Nothing Special   »   [go: up one dir, main page]

JP2011236158A - Condensed polycyclic compound and organic light-emitting element using the same - Google Patents

Condensed polycyclic compound and organic light-emitting element using the same Download PDF

Info

Publication number
JP2011236158A
JP2011236158A JP2010109150A JP2010109150A JP2011236158A JP 2011236158 A JP2011236158 A JP 2011236158A JP 2010109150 A JP2010109150 A JP 2010109150A JP 2010109150 A JP2010109150 A JP 2010109150A JP 2011236158 A JP2011236158 A JP 2011236158A
Authority
JP
Japan
Prior art keywords
group
compound
organic light
substituted
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010109150A
Other languages
Japanese (ja)
Inventor
Takayuki Horiuchi
貴行 堀内
Atsushi Kamatani
淳 鎌谷
Akito Saito
章人 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2010109150A priority Critical patent/JP2011236158A/en
Publication of JP2011236158A publication Critical patent/JP2011236158A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Indole Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Electroluminescent Light Sources (AREA)
  • Quinoline Compounds (AREA)
  • Pyridine Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a durable organic light-emitting element allowing low-voltage drive and high-efficient and high-luminance light emission.SOLUTION: The organic light-emitting element comprises a positive electrode, a negative electrode, and an organic compound layer held between the positive electrode and the negative electrode. The organic compound layer comprises a condensed polycyclic compound represented by general formula [1] (wherein R-Rare each a hydrogen atom or a substituted/unsubstituted alkyl group and may be the same or different from each other; and Arand Arare each a hydrogen atom, a substituted/unsubstituted aryl group, or a substituted/unsubstituted heterocyclic group and may be the same or different from each other provided that at least one of Arand Aris a substituted/unsubstituted aryl group or a substituted/unsubstituted heterocyclic group).

Description

本発明は、縮合多環化合物及びこれを用いた有機発光素子に関する。   The present invention relates to a condensed polycyclic compound and an organic light-emitting device using the same.

有機発光素子は、陽極と陰極との間に蛍光性有機化合物を含む薄膜を挟持させてなる発光素子である。また各電極から電子及びホール(正孔)を注入することにより、蛍光性化合物の励起子を生成させ、この励起子が基底状態に戻る際に有機発光素子は光を放出する。   An organic light emitting device is a light emitting device in which a thin film containing a fluorescent organic compound is sandwiched between an anode and a cathode. Further, by injecting electrons and holes (holes) from each electrode, excitons of the fluorescent compound are generated, and the organic light emitting device emits light when the excitons return to the ground state.

有機発光素子における最近の進歩は著しく、その特徴は、低印加電圧で高輝度、発光波長の多様性、高速応答性、薄型、軽量の発光デバイス化が可能であることが挙げられる。このことから、有機発光素子は広汎な用途への可能性を示唆している。   Recent advances in organic light-emitting elements are remarkable, and the characteristics are that high luminance, a wide variety of emission wavelengths, high-speed response, thin and light-weight light-emitting devices can be realized with a low applied voltage. From this, the organic light emitting element has suggested the possibility to a wide use.

しかしながら、現状ではまだ改善の余地がある。具体的には、実用化を考える上で更なる高輝度の光出力あるいは高い光変換効率が必要となるからである。また、長時間の使用による経時変化や酸素を含む雰囲気気体や湿気等による劣化等の耐久性の面において改善が必要である。さらに携帯機器用ディスプレイ等への応用を考えた場合は、素子自体の消費電力が低いことが必要となる。特に、電子注入層や電子輸送層の構成材料である電子注入輸送材料は、有機発光素子の駆動電圧、発光効率及び寿命に影響を与えるため、精力的に研究開発が行われている。しかし、現在のところ上記の問題が十分解決されたとはいえない状況である。また素子をフルカラーのディスプレイの構成部材として使用する場合、青色画素の劣化が最も早く進行するため、青色発光素子の高効率化、長寿命化を実現するための材料が求められている。   However, there is still room for improvement at present. Specifically, in consideration of practical use, a higher luminance light output or higher light conversion efficiency is required. Further, there is a need for improvement in terms of durability such as changes over time due to long-term use and deterioration due to atmospheric gas containing oxygen or moisture. Furthermore, when considering application to a display for portable devices, the power consumption of the element itself is required to be low. In particular, electron injection and transport materials, which are constituent materials of the electron injection layer and the electron transport layer, affect the driving voltage, light emission efficiency, and lifetime of the organic light emitting device, and therefore are intensively researched and developed. However, at present, it cannot be said that the above problem has been sufficiently solved. Further, when the element is used as a constituent member of a full-color display, the blue pixel is most rapidly deteriorated. Therefore, a material for realizing high efficiency and long life of the blue light emitting element is required.

上記の課題を解決する方法の1つとして、アントラセン骨格を有する有機化合物が提案され、この有機化合物を有機発光素子の電子輸送層の構成材料として使用する試みがなされている(特許文献1乃至3参照)。ただし、発光色相や効率や輝度や耐久性といった観点からさらなる改善が必要である。   As one of the methods for solving the above problem, an organic compound having an anthracene skeleton has been proposed, and attempts have been made to use this organic compound as a constituent material of an electron transport layer of an organic light emitting device (Patent Documents 1 to 3). reference). However, further improvements are necessary from the viewpoints of light emission hue, efficiency, brightness, and durability.

一方、フェナントレン構造を有する化合物やピセンを有機薄膜トランジスタ材料として用いる試みもなされている(特許文献4及び非特許文献1参照)。   On the other hand, an attempt has been made to use a compound having a phenanthrene structure or picene as an organic thin film transistor material (see Patent Document 4 and Non-Patent Document 1).

国際公開第2007/064493号International Publication No. 2007/064493 国際公開第2007/127069号International Publication No. 2007/127069 国際公開第2007/130263号International Publication No. 2007/130263 国際公開第2008/059816号International Publication No. 2008/059816

Journal of American Chemical Society,130,10470−10471(2008)Journal of American Chemical Society, 130, 10470-10471 (2008)

本発明は、上記課題を解決するためになされるものであり、その目的は、低電圧駆動、及び高効率かつ高輝度な光出力を可能にし、かつ耐久性のある有機発光素子を提供することにある。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a durable organic light-emitting device that enables low-voltage driving, high-efficiency and high-luminance light output, and durability. It is in.

本発明の縮合多環化合物は、下記一般式[1]で示されることを特徴とする。   The condensed polycyclic compound of the present invention is represented by the following general formula [1].

Figure 2011236158

(式[1]において、R1乃至R12は、それぞれ水素原子又は置換あるいは無置換のアルキル基であり、それぞれ同じであっても異なっていてもよい。Ar1及びAr2は、それぞれ水素原子、置換あるいは無置換のアリール基又は置換あるいは無置換の複素環基であり、それぞれ同じであっても異なっていてもよい。ただし、Ar1及びAr2のいずれかが置換あるいは無置換のアリール基又は置換あるいは無置換の複素環基である。)
Figure 2011236158

(In Formula [1], R 1 to R 12 are each a hydrogen atom or a substituted or unsubstituted alkyl group, and may be the same or different. Ar 1 and Ar 2 are each a hydrogen atom. A substituted or unsubstituted aryl group or a substituted or unsubstituted heterocyclic group, which may be the same or different, provided that either Ar 1 or Ar 2 is a substituted or unsubstituted aryl group Or a substituted or unsubstituted heterocyclic group.)

本発明の縮合多環化合物は、電子輸送性が高く、かつ安定性の高い化合物である。このため本発明によれば、低電圧駆動、及び高効率かつ高輝度な光出力を可能にし、かつ耐久性のある有機発光素子を提供することができる。   The condensed polycyclic compound of the present invention is a compound having high electron transportability and high stability. For this reason, according to the present invention, it is possible to provide a durable organic light-emitting element that can be driven at a low voltage and can output light with high efficiency and high brightness.

本発明の有機発光素子と、この有機発光素子に接続するスイッチング素子の一例であるTFT素子とを示した断面模式図である。It is the cross-sectional schematic diagram which showed the organic light emitting element of this invention, and the TFT element which is an example of the switching element connected to this organic light emitting element.

以下、本発明に関して詳細に説明する。まず本発明の縮合多環化合物について説明する。本発明の縮合多環化合物は、下記一般式[1]で示される化合物である。   Hereinafter, the present invention will be described in detail. First, the condensed polycyclic compound of the present invention will be described. The condensed polycyclic compound of the present invention is a compound represented by the following general formula [1].

Figure 2011236158

(式[1]において、R1乃至R12は、それぞれ水素原子又は置換あるいは無置換のアルキル基であり、それぞれ同じであっても異なっていてもよい。Ar1及びAr2は、それぞれ水素原子、置換あるいは無置換のアリール基又は置換あるいは無置換の複素環基であり、それぞれ同じであっても異なっていてもよい。ただし、Ar1及びAr2のいずれかが置換あるいは無置換のアリール基又は置換あるいは無置換の複素環基である。)
Figure 2011236158

(In Formula [1], R 1 to R 12 are each a hydrogen atom or a substituted or unsubstituted alkyl group, and may be the same or different. Ar 1 and Ar 2 are each a hydrogen atom. A substituted or unsubstituted aryl group or a substituted or unsubstituted heterocyclic group, which may be the same or different, provided that either Ar 1 or Ar 2 is a substituted or unsubstituted aryl group Or a substituted or unsubstituted heterocyclic group.)

以下に、式[1]中に示されている置換基について詳細に説明する。   Below, the substituent shown in Formula [1] is demonstrated in detail.

1乃至R12で表されるアルキル基として、メチル基、エチル基、ノルマルプロピル基、イソプロピル基、ノルマルブチル基、ターシャリーブチル基、セカンダリーブチル基、オクチル基、1−アダマンチル基、2−アダマンチル基等が挙げられるが、もちろんこれらに限定されるものではない。 Examples of the alkyl group represented by R 1 to R 12 include a methyl group, an ethyl group, a normal propyl group, an isopropyl group, a normal butyl group, a tertiary butyl group, a secondary butyl group, an octyl group, a 1-adamantyl group, and a 2-adamantyl group. Examples include, but are not limited to, groups.

上記アルキル基がさらに有してもよい置換基として、フェニル基、ビフェニル基、ナフチル基、9,9−ジメチルフルオレニル基等のアリール基、ピリジル基、ピロリル基等の複素環基、ジメチルアミノ基、ジエチルアミノ基、ジベンジルアミノ基、ジフェニルアミノ基、ジトリルアミノ基等の置換アミノ基、メトキシ基、エトキシ基、プロポキシ基等のアルコキシ基、フェノキシ基等のアリールオキシ基、フッ素、塩素、臭素、ヨウ素等のハロゲン原子、シアノ基等が挙げられるが、もちろんこれらに限定されるものではない。   Examples of the substituent that the alkyl group may further have include an aryl group such as a phenyl group, a biphenyl group, a naphthyl group, and a 9,9-dimethylfluorenyl group, a heterocyclic group such as a pyridyl group and a pyrrolyl group, and dimethylamino. Group, diethylamino group, dibenzylamino group, diphenylamino group, substituted amino group such as ditolylamino group, alkoxy group such as methoxy group, ethoxy group, propoxy group, aryloxy group such as phenoxy group, fluorine, chlorine, bromine, iodine And halogen atoms such as cyano group and the like, of course, but are not limited thereto.

Ar1及びAr2で表されるアリール基として、フェニル基、ナフチル基、アントリル基、フェナントリル基、インデニル基、ビフェニル基、ターフェニル基、フルオレニル基、ピレニル基、アセナフテニル基、フルオランテニル基、ベンゾフルオランテニル基、トリフェニレニル基、クリセニル基、ペリレニル基等が挙げられるが、もちろんこれらに限定されるものではない。 As aryl groups represented by Ar 1 and Ar 2 , phenyl, naphthyl, anthryl, phenanthryl, indenyl, biphenyl, terphenyl, fluorenyl, pyrenyl, acenaphthenyl, fluoranthenyl, benzo Although a fluoranthenyl group, a triphenylenyl group, a chrycenyl group, a perylenyl group, etc. are mentioned, of course, it is not limited to these.

Ar1及びAr2で表される複素環基として、ピリジル基、キノリル基、オキサゾリル基、オキサジアゾリル基、チアゾリル基、チアジアゾリル基、カルバゾリル基、アクリジニル基、フェナントロリル基、チエニル基、ピリミジニル基、ビピリジル基、ターチエニル基、キノキサリニル基等が挙げられるが、もちろんこれらに限定されるものではない。 As the heterocyclic group represented by Ar 1 and Ar 2 , pyridyl group, quinolyl group, oxazolyl group, oxadiazolyl group, thiazolyl group, thiadiazolyl group, carbazolyl group, acridinyl group, phenanthroyl group, thienyl group, pyrimidinyl group, bipyridyl group, A tertenyl group, a quinoxalinyl group, etc. are mentioned, Of course, it is not limited to these.

上記アリール基及び当該複素環基がさらに有してもよい置換基として、メチル基、エチル基、プロピル基、ターシャリーブチル基等のアルキル基、ベンジル基等のアラルキル基、フェニル基、ビフェニル基、ナフチル基、9,9−ジメチルフルオレニル基等のアリール基、ピリジル基、ピロリル基、カルバゾリル基等の複素環基、ジメチルアミノ基、ジエチルアミノ基、ジベンジルアミノ基、ジフェニルアミノ基、ジトリルアミノ基、ナフチルフェニルアミノ基等の置換アミノ基、メトキシ基、エトキシ基、プロポキシ基等のアルコキシ基、フェノキシ基等のアリールオキシ基、フッ素、塩素、臭素、ヨウ素等のハロゲン原子、シアノ基等が挙げられるが、もちろんこれらに限定されるものではない。   As the substituent that the aryl group and the heterocyclic group may further have, an alkyl group such as a methyl group, an ethyl group, a propyl group, and a tertiary butyl group, an aralkyl group such as a benzyl group, a phenyl group, a biphenyl group, Aryl groups such as naphthyl group, 9,9-dimethylfluorenyl group, heterocyclic groups such as pyridyl group, pyrrolyl group, carbazolyl group, dimethylamino group, diethylamino group, dibenzylamino group, diphenylamino group, ditolylamino group, Examples thereof include substituted amino groups such as naphthylphenylamino group, alkoxy groups such as methoxy group, ethoxy group and propoxy group, aryloxy groups such as phenoxy group, halogen atoms such as fluorine, chlorine, bromine and iodine, and cyano group. Of course, it is not limited to these.

式[1]で示される縮合多環化合物は、好ましくは、下記一般式[2]で示される化合物である。   The condensed polycyclic compound represented by the formula [1] is preferably a compound represented by the following general formula [2].

Figure 2011236158

(式[2]において、Ar1及びAr2は、置換あるいは無置換のアリール基であり、それぞれ同じであっても異なっていてもよい。)
以下に、式[2]中に示されている置換基について詳細に説明する。
Figure 2011236158

(In Formula [2], Ar 1 and Ar 2 are substituted or unsubstituted aryl groups, which may be the same or different.)
Below, the substituent shown in Formula [2] is demonstrated in detail.

Ar1及びAr2で表されるアリール基として、フェニル基、ナフチル基、フェナントレニル基、ピレニル基、フルオレニル基、フルオランテニル基等が挙げられるが、もちろんこれらに限定されるものではない。 Examples of the aryl group represented by Ar 1 and Ar 2 include, but are not limited to, a phenyl group, a naphthyl group, a phenanthrenyl group, a pyrenyl group, a fluorenyl group, and a fluoranthenyl group.

上記アリール基がさらに有してもよい置換基として、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基等のアルキル基等が挙げられるが、もちろんこれらに限定されるものではない。   Examples of the substituent that the aryl group may further have include an alkyl group such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group. Of course, it is not limited to these.

尚、式[2]中に示されているAr1及びAr2は、好ましくは、同一の置換基である。 Ar 1 and Ar 2 shown in the formula [2] are preferably the same substituent.

一般に、複素環化合物では骨格を構成する炭素原子とヘテロ原子との電気陰性度がそれぞれ異なるため、骨格内に電荷の偏りが生じやすい。そのため複素環化合物は、芳香族炭化水素化合物と比較して化学反応性に富み、ホール又は電子を受容した状態において化学的に不安定になる場合がある。従って、本発明において、式[1]の縮合多環化合物の化学的安定性をより向上させるためには、Ar1及びAr2のうち少なくとも1つを、置換あるいは無置換のアリール基にすることが望ましい。 In general, in a heterocyclic compound, since the electronegativity of a carbon atom and a hetero atom constituting a skeleton are different from each other, a bias of charge is likely to occur in the skeleton. Therefore, the heterocyclic compound is rich in chemical reactivity as compared with the aromatic hydrocarbon compound, and may be chemically unstable in a state where holes or electrons are received. Therefore, in the present invention, in order to further improve the chemical stability of the condensed polycyclic compound of the formula [1], at least one of Ar 1 and Ar 2 is a substituted or unsubstituted aryl group. Is desirable.

ところで、有機発光素子の構成材料には、材料を高純度化するための精製方法として昇華精製を利用できること、及び有機化合物層を形成する方法である真空蒸着法を利用できることが要求される。ここで昇華及び真空蒸着を行う際には、10-3Pa程度の高真空下において、有機発光素子の構成材料が300℃以上の温度にさらされることになる。このとき有機発光素子の構成材料の分子量が1000以上である場合、材料自体がより高い温度条件にさらされることになる。そうすると、材料自体が熱分解する可能性があり所望の物性が得られなくなることがある。従って、有機発光素子の構成材料として使用される本発明の縮合多環化合物は、分子量が1000以下であることが好ましい。 By the way, the constituent material of the organic light emitting element is required to be able to use sublimation purification as a purification method for purifying the material and to be able to use a vacuum evaporation method which is a method for forming an organic compound layer. Here, when performing sublimation and vacuum deposition, the constituent material of the organic light emitting device is exposed to a temperature of 300 ° C. or higher under a high vacuum of about 10 −3 Pa. At this time, when the molecular weight of the constituent material of the organic light emitting device is 1000 or more, the material itself is exposed to higher temperature conditions. As a result, the material itself may be thermally decomposed, and desired physical properties may not be obtained. Accordingly, the condensed polycyclic compound of the present invention used as a constituent material of the organic light emitting device preferably has a molecular weight of 1000 or less.

本発明による縮合多環化合物の特長を以下に説明する。まず第1に、縮合環数とキャリア移動について述べる。そして第2に、縮合環数とエネルギーギャップについて述べる。そして第3に、置換基を導入する位置と種類について述べる。   The features of the condensed polycyclic compound according to the present invention will be described below. First, the number of condensed rings and carrier movement will be described. Secondly, the number of condensed rings and the energy gap will be described. Thirdly, the position and type for introducing the substituent will be described.

(1)縮合環数とキャリア移動について
本発明の縮合多環化合物は、5個のベンゼン環が縮合したピセンを基本骨格とする化合物である。ここでピセンは、ナフタレン、フルオレン、アントラセンといった一般的に有機発光素子に多用される3環以下の縮合多環化合物よりもπ共役平面が大きい化合物である。従って、本発明の縮合多環化合物を薄膜状態にすると、分子同士の重なりが生じやすいのでπ電子の相互作用を通じたキャリア移動が起こりやすくなる。即ち、本発明の縮合多環化合物からなる薄膜は高いキャリア移動度を有する。このことから本発明の縮合多環化合物をキャリア注入・輸送層の構成材料として用いることで、有機発光素子の駆動電圧の低電圧化が可能となる。
(1) Condensed Ring Number and Carrier Movement The condensed polycyclic compound of the present invention is a compound having a basic skeleton of picene in which five benzene rings are condensed. Here, picene is a compound having a larger π conjugate plane than a condensed polycyclic compound having 3 or less rings, such as naphthalene, fluorene, and anthracene, which are generally used frequently in organic light-emitting devices. Accordingly, when the condensed polycyclic compound of the present invention is made into a thin film state, molecules are likely to overlap each other, so that carrier movement through the interaction of π electrons is likely to occur. That is, the thin film made of the condensed polycyclic compound of the present invention has high carrier mobility. For this reason, the use of the condensed polycyclic compound of the present invention as a constituent material of the carrier injection / transport layer can reduce the driving voltage of the organic light emitting device.

(2)縮合環数とエネルギーギャップについて
ピセンは、ベンゼン環をジグザグに縮合してなる化合物であるため、分子全体に共役が広がらずエネルギーギャップが大きい。またピセンは、薄膜状態におけるエネルギーギャップが3.3eV(376nm)であり(非特許文献1参照。)、ベンゼン環を直線状に縮合してなる5環のペンタセンが紫〜黒色を呈するのとは対照的である。このことから、本発明の縮合多環化合物は、Ar1及びAr2として適切な置換基を選択すれば青色領域のエネルギーギャップである2.88eV(430nm)に近付けることが可能になる。
(2) Condensed ring number and energy gap Since picene is a compound formed by condensing a benzene ring in a zigzag manner, conjugation does not spread throughout the molecule, and the energy gap is large. Also, picene has an energy gap of 3.3 eV (376 nm) in a thin film state (see Non-Patent Document 1), and pentacyclic pentacene formed by linearly condensing a benzene ring exhibits purple to black color. In contrast. From this, the condensed polycyclic compound of the present invention can be close to the energy gap of 2.88 eV (430 nm) in the blue region by selecting an appropriate substituent as Ar 1 and Ar 2 .

一般にディスプレイの構成部材として青色発光の有機発光素子(青色発光素子)を用いる場合、この青色発光素子に含まれる青色発光材料は、発光ピークが430nm〜480nmの範囲にある。このため、素子を構成する発光層に含まれるホストは当然のことながら、キャリア注入・輸送性材料についても、その吸収スペクトルが430nm以下にのみ存在しなくてはならない。仮に、430nmを超えた領域に吸収スペクトルがある材料が存在すると、発光層で生じた青色発光をその材料が吸収してしまう。さらに、発光層に含まれる励起子(エキシトン)の励起エネルギーが共鳴的に、かつ効率よく隣接キャリア輸送層へ移動して、発光効率の著しい低下を招いてしまう。   In general, when a blue light-emitting organic light-emitting element (blue light-emitting element) is used as a constituent member of a display, a blue light-emitting material contained in the blue light-emitting element has an emission peak in a range of 430 nm to 480 nm. For this reason, as a matter of course, the host included in the light emitting layer constituting the device must have an absorption spectrum of only 430 nm or less for the carrier injecting / transporting material. If there is a material having an absorption spectrum in a region exceeding 430 nm, the material absorbs blue light emission generated in the light emitting layer. Furthermore, the excitation energy of excitons (excitons) contained in the light emitting layer moves to the adjacent carrier transport layer in a resonant and efficient manner, leading to a significant decrease in light emission efficiency.

上述した事項を考慮したときに、本発明の縮合多環化合物は、縮合環の数の増加によるキャリア移動度の向上と、青色発光素子の構成材料に適したエネルギーギャップの保持とを両立した優れた特性を有する化合物であるといえる。   In consideration of the above-mentioned matters, the condensed polycyclic compound of the present invention is excellent in achieving both improvement in carrier mobility due to an increase in the number of condensed rings and maintenance of an energy gap suitable for a constituent material of a blue light emitting device. It can be said that it is a compound having the above characteristics.

(3)置換基を導入する位置と種類について
まず材料の安定性の観点から考察すると、本発明の縮合多環化合物は、基本骨格であるピセン骨格において、5位及び8位の電子密度が最も高く、これらの位置において求電子反応に対する活性が高い。ここでピセン骨格中の5位及び8位の炭素原子に水素原子が結合している(置換基がない)場合、一重項酸素分子等の求電子反応(酸化反応)により化合物自体が分解する可能性がある。そこで、これらの位置のいずれかにsp2炭素同士の安定な結合を形成させると化合物自体の化学的安定性を高めることができる。ここでピセン骨格中の5位及び8位のいずれかにsp2炭素同士の安定な結合を形成する具体的方法として、これらの位置にアリール基又は複素環基を導入するという方法がある。
(3) Position and Type of Substituent Introduction First, considering from the viewpoint of material stability, the condensed polycyclic compound of the present invention has the highest electron density at the 5- and 8-positions in the basic skeleton of the picene skeleton. High and high in electrophilic reaction at these positions. Here, when hydrogen atoms are bonded to the 5th and 8th carbon atoms in the picene skeleton (there is no substituent), the compound itself can be decomposed by an electrophilic reaction (oxidation reaction) such as a singlet oxygen molecule. There is sex. Therefore, if a stable bond between sp 2 carbons is formed at any of these positions, the chemical stability of the compound itself can be enhanced. Here, as a specific method of forming a stable bond between sp 2 carbons at either the 5-position or 8-position in the picene skeleton, there is a method of introducing an aryl group or a heterocyclic group at these positions.

一方で、縮合多環化合物にアリール基や複素環基、アルキル基を導入することは、化学反応性の高い部分を保護する効果の他に、有機発光素子を作製する際の蒸着安定性や薄膜状態における結晶化抑制に対して大きな効果がある。従って、本発明の縮合多環化合物においても、アリール基又は複素環基が導入されるピセン骨格中の5位、8位以外の位置にアルキル基を導入することで上記の効果が得られる。また同時に、アルキル基の電子供与性を利用してHOMO及びLUMO準位を調節することも可能である。   On the other hand, introducing an aryl group, a heterocyclic group, or an alkyl group into the condensed polycyclic compound has the effect of protecting the highly reactive part, as well as the deposition stability and thin film when producing an organic light emitting device. This has a great effect on suppressing crystallization in the state. Therefore, also in the condensed polycyclic compound of the present invention, the above effect can be obtained by introducing an alkyl group at a position other than the 5th and 8th positions in the picene skeleton into which the aryl group or heterocyclic group is introduced. At the same time, the HOMO and LUMO levels can be adjusted by utilizing the electron donating property of the alkyl group.

以上を考慮すると、材料自体の安定性やエネルギーギャップ、蒸着安定性、非晶質薄膜保持性の観点から考慮すると、式[1]中で示されている置換基のうちR1乃至R12は、それぞれ水素原子又は置換あるいは無置換のアルキル基であるのが望ましい。一方、Ar1及びAr2は、少なくとも1つが置換あるいは無置換のアリール基又は置換あるいは無置換の複素環基であることが望ましい。 Considering the above, considering the stability of the material itself, the energy gap, the deposition stability, and the amorphous thin film retention, among the substituents represented by the formula [1], R 1 to R 12 are These are each preferably a hydrogen atom or a substituted or unsubstituted alkyl group. On the other hand, Ar 1 and Ar 2 are preferably at least one of a substituted or unsubstituted aryl group or a substituted or unsubstituted heterocyclic group.

ここで素子を構成する材料に特段の熱的及び化学的安定性を要求する場合、ピセン骨格に導入する置換基は、安定なsp2炭素同士によってもたらされる結合を形成する置換基に限定するのが望ましい。従って、本発明の縮合多環化合物は、好ましくは、式[2]に示される化合物であり、特に好ましくは、式[2]に示される化合物のうちAr1とAr2とが同一置換基である化合物である。 Here, when the material constituting the device requires special thermal and chemical stability, the substituent introduced into the picene skeleton is limited to the substituent that forms a bond caused by stable sp 2 carbons. Is desirable. Therefore, the condensed polycyclic compound of the present invention is preferably a compound represented by the formula [2], and particularly preferably, Ar 1 and Ar 2 of the compound represented by the formula [2] are the same substituents. It is a certain compound.

本発明の縮合多環化合物の具体例を以下に挙げる。ただし、本発明はもちろんこれらに限定されるものではない。   Specific examples of the condensed polycyclic compound of the present invention are listed below. However, the present invention is of course not limited to these.

Figure 2011236158
Figure 2011236158

Figure 2011236158
Figure 2011236158

Figure 2011236158
Figure 2011236158

次に、本発明の有機発光素子を説明する。   Next, the organic light emitting device of the present invention will be described.

本発明の有機発光素子は、陽極と陰極と、該陽極と該陰極との間に挟持される有機化合物層と、から構成される。好ましくは、陽極及び陰極のいずれかが発光色に対して透明あるいは半透明(透過率がおよそ50%)である。   The organic light emitting device of the present invention comprises an anode, a cathode, and an organic compound layer sandwiched between the anode and the cathode. Preferably, either the anode or the cathode is transparent or semi-transparent (transmittance is approximately 50%) with respect to the emission color.

本発明の有機発光素子は、ホール輸送材料のキャリア移動度とのバランスや、発光層に含まれるホストと電子輸送材料とのHOMO準位差及びLUMO準位差を考慮して、有機発光素子が最も優れた特性を示すように層構成及び構成材料が適宜選択される。   The organic light-emitting device of the present invention is an organic light-emitting device in consideration of the balance with the carrier mobility of the hole transport material and the HOMO level difference and LUMO level difference between the host and the electron transport material contained in the light-emitting layer. The layer structure and the constituent materials are appropriately selected so as to exhibit the most excellent characteristics.

本発明の有機発光素子の具体的な構成例を以下に示す。ただし、以下に示す具体例はあくまでもごく基本的な素子構成であり、本発明はこれに限定されるものではない。
(1)陽極/発光層/陰極
(2)陽極/ホール輸送層/電子輸送層/陰極
(3)陽極/ホール輸送層/発光層/電子輸送層/陰極
(4)陽極/ホール注入層/ホール輸送層/発光層/電子輸送層/陰極
(5)陽極/ホール注入層/ホール輸送層/発光層/電子輸送層/電子注入層/陰極
(6)陽極/ホール輸送層/発光層/ホール・エキシトンブロッキング層/電子輸送層/電子注入層/陰極
A specific configuration example of the organic light emitting device of the present invention is shown below. However, the specific examples shown below are merely basic element configurations, and the present invention is not limited thereto.
(1) Anode / light emitting layer / cathode (2) Anode / hole transport layer / electron transport layer / cathode (3) Anode / hole transport layer / light emitting layer / electron transport layer / cathode (4) Anode / hole injection layer / hole Transport layer / light-emitting layer / electron transport layer / cathode (5) anode / hole injection layer / hole transport layer / light-emitting layer / electron transport layer / electron injection layer / cathode (6) anode / hole transport layer / light-emitting layer / hole Exciton blocking layer / electron transport layer / electron injection layer / cathode

また上記(1)乃至(6)に示される構成の他、電極と有機化合物層と界面に絶縁性層、接着層又は干渉層を設ける、電子輸送層もしくはホール輸送層がイオン化ポテンシャルの異なる2層から構成される等の多様な層構成をとることができる。   In addition to the structures shown in the above (1) to (6), an insulating layer, an adhesive layer or an interference layer is provided at the interface between the electrode and the organic compound layer, and the electron transport layer or hole transport layer has two different ionization potentials. Various layer configurations such as, for example, can be adopted.

本発明の有機発光素子は、素子を構成する有機化合物層に、本発明の縮合多環化合物が含まれる。好ましくは、発光層と電子注入(輸送)層の間に存在する電子輸送性層、具体的には、電子輸送層又はホールブロック層に本発明の縮合多環化合物が含まれる。より好ましくは、ホールブロック層に本発明の縮合多環化合物が含まれる。
本発明において、ホールブロック層は、本発明の縮合多環化合物のみで構成されていてもよいが、本発明の縮合多環化合物と電子注入(輸送)材料とで構成されていてもよい。従って、本発明の縮合多環化合物は、後述する種々の有機又は無機材料と組み合わせることでホストやゲスト、キャリア注入輸送材料、キャリアブロック材料として用いることができる。中でも、複素環化合物や金属錯体等といった酸化反応に弱い材料を電子注入輸送材料として用いている有機発光素子において、本発明の縮合多環化合物をホールブロック材料として用いると長寿命化及び高効率化において効果が高く、特に好ましい。これは発光層内にホールが閉じ込められ発光効率が高くなるとともに、ホールによる電子注入輸送材料の劣化が抑制されるためである。
In the organic light-emitting device of the present invention, the condensed polycyclic compound of the present invention is contained in the organic compound layer constituting the device. Preferably, the condensed polycyclic compound of the present invention is contained in an electron transporting layer present between the light emitting layer and the electron injection (transport) layer, specifically, the electron transport layer or the hole blocking layer. More preferably, the condensed polycyclic compound of the present invention is contained in the hole blocking layer.
In the present invention, the hole blocking layer may be composed only of the condensed polycyclic compound of the present invention, but may be composed of the condensed polycyclic compound of the present invention and an electron injection (transport) material. Therefore, the condensed polycyclic compound of the present invention can be used as a host, a guest, a carrier injecting and transporting material, or a carrier block material by combining with various organic or inorganic materials described later. In particular, in organic light-emitting devices using materials that are vulnerable to oxidation reactions, such as heterocyclic compounds and metal complexes, as electron injecting and transporting materials, the use of the condensed polycyclic compounds of the present invention as hole blocking materials increases the life and efficiency. The effect is high and particularly preferable. This is because holes are confined in the light emitting layer, the luminous efficiency is increased, and deterioration of the electron injecting and transporting material due to the holes is suppressed.

本発明の有機発光素子においては、本発明の縮合多環化合物以外にも、必要に応じて従来公知の化合物を併用して使用することができる。具体的には、下記に示される化合物を使用することができる。
(a)低分子系及び高分子系のホール注入性化合物・ホール輸送性化合物
(b)発光層のホストとなるホスト化合物
(c)発光層のゲストとなる発光性化合物
(d)電子注入性化合物・電子輸送性化合物
In the organic light-emitting device of the present invention, conventionally known compounds can be used in combination with the condensed polycyclic compound of the present invention as required. Specifically, the compounds shown below can be used.
(A) Low-molecular-weight and high-molecular-weight hole-injection compound / hole-transport compound (b) Host compound that serves as a host for the light-emitting layer (c) Luminescent compound that serves as a guest for the light-emitting layer (d) Electron-injectable compound・ Electron transporting compounds

以下にこれらの化合物例を挙げる。   Examples of these compounds are given below.

ホール注入性化合物・ホール輸送性化合物としては、ホール移動度が高い材料であることが好ましい。正孔注入性能又は正孔輸送性能を有する低分子系材料・高分子系材料としては、トリアリールアミン誘導体、フェニレンジアミン誘導体、スチルベン誘導体、フタロシアニン誘導体、ポルフィリン誘導体、ポリ(ビニルカルバゾール)、ポリ(チオフェン)、その他導電性高分子が挙げられる。ただし本発明はこれらに限定されるものではない。   The hole injecting compound / hole transporting compound is preferably a material having a high hole mobility. Examples of low molecular weight materials / polymeric materials having hole injection performance or hole transport performance include triarylamine derivatives, phenylenediamine derivatives, stilbene derivatives, phthalocyanine derivatives, porphyrin derivatives, poly (vinylcarbazole), poly (thiophene) ) And other conductive polymers. However, the present invention is not limited to these.

本発明の縮合多環化合物は、発光層のゲストとして使用することもできる。この場合、対応するホストとして、下記表1に示されている化合物が挙げられる。   The condensed polycyclic compound of the present invention can also be used as a guest of the light emitting layer. In this case, the corresponding host includes the compounds shown in Table 1 below.

Figure 2011236158
Figure 2011236158

さらに上記表1に示されている化合物の他に、縮合環化合物(例えば、フルオレン誘導体、ナフタレン誘導体、アントラセン誘導体、ピレン誘導体、カルバゾール誘導体、キノキサリン誘導体、キノリン誘導体等)、トリス(8−キノリノラート)アルミニウム等の有機アルミニウム錯体、有機亜鉛錯体、及びトリフェニルアミン誘導体、ポリ(フルオレン)誘導体、ポリ(フェニレン)誘導体等の高分子誘導体が挙げられる。ただし本発明はこれらに限定されるものではない。本発明の縮合多環化合物は、発光層のホストとして使用することもできる。この場合、対応するゲストとしては、縮合環芳香族化合物(例えばナフタレン誘導体、フェナントレン誘導体、フルオレン誘導体、ピレン誘導体、フルオランテン誘導体、ベンゾフルオランテン誘導体、テトラセン誘導体、コロネン誘導体、クリセン誘導体、ペリレン誘導体、9,10−ジフェニルアントラセン誘導体、ルブレン等)、キナクリドン誘導体、アクリドン誘導体、クマリン誘導体、ピラン誘導体、ナイルレッド、ピラジン誘導体、ベンゾイミダゾール誘導体、スチルベン誘導体、有機金属錯体(例えば、トリス(8−キノリノラート)アルミニウム等の有機アルミニウム錯体、有機ベリリウム錯体)及びポリ(フルオレン)誘導体、ポリ(フェニレン)誘導体等の高分子誘導体が挙げられる。ただし本発明はこれらに限定されるものではない。   In addition to the compounds shown in Table 1 above, condensed ring compounds (for example, fluorene derivatives, naphthalene derivatives, anthracene derivatives, pyrene derivatives, carbazole derivatives, quinoxaline derivatives, quinoline derivatives, etc.), tris (8-quinolinolato) aluminum And organoaluminum complexes such as triphenylamine derivatives, poly (fluorene) derivatives, and poly (phenylene) derivatives. However, the present invention is not limited to these. The condensed polycyclic compound of the present invention can also be used as a host of the light emitting layer. In this case, the corresponding guest includes a condensed ring aromatic compound (for example, naphthalene derivative, phenanthrene derivative, fluorene derivative, pyrene derivative, fluoranthene derivative, benzofluoranthene derivative, tetracene derivative, coronene derivative, chrysene derivative, perylene derivative, 9 , 10-diphenylanthracene derivatives, rubrene, etc.), quinacridone derivatives, acridone derivatives, coumarin derivatives, pyran derivatives, nile red, pyrazine derivatives, benzimidazole derivatives, stilbene derivatives, organometallic complexes (for example, tris (8-quinolinolato) aluminum, etc. Organic aluminum complexes, organic beryllium complexes) and polymer derivatives such as poly (fluorene) derivatives and poly (phenylene) derivatives. However, the present invention is not limited to these.

尚、本発明の有機発光素子において、本発明の縮合多環化合物が発光層以外に含まれる場合でも上記のホスト及びゲストを適宜組み合わせて使用することができる。   In the organic light emitting device of the present invention, the above host and guest can be used in appropriate combination even when the condensed polycyclic compound of the present invention is contained in a layer other than the light emitting layer.

電子注入性化合物・電子輸送性化合物としては、ホール注入性化合物・ホール輸送性化合物のホール移動度とのバランス等を考慮しながら適宜選択される。電子注入性能あるいは電子輸送性能を有する化合物としては、オキサジアゾール誘導体、オキサゾール誘導体、ピラジン誘導体、トリアゾール誘導体、トリアジン誘導体、キノリン誘導体、キノキサリン誘導体、フェナントロリン誘導体、有機アルミニウム錯体等が挙げられるが、もちろんこれらに限定されるものではない。   The electron injecting compound / electron transporting compound is appropriately selected in consideration of the balance with the hole mobility of the hole injecting compound / hole transporting compound. Examples of compounds having electron injection performance or electron transport performance include oxadiazole derivatives, oxazole derivatives, pyrazine derivatives, triazole derivatives, triazine derivatives, quinoline derivatives, quinoxaline derivatives, phenanthroline derivatives, organoaluminum complexes, etc. It is not limited to.

陽極の構成材料は、仕事関数がなるべく大きいものがよい。例えば、金、白金、銀、銅、ニッケル、パラジウム、コバルト、セレン、バナジウム、タングステン等の金属単体あるいはこれら金属単体を複数組み合わせた合金、酸化錫、酸化亜鉛、酸化インジウム、酸化錫インジウム(ITO)、酸化亜鉛インジウム等の金属酸化物が挙げられる。また、ポリアニリン、ポリピロール、ポリチオフェン等の導電性ポリマーでもよい。これらの電極物質は一種類を単独で使用してもよいし複数種を併用して使用してもよい。また、陽極は一層で構成されていてもよいし、複数の層で構成されていてもよい。   The constituent material of the anode should have a work function as large as possible. For example, simple metals such as gold, platinum, silver, copper, nickel, palladium, cobalt, selenium, vanadium, tungsten, etc., or alloys obtained by combining a plurality of these metals, tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO) And metal oxides such as indium zinc oxide. Further, conductive polymers such as polyaniline, polypyrrole, and polythiophene may be used. These electrode materials may be used alone or in combination of two or more. Moreover, the anode may be composed of a single layer or a plurality of layers.

一方、陰極の構成材料は、仕事関数の小さいものがよい。例えば、リチウム等のアルカリ金属、カルシウム等のアルカリ土類金属、アルミニウム、チタニウム、マンガン、銀、鉛、クロム等の金属単体が挙げられる。あるいはこれら金属単体を複数組み合わせた合金も使用することができる。例えば、マグネシウム−銀、アルミニウム−リチウム、アルミニウム−マグネシウム等が使用できる。酸化錫インジウム(ITO)等の金属酸化物の利用も可能である。これらの電極物質は一種類を単独で使用してもよいし、複数種を併用して使用してもよい。また、陰極は一層で構成されていてもよいし、複数の層で構成されていてもよい。   On the other hand, the constituent material of the cathode is preferably a material having a small work function. Examples thereof include alkali metals such as lithium, alkaline earth metals such as calcium, and simple metals such as aluminum, titanium, manganese, silver, lead, and chromium. Alternatively, an alloy obtained by combining a plurality of these metals alone can also be used. For example, magnesium-silver, aluminum-lithium, aluminum-magnesium, etc. can be used. A metal oxide such as indium tin oxide (ITO) can also be used. These electrode materials may be used alone or in combination of two or more. Moreover, the cathode may be composed of a single layer or a plurality of layers.

本発明の有機発光素子において、本発明の縮合多環化合物が含まれる層及びその他の有機化合物からなる層は、以下に示す方法により形成される。一般的には真空蒸着法、イオン化蒸着法、スパッタリング、プラズマあるいは、適当な溶媒に溶解させて公知の塗布法(例えば、スピンコーティング、ディッピング、キャスト法、LB法、インクジェット法等)により薄膜を形成する。ここで真空蒸着法や溶液塗布法等によって層を形成すると、結晶化等が起こりにくく経時安定性に優れる。また塗布法で成膜する場合は、適当なバインダー樹脂と組み合わせて膜を形成することもできる。   In the organic light-emitting device of the present invention, the layer containing the condensed polycyclic compound of the present invention and the layer composed of other organic compounds are formed by the following method. Generally, a thin film is formed by vacuum deposition, ionization deposition, sputtering, plasma, or a known coating method (for example, spin coating, dipping, casting, LB method, ink jet method, etc.) after dissolving in an appropriate solvent. To do. Here, when a layer is formed by a vacuum deposition method, a solution coating method, or the like, crystallization or the like hardly occurs and the temporal stability is excellent. Moreover, when forming into a film by the apply | coating method, a film | membrane can also be formed combining with a suitable binder resin.

上記バインダー樹脂としては、ポリビニルカルバゾール樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ABS樹脂、アクリル樹脂、ポリイミド樹脂、フェノール樹脂、エポキシ樹脂、シリコーン樹脂、尿素樹脂等が挙げられるが、これらに限定されるものではない。また、これらバインダー樹脂は、ホモポリマー又は共重合体として1種単独で使用してもよいし、2種以上を混合して使用してもよい。さらに必要に応じて、公知の可塑剤、酸化防止剤、紫外線吸収剤等の添加剤を併用してもよい。   Examples of the binder resin include, but are not limited to, polyvinyl carbazole resin, polycarbonate resin, polyester resin, ABS resin, acrylic resin, polyimide resin, phenol resin, epoxy resin, silicone resin, urea resin, and the like. . Moreover, these binder resins may be used alone as a homopolymer or a copolymer, or may be used as a mixture of two or more. Furthermore, you may use together additives, such as a well-known plasticizer, antioxidant, and an ultraviolet absorber, as needed.

本発明の有機発光素子は、表示装置や照明装置に用いることができる。他にも電子写真方式の画像形成装置の露光光源や液晶表示装置のバックライト等がある。   The organic light emitting device of the present invention can be used in a display device or a lighting device. In addition, there are an exposure light source of an electrophotographic image forming apparatus, a backlight of a liquid crystal display device, and the like.

表示装置は本実施形態に係る有機発光素子を表示部に有する。この表示部には画素が複数設けられている。この画素には本発明の有機発光素子が搭載されている。またこの画素には本発明の有機発光素子の発光輝度を制御するためのスイッチング素子(有機発光素子に電気信号を供給する手段)の一例としてTFT素子が備えられている。そしてこの有機発光素子の陽極又は陰極とTFT素子のドレイン電極又はソース電極とが接続されている。表示装置はPC等の画像表示装置として用いることができる。   The display device includes the organic light emitting element according to the present embodiment in a display unit. The display unit is provided with a plurality of pixels. This pixel is equipped with the organic light emitting device of the present invention. In addition, this pixel is provided with a TFT element as an example of a switching element (means for supplying an electric signal to the organic light emitting element) for controlling the light emission luminance of the organic light emitting element of the present invention. The anode or cathode of the organic light emitting element and the drain electrode or source electrode of the TFT element are connected. The display device can be used as an image display device such as a PC.

表示装置は、エリアCCD、リニアCCD、メモリーカード等からの情報を入力する画像入力部を有し、入力された画像を表示部に出力する画像出力装置でもよい。また、撮像装置やインクジェットプリンタが有する表示部として、外部から入力された画像情報に基づいて画像を表示する画像出力機能と操作パネルとして画像への加工情報を入力する入力機能との両方を有していてもよい。また表示装置はマルチファンクションプリンタの表示部に用いられてもよい。   The display device may include an image input unit that inputs information from an area CCD, a linear CCD, a memory card, and the like, and may output an input image to the display unit. In addition, the display unit of the imaging apparatus or the inkjet printer has both an image output function for displaying an image based on image information input from the outside and an input function for inputting processing information to the image as an operation panel. It may be. The display device may be used for a display unit of a multifunction printer.

次に、本実施形態に係る有機発光素子を使用した表示装置について図面を参照しながら説明する。   Next, a display device using the organic light emitting device according to this embodiment will be described with reference to the drawings.

図1は、本発明の有機発光素子と、この有機発光素子に接続するスイッチング素子の一例であるTFT素子とを示した断面模式図である。図1の表示装置では有機発光素子とTFT素子との組が2組図示されている。TFT基板の製造工程の一例を示しながら、構造の詳細を以下に説明する。図1の表示装置20を製造する際には、まずガラス等の基板1上に、上部に作られる部材(TFT又は有機化合物層)を保護するための防湿膜2がコートされる。防湿膜2を構成する材料として、酸化ケイ素又は酸化ケイ素と窒化ケイ素との複合体等が用いられる。次に、スパッタリングによりCr等の金属を製膜することで、所定の回路形状にパターニングしてゲート電極3を形成する。続いて、酸化シリコン等をプラズマCVD法又は触媒化学気相成長法(cat−CVD法)等により製膜し、パターニングしてゲート絶縁膜4を形成する。次に、プラズマCVD法等により(場合によっては290℃以上の温度でアニールして)シリコン膜を製膜し、回路形状に従ってパターニングすることで半導体層5を形成する。   FIG. 1 is a schematic cross-sectional view showing an organic light emitting device of the present invention and a TFT device which is an example of a switching device connected to the organic light emitting device. In the display device of FIG. 1, two sets of organic light emitting elements and TFT elements are shown. Details of the structure will be described below while showing an example of the manufacturing process of the TFT substrate. When the display device 20 of FIG. 1 is manufactured, a moisture-proof film 2 for protecting a member (TFT or organic compound layer) formed thereon is first coated on a substrate 1 such as glass. As a material constituting the moisture-proof film 2, silicon oxide or a composite of silicon oxide and silicon nitride is used. Next, a gate electrode 3 is formed by patterning into a predetermined circuit shape by depositing a metal such as Cr by sputtering. Subsequently, silicon oxide or the like is formed by plasma CVD or catalytic chemical vapor deposition (cat-CVD) or the like, and patterned to form the gate insulating film 4. Next, a silicon film is formed by a plasma CVD method or the like (in some cases, annealed at a temperature of 290 ° C. or higher), and the semiconductor layer 5 is formed by patterning according to a circuit shape.

さらに、この半導体膜5にドレイン電極6とソース電極7を設けることでTFT素子8を作製し、1つの画素を構成する回路を形成する。次に、このTFT素子8の上部に絶縁膜9を形成する。次に、コンタクトホール(スルーホール)10を、金属からなる有機電界発光素子用の陽極11とソース電極7が接続するように形成する。   Further, by providing a drain electrode 6 and a source electrode 7 on the semiconductor film 5, a TFT element 8 is manufactured, and a circuit constituting one pixel is formed. Next, an insulating film 9 is formed on the TFT element 8. Next, a contact hole (through hole) 10 is formed so that the anode 11 for the organic electroluminescence element made of metal and the source electrode 7 are connected.

この陽極11の上に、多層あるいは単層の有機化合物層12と、陰極13を順次積層することにより、表示装置20を得ることができる。このとき、有機電界発光素子の劣化を防ぐために第一の保護層14や第二の保護層15を設けてもよい。本発明の有機電界発光素子を使用した表示装置を駆動することにより、良好な画質で、長時間表示にも安定な表示が可能になる。   A display device 20 can be obtained by sequentially laminating a multilayer or single-layer organic compound layer 12 and a cathode 13 on the anode 11. At this time, the first protective layer 14 and the second protective layer 15 may be provided in order to prevent deterioration of the organic electroluminescent element. By driving the display device using the organic electroluminescent element of the present invention, it is possible to display with good image quality and stable display for a long time.

尚、上記の表示装置は、スイッチング素子に特に限定はなく、単結晶シリコン基板やMIM素子、a−Si型等でも容易に応用することができる。   Note that the display device is not particularly limited to a switching element, and can be easily applied to a single crystal silicon substrate, an MIM element, an a-Si type, or the like.

[実施例1]例示化合物1−1の製造方法
以下に説明する方法により例示化合物1−1を製造した。
[Example 1] Production method of exemplary compound 1-1 Exemplified compound 1-1 was produced by the method described below.

Figure 2011236158
Figure 2011236158

(1)中間体化合物1の合成
まず2−ヒドロキシ−1−ナフトアルデヒド5.00g(29.0mmol)をピリジン20mlに溶解した。次に、反応溶液を氷冷した後、この温度(氷温下)で、反応溶液中にトリフルオロメタンスルホン酸無水物5.71ml(34.8mmol)を滴下した。次に、反応溶液を室温に戻し、この温度(室温)で2時間撹拌した。次に、水、トルエン及び酢酸エチルを加え、溶媒抽出により有機層を水層から分離した。次に、有機層を飽和食塩水で洗浄した後、硫酸ナトリウムで乾燥させた。次に、溶媒を減圧留去することで粗生成物を得た。次に、この粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒:クロロホルム/ヘプタン=2/1)で精製することで粘体状の中間体化合物1を3.78g(収率42%)得た。
(1) Synthesis of Intermediate Compound 1 First, 5.00 g (29.0 mmol) of 2-hydroxy-1-naphthaldehyde was dissolved in 20 ml of pyridine. Next, the reaction solution was ice-cooled, and 5.71 ml (34.8 mmol) of trifluoromethanesulfonic anhydride was dropped into the reaction solution at this temperature (under ice temperature). Next, the reaction solution was returned to room temperature and stirred at this temperature (room temperature) for 2 hours. Next, water, toluene and ethyl acetate were added, and the organic layer was separated from the aqueous layer by solvent extraction. Next, the organic layer was washed with saturated brine and then dried over sodium sulfate. Next, the solvent was distilled off under reduced pressure to obtain a crude product. Next, this crude product was purified by silica gel column chromatography (developing solvent: chloroform / heptane = 2/1) to obtain 3.78 g (yield 42%) of a viscous intermediate compound 1.

(2)中間体化合物2の合成
まず窒素雰囲気下、反応容器に以下の化合物を仕込んだ。
中間体化合物1:6.00g(19.7mmol)
ビス(ピナコラト)ジボロン:3.00g(11.8mmol)
Pd(PPh32Cl2:0.691g(0.985mmol)
炭酸カリウム:3.00g(21.7mmol)
1,4−ジオキサン(30ml)
(2) Synthesis of Intermediate Compound 2 First, the following compounds were charged in a reaction vessel under a nitrogen atmosphere.
Intermediate compound 1: 6.00 g (19.7 mmol)
Bis (pinacolato) diboron: 3.00 g (11.8 mmol)
Pd (PPh 3 ) 2 Cl 2 : 0.691 g (0.985 mmol)
Potassium carbonate: 3.00 g (21.7 mmol)
1,4-dioxane (30 ml)

次に、反応溶液を90℃に加熱したシリコーンオイルバス上で加熱しながら4時間攪拌した。次に、反応溶液を室温まで冷却した後、水、トルエン及び酢酸エチルを加え、溶媒抽出により有機層を水層から分離した。次に、有機層を飽和食塩水で洗浄した後、硫酸ナトリウムで乾燥させた。次に、溶媒を減圧留去することで粗生成物を得た。次に、この粗生成物を、シリカゲルカラムクロマトグラフィー(展開溶媒:クロロホルム/ヘプタン=3/1)で精製することにより中間体化合物2を2.76g(収率90%)得た。   Next, the reaction solution was stirred for 4 hours while being heated on a silicone oil bath heated to 90 ° C. Next, after the reaction solution was cooled to room temperature, water, toluene and ethyl acetate were added, and the organic layer was separated from the aqueous layer by solvent extraction. Next, the organic layer was washed with saturated brine and then dried over sodium sulfate. Next, the solvent was distilled off under reduced pressure to obtain a crude product. Next, the crude product was purified by silica gel column chromatography (developing solvent: chloroform / heptane = 3/1) to obtain 2.76 g of intermediate compound 2 (yield 90%).

(3)ピセンの合成
まず中間体化合物2(2.74g、8.83mmol)を酢酸140mlに加熱溶解させた。次に、反応溶液を還流させながら、この反応溶液中にヒドラジン一水和物0.552g(11.0mmol)と酢酸50mlとの混合した混合溶液を滴下した。滴下終了後、反応溶液を還流させながらさらに2時間撹拌した。次に、反応溶液を室温まで冷却した後、析出してきた結晶をろ過、乾燥することにより、ピセンを2.05g(収率83%)得た。
(3) Synthesis of picene First, intermediate compound 2 (2.74 g, 8.83 mmol) was heated and dissolved in 140 ml of acetic acid. Next, a mixed solution of 0.552 g (11.0 mmol) of hydrazine monohydrate and 50 ml of acetic acid was added dropwise to the reaction solution while the reaction solution was refluxed. After completion of the dropwise addition, the reaction solution was further stirred for 2 hours while refluxing. Next, after cooling the reaction solution to room temperature, the precipitated crystals were filtered and dried to obtain 2.05 g of picene (yield 83%).

(4)中間体化合物3の合成
まずピセン0.100g(0.359mmol)をニトロベンゼン2mlに縣濁させた。次に、室温で、ニトロベンゼン10mlと臭素0.1mlとを混合した混合溶液のうち4ml(臭素:0.79mmol)を反応溶液中に滴下した。次に、反応溶液を100℃に加熱したシリコーンオイルバス上で加熱しながら2時間攪拌した。次に、反応溶液を室温まで冷却した後、析出してきた結晶をろ過、乾燥することにより、中間体化合物3を74.0mg(収率47%)得た。
(4) Synthesis of Intermediate Compound 3 First, 0.100 g (0.359 mmol) of picene was suspended in 2 ml of nitrobenzene. Next, 4 ml (bromine: 0.79 mmol) of a mixed solution obtained by mixing 10 ml of nitrobenzene and 0.1 ml of bromine was dropped into the reaction solution at room temperature. Next, the reaction solution was stirred for 2 hours while being heated on a silicone oil bath heated to 100 ° C. Next, after cooling the reaction solution to room temperature, 74.0 mg (yield 47%) of Intermediate Compound 3 was obtained by filtering and drying the precipitated crystals.

(5)例示化合物1−1の合成
窒素雰囲気下、反応容器に以下の化合物を仕込み、トルエン3mlに加熱溶解させた。
中間体化合物3:0.070g(0.160mmol)
2−ナフタレンボロン酸:0.0828g(0.481mmol)
Pd(PPh32Cl2:0.0112g(0.016mmol)
(5) Synthesis of Exemplified Compound 1-1 In a nitrogen atmosphere, the following compounds were charged in a reaction vessel and dissolved in 3 ml of toluene by heating.
Intermediate compound 3: 0.070 g (0.160 mmol)
2-Naphthaleneboronic acid: 0.0828 g (0.481 mmol)
Pd (PPh 3 ) 2 Cl 2 : 0.0112 g (0.016 mmol)

次に、炭酸カリウム0.133g(0.96mmol)と蒸留水0.5mlとを混合して調製した水溶液を反応溶液に加えた後、この反応溶液を90℃に加熱したシリコーンオイルバス上で加熱しながら12時間攪拌した。次に、反応溶液を室温まで冷却した後、析出してきた固体をろ過、乾燥することで粗生成物を得た。次に、この粗生成物を、シリカゲルカラムクロマトグラフィー(展開溶媒:クロロホルム/ヘプタン=1/3)で精製することで白色の固体を得た。さらに、この固体を120℃で真空乾燥した後、昇華精製を行うことにより、例示化合物1−1を0.065g(収率77%)得た。   Next, an aqueous solution prepared by mixing 0.133 g (0.96 mmol) of potassium carbonate and 0.5 ml of distilled water was added to the reaction solution, and then the reaction solution was heated on a silicone oil bath heated to 90 ° C. The mixture was stirred for 12 hours. Next, after cooling the reaction solution to room temperature, the precipitated solid was filtered and dried to obtain a crude product. Next, this crude product was purified by silica gel column chromatography (developing solvent: chloroform / heptane = 1/3) to obtain a white solid. Further, this solid was vacuum-dried at 120 ° C., and then purified by sublimation to obtain 0.065 g (yield 77%) of Exemplary Compound 1-1.

MALDI−TOF MS(マトリックス支援レーザー脱離イオン化−飛行時間型質量分析)によりこの化合物のM+である530.2を確認した。 530.2 which is M + of this compound was confirmed by MALDI-TOF MS (Matrix Assisted Laser Desorption / Ionization-Time of Flight Mass Spectrometry).

さらに、1H−NMR測定によりこの化合物の構造を確認した。 Furthermore, the structure of this compound was confirmed by 1 H-NMR measurement.

1H−NMR(CDCl3,500MHz) δ(ppm):9.06(2H,s),9.01(2H,d),8.80(2H,s),8.11(2H,s),8.06(2H,d),7.99(2H,d),7.96−7.92(4H,m),7.79(2H,t),7.75(2H,dd),7.61(2H,t),7.56−7.53(4H,m) 1 H-NMR (CDCl 3 , 500 MHz) δ (ppm): 9.06 (2H, s), 9.01 (2H, d), 8.80 (2H, s), 8.11 (2H, s) , 8.06 (2H, d), 7.9 (2H, d), 7.96-7.92 (4H, m), 7.79 (2H, t), 7.75 (2H, dd), 7.61 (2H, t), 7.56-7.53 (4H, m)

[エネルギー準位の評価]
次に、本実施例で得られた化合物について、エネルギー準位の観点から考察した。具体的には、例示化合物1−1について、以下に示す方法により薄膜(スピンコート膜)を作製し、エネルギーギャップ、HOMO及びLUMO準位を測定した。
[Evaluation of energy level]
Next, the compound obtained in this example was considered from the viewpoint of energy level. Specifically, for Example Compound 1-1, a thin film (spin coat film) was prepared by the method described below, and the energy gap, HOMO, and LUMO levels were measured.

まず例示化合物1−1とテトラヒドロフラン(THF)とを混合し、濃度が0.1重量%のTHF溶液を調製した。次に、この溶液をガラス板上に滴下し、最初に回転数500RPMで10秒、次に、回転数1000RPMで40秒スピンコートを行い、薄膜(スピンコート膜)を形成した。   First, Example Compound 1-1 and tetrahydrofuran (THF) were mixed to prepare a THF solution having a concentration of 0.1% by weight. Next, this solution was dropped on a glass plate, and spin coating was first performed at a rotation speed of 500 RPM for 10 seconds and then at a rotation speed of 1000 RPM to form a thin film (spin coating film).

上記薄膜について、理研計器製AC−2を用いてイオン化ポテンシャルを測定し、得られた値に負の符号をつけたものをその化合物のHOMO準位とした。次に、日本分光製V−560により上記薄膜の吸収スペクトルを測定し、エネルギーギャップを算出した。尚、エネルギーギャップは、具体的には、吸収スペクトルの長波長側吸収端に接線を引き、その接線と波長軸が交わった点における波長のエネルギーとして算出した。さらに、HOMO準位にエネルギーギャップを足し合わせた値をLUMO準位とした。   With respect to the thin film, the ionization potential was measured using AC-2 manufactured by Riken Keiki Co., Ltd., and the value obtained by adding a negative sign was defined as the HOMO level of the compound. Next, the absorption spectrum of the thin film was measured by JASCO V-560, and the energy gap was calculated. Specifically, the energy gap was calculated as the energy of the wavelength at a point where a tangent line was drawn at the absorption end on the long wavelength side of the absorption spectrum and the tangent line and the wavelength axis intersected. Further, the value obtained by adding the energy gap to the HOMO level was defined as the LUMO level.

測定の結果、例示化合物1−1のエネルギーギャップは3.05eV(407nm)であった。このエネルギーギャップは、青色発光素子におけるホスト材料やキャリア注入輸送材料として適した値である。   As a result of the measurement, the energy gap of the exemplary compound 1-1 was 3.05 eV (407 nm). This energy gap is a value suitable as a host material or a carrier injection / transport material in a blue light emitting device.

また例示化合物1−1のHOMO及びLUMOは、それぞれ−5.85eV、−2.80eVであり、両準位とも有機発光素子において利用可能な範囲にあることが分かった   Further, HOMO and LUMO of Example Compound 1-1 were −5.85 eV and −2.80 eV, respectively, and it was found that both levels were within the range usable in the organic light emitting device.

[実施例2]
基板上に、陽極と、ホール輸送層と、発光層と、ホールブロック層と、電子輸送層と、電子注入層と、陰極とがこの順で積層されてなる有機発光素子を以下に示す方法で作製した。
[Example 2]
An organic light emitting device in which an anode, a hole transport layer, a light emitting layer, a hole blocking layer, an electron transport layer, an electron injection layer, and a cathode are laminated in this order on a substrate by the method described below. Produced.

ガラス基板上に、スパッタ法により、酸化錫インジウム(ITO)を成膜して陽極を形成した。このとき陽極の膜厚を120nmとした。次に、この陽極が形成されている基板を、アセトン、イソプロピルアルコール(IPA)で順次超音波洗浄し、次いで純水で洗浄後乾燥した。さらに、UV/オゾン洗浄した。以上のようにして処理した基板を透明導電性支持基板として使用した。   An indium tin oxide (ITO) film was formed on a glass substrate by sputtering to form an anode. At this time, the film thickness of the anode was set to 120 nm. Next, the substrate on which the anode was formed was sequentially ultrasonically washed with acetone and isopropyl alcohol (IPA), then washed with pure water and then dried. Further, UV / ozone cleaning was performed. The substrate treated as described above was used as a transparent conductive support substrate.

次に、ホール輸送材料として下記に示される化合物Aとクロロホルムとを混合して、溶質の濃度が0.1重量%のクロロホルム溶液を調製した。   Next, Compound A shown below and chloroform were mixed as a hole transport material to prepare a chloroform solution having a solute concentration of 0.1 wt%.

Figure 2011236158
Figure 2011236158

次に、このクロロホルム溶液を陽極上に滴下し、最初に回転数500RPMで10秒、次に、回転数1000RPMで40秒スピンコートを行い、膜を成膜した。次に、80℃の真空オーブンで10分間加熱乾燥し、薄膜中の溶剤を完全に除去することで、ホール輸送層を形成した。このときホール輸送層の膜厚は40nmであった。   Next, this chloroform solution was dropped on the anode, and spin coating was first performed at a rotational speed of 500 RPM for 10 seconds and then at a rotational speed of 1000 RPM for 40 seconds to form a film. Next, the hole transport layer was formed by heating and drying in a vacuum oven at 80 ° C. for 10 minutes to completely remove the solvent in the thin film. At this time, the thickness of the hole transport layer was 40 nm.

次に、ホール輸送層上に、下記に示される化合物Bと化合物Cとを共蒸着して発光層を設けた。このとき蒸着時の真空度を1.0×10-4Paとし、成膜速度を0.1nm/sec以上0.2nm/sec以下の条件とし、発光層中の化合物Bと化合物Cとの重量混合比を95:5となるように調整した。また発光層の膜厚を30nmとした。 Next, a compound B and a compound C shown below were co-deposited on the hole transport layer to provide a light emitting layer. At this time, the degree of vacuum during vapor deposition was set to 1.0 × 10 −4 Pa, the film formation rate was set to 0.1 nm / sec or more and 0.2 nm / sec or less, and the weight of Compound B and Compound C in the light emitting layer The mixing ratio was adjusted to 95: 5. The thickness of the light emitting layer was 30 nm.

Figure 2011236158
Figure 2011236158

次に、真空蒸着法により、発光層上に、例示化合物1−1を成膜してホールブロック層を形成した。このときホールブロック層の膜厚を10nmとし、蒸着時の真空度は1.0×10-4Paとし、成膜速度を0.1nm/sec以上0.2nm/sec以下の条件とした。 Next, Exemplified Compound 1-1 was formed on the light emitting layer by vacuum vapor deposition to form a hole blocking layer. At this time, the thickness of the hole blocking layer was 10 nm, the degree of vacuum during vapor deposition was 1.0 × 10 −4 Pa, and the film formation rate was 0.1 nm / sec to 0.2 nm / sec.

次に、真空蒸着法により、ホールブロック層上に、2,9−ビス[2−(9,9’−ジメチルフルオレニル)]−1,10−フェナントロリンを成膜して電子輸送層を形成した。このとき電子輸送層の膜厚を20nmとし、蒸着時の真空度は1.0×10-4Paとし、成膜速度を0.1nm/sec以上0.2nm/sec以下の条件とした。 Next, an electron transport layer is formed by depositing 2,9-bis [2- (9,9′-dimethylfluorenyl)]-1,10-phenanthroline on the hole blocking layer by vacuum deposition. did. At this time, the thickness of the electron transport layer was 20 nm, the degree of vacuum during vapor deposition was 1.0 × 10 −4 Pa, and the film formation rate was 0.1 nm / sec or more and 0.2 nm / sec or less.

次に、真空蒸着法により、電子輸送層上に、フッ化リチウム(LiF)を成膜して電子注入層を形成した。このとき電子注入層の膜厚を0.5nmとし、蒸着時の真空度を1.0×10-4Paとし、成膜速度を0.01nm/secとした。次に、真空蒸着法により、電子注入層上に、アルミニウムを成膜し陰極を形成した。このとき陰極の膜厚を100nmとし、蒸着時の真空度を1.0×10-4Paとし、成膜速度0.5nm/sec以上1.0nm/sec以下の条件とした。 Next, lithium fluoride (LiF) was formed on the electron transport layer by a vacuum deposition method to form an electron injection layer. At this time, the thickness of the electron injection layer was 0.5 nm, the degree of vacuum at the time of vapor deposition was 1.0 × 10 −4 Pa, and the film formation rate was 0.01 nm / sec. Next, a cathode was formed by depositing aluminum on the electron injection layer by vacuum deposition. At this time, the film thickness of the cathode was set to 100 nm, the degree of vacuum during vapor deposition was set to 1.0 × 10 −4 Pa, and the film formation rate was set to 0.5 nm / sec or more and 1.0 nm / sec or less.

最後に、水分の吸着によって有機発光素子の劣化が起こらないように、乾燥空気雰囲気中で保護用ガラス板をかぶせ、アクリル樹脂系接着材で素子を封止した。以上により有機発光素子を得た。   Finally, a protective glass plate was placed in a dry air atmosphere and the element was sealed with an acrylic resin adhesive so that the organic light-emitting element was not deteriorated by moisture adsorption. Thus, an organic light emitting device was obtained.

得られた有機発光素子について、その特性を測定し評価した。具体的には、素子の電流電圧特性をヒューレッドパッカード社製・微小電流計4140Bで測定し、素子の発光輝度は、トプコン社製BM7で測定した。ITO電極を正極、Al電極を負極にして電圧を印加したところ、1000cd/m2における発光効率が5.2cd/Aである良好な青色発光が観測された。さらに、この素子に窒素雰囲気下、100時間電圧を印加したところ、良好な発光の継続が確認された。 About the obtained organic light emitting element, the characteristic was measured and evaluated. Specifically, the current-voltage characteristics of the element were measured with a microammeter 4140B manufactured by Hured Packard, and the light emission luminance of the element was measured with BM7 manufactured by Topcon. When a voltage was applied with the ITO electrode as the positive electrode and the Al electrode as the negative electrode, good blue light emission with a light emission efficiency at 1000 cd / m 2 of 5.2 cd / A was observed. Further, when a voltage was applied to the device under a nitrogen atmosphere for 100 hours, it was confirmed that the light emission continued well.

[比較例1]
実施例2において、ホールブロック層の形成を省略し、電子輸送層の膜厚を30nmとした以外は、実施例2と同様にして有機発光素子を作製した。
[Comparative Example 1]
In Example 2, an organic light emitting device was produced in the same manner as in Example 2 except that the formation of the hole blocking layer was omitted and the thickness of the electron transport layer was changed to 30 nm.

得られた有機発光素子を評価したところ、1000cd/m2における発光効率が4.0cd/Aであり実施例2の素子と比較して低効率であった。 When the obtained organic light emitting device was evaluated, the light emission efficiency at 1000 cd / m 2 was 4.0 cd / A, which was lower than the device of Example 2.

[実施例3]
基板上に、陽極と、ホール輸送層と、発光層と、電子輸送層と、電子注入層と、陰極とがこの順で積層されてなる有機発光素子を以下に示す方法で作製した。
[Example 3]
An organic light emitting device in which an anode, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and a cathode are laminated in this order on a substrate was produced by the method described below.

まず実施例2と同様にしてガラス基板上にITO電極(陽極)と、ホール輸送層とを順次形成した。   First, in the same manner as in Example 2, an ITO electrode (anode) and a hole transport layer were sequentially formed on a glass substrate.

次に、ホール輸送層上に、例示化合物1−1及び化合物Cを共蒸着して発光層を設けた。このとき蒸着時の真空度を1.0×10-4Paとし、成膜速度を0.1nm/sec以上0.2nm/sec以下の条件とし、発光層中の例示化合物1−1と化合物Cとの重量混合比を95:5となるように調整した。また発光層の膜厚を30nmとした。 Next, Exemplified Compound 1-1 and Compound C were co-deposited on the hole transport layer to provide a light emitting layer. At this time, the degree of vacuum during vapor deposition was set to 1.0 × 10 −4 Pa, the film formation rate was set to 0.1 nm / sec or more and 0.2 nm / sec or less, and Exemplified Compound 1-1 and Compound C in the light emitting layer were used. The weight mixing ratio was adjusted to 95: 5. The thickness of the light emitting layer was 30 nm.

次に、真空蒸着法により、発光層上に、2,9−ビス[2−(9,9’−ジメチルフルオレニル)]−1,10−フェナントロリンを成膜して電子輸送層を形成した。このとき電子輸送層の膜厚を30nmとし、蒸着時の真空度は1.0×10-4Paとし、成膜速度を0.1nm/sec以上0.2nm/sec以下の条件とした。 Next, 2,9-bis [2- (9,9′-dimethylfluorenyl)]-1,10-phenanthroline was formed on the light emitting layer by vacuum deposition to form an electron transport layer. . At this time, the thickness of the electron transport layer was 30 nm, the degree of vacuum during vapor deposition was 1.0 × 10 −4 Pa, and the film formation rate was 0.1 nm / sec or more and 0.2 nm / sec or less.

次に、真空蒸着法により、電子輸送層上に、フッ化リチウム(LiF)を成膜して電子注入層を形成した。このとき電子注入層の膜厚を0.5nmとし、蒸着時の真空度を1.0×10-4Paとし、成膜速度を0.01nm/secとした。次に、真空蒸着法により、電子注入層上に、アルミニウムを成膜し陰極を形成した。このとき陰極の膜厚を100nmとし、蒸着時の真空度を1.0×10-4Paとし、成膜速度0.5nm/sec以上1.0nm/sec以下の条件とした。 Next, lithium fluoride (LiF) was formed on the electron transport layer by a vacuum deposition method to form an electron injection layer. At this time, the thickness of the electron injection layer was 0.5 nm, the degree of vacuum at the time of vapor deposition was 1.0 × 10 −4 Pa, and the film formation rate was 0.01 nm / sec. Next, a cathode was formed by depositing aluminum on the electron injection layer by vacuum deposition. At this time, the film thickness of the cathode was set to 100 nm, the degree of vacuum during vapor deposition was set to 1.0 × 10 −4 Pa, and the film formation rate was set to 0.5 nm / sec or more and 1.0 nm / sec or less.

最後に、水分の吸着によって有機発光素子の劣化が起こらないように、乾燥空気雰囲気中で保護用ガラス板をかぶせ、アクリル樹脂系接着材で素子を封止した。以上により有機発光素子を得た。   Finally, a protective glass plate was placed in a dry air atmosphere and the element was sealed with an acrylic resin adhesive so that the organic light-emitting element was not deteriorated by moisture adsorption. Thus, an organic light emitting device was obtained.

得られた有機発光素子を評価したところ、1000cd/m2における発光効率が4.2cd/Aである良好な青色発光が観測された。さらに、この素子に窒素雰囲気下、100時間電圧を印加したところ、良好な発光の継続が確認された。 When the obtained organic light emitting device was evaluated, good blue light emission with an emission efficiency of 4.2 cd / A at 1000 cd / m 2 was observed. Further, when a voltage was applied to the device under a nitrogen atmosphere for 100 hours, it was confirmed that the light emission continued well.

11:陽極、12:有機化合物層、13:陰極   11: Anode, 12: Organic compound layer, 13: Cathode

Claims (5)

下記一般式[1]で示されることを特徴とする、縮合多環化合物。
Figure 2011236158


(式[1]において、R1乃至R12は、それぞれ水素原子又は置換あるいは無置換のアルキル基であり、それぞれ同じであっても異なっていてもよい。Ar1及びAr2は、それぞれ水素原子、置換あるいは無置換のアリール基又は置換あるいは無置換の複素環基であり、それぞれ同じであっても異なっていてもよい。ただし、Ar1及びAr2のいずれかが置換あるいは無置換のアリール基又は置換あるいは無置換の複素環基である。)
A condensed polycyclic compound represented by the following general formula [1].
Figure 2011236158


(In Formula [1], R 1 to R 12 are each a hydrogen atom or a substituted or unsubstituted alkyl group, and may be the same or different. Ar 1 and Ar 2 are each a hydrogen atom. A substituted or unsubstituted aryl group or a substituted or unsubstituted heterocyclic group, which may be the same or different, provided that either Ar 1 or Ar 2 is a substituted or unsubstituted aryl group Or a substituted or unsubstituted heterocyclic group.)
下記一般式[2]で示されることを特徴とする、請求項1に記載の縮合多環化合物。
Figure 2011236158

(式[2]において、Ar1及びAr2は、置換あるいは無置換のアリール基であり、それぞれ同じであっても異なっていてもよい。)
The condensed polycyclic compound according to claim 1, which is represented by the following general formula [2].
Figure 2011236158

(In Formula [2], Ar 1 and Ar 2 are substituted or unsubstituted aryl groups, which may be the same or different.)
陽極と陰極と、
該陽極と該陰極との間に挟持される有機化合物層と、から構成され、
該有機化合物層に、請求項1又は2に記載の縮合多環化合物が含まれることを特徴とする、有機発光素子。
An anode and a cathode;
An organic compound layer sandwiched between the anode and the cathode,
An organic light emitting device comprising the condensed polycyclic compound according to claim 1 or 2 in the organic compound layer.
前記縮合多環化合物が、ホールブロック層又は電子輸送層に含まれることを特徴とする、請求項3に記載の有機発光素子。   The organic light-emitting device according to claim 3, wherein the condensed polycyclic compound is contained in a hole block layer or an electron transport layer. 請求項3又は4に記載の有機発光素子を搭載した画素が複数設けられており、
さらに該有機発光素子に電気信号を供給する手段を有することを特徴とする、画像表示装置。
A plurality of pixels on which the organic light-emitting element according to claim 3 or 4 is mounted,
The image display apparatus further comprises means for supplying an electric signal to the organic light emitting element.
JP2010109150A 2010-05-11 2010-05-11 Condensed polycyclic compound and organic light-emitting element using the same Withdrawn JP2011236158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010109150A JP2011236158A (en) 2010-05-11 2010-05-11 Condensed polycyclic compound and organic light-emitting element using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010109150A JP2011236158A (en) 2010-05-11 2010-05-11 Condensed polycyclic compound and organic light-emitting element using the same

Publications (1)

Publication Number Publication Date
JP2011236158A true JP2011236158A (en) 2011-11-24

Family

ID=45324550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010109150A Withdrawn JP2011236158A (en) 2010-05-11 2010-05-11 Condensed polycyclic compound and organic light-emitting element using the same

Country Status (1)

Country Link
JP (1) JP2011236158A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016063771A1 (en) * 2014-10-21 2016-04-28 株式会社Adeka Picene derivative, photoelectric conversion material and photoelectric conversion element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016063771A1 (en) * 2014-10-21 2016-04-28 株式会社Adeka Picene derivative, photoelectric conversion material and photoelectric conversion element
EP3210986A4 (en) * 2014-10-21 2018-03-28 Adeka Corporation Picene derivative, photoelectric conversion material and photoelectric conversion element
US10074804B2 (en) 2014-10-21 2018-09-11 Adeka Corporation Picene derivative, photoelectric material, and photoelectric device

Similar Documents

Publication Publication Date Title
JP5523021B2 (en) Heterocyclic compound and organic light emitting device using the same
JP5618753B2 (en) Organic light emitting device
JP4659695B2 (en) Fluorene compound and organic light emitting device
JP5424622B2 (en) Perylene compound and organic light emitting device using the same
JP5677035B2 (en) Xanthone compound and organic light emitting device having the same
JP5183142B2 (en) Binaphthyl compound and organic light-emitting device using the same
JP5335284B2 (en) Fused polycyclic compound and organic light emitting device having the same
JP2007308477A (en) Compound and organic light-emitting device
JP5523016B2 (en) Heterocyclic compound and organic light emitting device using the same
US20110198582A1 (en) Organic light-emitting device
JP5669539B2 (en) Quinolino [3,2,1-kl] phenoxazine compound and organic light emitting device using the same
JP5424681B2 (en) Organic light emitting device
JP2012001514A (en) New organic compound and organic light-emitting device having the same
JP2009274989A (en) DIBENZO[c, g]FLUORENE COMPOUND AND ORGANIC LIGHT-EMITTING ELEMENT USING THE SAME
JP2011037743A (en) Pyrene derivative and organic light-emitting device using the same
JP5721533B2 (en) Dispirodibenzonaphthacene compound and organic light-emitting device using the same
JP2011225501A (en) Novel m-terphenyl compound and organic light-emitting element including the same
WO2011068034A1 (en) NEW BENZO[c]PHENANTHRENE COMPOUND AND ORGANIC LIGHT-EMITTING DEVICE CONTAINING SAME
WO2011040631A1 (en) Diindenopicene compound and organic light emitting device using the same
JP5656493B2 (en) Novel condensed polycyclic compound and organic light emitting device having the same
JP5586981B2 (en) Novel organic compounds and organic light emitting devices
JP5645465B2 (en) New organic compounds
JP2011236158A (en) Condensed polycyclic compound and organic light-emitting element using the same
JP2012148987A (en) Organic compound, organic light-emitting element, and display device
JP2004161892A (en) Novel compound and organic electroluminescent element using the same

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130806