Nothing Special   »   [go: up one dir, main page]

JP2011501050A - Seismic isolation structure - Google Patents

Seismic isolation structure Download PDF

Info

Publication number
JP2011501050A
JP2011501050A JP2010513564A JP2010513564A JP2011501050A JP 2011501050 A JP2011501050 A JP 2011501050A JP 2010513564 A JP2010513564 A JP 2010513564A JP 2010513564 A JP2010513564 A JP 2010513564A JP 2011501050 A JP2011501050 A JP 2011501050A
Authority
JP
Japan
Prior art keywords
seismic isolation
connecting plate
isolation member
fixed
members
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010513564A
Other languages
Japanese (ja)
Inventor
晃治 西本
宏明 小西
厚 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Engineering Co Ltd
Publication of JP2011501050A publication Critical patent/JP2011501050A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
    • F16F15/06Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means with metal springs
    • F16F15/073Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means with metal springs using only leaf springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/12Vibration-dampers; Shock-absorbers using plastic deformation of members

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Vibration Prevention Devices (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Dampers (AREA)

Abstract

この免震構造は、免震装置1と、構造物の上部構造Aと、免震装置1を介して上部構造Aを支持する前記構造物の下部構造Bとを備える。免震装置1は、U字形状を有する複数の免震部材10と、免震部材10の一方の端部を固定される第一連結板20と、免震部材10の他方の端部を固定される第二連結板30とを有する。上部構造Aおよび下部構造Bの少なくともいずれか一方には、免震部材10の塑性変形に対する逃げ部As,Bsがそれぞれ形成されている。The base isolation structure includes a base isolation device 1, an upper structure A of the structure, and a lower structure B of the structure that supports the upper structure A via the base isolation device 1. The seismic isolation device 1 fixes a plurality of seismic isolation members 10 having a U shape, a first connecting plate 20 to which one end of the seismic isolation member 10 is fixed, and the other end of the seismic isolation member 10. Second connecting plate 30. In at least one of the upper structure A and the lower structure B, relief portions As and Bs for plastic deformation of the seismic isolation member 10 are formed, respectively.

Description

本発明は、構造物の免震構造に関する。
本願は、2007年10月26日に出願された特願2007−279149号について優先権を主張し、その内容をここに援用する。
The present invention relates to a seismic isolation structure for a structure.
This application claims priority about Japanese Patent Application No. 2007-279149 for which it applied on October 26, 2007, and uses the content here.

従来、建築物や橋梁、高架道路、高架鉄道などの構造物において、躯体などの上部構造と基礎などの下部構造との間に配置され、地震などの大きなエネルギーが作用したときに下部構造に対する上部構造の振動を減衰させる免震装置が提案されている。例えば、下記の特許文献1から3には、上部構造と下部構造との間に、アイソレータと減衰機構とを組み合わせた免震装置が開示されている。   Conventionally, in structures such as buildings, bridges, elevated roads, and elevated railways, they are placed between the upper structure such as the frame and the lower structure such as the foundation. Seismic isolation devices have been proposed to damp structural vibrations. For example, Patent Documents 1 to 3 below disclose seismic isolation devices that combine an isolator and a damping mechanism between an upper structure and a lower structure.

上記の免震装置において、アイソレータは、金属板と板状の弾性体とが交互に積層されたものであって、上部構造と下部構造との間に介在し、双方にそれぞれ固定されている。上部構造は、アイソレータを介して下部構造に支持されている。減衰機構は、弾塑性材料からなる複数の免震部材(湾曲状部材)によって構成される。これら複数の免震部材は、アイソレータの周囲に規則的に(例えば、放射状に)配置されており、個々の免震部材は、一方の端部を上部構造に、他方の端部を下部構造にそれぞれ固定されている。減衰機構においては、例えば地震の発生時、構造物に大きなエネルギーが作用して上部構造が下部構造に対して水平方向に振動すると、免震部材が塑性変形し、地震のエネルギーを吸収する。つまり、上部構造に入力されたエネルギーが、免震部材を塑性変形させるために消費される。   In the above seismic isolation device, the isolator is formed by alternately laminating metal plates and plate-like elastic bodies, interposed between the upper structure and the lower structure, and fixed to both. The upper structure is supported by the lower structure via an isolator. The damping mechanism is constituted by a plurality of seismic isolation members (curved members) made of an elastic-plastic material. The plurality of seismic isolation members are regularly arranged around the isolator (for example, radially). Each seismic isolation member has one end as an upper structure and the other end as a lower structure. Each is fixed. In the damping mechanism, for example, when an earthquake occurs, if a large energy acts on the structure and the upper structure vibrates in a horizontal direction with respect to the lower structure, the seismic isolation member is plastically deformed and absorbs the energy of the earthquake. That is, energy input to the superstructure is consumed to plastically deform the seismic isolation member.

特許第3533110号公報Japanese Patent No. 3533110 特許第3543004号公報Japanese Patent No. 3543004 特開2004−340301号公報JP 2004-340301 A

ところで、上記のような免震装置を用いた構造物においては、地震などの大きなエネルギーが作用したとき、免震部材の湾曲された部分が外側に膨らむように変形し、上部構造または下部構造に当接する可能性がある。このように、免震部材が上部構造または下部構造に当接すると、免震部材に局所的に応力集中が起こり、地震のエネルギーを効果的に吸収することができなくなる。また、免震部材が損傷する可能性もある。   By the way, in the structure using the seismic isolation device as described above, when a large energy such as an earthquake acts, the curved portion of the seismic isolation member is deformed so as to bulge outward, and the upper structure or the lower structure is formed. There is a possibility of contact. In this way, when the seismic isolation member abuts on the upper structure or the lower structure, stress concentration locally occurs in the seismic isolation member, and the energy of the earthquake cannot be effectively absorbed. In addition, the seismic isolation member may be damaged.

本発明は上記の事情に鑑みてなされたもので、免震部材の塑性変形を阻害することなく、地震のエネルギーを効果的に吸収することが可能な構造物の免震構造を提供することを目的としている。   The present invention has been made in view of the above circumstances, and provides a seismic isolation structure for a structure that can effectively absorb earthquake energy without inhibiting plastic deformation of the seismic isolation member. It is aimed.

本発明の構造物の免震構造は、免震装置と、構造物の上部構造と、前記免震装置を介して前記上部構造を支持する前記構造物の下部構造とを備える。前記免震装置は、U字形状を有する複数の免震部材と、前記免震部材の一方の端部を固定される第一連結板と、前記免震部材の他方の端部を固定される第二連結板とを有する。前記上部構造または前記下部構造の少なくともいずれか一方には、前記免震部材の塑性変形に対する逃げ部が形成されている。   The base isolation structure of the structure of the present invention includes a base isolation device, an upper structure of the structure, and a lower structure of the structure that supports the upper structure via the base isolation device. The seismic isolation device has a plurality of U-shaped seismic isolation members, a first connecting plate to which one end of the seismic isolation member is fixed, and the other end of the seismic isolation member to be fixed. A second connecting plate. A relief portion for plastic deformation of the seismic isolation member is formed in at least one of the upper structure and the lower structure.

本発明においては、上部構造または下部構造の少なくともいずれか一方に、免震部材の塑性変形に対する逃げ部が形成されているので、地震などの大きなエネルギーが作用したとき、免震部材の湾曲された部分が外側に膨らむように変形しても、免震部材が上部構造または下部構造に当接することがない。したがって、免震部材に局所的に応力集中が起こることはなく、結果的に、本発明の免震構造が地震のエネルギーを効果的に吸収することができる。   In the present invention, since at least one of the upper structure and the lower structure is formed with a relief portion for plastic deformation of the seismic isolation member, the seismic isolation member is bent when large energy such as an earthquake acts. Even if the portion is deformed so as to bulge outward, the seismic isolation member does not contact the upper structure or the lower structure. Therefore, no stress concentration occurs locally in the seismic isolation member, and as a result, the seismic isolation structure of the present invention can effectively absorb the energy of the earthquake.

本発明の免震構造によれば、免震部材の塑性変形が阻害されないので、地震のエネルギーを効果的に吸収することができる。   According to the seismic isolation structure of the present invention, since the plastic deformation of the seismic isolation member is not hindered, the energy of the earthquake can be absorbed effectively.

図1は、本発明の免震構造を構成する免震装置を示す斜視図である。FIG. 1 is a perspective view showing a seismic isolation device constituting the seismic isolation structure of the present invention. 図2は、本発明の免震構造を構成する免震装置を示す平面図である。FIG. 2 is a plan view showing a seismic isolation device constituting the seismic isolation structure of the present invention. 図3は、免震装置を構成する免震部材の斜視図である。FIG. 3 is a perspective view of the seismic isolation member constituting the seismic isolation device. 図4は、本発明の免震構造を示す断面図である。FIG. 4 is a sectional view showing the seismic isolation structure of the present invention. 図5は、本発明の免震構造に地震のエネルギーが作用し、免震部材が塑性変形した状態を示す断面図である。FIG. 5 is a cross-sectional view showing a state where seismic energy acts on the seismic isolation structure of the present invention and the seismic isolation member is plastically deformed.

本発明の構造物の免震構造の実施形態を図1から図5に示して説明する。
図1および図2に示す免震装置1は、8個の免震部材10と、各免震部材10の一方の端部11を固定される第一連結板20と、各免震部材10の他方の端部12を固定される第二連結板30とを備えている。
Embodiments of the seismic isolation structure of the structure of the present invention will be described with reference to FIGS.
The seismic isolation device 1 shown in FIG. 1 and FIG. 2 includes eight seismic isolation members 10, a first connecting plate 20 to which one end 11 of each seismic isolation member 10 is fixed, and the seismic isolation members 10. And a second connecting plate 30 to which the other end 12 is fixed.

免震部材10は、図3に示すように、幅の狭い棒状の鋼材で、側方視するとU字形をなすように中間部分が曲げられている。免震部材10の対をなす2つの端部11,12には、他の部分よりも幅の広いブラケット部13,14がそれぞれ設けられている。ブラケット部13,14を除く免震部材10は、その断面積がブラケット部13から中央の円弧状部分に向かうにつれて徐々に小さくなるように形成されている。同様に、免震部材10は、その断面積がブラケット部14から中央の円弧状部分に向かうにつれて徐々に小さくなるように形成されている。ブラケット部13,14には、貫通孔13a,14aがそれぞれふたつずつ形成されている。免震部材10にこのような形状が与えられるのは、免震装置1に対して全方位からのエネルギーの入力を想定し、いずれの方向からエネルギーが入力しても常に同等の免震性能を発揮することを意図しているためである。   As shown in FIG. 3, the seismic isolation member 10 is a narrow bar-shaped steel material, and an intermediate portion is bent so as to form a U shape when viewed from the side. Two end portions 11 and 12 forming a pair of seismic isolation members 10 are respectively provided with bracket portions 13 and 14 that are wider than the other portions. The seismic isolation member 10 excluding the bracket portions 13 and 14 is formed such that its cross-sectional area gradually decreases from the bracket portion 13 toward the central arc-shaped portion. Similarly, the seismic isolation member 10 is formed so that its cross-sectional area gradually decreases from the bracket portion 14 toward the central arc-shaped portion. Two through holes 13a and 14a are formed in the bracket portions 13 and 14, respectively. Such a shape is given to the seismic isolation member 10, assuming that energy is input from all directions to the seismic isolation device 1, and even if energy is input from any direction, the same seismic isolation performance is always obtained. It is because it intends to demonstrate.

第一連結板20は、厚さが均一な矩形の鋼板であって、その上面には、各免震部材10の一方の端部11が、ボルト40を介して固定されている。第一連結板20の上面には、ボルト40を螺入するためのボルト孔(図示略)が形成されている。第一連結板20の下面には、複数のスタッドボルト21が立設されている。   The first connecting plate 20 is a rectangular steel plate having a uniform thickness, and one end portion 11 of each seismic isolation member 10 is fixed to the upper surface of the first connecting plate 20 via a bolt 40. A bolt hole (not shown) for screwing the bolt 40 is formed on the upper surface of the first connecting plate 20. A plurality of stud bolts 21 are erected on the lower surface of the first connecting plate 20.

第二連結板30も、厚さが均一な矩形の鋼板であって、その下面には、各免震部材10の他方の端部12が、ボルト40を介して固定されている。第二連結板30の下面には、ボルト40を螺入するためのボルト孔(図示略)が形成されている。第二連結板30の上面には、複数のスタッドボルト31が立設されている。   The second connecting plate 30 is also a rectangular steel plate having a uniform thickness, and the other end 12 of each seismic isolation member 10 is fixed to the lower surface of the second connecting plate 30 via bolts 40. A bolt hole (not shown) for screwing the bolt 40 is formed on the lower surface of the second connecting plate 30. A plurality of stud bolts 31 are erected on the upper surface of the second connecting plate 30.

8個の免震部材10のうち、2個の免震部材10Aは、第一連結板20のある辺20aに沿って等間隔に配置され、かつその辺20aに対して直交する方向に向けられたうえで、一方の端部11を第一連結板20の上面にボルト40を介して固定されている。さらに、これら2個の免震部材10Aは、第二連結板30のある辺30aに沿って等間隔に配置され、かつその辺30aに対して直交する方向に向けられたうえで、他方の端部12を第二連結板30の下面にボルト40を介して固定されている。   Of the eight seismic isolation members 10, the two seismic isolation members 10 </ b> A are arranged at equal intervals along the side 20 a with the first connecting plate 20 and directed in a direction orthogonal to the side 20 a. In addition, one end 11 is fixed to the upper surface of the first connecting plate 20 via a bolt 40. Furthermore, these two seismic isolation members 10A are arranged at equal intervals along the side 30a with the second connecting plate 30 and oriented in a direction orthogonal to the side 30a, and the other end. The part 12 is fixed to the lower surface of the second connecting plate 30 via bolts 40.

8個の免震部材10のうち、上記とは別の2個の免震部材10Bは、免震部材10Aを固定した辺20aに隣り合う辺20bに沿って等間隔に配置され、かつその辺20bに対して直交する方向に向けられたうえで、一方の端部11を第一連結板20の上面にボルト40を介して固定されている。さらに、これら2個の免震部材10Bは、免震部材10Aを固定した辺30aに隣り合う辺30bに沿って等間隔に配置され、かつその辺30bに対して直交する方向に向けられたうえで、他方の端部12を第二連結板30の下面にボルト40を介して固定されている。   Of the eight seismic isolation members 10, two seismic isolation members 10B different from the above are arranged at equal intervals along the side 20b adjacent to the side 20a to which the seismic isolation member 10A is fixed. After being oriented in a direction orthogonal to 20 b, one end 11 is fixed to the upper surface of the first connecting plate 20 through a bolt 40. Further, these two seismic isolation members 10B are arranged at equal intervals along the side 30b adjacent to the side 30a to which the seismic isolation member 10A is fixed, and are directed in a direction orthogonal to the side 30b. Thus, the other end 12 is fixed to the lower surface of the second connecting plate 30 via a bolt 40.

8個の免震部材10のうち、上記とは別の2個の免震部材10Cは、免震部材10Bを固定した辺20bに隣り合う辺20cに沿って等間隔に配置され、かつその辺20cに対して直交する方向に向けられたうえで、一方の端部11を第一連結板20の上面にボルト40を介して固定されている。さらに、これら2個の免震部材10Cは、免震部材10Bを固定した辺30bに隣り合う辺30cに沿って等間隔に配置され、かつその辺30cに対して直交する方向に向けられたうえで、他方の端部12を第二連結板30の下面にボルト40を介して固定されている。   Of the eight seismic isolation members 10, two seismic isolation members 10C different from the above are arranged at equal intervals along the side 20c adjacent to the side 20b to which the seismic isolation member 10B is fixed. One end portion 11 is fixed to the upper surface of the first connecting plate 20 via a bolt 40 after being oriented in a direction orthogonal to 20c. Further, these two seismic isolation members 10C are arranged at equal intervals along the side 30c adjacent to the side 30b to which the seismic isolation member 10B is fixed, and are directed in a direction orthogonal to the side 30c. Thus, the other end 12 is fixed to the lower surface of the second connecting plate 30 via a bolt 40.

8個の免震部材10のうち、残りの2個の免震部材10Dは、免震部材10Cを固定した辺20cに隣り合う辺20dに沿って等間隔に配置され、かつその辺20dに対して直交する方向に向けられたうえで、一方の端部11を第一連結板20の上面にボルト40を介して固定されている。さらに、これら2個の免震部材10Dは、免震部材10Cを固定した辺30cに隣り合う辺30dに沿って等間隔に配置され、かつその辺30dに対して直交する方向に向けられたうえで、他方の端部12を第二連結板30の下面にボルト40を介して固定されている。   Of the eight seismic isolation members 10, the remaining two seismic isolation members 10D are arranged at equal intervals along the side 20d adjacent to the side 20c to which the seismic isolation member 10C is fixed, and with respect to the side 20d. Then, one end portion 11 is fixed to the upper surface of the first connecting plate 20 via a bolt 40. Further, these two seismic isolation members 10D are arranged at equal intervals along the side 30d adjacent to the side 30c to which the seismic isolation member 10C is fixed, and are directed in a direction orthogonal to the side 30d. Thus, the other end 12 is fixed to the lower surface of the second connecting plate 30 via a bolt 40.

2個の免震部材10Aと、他の2個の免震部材10Cとは、第一連結板20および第二連結板30に固定されている。免震部材10Aは、それらの湾曲された部分が第一連結板20と第二連結板30との間からある方向(図2中のXの正方向)に突き出すように配置され、免震部材10Cは、それらの湾曲された部分が第一連結板20と第二連結板30との間から免震部材10Aの方向に相反する方向(図2中のXの負方向)に突き出すように配置されている。
また、2個の免震部材10Bと、他の2個の免震部材10Dとは、第一連結板20および第二連結板30に固定されている。免震部材10Bは、それらの湾曲された部分が第一連結板20と第二連結板30との間からある方向(図2中のYの正方向)に突き出すように配置され、免震部材10Dは、それらの湾曲された部分が第一連結板20と第二連結板30との間から免震部材10Bの方向に相反する方向(図2中のYの負方向)に突き出すように配置されている。
第一連結板20および第二連結板30は、上方視すると四辺がすべて一致するように配置されている。
The two seismic isolation members 10 </ b> A and the other two seismic isolation members 10 </ b> C are fixed to the first connecting plate 20 and the second connecting plate 30. The seismic isolation member 10 </ b> A is arranged so that the curved portions thereof protrude in a certain direction (the positive direction of X in FIG. 2) from between the first connection plate 20 and the second connection plate 30. 10C is arrange | positioned so that those curved parts may protrude in the direction (negative direction of X in FIG. 2) opposite to the direction of 10 A of seismic isolation members from between the 1st connection board 20 and the 2nd connection board 30. Has been.
The two seismic isolation members 10 </ b> B and the other two seismic isolation members 10 </ b> D are fixed to the first connection plate 20 and the second connection plate 30. The seismic isolation member 10B is disposed so that the curved portions thereof protrude in a certain direction (the positive direction of Y in FIG. 2) from between the first coupling plate 20 and the second coupling plate 30. 10D is arrange | positioned so that those curved parts may protrude in the direction (negative direction of Y in FIG. 2) opposite to the direction of the seismic isolation member 10B from between the 1st connection board 20 and the 2nd connection board 30. Has been.
The first connecting plate 20 and the second connecting plate 30 are arranged so that all four sides coincide when viewed from above.

上記のように構成された免震装置1は、建築物や橋梁、高架道路、高架鉄道などの構造物における躯体などの上部構造Aと基礎などの下部構造Bとの間に、以下の工程に従って配設される。
上記構造物においては、まず、免震装置1が、下部構造B上に配置される。上述のように、免震装置1の第一連結板20には、その下面にスタッドボルト21が立設されており、免震装置1は、このスタッドボルト21を下部構造Bに埋設するようにして、下部構造Bに固定される。
続いて、上部構造Aが、免震装置1上に配置される。上述のように、免震装置1の第二連結板30には、その上面にスタッドボルト31が立設されており、免震装置1は、このスタッドボルト31を上部構造Aに埋設するようにして、上部構造Aに固定される。
なお、スタッドボルト21が下部構造B内部に配設された鉄筋に連結されることにより、免震装置1と下部構造Bとの連結強度が高められており、同様に、スタッドボルト31が上部構造A内部に配設された鉄筋に連結されることにより、免震装置1と上部構造Aとの連結強度が高められている。
The seismic isolation device 1 configured as described above is provided between an upper structure A such as a frame and a lower structure B such as a foundation in a structure such as a building, a bridge, an elevated road, and an elevated railway in accordance with the following steps. Arranged.
In the said structure, the seismic isolation apparatus 1 is first arrange | positioned on the lower structure B. FIG. As described above, the first connecting plate 20 of the seismic isolation device 1 has the stud bolt 21 standing on its lower surface, and the seismic isolation device 1 embeds the stud bolt 21 in the lower structure B. And fixed to the lower structure B.
Subsequently, the upper structure A is arranged on the seismic isolation device 1. As described above, the stud bolt 31 is erected on the upper surface of the second connecting plate 30 of the seismic isolation device 1, and the seismic isolation device 1 embeds the stud bolt 31 in the upper structure A. And fixed to the upper structure A.
Note that the connection strength between the seismic isolation device 1 and the lower structure B is increased by connecting the stud bolt 21 to the reinforcing bar disposed in the lower structure B. Similarly, the stud bolt 31 is connected to the upper structure. The connection strength between the seismic isolation device 1 and the upper structure A is increased by being connected to the reinforcing bars disposed inside A.

図4に示すように、下部構造Bには、免震部材10の下方に位置する部分に段差が形成されている。この段差が、免震部材の塑性変形に対する逃げ部Bsを構成している。逃げ部Bsは、下部構造Bの上面、すなわち免震装置1の第一連結板20を固定された部分よりも一段低く形成されており、免震部材10の円弧状部分との間に広い空間を形成している。
上部構造Aには、免震部材10の上方に位置する部分に段差が形成されている。この段差が、免震部材の塑性変形に対する逃げ部Asを構成している。逃げ部Asは、上部構造Aの下面、すなわち免震装置1の第二連結板30を固定された部分よりも一段高く形成されており、免震部材10の円弧状部分との間に広い空間を形成している。
As shown in FIG. 4, in the lower structure B, a step is formed in a portion located below the seismic isolation member 10. This level | step difference comprises the escape part Bs with respect to the plastic deformation of a seismic isolation member. The escape portion Bs is formed one step lower than the upper surface of the lower structure B, that is, the portion to which the first connecting plate 20 of the seismic isolation device 1 is fixed, and is a wide space between the arc-shaped portion of the seismic isolation member 10. Is forming.
In the upper structure A, a step is formed in a portion located above the seismic isolation member 10. This level | step difference comprises the escape part As with respect to the plastic deformation of a seismic isolation member. The escape portion As is formed one step higher than the lower surface of the upper structure A, that is, the portion to which the second connecting plate 30 of the seismic isolation device 1 is fixed, and has a wide space between the arc-shaped portion of the seismic isolation member 10. Is forming.

上記のように構成された構造物の免震構造においては、上部構造Aおよび下部構造Bを含む構造物に地震などの大きなエネルギーが作用し、図5に示すように、上部構造Aが下部構造Bに対して図中のX方向に振動した場合、免震部材10が、一方の端部11と他方の端部12とが互いに離間する方向に変位するように塑性変形し、上部構造Aに入力されたエネルギーが消費される。これにより、上部構造Aの振動が減衰される。   In the seismic isolation structure of the structure configured as described above, a large energy such as an earthquake acts on the structure including the upper structure A and the lower structure B, and as shown in FIG. When vibrating in the X direction in the figure with respect to B, the seismic isolation member 10 is plastically deformed so that one end portion 11 and the other end portion 12 are displaced from each other, and the upper structure A is formed. The input energy is consumed. Thereby, the vibration of the upper structure A is attenuated.

さらにこのとき、免震部材10の円弧状に湾曲された部分が外側に膨らむように変形しても、上部構造Aに逃げ部Asが形成され、下部構造Bに逃げ部Bsが形成されているので、免震部材10が上部構造Aまたは下部構造Bのいずれにも当接することがない。したがって、免震部材10の塑性変形が阻害されず、免震部材10に局所的に応力集中が起こることはない。その結果、上記の免震構造が地震のエネルギーを効果的に吸収することができる。   Further, at this time, even if the arc-shaped portion of the seismic isolation member 10 is deformed so as to bulge outward, the escape portion As is formed in the upper structure A, and the escape portion Bs is formed in the lower structure B. Therefore, the seismic isolation member 10 does not contact either the upper structure A or the lower structure B. Therefore, plastic deformation of the seismic isolation member 10 is not hindered, and stress concentration does not occur locally in the seismic isolation member 10. As a result, the above-mentioned seismic isolation structure can effectively absorb the energy of the earthquake.

なお、当然ではあるが、逃げ部As,Bsには、図示しないその他の躯体構造物や配管などの部材が配設されることはない。このような部材が配設されていると、免震部材10に当接して塑性変形を阻害するからである。   Needless to say, other members such as other unillustrated housing structures and pipes are not disposed in the escape portions As and Bs. This is because, when such a member is provided, it contacts the seismic isolation member 10 and inhibits plastic deformation.

以上、本発明の好ましい実施形態を説明したが、本発明は上記の実施形態に限定されることはない。本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。本発明は前述した説明によって限定されることはなく、添付のクレームの範囲によってのみ限定される。   As mentioned above, although preferable embodiment of this invention was described, this invention is not limited to said embodiment. Additions, omissions, substitutions, and other modifications can be made without departing from the spirit of the present invention. The present invention is not limited by the above description, but only by the scope of the appended claims.

本発明の免震構造は、建築物や橋梁、高架道路、高架鉄道などの構造物において、基礎(下部構造)と駆体(上部構造)との間に配置されるだけでなく、上記構造物を構成する部材間に配置されてもよい。例えば、建築物を構成する床スラブと、床スラブ上に敷設される床版との間に配置されてもよい。この例では、免震構造は構造物の駆体に作用するエネルギーではなく、床版に作用するエネルギーを吸収する。同様に、橋梁を構成する橋脚と、橋脚上に設置される橋桁との間に設置されてもよい。   The seismic isolation structure of the present invention is not only arranged between the foundation (lower structure) and the main body (upper structure) in structures such as buildings, bridges, elevated roads, elevated railways, etc. It may be arranged between the members constituting. For example, you may arrange | position between the floor slab which comprises a building, and the floor slab laid on a floor slab. In this example, the seismic isolation structure absorbs energy acting on the floor slab, not energy acting on the structure body. Similarly, you may install between the bridge pier which comprises a bridge, and the bridge girder installed on a bridge pier.

本発明は、免震装置と、構造物の上部構造と、前記免震装置を介して前記上部構造を支持する前記構造物の下部構造とを備える構造物の免震構造に関する。前記免震装置は、U字形状を有する複数の免震部材と、前記免震部材の一方の端部を固定される第一連結板と、前記免震部材の他方の端部を固定される第二連結板とを有する。前記上部構造または前記下部構造の少なくともいずれか一方には、前記免震部材の塑性変形に対する逃げ部が形成されている。
本発明によれば、免震部材の塑性変形が阻害されないので、地震のエネルギーを効果的に吸収することができる。
The present invention relates to a base isolation structure including a base isolation device, an upper structure of a structure, and a lower structure of the structure that supports the upper structure via the base isolation device. The seismic isolation device has a plurality of U-shaped seismic isolation members, a first connecting plate to which one end of the seismic isolation member is fixed, and the other end of the seismic isolation member to be fixed. A second connecting plate. A relief portion for plastic deformation of the seismic isolation member is formed in at least one of the upper structure and the lower structure.
According to the present invention, since the plastic deformation of the seismic isolation member is not hindered, the energy of the earthquake can be absorbed effectively.

1…免震装置、
10,10A,10B,10C,10D…免震部材、
20…第一連結板、
30…第二連結板、
A…上部構造、
As…逃げ部、
B…下部構造、
Bs…逃げ部
1 ... Seismic isolation device,
10, 10A, 10B, 10C, 10D ... seismic isolation members,
20 ... 1st connection board,
30 ... the second connecting plate,
A ... Superstructure,
As ... Escape part,
B: Substructure,
Bs ... escape

Claims (1)

U字形状を有する複数の免震部材、前記免震部材の一方の端部を固定される第一連結板、および前記免震部材の他方の端部を固定される第二連結板を有する免震装置と、
構造物の上部構造と、
前記免震装置を介して前記上部構造を支持する前記構造物の下部構造とを備え、
前記上部構造または前記下部構造の少なくともいずれか一方に、前記免震部材の塑性変形に対する逃げ部が形成されている構造物の免震構造。
An exemption having a plurality of seismic isolation members having a U-shape, a first connection plate to which one end of the seismic isolation member is fixed, and a second connection plate to which the other end of the seismic isolation member is fixed A seismic device,
The superstructure of the structure;
A lower structure of the structure that supports the upper structure via the seismic isolation device,
A seismic isolation structure of a structure in which a relief portion for plastic deformation of the seismic isolation member is formed in at least one of the upper structure and the lower structure.
JP2010513564A 2007-10-26 2008-10-22 Seismic isolation structure Pending JP2011501050A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007279149 2007-10-26
PCT/JP2008/069581 WO2009054533A1 (en) 2007-10-26 2008-10-22 Seismic isolation system for structures

Publications (1)

Publication Number Publication Date
JP2011501050A true JP2011501050A (en) 2011-01-06

Family

ID=40579634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010513564A Pending JP2011501050A (en) 2007-10-26 2008-10-22 Seismic isolation structure

Country Status (3)

Country Link
JP (1) JP2011501050A (en)
TW (1) TW200925362A (en)
WO (1) WO2009054533A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9205027B2 (en) 2006-03-10 2015-12-08 Abbvie Deutschland Gmbh & Co Kg Process for producing a solid dispersion of an active ingredient
CN109854672A (en) * 2019-01-17 2019-06-07 上海大学 A kind of low frequency vibration isolation device of double-diaphragm spring formula

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103967160B (en) * 2014-05-07 2016-08-31 清华大学 Deformation energy dissipation brace
CN105156537A (en) * 2015-09-11 2015-12-16 松冷(武汉)科技有限公司 Metallic spherical shock absorber
CN105696454B (en) * 2015-12-16 2018-04-06 北京工业大学 A kind of lead for retractable pencil steel pipe U-shaped damper
WO2018208307A1 (en) * 2017-05-11 2018-11-15 Portland State University Energy dissipators with rotated members
CN108952281A (en) * 2017-05-27 2018-12-07 南京理工大学 A kind of U-shaped two stages surrender metal damper
CN107269089B (en) * 2017-08-25 2019-10-11 上海应用技术大学 A kind of novel armpit support metal energy-consuming device of bean column node
CN110206178B (en) * 2018-02-28 2021-09-10 香港理工大学 Self-resetting energy-consumption supporting device
FR3078556A1 (en) * 2018-03-02 2019-09-06 Blue Cube Ip Llc SEISMIC ISOLATION SYSTEM BASED
WO2020132757A1 (en) * 2018-12-27 2020-07-02 Pontificia Universidad Catolica De Chile Energy dissipation device made up of oval-shaped metal dissipators
CN110541594B (en) * 2019-08-09 2021-01-15 西安理工大学 Multi-target overhead protection system
CN110863578A (en) * 2019-11-22 2020-03-06 山东彤创建筑科技有限公司 Novel U-shaped steel plate energy consumption support
CN113503332B (en) * 2021-06-22 2023-03-17 上海卫星工程研究所 Quasi-zero stiffness vibration isolator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003206987A (en) * 2002-01-16 2003-07-25 Sumitomo Metal Mining Co Ltd Damper for base-isolation
JP2004011273A (en) * 2002-06-07 2004-01-15 Sumitomo Metal Mining Co Ltd Base-isolation damper
JP2004278205A (en) * 2003-03-18 2004-10-07 Tomoe Corp Base isolating damper

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003206987A (en) * 2002-01-16 2003-07-25 Sumitomo Metal Mining Co Ltd Damper for base-isolation
JP2004011273A (en) * 2002-06-07 2004-01-15 Sumitomo Metal Mining Co Ltd Base-isolation damper
JP2004278205A (en) * 2003-03-18 2004-10-07 Tomoe Corp Base isolating damper

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9205027B2 (en) 2006-03-10 2015-12-08 Abbvie Deutschland Gmbh & Co Kg Process for producing a solid dispersion of an active ingredient
US9414992B2 (en) 2006-03-10 2016-08-16 Abbvie Deutschland Gmbh & Co Kg Process for producing a solid dispersion of an active ingredient
CN109854672A (en) * 2019-01-17 2019-06-07 上海大学 A kind of low frequency vibration isolation device of double-diaphragm spring formula

Also Published As

Publication number Publication date
TW200925362A (en) 2009-06-16
WO2009054533A1 (en) 2009-04-30

Similar Documents

Publication Publication Date Title
JP2011501050A (en) Seismic isolation structure
JP2011501049A (en) Seismic isolation device for structure, construction method of the device, and seismic isolation member
JP5075948B2 (en) Vibration control device
JP2005299078A (en) Vibration proofing apparatus for bridge
JP5319902B2 (en) Building vibration control structure
JP4070117B2 (en) Vibration control device
JP2014012972A (en) Base-isolation structure for construction
JP2009013683A (en) Damping structure of building
JP2013002192A (en) Tension type base-isolation bearing device
WO2013051702A1 (en) Seismic isolation support device for traveling crane
JP5042067B2 (en) Anti-vibration floor structure
JP4049120B2 (en) Building seismic control structure
JP2011102530A (en) Vibration control building
JP5305756B2 (en) Damping wall using corrugated steel
KR101796207B1 (en) Steel coulmn connecting construction method for earthquake-resistant
JP4884914B2 (en) Vibration control device installation structure of unit building
JP4635700B2 (en) Building seismic control structure
JP4411444B2 (en) Shear panel type damper mounting structure to structure
JP4013097B2 (en) Vibration suppression viaduct
JP2003064620A (en) Vibration control and vibration isolation structure of reinforced concrete elevated bridge
JP2009256957A (en) Viscoelastic brace damper
JP2011137317A (en) Bridge with vibration control function, and construction method of the same
JP2009035949A5 (en)
JP4559793B2 (en) Multi-story shear wall
JP4354616B2 (en) Anti-vibration structure of viaduct

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130205