Defect (blowhole)
24: Bubble

Claims (6)

アルミニウム材からなる1対の被溶接材同士を溶接すべき態様に配置し、1個の光軸上に2個の焦点位置を有するレーザ光を、前記被溶接材の溶接位置に照射して前記被溶接材を溶融溶接し、このとき、焦点距離が短い方の第1焦点位置を前記被溶接材のいずれか一方の表面を規準表面としてこの規準表面から光軸方向に0.2mm以内の位置となるように設定し、前記焦点距離が長い方の第2焦点位置を前記規準表面から光軸方向の前記被溶接材内部に向けて0.2乃至0.9mmの位置になるように設定することを特徴とするアルミニウム接合体の製造方法。 A pair of materials to be welded made of an aluminum material are arranged in a mode to be welded, and a laser beam having two focal positions on one optical axis is irradiated to the welding position of the material to be welded. The material to be welded is melt-welded, and at this time, the first focal position having a shorter focal length is defined as a position within 0.2 mm in the optical axis direction from the reference surface with either surface of the material to be welded as the reference surface. The second focal position with the longer focal length is set to a position of 0.2 to 0.9 mm from the reference surface toward the inside of the welded material in the optical axis direction. A method for producing an aluminum joined body, comprising: アルミニウム材からなる1対の被溶接材同士を溶接すべき態様に配置し、1個の光軸上に3個の焦点位置を有するレーザ光を、前記被溶接材の溶接位置に照射して前記被溶接材を溶融溶接し、このとき、焦点距離が中間の第1焦点位置を前記被溶接材のいずれか一方の表面を規準表面としてこの規準表面から光軸方向に0.2mm以内の位置となるように設定し、前記焦点距離が長い方の第2焦点位置を前記規準表面から光軸方向の前記被溶接材内部に向けて0.2乃至0.9mmの位置になるように設定し、前記焦点距離が短い方の第3の焦点位置を前記規準表面から光軸方向の前記被溶接材の上方に向けて0.2乃至0.5mmの位置となるように設定することを特徴とするアルミニウム接合体の製造方法。 A pair of materials to be welded made of an aluminum material are arranged in a mode to be welded, and a laser beam having three focal positions on one optical axis is irradiated to the welding position of the material to be welded. The material to be welded is melt-welded, and at this time, the first focal position having an intermediate focal length is defined as a position within 0.2 mm from the reference surface in the optical axis direction with any one surface of the material to be welded as the reference surface. Set so that the second focal position of the longer focal length is set to a position of 0.2 to 0.9 mm from the reference surface toward the inside of the welded material in the optical axis direction, The third focal position having a shorter focal length is set to be a position of 0.2 to 0.5 mm from the reference surface toward the upper side of the welded material in the optical axis direction. Manufacturing method of aluminum joined body. アルミニウム材からなる1対の被溶接材同士を突合せて配置し、1個の光軸上に2個の焦点位置を有するレーザ光を、前記被溶接材の溶接位置に照射して前記被溶接材を溶融溶接し、このとき、焦点距離が短い方の第1焦点位置を前記被溶接材の表面を規準表面としてこの規準表面から光軸方向に0.2mm以内の位置となるように設定し、前記焦点距離が長い方の第2焦点位置を前記規準表面から光軸方向の前記被溶接材内部に向けて0.2乃至0.9mmの位置になるように設定することを特徴とするアルミニウム接合体の製造方法。 A pair of materials to be welded made of an aluminum material are arranged to face each other, and laser light having two focal positions on one optical axis is irradiated to the welding position of the material to be welded to form the material to be welded. At this time, the first focal position having a shorter focal length is set so that the surface of the material to be welded is a reference surface, and the position is within 0.2 mm from the reference surface in the optical axis direction, The second focal position having the longer focal length is set to be a position of 0.2 to 0.9 mm from the reference surface toward the inside of the welded material in the optical axis direction. Body manufacturing method. アルミニウム材からなる1対の被溶接材同士を突合せて配置し、1個の光軸上に3個の焦点位置を有するレーザ光を、前記被溶接材の溶接位置に照射して前記被溶接材を溶融溶接し、このとき、焦点距離が中間の第1焦点位置を前記被溶接材の表面を規準表面としてこの規準表面から光軸方向に0.2mm以内の位置となるように設定し、前記焦点距離が長い方の第2焦点位置を前記規準表面から光軸方向の前記被溶接材内部に向けて0.2乃至0.9mmの位置になるように設定し、前記焦点距離が短い方の第3の焦点位置を前記規準表面から光軸方向の前記被溶接材の上方に向けて0.2乃至0.5mmの位置となるように設定することを特徴とするアルミニウム接合体の製造方法。 A pair of materials to be welded made of an aluminum material are arranged to face each other, and laser light having three focal positions on one optical axis is irradiated to the welding position of the material to be welded to form the material to be welded. At this time, the first focal position with an intermediate focal length is set so that the surface of the material to be welded is a reference surface, and the position is within 0.2 mm in the optical axis direction from the reference surface, The second focal position with the longer focal length is set to a position of 0.2 to 0.9 mm from the reference surface toward the inside of the welded material in the optical axis direction, and the shorter focal length is set. A method for producing an aluminum joined body, wherein the third focal position is set to a position of 0.2 to 0.5 mm from the reference surface toward the upper side of the welded material in the optical axis direction. 前記アルミニウム材は、JIS1000系、3000系又は5000系であることを特徴とする請求項1乃至4のいずれか1項に記載のアルミニウム接合体の製造方法。 The said aluminum material is a JIS1000 type | system | group, 3000 type | system | group, or 5000 type | system | group, The manufacturing method of the aluminum joined body of any one of Claim 1 thru | or 4 characterized by the above-mentioned. 一方のアルミニウム材がJIS1000系、他方のアルミニウム材がJIS3000系又は5000系であり、前記一方のアルミニウム材が電池ケースの蓋であり、前記他方のアルミニウム材が電池ケースの筐体であり、前記筐体に前記蓋が接合された電池ケースを製造することを特徴とする請求項1乃至5のいずれか1項に記載のアルミニウム接合体の製造方法。 One aluminum material is a JIS 1000 series, the other aluminum material is a JIS 3000 series or 5000 series, the one aluminum material is a battery case lid, the other aluminum material is a battery case housing, and the housing The method for producing an aluminum joined body according to any one of claims 1 to 5, wherein a battery case in which the lid is joined to a body is produced.
JP2010189460A 2010-08-26 2010-08-26 Method for manufacturing aluminum joined body Pending JP2012045570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010189460A JP2012045570A (en) 2010-08-26 2010-08-26 Method for manufacturing aluminum joined body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010189460A JP2012045570A (en) 2010-08-26 2010-08-26 Method for manufacturing aluminum joined body

Publications (1)

Publication Number Publication Date
JP2012045570A true JP2012045570A (en) 2012-03-08

Family

ID=45901072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010189460A Pending JP2012045570A (en) 2010-08-26 2010-08-26 Method for manufacturing aluminum joined body

Country Status (1)

Country Link
JP (1) JP2012045570A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015044238A (en) * 2014-10-07 2015-03-12 三菱重工業株式会社 Laser processing device
CN105562930A (en) * 2016-03-03 2016-05-11 武汉华工激光工程有限责任公司 Laser welding method for power battery outer shell
US20160207144A1 (en) * 2013-08-28 2016-07-21 Mitsubishi Heavy Industries, Ltd. Laser processing apparatus
JP2016165738A (en) * 2015-03-09 2016-09-15 日本電気硝子株式会社 Bonding method, bonding device and joined body
JP2017042790A (en) * 2015-08-26 2017-03-02 トヨタ自動車株式会社 Laser welding method
US9761855B2 (en) 2013-06-25 2017-09-12 Gs Yuasa International Ltd. Welding structure between electric storage device and bus bar and method for welding electric storage device and bus bar together
CN113579521A (en) * 2021-07-22 2021-11-02 北京无线电测量研究所 Tool and method for reducing welding thermal stress deformation of special-shaped structure
CN114012263A (en) * 2021-12-02 2022-02-08 远景动力技术(江苏)有限公司 Lightweight aluminum plate welding method and battery module shell machining method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03238187A (en) * 1990-02-15 1991-10-23 Toshiba Corp Remote processing method and remote processing device for piping or the like
JP2004358521A (en) * 2003-06-05 2004-12-24 Mitsubishi Heavy Ind Ltd Apparatus and method for thermal-working with laser beam
JP2006263771A (en) * 2005-03-24 2006-10-05 Mitsubishi Heavy Ind Ltd Laser beam machining device and laser beam machining method
JP2009046743A (en) * 2007-08-22 2009-03-05 Nippon Light Metal Co Ltd Aluminum alloy sheet for battery case, and battery case made of the alloy sheet
JP2010023048A (en) * 2008-07-15 2010-02-04 Nisshin Steel Co Ltd Method of manufacturing exhaust pipe for automobile
JP2010140715A (en) * 2008-12-10 2010-06-24 Kobe Steel Ltd Circular container for secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03238187A (en) * 1990-02-15 1991-10-23 Toshiba Corp Remote processing method and remote processing device for piping or the like
JP2004358521A (en) * 2003-06-05 2004-12-24 Mitsubishi Heavy Ind Ltd Apparatus and method for thermal-working with laser beam
JP2006263771A (en) * 2005-03-24 2006-10-05 Mitsubishi Heavy Ind Ltd Laser beam machining device and laser beam machining method
JP2009046743A (en) * 2007-08-22 2009-03-05 Nippon Light Metal Co Ltd Aluminum alloy sheet for battery case, and battery case made of the alloy sheet
JP2010023048A (en) * 2008-07-15 2010-02-04 Nisshin Steel Co Ltd Method of manufacturing exhaust pipe for automobile
JP2010140715A (en) * 2008-12-10 2010-06-24 Kobe Steel Ltd Circular container for secondary battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9761855B2 (en) 2013-06-25 2017-09-12 Gs Yuasa International Ltd. Welding structure between electric storage device and bus bar and method for welding electric storage device and bus bar together
US20160207144A1 (en) * 2013-08-28 2016-07-21 Mitsubishi Heavy Industries, Ltd. Laser processing apparatus
EP3025819A4 (en) * 2013-08-28 2016-09-28 Mitsubishi Heavy Ind Ltd Laser machining device
JP2015044238A (en) * 2014-10-07 2015-03-12 三菱重工業株式会社 Laser processing device
JP2016165738A (en) * 2015-03-09 2016-09-15 日本電気硝子株式会社 Bonding method, bonding device and joined body
JP2017042790A (en) * 2015-08-26 2017-03-02 トヨタ自動車株式会社 Laser welding method
CN105562930A (en) * 2016-03-03 2016-05-11 武汉华工激光工程有限责任公司 Laser welding method for power battery outer shell
CN113579521A (en) * 2021-07-22 2021-11-02 北京无线电测量研究所 Tool and method for reducing welding thermal stress deformation of special-shaped structure
CN114012263A (en) * 2021-12-02 2022-02-08 远景动力技术(江苏)有限公司 Lightweight aluminum plate welding method and battery module shell machining method

Similar Documents

Publication Publication Date Title
JP2012045570A (en) Method for manufacturing aluminum joined body
JP5479024B2 (en) Joining method and joining apparatus
JP4612076B2 (en) Laser welding method for metal plated plate
CN102791420B (en) Laser/arc hybrid welding method and method of producing welded member using same
US8692152B2 (en) Laser lap welding method for galvanized steel sheets
CN108453374B (en) Double-beam laser welding method and device for aluminum alloy
CN114585471B (en) Laser welding method for angularly joining workpiece parts
JP2008126315A (en) Laser welding process with improved penetration
JP6071010B2 (en) Welding method
JP2011140053A (en) Laser lap welding method for galvanized steel sheet
JP5656802B2 (en) Aluminum can body for secondary battery and manufacturing method thereof
Beyer et al. Innovations in high power fiber laser applications
CN103476535B (en) Method for laser welding
KR101831584B1 (en) Method for laser welding of materials with different thicknesses
WO2013110214A1 (en) Method of welding coated materials
JPH0919778A (en) Laser welding method for aluminum alloy without exposing molten metal on the rear surface
JP2018202478A (en) Laser-sealing port device
Iwase et al. Dual-focus technique for high-power Nd: YAG laser welding of aluminum alloys
JP2010094702A (en) Method of laser welding metal plated plate
JPH07164173A (en) Method for laser beam welding of aluminum alloy member
JPH07323386A (en) Laser welding method
CN109954969B (en) Flexible switching method for laser deep melting welding and laser modification welding
Jokinen Novel ways of using Nd: YAG laser for welding thick section austenitic stainless steel
JP2009262187A (en) Method of laser welding metal plated plate
Darvish et al. Advantages of three-focal fiber technology in laser brazing of galvanized steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140204