Nothing Special   »   [go: up one dir, main page]

JP2011216901A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2011216901A
JP2011216901A JP2011145659A JP2011145659A JP2011216901A JP 2011216901 A JP2011216901 A JP 2011216901A JP 2011145659 A JP2011145659 A JP 2011145659A JP 2011145659 A JP2011145659 A JP 2011145659A JP 2011216901 A JP2011216901 A JP 2011216901A
Authority
JP
Japan
Prior art keywords
film
region
semiconductor device
gate
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011145659A
Other languages
Japanese (ja)
Inventor
Sakae Kubo
栄 久保
Yoshito Nakazawa
芳人 中沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
Renesas Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Electronics Corp filed Critical Renesas Electronics Corp
Priority to JP2011145659A priority Critical patent/JP2011216901A/en
Publication of JP2011216901A publication Critical patent/JP2011216901A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technology manufacturing a power MISFET having a desired gate breakdown voltage, while controlling an increase in the parasitic capacitance.SOLUTION: The technology includes: depositing a polycrystalline silicon film on a substrate; after filling groove portions 7, 8 with the polycrystalline silicon film, patterning the polycrystalline silicon film and forming a gate electrode 11 within the groove portion 7 in an active cell area; filling an interior of the groove portion 8 in a gate wiring area and forming a gate extraction electrode 12 electrically connecting with the gate electrode 11 such that a part thereof extends to an exterior of the groove portion 8 continuously out of the interior of the groove portion 8; forming slits 14 extending from the end portion of the gate extraction electrode 12 in the gate extraction electrode 12 in the exterior of the groove portion 8. Then, a silicon oxide film 19 and a BPSG film 20 are deposited on the substrate.

Description

本発明は、特に、パワーMISFET(Metal Insulator Semiconductor Field Effect Transistor)を有する半導体装置に適用して有効な技術に関するものである。   The present invention particularly relates to a technique effective when applied to a semiconductor device having a power MISFET (Metal Insulator Semiconductor Field Effect Transistor).

たとえば、縦型MOSFET(Metal Oxide Semiconductor Field Effect Transistor)を有する半導体装置において、半導体基板の表面に形成した溝の内部にゲート電極を形成し、そのゲート電極の存在下で半導体基板上に層間絶縁膜を形成し、その層間絶縁膜にゲート電極に達するコンタクト孔を形成し、そのコンタクト孔の内部にゲート電極と電気的に接続する導電体プラグを充填し、層間絶縁膜上に形成された配線がその導電体プラグを介してゲート電極と電気的に接続される構造とすることにより、縦型MOSFETの絶縁耐圧を向上できる技術がある。   For example, in a semiconductor device having a vertical MOSFET (Metal Oxide Semiconductor Field Effect Transistor), a gate electrode is formed inside a groove formed on the surface of the semiconductor substrate, and an interlayer insulating film is formed on the semiconductor substrate in the presence of the gate electrode. A contact hole reaching the gate electrode is formed in the interlayer insulating film, a conductor plug electrically connected to the gate electrode is filled in the contact hole, and a wiring formed on the interlayer insulating film is formed. There is a technique capable of improving the withstand voltage of the vertical MOSFET by using a structure that is electrically connected to the gate electrode through the conductor plug.

特開2002−368221号公報JP 2002-368221 A

数ワット以上の電力を扱える大電力用途のトランジスタをパワートランジスタといい、種々の構造のものが検討されている。中でもパワーMISFETにおいては、いわゆる縦型や横型と呼ばれるものがあり、さらにゲート部の構造に応じてトレンチ(溝)ゲート型やプレーナゲート型といった構造に分類される。このようなパワーMISFETにおいては、大きな電力を得るために、たとえば微細なパターンのMISFETを多数個(たとえば数万個)並列に接続した構造が採用されている。   Transistors for large power applications that can handle a power of several watts or more are called power transistors, and various structures have been studied. Among these, power MISFETs include so-called vertical and horizontal types, and are further classified into trench (groove) gate type and planar gate type according to the structure of the gate portion. In such a power MISFET, in order to obtain large electric power, for example, a structure in which a large number (for example, several tens of thousands) of MISFETs with fine patterns are connected in parallel is employed.

本発明者らは、パワーMISFETのオン抵抗を低減する技術について検討している。オン抵抗を低減することにより、大電流を得ることができるからである。また、本発明者らは、パワーMISFETが形成された半導体チップ(以下、単にチップと記す)を小型化する技術についても検討している。   The present inventors are examining a technique for reducing the on-resistance of the power MISFET. This is because a large current can be obtained by reducing the on-resistance. The present inventors are also examining a technique for downsizing a semiconductor chip (hereinafter simply referred to as a chip) on which a power MISFET is formed.

オン抵抗を低減するためには、単位面積当たりのチャネル幅を長くする必要がある。そこで、本発明者らは、トレンチゲート型構造を採用し、さらにゲート部が形成される溝の幅を小さくすることによって、単位面積当たりのチャネル幅を長くする技術を検討している。その溝の幅を狭くすることによって、チップの小型化も実現可能となり、隣接する溝の間隔も可能な限り狭くすることによって更なるチップの小型化も実現可能となる。   In order to reduce the on-resistance, it is necessary to increase the channel width per unit area. In view of this, the present inventors have studied a technique for increasing the channel width per unit area by adopting a trench gate type structure and further reducing the width of the groove in which the gate portion is formed. By reducing the width of the groove, it is possible to reduce the size of the chip, and it is also possible to reduce the size of the chip by reducing the interval between adjacent grooves as much as possible.

ここで本発明者らは、上記トレンチゲート型構造のパワーMISFETを製造するに当って以下のような課題が存在することを見出した。   Here, the present inventors have found that the following problems exist in manufacturing the power MISFET having the trench gate structure.

すなわち、本発明者らが検討したトレンチゲート型構造のパワーMISFETの製造工程は、以下のような工程を含む。まず、図21に示すように、半導体基板(以下、単に基板と記す)101の主面(素子形成面)に溝102、103を形成した後、溝102内にゲート電極104を形成し、溝103内にゲート配線105を形成する。ゲート電極104とゲート配線105とは一体に形成され、ゲート配線105の一部は、溝103の外部に延在するようにパターニングされる。その後、基板101上に層間絶縁膜106を堆積する。層間絶縁膜106は、ゲート電極104が形成されているセル領域においてゲート電極104上の溝102を埋め込むことから、セル領域における膜厚TCは、それ以外の領域における膜厚TLに比べて薄くなる。次いで、その層間絶縁膜106をパターニングすることによって、セル領域上(溝102内は除く)の層間絶縁膜106を除去し、溝103外へ延在しているゲート配線105上の層間絶縁膜106にゲート配線105に達する開口部107を形成する(図22参照)。溝102内に残った層間絶縁膜106は、後の工程で溝102の上部に形成される配線とゲート電極104とを絶縁する機能を有する。この時、層間絶縁膜106は、セル領域における膜厚TCがそれ以外の領域における膜厚TLに比べて薄くなっていることから、開口部107が完全に開孔するまでエッチングを施すと、溝102内に残る層間絶縁膜106の膜厚TGがオーバーエッチングされ所望のゲート耐圧を保つには不十分となってしまう課題が存在する。逆に、溝102内に残る層間絶縁膜106の膜厚TGを所望のゲート耐圧を保つのに十分な膜厚とすると、開口部107がゲート配線105まで達しなくなってしまう課題が存在する。   That is, the manufacturing process of the power MISFET having the trench gate structure studied by the present inventors includes the following processes. First, as shown in FIG. 21, after the grooves 102 and 103 are formed in the main surface (element formation surface) of a semiconductor substrate (hereinafter simply referred to as a substrate) 101, the gate electrode 104 is formed in the groove 102. A gate wiring 105 is formed in 103. The gate electrode 104 and the gate wiring 105 are integrally formed, and a part of the gate wiring 105 is patterned so as to extend outside the trench 103. Thereafter, an interlayer insulating film 106 is deposited on the substrate 101. Since the interlayer insulating film 106 fills the groove 102 on the gate electrode 104 in the cell region where the gate electrode 104 is formed, the film thickness TC in the cell region is smaller than the film thickness TL in other regions. . Next, the interlayer insulating film 106 on the cell region (excluding the inside of the trench 102) is removed by patterning the interlayer insulating film 106, and the interlayer insulating film 106 on the gate wiring 105 extending to the outside of the trench 103 is removed. Then, an opening 107 reaching the gate wiring 105 is formed (see FIG. 22). The interlayer insulating film 106 remaining in the trench 102 has a function of insulating a wiring formed over the trench 102 and the gate electrode 104 in a later step. At this time, since the film thickness TC in the cell region is thinner than the film thickness TL in the other regions, the interlayer insulating film 106 is etched when the opening 107 is completely opened. There is a problem that the film thickness TG of the interlayer insulating film 106 remaining in 102 is overetched and becomes insufficient to maintain a desired gate breakdown voltage. Conversely, if the film thickness TG of the interlayer insulating film 106 remaining in the trench 102 is set to a film thickness sufficient to maintain a desired gate breakdown voltage, there is a problem that the opening 107 does not reach the gate wiring 105.

本発明者らは、上記の課題を解決するために、ゲート電極104の上面を低くし、溝102内に残る層間絶縁膜106の膜厚を十分確保する方法について検討した。しかしながら、ゲート電極104の上面を溝102の深さ方向に低くすると、ソース(半導体層110)を深くする必要が生じる。ソース(半導体層110)を深くするとパンチスルー耐圧が低下してしまうのでチャネル(半導体層108)も深くする必要が生じる。チャネル(半導体層108)を深くするとそれを貫く溝102も深くする必要がある。溝102が深くなることにより、ゲート・ソース間の寄生容量が増加してしまうためスイッチング損失が増加してしまうという課題が生じる。また、溝102を深くすると浅いときに比べて深さばらつきが増えるため、溝102のうち、パワーMISFETのチャネルとなる半導体層108を突き抜けてドレインとなる半導体層109に達する部分が増える。それにより、ゲート電極104と半導体層109との間に生じるゲート・ドレイン間の寄生容量が増加し、パワーMISFETのスイッチング損失が増加してしまう課題も生じる。また、パワーMISFETのソースとなる半導体層110および前記半導体層108を深く形成するためには半導体層110および半導体層108を形成する不純物を拡散させるための熱処理に要する時間が増大し、半導体装置を製造するTAT(Turn Around Time)が増加してしまう課題が生じる。また、溝102を深く形成しなければいけないことから、溝102の形状を制御することが困難になる上にエッチングに要する時間が増加し、半導体装置を製造するTAT(Turn Around Time)が増加してしまう課題が生じる。   In order to solve the above-described problems, the present inventors have studied a method for securing a sufficient thickness of the interlayer insulating film 106 remaining in the trench 102 by lowering the upper surface of the gate electrode 104. However, when the upper surface of the gate electrode 104 is lowered in the depth direction of the groove 102, the source (semiconductor layer 110) needs to be deepened. When the source (semiconductor layer 110) is deepened, the punch-through breakdown voltage is lowered, so that the channel (semiconductor layer 108) needs to be deepened. When the channel (semiconductor layer 108) is deepened, it is necessary to deepen the groove 102 passing therethrough. As the trench 102 becomes deeper, the parasitic capacitance between the gate and the source increases, resulting in an increase in switching loss. Further, since the depth variation increases when the groove 102 is deeper than when the groove 102 is shallow, the portion of the groove 102 that penetrates the semiconductor layer 108 serving as the channel of the power MISFET and reaches the semiconductor layer 109 serving as the drain increases. As a result, the parasitic capacitance between the gate and the drain generated between the gate electrode 104 and the semiconductor layer 109 increases, resulting in an increase in switching loss of the power MISFET. In addition, in order to deeply form the semiconductor layer 110 serving as the source of the power MISFET and the semiconductor layer 108, the time required for heat treatment for diffusing the impurities forming the semiconductor layer 110 and the semiconductor layer 108 increases, and the semiconductor device is There arises a problem that TAT (Turn Around Time) to be manufactured increases. In addition, since the groove 102 must be formed deeply, it becomes difficult to control the shape of the groove 102, the time required for etching increases, and the TAT (Turn Around Time) for manufacturing the semiconductor device increases. This creates a problem.

本発明の目的は、寄生容量の増加を抑制しつつ、所望のゲート耐圧を有するパワーMISFETを製造できる技術を提供することにある。   An object of the present invention is to provide a technique capable of manufacturing a power MISFET having a desired gate breakdown voltage while suppressing an increase in parasitic capacitance.

本発明の他の目的は、信頼性を向上できるパワーMISFETを製造できる技術を提供することにある。   Another object of the present invention is to provide a technique capable of manufacturing a power MISFET capable of improving reliability.

本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。   The above and other objects and novel features of the present invention will be apparent from the description of this specification and the accompanying drawings.

本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。   Of the inventions disclosed in the present application, the outline of typical ones will be briefly described as follows.

本発明による半導体装置の製造方法は、
(a)第1導電型の半導体基板の主面に第1導電型の第1半導体層を形成する工程、
(b)前記半導体基板に前記第1導電型とは逆の極性の第2導電型の不純物を導入して第2導電型の第2半導体層を形成する工程、
(c)前記半導体基板の主面において、第1領域に前記第2半導体層を貫通する第1溝部を形成し、第2領域に前記第2半導体層を貫通する第2溝部を形成する工程、
(d)前記第1溝部内および前記第2溝部内に第1絶縁膜を形成する工程、
(e)前記第1絶縁膜の存在下で前記半導体基板上に第1導電性膜を形成し、前記第1溝部および前記第2溝部を前記第1導電性膜で埋め込む工程、
(f)前記第1導電性膜をパターニングし、前記第1領域においては前記第1溝部外の前記第1導電性膜と前記第1溝部の開口部から第1の深さ分だけの前記第1導電性膜とを除去し、前記第2領域においては前記第2溝部を埋め込み前記第2溝部外へ所定量延在する前記第1導電性膜を残し、前記前記第2領域において前記第2溝部外へ延在する前記第1導電性膜に第3溝部を形成する工程、
(g)前記第1領域の前記第2半導体層に第1導電型の不純物を導入し、前記第1溝部と隣接する前記第2半導体層に第1導電型の第3半導体層を形成する工程、
(h)前記(f)工程後、前記半導体基板上に前記第1溝部を埋め込む第2絶縁膜を形成する工程、
(i)前記第2絶縁膜をパターニングし、前記第1領域においては前記第1溝部外の前記第2絶縁膜を除去し、前記第2領域においては前記第2絶縁膜に前記第2溝部外へ延在する前記第1導電性膜に達する第1開口部を形成する工程、
(j)前記(i)工程後、前記第1領域の前記半導体基板上に前記第3半導体層と電気的に接続する第1配線を形成し、前記第2領域の前記半導体基板上に前記第1開口部下で前記第1導電性膜と電気的に接続する第2配線を形成する工程、
を含み、
前記第1領域にて、前記第1半導体層をドレインとし、前記第2半導体層をチャネルとし、前記第3半導体層をソースとするものである。
A method for manufacturing a semiconductor device according to the present invention includes:
(A) forming a first conductivity type first semiconductor layer on a main surface of a first conductivity type semiconductor substrate;
(B) introducing a second conductivity type impurity having a polarity opposite to the first conductivity type into the semiconductor substrate to form a second conductivity type second semiconductor layer;
(C) forming a first groove portion penetrating the second semiconductor layer in a first region and forming a second groove portion penetrating the second semiconductor layer in a second region on the main surface of the semiconductor substrate;
(D) forming a first insulating film in the first groove and in the second groove;
(E) forming a first conductive film on the semiconductor substrate in the presence of the first insulating film, and embedding the first groove and the second groove with the first conductive film;
(F) patterning the first conductive film, and in the first region, the first conductive film outside the first groove and the first depth from the opening of the first groove by a first depth; 1 conductive film is removed, and in the second region, the second groove portion is embedded, leaving the first conductive film extending a predetermined amount outside the second groove portion, and the second region in the second region. Forming a third groove in the first conductive film extending out of the groove;
(G) introducing a first conductivity type impurity into the second semiconductor layer in the first region, and forming a first conductivity type third semiconductor layer in the second semiconductor layer adjacent to the first groove portion; ,
(H) After the step (f), a step of forming a second insulating film filling the first groove on the semiconductor substrate;
(I) patterning the second insulating film, removing the second insulating film outside the first groove in the first region, and forming the second insulating film outside the second groove in the second region. Forming a first opening reaching the first conductive film extending to
(J) After the step (i), a first wiring electrically connected to the third semiconductor layer is formed on the semiconductor substrate in the first region, and the first wiring is formed on the semiconductor substrate in the second region. Forming a second wiring electrically connected to the first conductive film under one opening;
Including
In the first region, the first semiconductor layer is a drain, the second semiconductor layer is a channel, and the third semiconductor layer is a source.

本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下のとおりである。   Among the inventions disclosed in the present application, effects obtained by typical ones will be briefly described as follows.

すなわち、寄生容量の増加を抑制しつつ、所望のゲート耐圧を有するパワーMISFETを製造できる。また、ゲート電極上に形成される層間絶縁膜は、十分なゲート耐圧を確保する膜厚で形成できることから、パワーMISFETの信頼性を向上できる。   That is, it is possible to manufacture a power MISFET having a desired gate breakdown voltage while suppressing an increase in parasitic capacitance. Further, since the interlayer insulating film formed on the gate electrode can be formed with a film thickness that ensures a sufficient gate breakdown voltage, the reliability of the power MISFET can be improved.

本発明の実施の形態1である半導体装置の製造方法を説明する要部断面図である。It is principal part sectional drawing explaining the manufacturing method of the semiconductor device which is Embodiment 1 of this invention. 図1に続く半導体装置の製造工程中の要部断面図である。FIG. 2 is a fragmentary cross-sectional view of the semiconductor device during a manufacturing step following that of FIG. 1; 本発明の実施の形態1である半導体装置の製造工程中の要部平面図である。It is a principal part top view in the manufacturing process of the semiconductor device which is Embodiment 1 of this invention. 図2に続く半導体装置の製造工程中の要部断面図である。FIG. 3 is a fragmentary cross-sectional view of the semiconductor device during a manufacturing step following that of FIG. 2; 本発明の実施の形態1である半導体装置の製造工程中の要部断面図である。It is principal part sectional drawing in the manufacturing process of the semiconductor device which is Embodiment 1 of this invention. 図4に続く半導体装置の製造工程中の要部断面図である。FIG. 5 is a fragmentary cross-sectional view of the semiconductor device during a manufacturing step following that of FIG. 4; 本発明の実施の形態1である半導体装置の製造工程中の要部断面図である。It is principal part sectional drawing in the manufacturing process of the semiconductor device which is Embodiment 1 of this invention. 図6に続く半導体装置の製造工程中の要部断面図である。FIG. 7 is an essential part cross sectional view of the semiconductor device during a manufacturing step following FIG. 6; 本発明の実施の形態1である半導体装置の製造工程中の要部断面図である。It is principal part sectional drawing in the manufacturing process of the semiconductor device which is Embodiment 1 of this invention. 本発明の実施の形態1である半導体装置の製造工程中の要部平面図である。It is a principal part top view in the manufacturing process of the semiconductor device which is Embodiment 1 of this invention. 図8に続く半導体装置の製造工程中の要部断面図である。FIG. 9 is an essential part cross sectional view of the semiconductor device during a manufacturing step following FIG. 8; 図9に続く半導体装置の製造工程中の要部断面図である。FIG. 10 is an essential part cross sectional view of the semiconductor device during a manufacturing step following FIG. 9; 図11に続く半導体装置の製造工程中の要部断面図である。FIG. 12 is a fragmentary cross-sectional view of the semiconductor device during a manufacturing step following that of FIG. 11; 図12に続く半導体装置の製造工程中の要部断面図である。FIG. 13 is a fragmentary cross-sectional view of the semiconductor device during a manufacturing step following that of FIG. 12; 本発明の実施の形態2である半導体装置の製造工程中の要部断面図である。It is principal part sectional drawing in the manufacturing process of the semiconductor device which is Embodiment 2 of this invention. 図15に続く半導体装置の製造工程中の要部断面図である。FIG. 16 is a fragmentary cross-sectional view of the semiconductor device during a manufacturing step following that of FIG. 15; 本発明の実施の形態3である半導体装置の製造工程中の要部断面図である。It is principal part sectional drawing in the manufacturing process of the semiconductor device which is Embodiment 3 of this invention. 図17に続く半導体装置の製造工程中の要部断面図である。FIG. 18 is a fragmentary cross-sectional view of the semiconductor device during a manufacturing step following that of FIG. 17; 本発明の実施の形態4である半導体装置の製造工程中の要部平面図である。It is a principal part top view in the manufacturing process of the semiconductor device which is Embodiment 4 of this invention. 本発明の実施の形態4である半導体装置の製造工程中の要部平面図である。It is a principal part top view in the manufacturing process of the semiconductor device which is Embodiment 4 of this invention. 本発明者らが検討した半導体装置の製造工程中の要部断面図である。It is principal part sectional drawing in the manufacturing process of the semiconductor device which the present inventors examined. 図21に続く半導体装置の製造工程中の要部断面図である。FIG. 22 is an essential part cross sectional view of the semiconductor device during a manufacturing step following FIG. 21;

以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。また、以下の実施の形態の説明に用いる図においては、部材の位置関係をわかりやすくするために平面図であってもハッチングを付す場合がある。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiment, and the repetitive description thereof will be omitted. Further, in the drawings used for the description of the following embodiments, hatching may be given even in a plan view for easy understanding of the positional relationship of members.

(実施の形態1)
本実施の形態1の半導体装置は、たとえばpチャネル型のトレンチゲート型パワーMISFETを有するものである。このような本実施の形態1の半導体装置の製造方法を図1〜図14を用いて工程順に説明する。
(Embodiment 1)
The semiconductor device of the first embodiment has, for example, a p-channel type trench gate type power MISFET. A method of manufacturing the semiconductor device according to the first embodiment will be described in the order of steps with reference to FIGS.

まず、図1に示すように、p型(第1導電型)の不純物(たとえばB(ホウ素))が高濃度で導入されたp+型単結晶シリコン基板1の表面(主面)に、p+型単結晶シリコン基板1よりも低濃度であるp型の不純物(たとえばB)がドープされたp-型単結晶シリコン層(第1半導体層)2をエピタキシャル成長させた半導体基板(以下、単に基板という)を準備する。この基板は、後の工程でパワーMISFETのゲート電極、ソースおよびドレインなどを含む活性セルが形成される活性セル領域(第1領域)ACA、パワーMISFETのゲート電極と電気的に接続する配線が形成されるゲート配線領域(第2領域)GLAおよびガードリング領域が形成されるターミネーション領域TNAを有している。p+型単結晶シリコン基板1およびp-型単結晶シリコン層2は、後の工程でパワーMISFETのドレイン領域となる。続いて、たとえばp-型単結晶シリコン層2の表面(主面)を熱酸化することによって酸化シリコン膜3を形成する。 First, as shown in FIG. 1, p-type (first conductivity type) impurity (for example, B (boron)) is introduced into the surface (main surface) of p + -type single crystal silicon substrate 1 into which p (type B) boron is introduced at a high concentration. A semiconductor substrate obtained by epitaxial growth of a p type single crystal silicon layer (first semiconductor layer) 2 doped with a p type impurity (for example, B) having a lower concentration than the + type single crystal silicon substrate 1 (hereinafter simply referred to as a substrate). Prepare). In this substrate, a power MISFET gate electrode, an active cell region (first region) ACA in which active cells including a source and a drain are formed in a later step, and a wiring electrically connected to the gate electrode of the power MISFET are formed. A gate wiring region (second region) GLA and a termination region TNA in which a guard ring region is formed. The p + type single crystal silicon substrate 1 and the p type single crystal silicon layer 2 become drain regions of the power MISFET in a later process. Subsequently, for example, the silicon oxide film 3 is formed by thermally oxidizing the surface (main surface) of the p -type single crystal silicon layer 2.

次に、前記酸化シリコン膜3上に窒化シリコン膜(図示は省略)を堆積した後、フォトリソグラフィ技術によってパターニングされたフォトレジスト膜(図示は省略)をマスクとしてその窒化シリコン膜をエッチングすることにより、その窒化シリコン膜をパターニングする。続いて、基板に熱酸化処理を施すことにより、フィールド絶縁膜4を形成する。   Next, after depositing a silicon nitride film (not shown) on the silicon oxide film 3, the silicon nitride film is etched using a photoresist film (not shown) patterned by photolithography as a mask. Then, the silicon nitride film is patterned. Subsequently, the field insulating film 4 is formed by performing a thermal oxidation process on the substrate.

次に、フォトリソグラフィ技術によってパターニングされたフォトレジスト膜(図示は省略)をマスクとしてp-型単結晶シリコン層2にn型(第2導電型)の不純物(たとえばP(リン))を導入する。続いて、基板に熱処理を施すことにより、n-型半導体領域(第2半導体層)5を形成する。後の工程でゲート電極が形成される活性セル領域ACAに形成されたn-型半導体領域5は、本実施の形態1のパワーMISFETのチャネル領域となる。 Next, an n-type (second conductivity type) impurity (for example, P (phosphorus)) is introduced into the p -type single crystal silicon layer 2 using a photoresist film (not shown) patterned by photolithography as a mask. . Subsequently, an n type semiconductor region (second semiconductor layer) 5 is formed by performing heat treatment on the substrate. The n type semiconductor region 5 formed in the active cell region ACA in which the gate electrode is formed in a later process becomes a channel region of the power MISFET of the first embodiment.

次に、基板上に酸化シリコン膜6を堆積した後、フォトリソグラフィ技術によってパターニングされたフォトレジスト膜(図示は省略)をマスクとしてその酸化シリコン膜6および酸化シリコン膜3をエッチングすることにより、酸化シリコン膜6および酸化シリコン膜3をパターニングする。続いて、酸化シリコン膜6および酸化シリコン膜3をマスクとして基板をエッチングすることにより、活性セル領域ACAに溝部(第1溝部)7を形成し、ゲート配線領域GLAに溝部(第2溝部)8を形成する。溝部7は、溝部7が延在する方向(第1方向)と交差する方向の断面(第1断面)において複数配置されるように形成する。   Next, after the silicon oxide film 6 is deposited on the substrate, the silicon oxide film 6 and the silicon oxide film 3 are etched by using a photoresist film (not shown) patterned by photolithography as a mask. The silicon film 6 and the silicon oxide film 3 are patterned. Subsequently, by etching the substrate using the silicon oxide film 6 and the silicon oxide film 3 as a mask, a groove (first groove) 7 is formed in the active cell region ACA, and a groove (second groove) 8 is formed in the gate wiring region GLA. Form. The groove part 7 is formed so as to be arranged in a plurality in a cross section (first cross section) in a direction intersecting with a direction (first direction) in which the groove part 7 extends.

次に、エッチングにより酸化シリコン膜6、3を除去した後、図2に示すように、基板に熱酸化処理を施すことにより、膜厚70nm程度のゲート酸化膜(第1絶縁膜)9を形成する。続いて、CVD(Chemical Vapor Deposition)法にて基板上に多結晶シリコン膜(第1導電性膜)10を堆積し、その多結晶シリコン膜10で溝部7、8を埋め込む。次いで、その多結晶シリコン膜10に、たとえばB(ホウ素)を導入する。   Next, after removing the silicon oxide films 6 and 3 by etching, as shown in FIG. 2, a gate oxide film (first insulating film) 9 having a thickness of about 70 nm is formed by subjecting the substrate to thermal oxidation treatment. To do. Subsequently, a polycrystalline silicon film (first conductive film) 10 is deposited on the substrate by a CVD (Chemical Vapor Deposition) method, and the trenches 7 and 8 are filled with the polycrystalline silicon film 10. Next, for example, B (boron) is introduced into the polycrystalline silicon film 10.

ここで、図3は次工程時における基板の要部平面図であり、図4および図5はそれぞれ図3中のA−A線およびB−B線に沿った断面図である。また、図4は、前工程の説明に用いた図2が示す断面と同じ断面を示している。なお、以降の工程を説明する各断面図において、Aの符号を付した図は図4と同じ断面を図示したものであり、Bの符号を付した図は図5と同じ断面を図示したものである。   Here, FIG. 3 is a plan view of the main part of the substrate in the next process, and FIGS. 4 and 5 are cross-sectional views taken along lines AA and BB in FIG. 3, respectively. FIG. 4 shows the same cross section as the cross section shown in FIG. 2 used for the description of the previous step. In each of the cross-sectional views for explaining the subsequent steps, the drawing with the symbol A shows the same cross section as FIG. 4, and the drawing with the reference B shows the same cross section as FIG. It is.

上記多結晶シリコン膜10を成膜した後、図3〜図5に示すように、フォトリソグラフィ技術によってパターニングされたフォトレジスト膜(図示は省略)によってゲート配線領域GLAを覆い、そのフォトレジスト膜をマスクとして多結晶シリコン膜10をエッチングする。それにより、活性セル領域ACAにおいては、多結晶シリコン膜10を溝部7内にのみ残し、溝部7内にてその多結晶シリコン膜10からゲート電極11を形成することができる。ゲート配線領域GLAにおいては、多結晶シリコン膜10は溝部8内を埋め込み、一部が溝部8内から連続して溝部8の外部に残るようにパターニングされ、ゲート電極11と電気的に接続するゲート引き出し電極12が形成される。また、溝部8外のゲート引き出し電極12には、ゲート引き出し電極12の端部から延在するスリット(第3溝部)14が形成される。このスリット14が延在する方向を溝部7、8が延在する方向(ゲート引き出し電極12が延在する方向)と交差する方向とすることにより、ゲート引き出し電極12がスリット14によって分断されてしまう不具合を防ぐことができる。ターミネーション領域TNAでは、多結晶シリコン膜10は除去される。   After the polycrystalline silicon film 10 is formed, as shown in FIGS. 3 to 5, the gate wiring region GLA is covered with a photoresist film (not shown) patterned by a photolithography technique, and the photoresist film is formed. The polycrystalline silicon film 10 is etched as a mask. Thereby, in the active cell region ACA, the polycrystalline silicon film 10 is left only in the trench 7, and the gate electrode 11 can be formed from the polycrystalline silicon film 10 in the trench 7. In the gate wiring region GLA, the polycrystalline silicon film 10 is patterned so as to fill in the groove portion 8 and partly remain outside the groove portion 8 continuously from the groove portion 8 and is electrically connected to the gate electrode 11. A lead electrode 12 is formed. Further, a slit (third groove) 14 extending from the end of the gate lead electrode 12 is formed in the gate lead electrode 12 outside the groove portion 8. By making the direction in which the slit 14 extends intersect with the direction in which the grooves 7 and 8 extend (direction in which the gate extraction electrode 12 extends), the gate extraction electrode 12 is divided by the slit 14. A malfunction can be prevented. In the termination region TNA, the polycrystalline silicon film 10 is removed.

ところで、d1は溝部8外における多結晶シリコン膜10(ゲート引き出し電極12)の膜厚であり、d2は溝部7内の多結晶シリコン膜10がオーバーエッチングされた量、すなわち溝部7の開口部から溝部7内の多結晶シリコン膜10(ゲート電極11)の表面までの深さである。本実施の形態1においては、スリット14の体積とゲート電極11より上の溝部7の体積とが同じとなるように、スリット14の幅および配置される間隔を設定する。   Incidentally, d1 is the film thickness of the polycrystalline silicon film 10 (gate lead electrode 12) outside the groove portion 8, and d2 is the amount by which the polycrystalline silicon film 10 in the groove portion 7 is over-etched, that is, from the opening of the groove portion 7. This is the depth to the surface of the polycrystalline silicon film 10 (gate electrode 11) in the trench 7. In the first embodiment, the width of the slit 14 and the interval between the slits 14 are set so that the volume of the slit 14 and the volume of the groove 7 above the gate electrode 11 are the same.

次に、図6に示すように、基板に熱処理を施すことにより、膜厚20nm程度の酸化シリコン膜15を形成する。この時、溝部7付近を拡大した図7に示すように、溝部7の開口部からゲート電極11の表面までの側壁7Aにおいては、ゲート酸化膜9と酸化シリコン膜15とが二重に重なった状態で成膜される。   Next, as shown in FIG. 6, a silicon oxide film 15 having a thickness of about 20 nm is formed by performing heat treatment on the substrate. At this time, as shown in FIG. 7 in which the vicinity of the trench 7 is enlarged, the gate oxide film 9 and the silicon oxide film 15 are doubled on the side wall 7A from the opening of the trench 7 to the surface of the gate electrode 11. The film is formed in a state.

続いて、フォトリソグラフィ技術によってパターニングされたフォトレジスト膜(図示は省略)をマスクとしてn-型半導体領域5にp型の不純物(たとえばBF2(二フッ化ホウ素))を導入することにより、活性セル領域ACAのn-型半導体領域5にp+型半導体領域(第3半導体層)16を形成し、ターミネーション領域TNAにp+型ガードリング領域17を形成する。p+型半導体領域16は、本実施の形態1のトレンチゲート型パワーMISFETのソースとなる。p+型ガードリング領域17は、平面において活性セル領域ACAおよびゲート配線領域GLAを取り囲むように形成される。このp型の不純物を導入する工程時には、前述したように、溝部7の開口部からゲート電極11の表面までの側壁には、ゲート酸化膜9と酸化シリコン膜15との二重の酸化シリコン膜が成膜されている。それにより、p型の不純物が溝部7の側壁からn-型半導体領域5に導入されてしまうことを防ぎ、p+型半導体領域16の濃度プロファイルを最適化することが可能となる。すなわち、所望の形成範囲のp+型半導体領域16の下部に望ましくないp+型半導体領域16A(図7参照)が形成されてしまう不具合を未然に防ぐことが可能となる。また、p型の不純物が溝部7の側壁からゲート電極11に導入されてしまうことも防ぎ、ゲート耐圧を確保することができる。 Subsequently, by introducing a p-type impurity (for example, BF 2 (boron difluoride)) into the n -type semiconductor region 5 using a photoresist film (not shown) patterned by photolithography as a mask, activation is performed. A p + type semiconductor region (third semiconductor layer) 16 is formed in the n type semiconductor region 5 of the cell region ACA, and a p + type guard ring region 17 is formed in the termination region TNA. The p + type semiconductor region 16 becomes the source of the trench gate type power MISFET of the first embodiment. The p + type guard ring region 17 is formed so as to surround the active cell region ACA and the gate wiring region GLA in a plane. In the step of introducing the p-type impurity, as described above, the double silicon oxide film of the gate oxide film 9 and the silicon oxide film 15 is formed on the side wall from the opening of the groove 7 to the surface of the gate electrode 11. Is formed. This prevents p-type impurities from being introduced into the n -type semiconductor region 5 from the side wall of the trench 7 and optimizes the concentration profile of the p + -type semiconductor region 16. That is, it is possible to prevent a problem that an undesirable p + type semiconductor region 16A (see FIG. 7) is formed below the p + type semiconductor region 16 in a desired formation range. In addition, it is possible to prevent the p-type impurity from being introduced into the gate electrode 11 from the side wall of the groove portion 7 and to secure the gate breakdown voltage.

続いて、フォトリソグラフィ技術によってパターニングされたフォトレジスト膜(図示は省略)をマスクとしてn-型半導体領域5にn型の不純物(たとえばP(リン))を導入することにより、活性セル領域ACAのn-型半導体領域5にn+型半導体領域18を形成する。 Subsequently, an n-type impurity (for example, P (phosphorus)) is introduced into the n -type semiconductor region 5 using a photoresist film (not shown) patterned by the photolithography technique as a mask, thereby forming the active cell region ACA. An n + type semiconductor region 18 is formed in the n type semiconductor region 5.

次に、図8および図9に示すように、CVD法で基板上に膜厚900Å〜1100Å程度の酸化シリコン膜19を堆積する。続いて、CVD法で酸化シリコン膜(第2絶縁膜)19上に膜厚4000Å〜5000Å程度のBPSG(Boro-Phospho Silicate Glass)膜(第2絶縁膜)20を堆積する。続いて、基板に900℃程度の熱処理を施すことにより、BPSG膜20を流動化させ、BPSG膜20の表面の段差を緩和する。   Next, as shown in FIGS. 8 and 9, a silicon oxide film 19 having a thickness of about 900 to 1100 mm is deposited on the substrate by a CVD method. Subsequently, a BPSG (Boro-Phospho Silicate Glass) film (second insulating film) 20 having a thickness of about 4000 to 5000 mm is deposited on the silicon oxide film (second insulating film) 19 by the CVD method. Subsequently, by subjecting the substrate to a heat treatment at about 900 ° C., the BPSG film 20 is fluidized and the step on the surface of the BPSG film 20 is relaxed.

ここで、BPSG膜20はゲート電極11上の溝部7内へ流れ込むため、溝部8外のゲート引き出し電極12にスリット14(図3および図5も参照)が形成されていない場合には、活性領セル域ACA(溝部7内を除く)における酸化シリコン膜15、酸化シリコン膜19およびBPSG膜20の総膜厚TC1は、その流れ込んだ分だけ他の領域、たとえばゲート配線領域GLAにおける酸化シリコン膜15、酸化シリコン膜19およびBPSG膜20の総膜厚TL1より薄くなる。一方、本実施の形態1では、スリット14が形成されていることから、BPSG膜20はこのスリット14に流れ込む。それにより、たとえばゲート配線領域GLAにおける酸化シリコン膜15、酸化シリコン膜19およびBPSG膜20の総膜厚TL1を活性セル領域ACA(溝部7内を除く)における酸化シリコン膜15、酸化シリコン膜19およびBPSG膜20の総膜厚TC1以下とすることが可能となる。これら各領域における酸化シリコン膜15、酸化シリコン膜19およびBPSG膜20の総膜厚と工程との関係については、次工程を説明する際にさらに詳しく説明する。   Here, since the BPSG film 20 flows into the groove 7 on the gate electrode 11, if the slit 14 (see also FIGS. 3 and 5) is not formed in the gate extraction electrode 12 outside the groove 8, the active region The total film thickness TC1 of the silicon oxide film 15, the silicon oxide film 19 and the BPSG film 20 in the cell area ACA (excluding the inside of the trench 7) is equal to the amount of the flow of the total film thickness TC1, for example, the silicon oxide film 15 in the gate wiring area GLA. The total thickness TL1 of the silicon oxide film 19 and the BPSG film 20 is smaller. On the other hand, in the first embodiment, since the slit 14 is formed, the BPSG film 20 flows into the slit 14. Thereby, for example, the total film thickness TL1 of the silicon oxide film 15, the silicon oxide film 19 and the BPSG film 20 in the gate wiring region GLA is changed to the silicon oxide film 15, the silicon oxide film 19 and the active cell region ACA (except in the trench 7). It becomes possible to make the total thickness TC1 or less of the BPSG film 20. The relationship between the total film thickness of the silicon oxide film 15, the silicon oxide film 19, and the BPSG film 20 in each of these regions and the process will be described in more detail when the next process is described.

次に、図10〜図12に示すように、フォトリソグラフィ技術によってパターニングされたフォトレジスト膜(図示は省略)をマスクとしたエッチングにより、BPSG膜20、酸化シリコン膜19および酸化シリコン膜15をパターニングする。それにより、活性セル領域ACAにおいては、BPSG膜20、酸化シリコン膜19および酸化シリコン膜15がエッチバックされることになり、溝部7外のBPSG膜20、酸化シリコン膜19および酸化シリコン膜15は除去され、溝部7内にはそれらが所定量残される。ゲート配線領域GLAにおいては、溝部7外のBPSG膜20、酸化シリコン膜19および酸化シリコン膜15にゲート引き出し電極12に達する開口部(第1開口部)21が形成される。ターミネーション領域TNAにおいては、p+型ガードリング領域に達する開口部22が形成される。 Next, as shown in FIGS. 10 to 12, the BPSG film 20, the silicon oxide film 19, and the silicon oxide film 15 are patterned by etching using a photoresist film (not shown) patterned by photolithography as a mask. To do. As a result, in the active cell region ACA, the BPSG film 20, the silicon oxide film 19 and the silicon oxide film 15 are etched back, and the BPSG film 20, the silicon oxide film 19 and the silicon oxide film 15 outside the trench 7 are They are removed, leaving a predetermined amount of them in the groove 7. In the gate wiring region GLA, an opening (first opening) 21 reaching the gate extraction electrode 12 is formed in the BPSG film 20, the silicon oxide film 19, and the silicon oxide film 15 outside the trench 7. In the termination region TNA, an opening 22 reaching the p + type guard ring region is formed.

ところで、前述したようにスリット14が形成されていない場合には、活性セル領域ACA(溝部7内を除く)における酸化シリコン膜15、酸化シリコン膜19およびBPSG膜20の総膜厚TC1は、ゲート配線領域GLAにおける酸化シリコン膜15、酸化シリコン膜19およびBPSG膜20の総膜厚TL1より薄くなる。そのため、BPSG膜20、酸化シリコン膜19および酸化シリコン膜15をエッチングし、開口部21が完全にゲート引き出し電極12に達した時点において、ゲート電極11上のBPSG膜20、酸化シリコン膜19および酸化シリコン膜15の総膜厚が、所望のゲート耐圧を保つのに不十分となってしまう場合がある。一方、図8を用いて前述したように、本実施の形態1では、ゲート配線領域GLAにおける酸化シリコン膜15、酸化シリコン膜19およびBPSG膜20の総膜厚TL1を活性セル領域ACA(溝部7内を除く)における酸化シリコン膜15、酸化シリコン膜19およびBPSG膜20の総膜厚TC1以下とすることができる。そのような酸化シリコン膜15、酸化シリコン膜19およびBPSG膜20の総膜厚TC1、TL1とすることにより、BPSG膜20、酸化シリコン膜19および酸化シリコン膜15のパターニング時には、開口部21が完全にゲート引き出し電極12に達した時点でも、溝部7内の酸化シリコン膜15、酸化シリコン膜19およびBPSG膜20はエッチバックされることなく、溝部7内を完全に埋め込むように残すことができる。開口部21が完全にゲート引き出し電極12に達した後は、溝部7内の酸化シリコン膜15、酸化シリコン膜19およびBPSG膜20の総膜厚TG1が所望の膜厚となるまでエッチバックを進める。それにより、本実施の形態1のトレンチゲート型パワーMISFETにおいては、所望のゲート耐圧を確保することが可能となる。また、溝部7の開口部から溝部7内のゲート電極11の表面までの深さd2(図4参照)が、溝部8外におけるゲート引き出し電極12の膜厚d1(図4参照)と等しい場合には、スリット14の幅およびスリット14が配置される間隔を適当に設定し、たとえば溝部7とスリット14の幅とが同じ寸法となり、隣接する溝部7間の間隔と隣接するスリット14間の間隔とが同じ寸法となるようにすることにより、ゲート配線領域GLAにおける酸化シリコン膜15、酸化シリコン膜19およびBPSG膜20の総膜厚TL1を活性セル領域ACA(溝部7内を除く)における酸化シリコン膜15、酸化シリコン膜19およびBPSG膜20の総膜厚TC1と同等とすることができる。さらに、溝部8外におけるゲート引き出し電極12の膜厚d1(図4参照)が、溝部7の開口部から溝部7内のゲート電極11の表面までの深さd2(図4参照)より厚くなるように設定すれば、ゲート配線領域GLAにおける酸化シリコン膜15、酸化シリコン膜19およびBPSG膜20の総膜厚TL1を活性セル領域ACA(溝部7内を除く)における酸化シリコン膜15、酸化シリコン膜19およびBPSG膜20の総膜厚TC1以下とすることができる。   By the way, when the slit 14 is not formed as described above, the total film thickness TC1 of the silicon oxide film 15, the silicon oxide film 19 and the BPSG film 20 in the active cell region ACA (excluding the inside of the trench 7) is the gate It becomes thinner than the total film thickness TL1 of the silicon oxide film 15, the silicon oxide film 19, and the BPSG film 20 in the wiring region GLA. Therefore, when the BPSG film 20, the silicon oxide film 19 and the silicon oxide film 15 are etched and the opening 21 reaches the gate lead electrode 12, the BPSG film 20, the silicon oxide film 19 and the oxide film on the gate electrode 11 are completely removed. The total film thickness of the silicon film 15 may be insufficient to maintain a desired gate breakdown voltage. On the other hand, as described above with reference to FIG. 8, in the first embodiment, the total thickness TL1 of the silicon oxide film 15, the silicon oxide film 19 and the BPSG film 20 in the gate wiring region GLA is set to the active cell region ACA (groove portion 7). The total film thickness TC1 of the silicon oxide film 15, the silicon oxide film 19, and the BPSG film 20 can be set to be equal to or less than the total film thickness TC1. By setting the total film thicknesses TC1 and TL1 of the silicon oxide film 15, the silicon oxide film 19, and the BPSG film 20, the opening 21 is completely formed when the BPSG film 20, the silicon oxide film 19, and the silicon oxide film 15 are patterned. Even when the gate lead-out electrode 12 is reached, the silicon oxide film 15, the silicon oxide film 19 and the BPSG film 20 in the trench 7 can be left completely buried without being etched back. After the opening 21 has completely reached the gate lead electrode 12, the etch back is advanced until the total film thickness TG1 of the silicon oxide film 15, the silicon oxide film 19 and the BPSG film 20 in the groove 7 reaches a desired film thickness. . Thereby, in the trench gate type power MISFET of the first embodiment, a desired gate breakdown voltage can be secured. Further, when the depth d2 (see FIG. 4) from the opening of the trench 7 to the surface of the gate electrode 11 in the trench 7 is equal to the film thickness d1 (see FIG. 4) of the gate extraction electrode 12 outside the trench 8. Appropriately set the width of the slit 14 and the interval at which the slit 14 is arranged, for example, the groove 7 and the width of the slit 14 have the same dimension, and the interval between the adjacent grooves 7 and the interval between the adjacent slits 14 So that the total thickness TL1 of the silicon oxide film 15, the silicon oxide film 19 and the BPSG film 20 in the gate wiring region GLA is changed to the silicon oxide film in the active cell region ACA (except in the trench 7). 15, the total thickness TC1 of the silicon oxide film 19 and the BPSG film 20 can be made equal. Furthermore, the film thickness d1 (see FIG. 4) of the gate lead electrode 12 outside the trench 8 is thicker than the depth d2 (see FIG. 4) from the opening of the trench 7 to the surface of the gate electrode 11 in the trench 7. Is set, the total film thickness TL1 of the silicon oxide film 15, the silicon oxide film 19 and the BPSG film 20 in the gate wiring region GLA is set to the silicon oxide film 15 and the silicon oxide film 19 in the active cell region ACA (except in the trench 7). And the total film thickness TC1 of the BPSG film 20 can be made equal to or less.

また、本発明者らは、スリット14を形成しなくともゲート電極11の上面を溝部7の深さ方向に低くすることにより、開口部21が完全にゲート引き出し電極12に達した時点でも、溝部7内の酸化シリコン膜15、酸化シリコン膜19およびBPSG膜20の総膜厚TG1を所望のゲート耐圧を確保するのに十分な膜厚とすることができる技術について検討した。しかしながら、ゲート電極11の上面を溝部7の深さ方向に低くすると、ソースとなるp+型半導体領域16を深くする必要が生じる。ソースを深くするとパンチスルー耐圧が低下してしまうのでチャネルとなるn-型半導体領域5も深くする必要が生じる。チャネルとなるn-型半導体領域5を深くするとそれを貫く溝7も深くする必要がある。溝7が深くなることにより、ゲート・ソース間の寄生容量が増加してしまうためスイッチング損失が増加してしまうという不具合が生じる。また、溝7を深くすると浅いときに比べて深さばらつきが増えるため、溝部7のうち、トレンチゲート型パワーMISFETのチャネルとなるn-型半導体領域5を突き抜けてドレインとなるp-型単結晶シリコン層2に達する部分が増える。それにより、ゲート電極11とp-型単結晶シリコン層2との間に生じるゲート・ドレイン間の寄生容量が増加し、トレンチゲート型パワーMISFETのスイッチング損失が増加してしまう不具合が生じる。また、トレンチゲート型パワーMISFETのソースとなるp+型半導体領域16および前記n-型半導体領域5を深く形成するためにはp+型半導体領域16およびn-型半導体領域5を形成する不純物を拡散させるための熱処理に要する時間が増大し、半導体装置を製造するTAT(Turn Around Time)が増加してしまう不具合が生じる。また、溝部7を深く形成しなければいけないことから、溝部7の形状を制御することが困難になる上にエッチングに要する時間が増加し、半導体装置を製造するTAT(Turn Around Time)が増加してしまう不具合が生じる。一方、本実施の形態1によれば、溝部7を深く形成しなくとも、溝部7内の酸化シリコン膜15、酸化シリコン膜19およびBPSG膜20の総膜厚TG1を所望のゲート耐圧を確保するのに十分な膜厚とすることができるので、これらの不具合を解消することができる。また、本実施の形態1を適用しても、スリット14の形成は、多結晶シリコン10を成膜した後、フォトリソグラフィ技術によって、ゲート配線領域GLA及びゲート電極11以外の部分と同時に除去できるので、プロセス工程が増えることはない。 Further, the inventors reduce the upper surface of the gate electrode 11 in the depth direction of the groove portion 7 without forming the slit 14, so that the groove portion can be obtained even when the opening 21 reaches the gate extraction electrode 12 completely. 7 has been studied on a technique capable of making the total film thickness TG1 of the silicon oxide film 15, the silicon oxide film 19 and the BPSG film 20 in the film 7 sufficient to ensure a desired gate breakdown voltage. However, if the upper surface of the gate electrode 11 is lowered in the depth direction of the trench 7, it becomes necessary to deepen the p + type semiconductor region 16 serving as the source. When the source is deepened, the punch-through breakdown voltage is lowered, so that it is necessary to deepen the n type semiconductor region 5 serving as a channel. When the n type semiconductor region 5 to be a channel is deepened, the groove 7 penetrating the n type semiconductor region 5 needs to be deepened. As the trench 7 becomes deeper, the parasitic capacitance between the gate and the source increases, resulting in a problem that the switching loss increases. Further, since the depth variation increases when the groove 7 is deeper than when it is shallow, the p type single crystal that penetrates the n type semiconductor region 5 that becomes the channel of the trench gate type power MISFET in the groove 7 and becomes the drain. The portion reaching the silicon layer 2 increases. As a result, a parasitic capacitance between the gate and the drain generated between the gate electrode 11 and the p -type single crystal silicon layer 2 increases, resulting in an increase in switching loss of the trench gate type power MISFET. Further, p + -type semiconductor region 16 and the n serving as the source of the trench gate type power MISFET - impurities -type semiconductor regions 5 - -type semiconductor region to 5 to a deeply formed p + -type semiconductor region 16 and the n The time required for the heat treatment for diffusion increases, resulting in a problem that the TAT (Turn Around Time) for manufacturing the semiconductor device increases. Further, since the groove portion 7 must be formed deeply, it becomes difficult to control the shape of the groove portion 7, and the time required for etching increases, and TAT (Turn Around Time) for manufacturing a semiconductor device increases. This causes a malfunction. On the other hand, according to the first embodiment, a desired gate breakdown voltage is ensured for the total film thickness TG1 of the silicon oxide film 15, the silicon oxide film 19 and the BPSG film 20 in the groove 7 without forming the groove 7 deeply. Therefore, these problems can be solved. Even when the first embodiment is applied, the slit 14 can be removed simultaneously with the portions other than the gate wiring region GLA and the gate electrode 11 by photolithography after the polycrystalline silicon 10 is formed. , Process steps will not increase.

次に、図13および図14に示すように、基板上にバリア導体膜として、たとえばスパッタリング法で膜厚1000Å〜2200Å程度のTiW(チタンタングステン)膜23を堆積した後、基板に熱処理を施す。続いて、そのTiW膜23上に、たとえばスパッタリング法にて膜厚26000Å〜55000Å程度のAl(アルミニウム)膜24を堆積する。バリア導体膜は、Alと基板(Si)とが接触することにより不所望な反応層が形成されることを防止する役割を果たす。なお、本実施の形態1において、Al膜は、Alを主成分とする膜を意味し、他の金属等を含有していてもよい。続いて、フォトリソグラフィ技術によりパターニングされたフォトレジスト膜をマスクとしてそのTiW膜23およびAl膜24をエッチングすることにより、ゲート引き出し電極12と電気的に接続するゲート配線(第2配線)25、パワーMISFETのソース領域となるp+型半導体領域16と電気的に接続するソースパッド(ソース電極(第1配線))26、p+型ガードリング領域17と電気的に接続する配線27、およびゲート配線25と電気的に接続するゲートパッド(ゲート電極)を形成する。なお、そのゲートパッドは、図13および図14では図示されない領域に形成される。 Next, as shown in FIGS. 13 and 14, a TiW (titanium tungsten) film 23 having a film thickness of about 1000 to 2200 mm is deposited as a barrier conductor film on the substrate by, for example, sputtering, and then the substrate is subjected to heat treatment. Subsequently, an Al (aluminum) film 24 having a thickness of about 26000 to 55000 mm is deposited on the TiW film 23 by, eg, sputtering. The barrier conductor film plays a role of preventing an undesired reaction layer from being formed by contact between Al and the substrate (Si). In the first embodiment, the Al film means a film containing Al as a main component, and may contain other metals. Subsequently, the TiW film 23 and the Al film 24 are etched using the photoresist film patterned by the photolithography technique as a mask, whereby a gate wiring (second wiring) 25 electrically connected to the gate lead electrode 12, power A source pad (source electrode (first wiring)) 26 electrically connected to the p + type semiconductor region 16 serving as a source region of the MISFET, a wiring 27 electrically connected to the p + type guard ring region 17, and a gate wiring A gate pad (gate electrode) that is electrically connected to 25 is formed. The gate pad is formed in a region not shown in FIGS.

図示は省略するが、上記ゲート配線25、ソースパッド26、配線27およびゲートパッドを形成した後、基板の上部に、保護膜として、たとえばポリイミド樹脂膜を塗布し、露光、現像することによって、ゲートパッドおよびソースパッド26上のポリイミド樹脂膜を除去し、開口部を形成する。   Although illustration is omitted, after forming the gate wiring 25, the source pad 26, the wiring 27, and the gate pad, a polyimide resin film, for example, as a protective film is applied to the upper portion of the substrate, and then exposed and developed. The polyimide resin film on the pad and source pad 26 is removed to form an opening.

次いで、基板の表面をテープ等で保護した後、保護面を下側とし、p+型単結晶シリコン基板1の裏面を研削する。上記テープを剥がした後、p+型単結晶シリコン基板1の裏面上に、導電性膜として、たとえばTi(チタン)膜、Ni(ニッケル)膜およびAu(金)膜を順次スパッタリング法により堆積し、これらの積層膜を形成する。この積層膜は、ドレイン(p+型単結晶シリコン基板1およびp-型単結晶シリコン層2)の引出し電極(ドレイン電極)となる。 Next, after protecting the surface of the substrate with a tape or the like, the back surface of the p + type single crystal silicon substrate 1 is ground with the protective surface on the lower side. After peeling off the tape, for example, a Ti (titanium) film, a Ni (nickel) film, and an Au (gold) film are sequentially deposited on the back surface of the p + type single crystal silicon substrate 1 by a sputtering method. These laminated films are formed. This laminated film becomes an extraction electrode (drain electrode) of the drain (p + type single crystal silicon substrate 1 and p type single crystal silicon layer 2).

続いて、上記ポリイミド樹脂膜に形成した開口部上に、たとえばAu等よりなるバンプ電極を形成した後、ウエハ状態の基板を、たとえば分割領域(図示は省略)に沿ってダイシングし、個々のチップへと分割する。その後、個々のチップを、たとえば外部端子を有するリードフレーム(実装板)上に搭載し樹脂等で封止(実装)し、本実施の形態1の半導体装置を製造する。   Subsequently, a bump electrode made of, for example, Au or the like is formed on the opening formed in the polyimide resin film, and then the substrate in a wafer state is diced along, for example, divided regions (not shown) to obtain individual chips. Divide into Thereafter, the individual chips are mounted on, for example, a lead frame (mounting plate) having external terminals and sealed (mounted) with a resin or the like to manufacture the semiconductor device of the first embodiment.

(実施の形態2)
本実施の形態2の半導体装置は、前記実施の形態1の半導体装置と同様に、たとえばpチャネル型のパワーMISFETを有するものである。この本実施の形態2の半導体装置の製造方法について図15および図16を用いて説明する。
(Embodiment 2)
Similar to the semiconductor device of the first embodiment, the semiconductor device of the second embodiment has, for example, a p-channel type power MISFET. A method of manufacturing the semiconductor device according to the second embodiment will be described with reference to FIGS.

本実施の形態2の半導体装置の製造工程は、前記実施の形態1においてBPSG膜20を成膜した工程(図8および図9参照)までは同様であるが、ゲート引き出し電極12にスリット14(図3および図5参照)は形成しない。その後、図15に示すように、フォトリソグラフィ技術によってパターニングされたフォトレジスト膜R1によって基板上のゲート配線領域GLAおよびターミネーション領域TNAを覆い、活性セル領域ACAのBPSG膜20、酸化シリコン膜19および酸化シリコン膜15をエッチングする。それにより、活性セル領域ACAにおいては、溝部7外のBPSG膜20、酸化シリコン膜19および酸化シリコン膜15を除去し、溝部7内においては酸化シリコン膜15、酸化シリコン膜19およびBPSG膜20の総膜厚TG1を所望の膜厚とする。   The manufacturing process of the semiconductor device of the second embodiment is the same up to the process of forming the BPSG film 20 in the first embodiment (see FIGS. 8 and 9), but the slit 14 ( 3 and 5) is not formed. After that, as shown in FIG. 15, the gate wiring region GLA and the termination region TNA on the substrate are covered with a photoresist film R1 patterned by a photolithography technique, and the BPSG film 20, the silicon oxide film 19 and the oxidation cell in the active cell region ACA are covered. The silicon film 15 is etched. Thereby, in the active cell region ACA, the BPSG film 20, the silicon oxide film 19 and the silicon oxide film 15 outside the trench 7 are removed, and in the trench 7, the silicon oxide film 15, the silicon oxide film 19 and the BPSG film 20 are removed. The total film thickness TG1 is set to a desired film thickness.

次に、上記フォトレジスト膜R1を除去した後、図16に示すように、新たにフォトリソグラフィ技術によってパターニングされたフォトレジスト膜R2によって基板上の開口部21、22が形成される領域以外の領域を覆い、BPSG膜20、酸化シリコン膜19および酸化シリコン膜15をエッチングする。それにより、溝部7内のBPSG膜20および酸化シリコン膜19を目減りさせることなく開口部21、22を形成することができる。すなわち、本実施の形態2のトレンチゲート型パワーMISFETにおいても、所望のゲート耐圧を確保することが可能となる。   Next, after removing the photoresist film R1, as shown in FIG. 16, regions other than the regions where the openings 21 and 22 are formed on the substrate by the photoresist film R2 newly patterned by the photolithography technique. BPSG film 20, silicon oxide film 19 and silicon oxide film 15 are etched. Thereby, the openings 21 and 22 can be formed without reducing the BPSG film 20 and the silicon oxide film 19 in the groove 7. That is, also in the trench gate type power MISFET of the second embodiment, it is possible to ensure a desired gate breakdown voltage.

その後、前記実施の形態1にて図13および図14を用いて説明した工程と同様の工程を経ることにより、本実施の形態2の半導体装置を製造する。   Thereafter, the semiconductor device according to the second embodiment is manufactured through the same steps as those described with reference to FIGS. 13 and 14 in the first embodiment.

上記のような本実施の形態2によっても、前記実施の形態1と同様の効果を得ることができる。   According to the second embodiment as described above, the same effect as in the first embodiment can be obtained.

(実施の形態3)
本実施の形態3の半導体装置は、前記実施の形態1、2の半導体装置と同様に、たとえばpチャネル型のパワーMISFETを有するものである。この本実施の形態3の半導体装置の製造方法について図17および図18を用いて説明する。
(Embodiment 3)
The semiconductor device of the third embodiment has, for example, a p-channel type power MISFET, as in the semiconductor devices of the first and second embodiments. A method of manufacturing the semiconductor device according to the third embodiment will be described with reference to FIGS.

本実施の形態3の半導体装置の製造工程は、前記実施の形態1においてBPSG膜20を成膜した工程(図8および図9参照)までは同様であるが、ゲート引き出し電極12にスリット14(図3および図5参照)は形成しない。その後、図17に示すように、BPSG膜20および酸化シリコン膜19をエッチバックし、溝部7外のBPSG膜20および酸化シリコン膜19を除去する。ここで、溝部7内に残ったBPSG膜20、酸化シリコン膜19および酸化シリコン膜15の総膜厚を確認する。続いて、図18に示すように、基板上に酸化シリコン膜19と同様の酸化シリコン膜(第2絶縁膜、第3絶縁膜)19AおよびBPSG膜20と同様のBPSG膜(第2絶縁膜、第3絶縁膜)20Aを順次堆積し、基板に熱処理を施してBPSG膜20Aを流動化させる。   The manufacturing process of the semiconductor device of the third embodiment is the same up to the process of forming the BPSG film 20 in the first embodiment (see FIG. 8 and FIG. 9), but the slit 14 ( 3 and 5) is not formed. Thereafter, as shown in FIG. 17, the BPSG film 20 and the silicon oxide film 19 are etched back, and the BPSG film 20 and the silicon oxide film 19 outside the trench 7 are removed. Here, the total film thickness of the BPSG film 20, the silicon oxide film 19 and the silicon oxide film 15 remaining in the trench 7 is confirmed. Subsequently, as shown in FIG. 18, a silicon oxide film (second insulating film, third insulating film) 19A similar to the silicon oxide film 19 and a BPSG film (second insulating film, similar to the BPSG film 20) are formed on the substrate. Third insulating film) 20A is sequentially deposited, and the substrate is subjected to heat treatment to fluidize BPSG film 20A.

この時、BPSG膜20および酸化シリコン膜19をエッチバックした際に、溝部7内に残ったBPSG膜20、酸化シリコン膜19および酸化シリコン膜15の総膜厚が、所望のゲート耐圧を確保するのに十分であった場合には、BPSG膜20A、酸化シリコン膜19Aおよび酸化シリコン膜15をエッチングして開口部21、22を形成し、その後、前記実施の形態1にて図13および図14を用いて説明した工程と同様の工程を経ることにより、本実施の形態3の半導体装置を製造する。一方、BPSG膜20および酸化シリコン膜19をエッチバックした際に、溝部7内に残ったBPSG膜20、酸化シリコン膜19および酸化シリコン膜15の総膜厚が、所望のゲート耐圧を確保するのに十分でない場合には、BPSG膜20Aおよび酸化シリコン膜19Aをエッチバックし、溝部7外のBPSG膜20Aおよび酸化シリコン膜19Aを除去する。ここで、溝部7内に残ったBPSG膜20、20A、酸化シリコン膜19、19Aおよび酸化シリコン膜15の総膜厚を確認し、所望のゲート耐圧を確保するのに十分でない場合には、十分な総膜厚となるまで、酸化シリコン膜19AおよびBPSG膜20Aを堆積する工程と、この積層膜をエッチバックする工程とを繰り返した後に開口部21、22を形成する。このような本実施の形態3のトレンチゲート型パワーMISFETにおいても、所望のゲート耐圧を確保することが可能となる。   At this time, when the BPSG film 20 and the silicon oxide film 19 are etched back, the total film thickness of the BPSG film 20, the silicon oxide film 19 and the silicon oxide film 15 remaining in the trench 7 ensures a desired gate breakdown voltage. If sufficient, the BPSG film 20A, the silicon oxide film 19A, and the silicon oxide film 15 are etched to form openings 21 and 22, and then, in the first embodiment, FIG. 13 and FIG. The semiconductor device according to the third embodiment is manufactured through the same process as described with reference to FIG. On the other hand, when the BPSG film 20 and the silicon oxide film 19 are etched back, the total thickness of the BPSG film 20, the silicon oxide film 19 and the silicon oxide film 15 remaining in the trench 7 ensures a desired gate breakdown voltage. If not sufficient, the BPSG film 20A and the silicon oxide film 19A are etched back, and the BPSG film 20A and the silicon oxide film 19A outside the trench 7 are removed. Here, the total film thickness of the BPSG films 20 and 20A, the silicon oxide films 19 and 19A, and the silicon oxide film 15 remaining in the trench 7 is confirmed, and if it is not sufficient to secure a desired gate breakdown voltage, The openings 21 and 22 are formed after repeating the step of depositing the silicon oxide film 19A and the BPSG film 20A and the step of etching back the laminated film until the total film thickness is reached. In such a trench gate type power MISFET of the third embodiment, a desired gate breakdown voltage can be secured.

(実施の形態4)
本実施の形態4の半導体装置は、前記実施の形態1〜3の半導体装置と同様に、たとえばpチャネル型のパワーMISFETを有するものである。この本実施の形態4の半導体装置の製造方法について図19および図20を用いて説明する。
(Embodiment 4)
The semiconductor device of the fourth embodiment has, for example, a p-channel type power MISFET, like the semiconductor devices of the first to third embodiments. A method of manufacturing the semiconductor device according to the fourth embodiment will be described with reference to FIGS.

本実施の形態4の半導体装置の製造工程は、前記実施の形態1の半導体装置の製造工程とほぼ同様であるが、図19に示すように、ゲート引き出し電極12に前記実施の形態1で形成したスリット14(図3および図5参照)の代わりに複数の平面円形の開口部(第3溝部)14Aを形成する。この開口部14Aの開口径は、スリット14の幅と同程度とすることを例示できる。スリット14の代わりに平面円形の開口部14Aを形成することにより、後の工程で形成されるゲート配線25(図13および図14参照)とゲート引き出し電極12とが接触する面積を増加することができる。それにより、ゲート抵抗を低減することができる。   The manufacturing process of the semiconductor device according to the fourth embodiment is almost the same as the manufacturing process of the semiconductor device according to the first embodiment. However, as shown in FIG. Instead of the slits 14 (see FIGS. 3 and 5), a plurality of planar circular openings (third groove portions) 14A are formed. It can be exemplified that the opening diameter of the opening 14 </ b> A is approximately the same as the width of the slit 14. By forming the planar circular opening 14A in place of the slit 14, the area where the gate wiring 25 (see FIGS. 13 and 14) formed in a later process and the gate extraction electrode 12 come into contact can be increased. it can. Thereby, gate resistance can be reduced.

また、図20に示すように、スリット14の代わりに、ゲート引き出し電極12の端部まで達していないスリット(第3溝部)14Bを形成してもよい。このように、平面で周囲をゲート引き出し電極12に囲まれたスリット14Bとすることにより、ゲート引き出し電極12は、電流経路と直行する方向での断面積を増加できるので、ゲート抵抗を低減することができる。また、この電流経路と直行する方向での断面積を増加できるという観点では、上記の平面円形の開口部14Aを形成した場合でも同様の効果を得ることをできる。   Further, as shown in FIG. 20, a slit (third groove portion) 14 </ b> B that does not reach the end of the gate extraction electrode 12 may be formed instead of the slit 14. Thus, by forming the slit 14B surrounded by the gate extraction electrode 12 on a plane, the gate extraction electrode 12 can increase the cross-sectional area in the direction perpendicular to the current path, and therefore the gate resistance can be reduced. Can do. Further, from the viewpoint that the cross-sectional area in the direction perpendicular to the current path can be increased, the same effect can be obtained even when the planar circular opening 14A is formed.

以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。   As mentioned above, the invention made by the present inventor has been specifically described based on the embodiment. However, the present invention is not limited to the embodiment, and various modifications can be made without departing from the scope of the invention. Needless to say.

たとえば、前記実施の形態では、トレンチゲート型パワーMISFETを含む半導体装置の製造工程について説明したが、同様に基板に形成された溝部内にゲート電極を有するIGBT(Insulated Gate Bipolar Transistor)を含む半導体装置の製造工程に対しても同様の製造工程を適用することができる。   For example, in the above embodiment, the manufacturing process of a semiconductor device including a trench gate type power MISFET has been described. Similarly, a semiconductor device including an IGBT (Insulated Gate Bipolar Transistor) having a gate electrode in a groove formed in a substrate. The same manufacturing process can be applied to this manufacturing process.

本発明の半導体装置の製造方法は、たとえばトレンチゲート型のパワーMISFETを有する半導体装置の製造工程に適用することができる。   The semiconductor device manufacturing method of the present invention can be applied to a manufacturing process of a semiconductor device having, for example, a trench gate type power MISFET.

1 p+型単結晶シリコン基板
2 p-型単結晶シリコン層(第1半導体層)
3 酸化シリコン膜
4 フィールド絶縁膜
5 n-型半導体領域(第2半導体層)
6 酸化シリコン膜
7 溝部(第1溝部)
7A 側壁
8 溝部(第2溝部)
9 ゲート酸化膜(第1絶縁膜)
10 多結晶シリコン膜(第1導電性膜)
11 ゲート電極
12 ゲート引き出し電極
14 スリット(第3溝部)
14A 開口部(第3溝部)
14B スリット(第3溝部)
15 酸化シリコン膜
16 p+型半導体領域(第3半導体層)
17 p+型ガードリング領域
18 n+型半導体領域
19 酸化シリコン膜(第2絶縁膜)
19A 酸化シリコン膜(第2絶縁膜、第3絶縁膜)
20 BPSG膜(第2絶縁膜)
20A BPSG膜(第2絶縁膜、第3絶縁膜)
21 開口部(第1開口部)
22 開口部
23 TiW膜
24 Al膜
25 ゲート配線(第2配線)
26 ソースパッド(ソース電極(第1配線))
27 配線
101 基板
102、103 溝
104 ゲート電極
105 ゲート配線
106 層間絶縁膜
107 開口部
108、109、110 半導体層
ACA 活性セル領域(第1領域)
GLA ゲート配線領域(第2領域)
R1、R2 フォトレジスト膜
TC、TL、TG 膜厚
TC1、TL1、TG1 膜厚
TNA ターミネーション領域
1 p + type single crystal silicon substrate 2 p type single crystal silicon layer (first semiconductor layer)
3 Silicon oxide film 4 Field insulating film 5 n - type semiconductor region (second semiconductor layer)
6 Silicon oxide film 7 Groove (first groove)
7A Side wall 8 Groove (second groove)
9 Gate oxide film (first insulating film)
10 Polycrystalline silicon film (first conductive film)
11 Gate electrode 12 Gate lead electrode 14 Slit (third groove)
14A opening (third groove)
14B Slit (third groove)
15 Silicon oxide film 16 p + type semiconductor region (third semiconductor layer)
17 p + type guard ring region 18 n + type semiconductor region 19 Silicon oxide film (second insulating film)
19A Silicon oxide film (second insulating film, third insulating film)
20 BPSG film (second insulating film)
20A BPSG film (second insulating film, third insulating film)
21 opening (first opening)
22 Opening 23 TiW film 24 Al film 25 Gate wiring (second wiring)
26 Source pad (source electrode (first wiring))
27 Wiring 101 Substrate 102, 103 Groove 104 Gate electrode 105 Gate wiring 106 Interlayer insulating film 107 Openings 108, 109, 110 Semiconductor layer ACA Active cell region (first region)
GLA gate wiring area (second area)
R1, R2 Photoresist film TC, TL, TG film thickness TC1, TL1, TG1 film thickness TNA termination region

Claims (11)

半導体基板にMISFETが形成される第1領域と、前記MISFETのゲート電極が電気的に接続する配線が形成される第2領域とを有する半導体装置であって、
前記半導体基板上に形成された第1導電型の第1半導体層と、
前記第1半導体層上に形成された、前記第1導電型とは逆の導電型である第2導電型の第2半導体層と、
前記第1領域の前記第2半導体層を貫通するように形成された第1溝部と、
前記第2領域の前記第2半導体層を貫通するように形成された第2溝部と、
前記第1領域において、前記第1溝部内に形成された第1絶縁膜と、
前記第2領域において、前記第2溝部内に形成され、且つ、前記第2溝部外の前記第2半導体層上に形成された前記第1絶縁膜と、
前記第1領域において、前記第1絶縁膜を介して前記第1溝部内に埋め込まれて形成された第1導電性膜と、
前記第2領域において、前記第1絶縁膜を介して前記第2溝部内に埋め込まれて形成され、且つ、前記第2溝部外の前記第1絶縁膜上に形成された前記第1導電性膜と、
前記第1領域において、前記第1溝部と隣接する位置の前記第2半導体層に形成された前記第1導電型の第3半導体層と、
前記第2領域において、前記第1導電性膜上に形成された第2絶縁膜と、
前記第2領域において、前記第1導電性膜に達するように前記第2絶縁膜に形成された第1開口部と、
を有し、
前記第1領域における前記第1導電性膜は前記MISFETのゲート電極を構成しており、
前記第2領域における前記第1導電性膜は前記MISFETのゲート電極が電気的に接続する配線を構成しており、
前記第1領域において、前記第1溝部内に埋め込まれた前記第1導電性膜は、その表面が前記第2半導体層の表面よりも低い位置になるように形成されており、
前記第1領域において、前記第2絶縁膜が前記第1溝部内を埋め込むように、前記第1導電性膜上に形成されており、
前記第2領域において、前記第2溝部外に形成された前記第1導電性膜には、第3溝部が形成されていることを特徴とする半導体装置。
A semiconductor device having a first region in which a MISFET is formed on a semiconductor substrate and a second region in which a wiring to which a gate electrode of the MISFET is electrically connected is formed,
A first conductivity type first semiconductor layer formed on the semiconductor substrate;
A second conductivity type second semiconductor layer formed on the first semiconductor layer and having a conductivity type opposite to the first conductivity type;
A first groove formed to penetrate the second semiconductor layer in the first region;
A second groove formed to penetrate the second semiconductor layer of the second region;
A first insulating film formed in the first groove in the first region;
In the second region, the first insulating film formed in the second trench and on the second semiconductor layer outside the second trench,
A first conductive film formed in the first region by being embedded in the first groove through the first insulating film;
In the second region, the first conductive film formed by being embedded in the second groove portion through the first insulating film and formed on the first insulating film outside the second groove portion When,
A third semiconductor layer of the first conductivity type formed in the second semiconductor layer at a position adjacent to the first groove in the first region;
A second insulating film formed on the first conductive film in the second region;
A first opening formed in the second insulating film so as to reach the first conductive film in the second region;
Have
The first conductive film in the first region constitutes a gate electrode of the MISFET;
The first conductive film in the second region constitutes a wiring electrically connected to the gate electrode of the MISFET,
In the first region, the first conductive film embedded in the first groove is formed so that the surface thereof is lower than the surface of the second semiconductor layer,
In the first region, the second insulating film is formed on the first conductive film so as to fill the first groove portion,
In the second region, a third groove portion is formed in the first conductive film formed outside the second groove portion.
請求項1に記載の半導体装置において、
前記第1領域において、前記第1半導体層を前記MISFETのドレインとし、前記第2半導体層を前記MISFETのチャネルとし、前記第3半導体層を前記MISFETのソースとすることを特徴とする半導体装置。
The semiconductor device according to claim 1,
In the first region, the first semiconductor layer is a drain of the MISFET, the second semiconductor layer is a channel of the MISFET, and the third semiconductor layer is a source of the MISFET.
請求項1または2に記載の半導体装置において、
前記第1領域において、前記第3半導体層と電気的に接し、前記第1導電性膜とは電気的に接しないように、前記第3半導体層上および前記第2絶縁膜上に第1配線が形成されており、
前記第2領域において、前記第1導電性膜と電気的に接するように、前記第1開口部内および前記第1開口部外の前記第2絶縁膜上に第2配線が形成されていることを特徴とする半導体装置。
The semiconductor device according to claim 1 or 2,
In the first region, a first wiring is formed on the third semiconductor layer and the second insulating film so as to be in electrical contact with the third semiconductor layer and not in contact with the first conductive film. Is formed,
In the second region, second wiring is formed on the second insulating film inside the first opening and outside the first opening so as to be in electrical contact with the first conductive film. A featured semiconductor device.
請求項1〜3の何れか1項に記載の半導体装置において、
前記第1領域において、前記第2絶縁膜は前記第1溝部内に形成されており、前記第1溝部外には形成されていないことを特徴とする半導体装置。
The semiconductor device according to any one of claims 1 to 3,
In the first region, the second insulating film is formed in the first groove portion, and is not formed outside the first groove portion.
請求項1〜4の何れか1項に記載の半導体装置において、
平面形状において、前記第1開口部は前記第3溝部よりも前記第1領域に近い位置に形成されていることを特徴とする半導体装置。
The semiconductor device according to any one of claims 1 to 4,
In the planar shape, the first opening is formed at a position closer to the first region than the third groove.
請求項5に記載の半導体装置において、
平面形状において、前記第3溝部が延在する方向は、前記第1開口部が延在する方向と垂直な方向であることを特徴とする半導体装置。
The semiconductor device according to claim 5,
In the planar shape, the direction in which the third groove portion extends is a direction perpendicular to the direction in which the first opening extends.
請求項5に記載の半導体装置において、
平面形状において、前記第3溝部はその周りを前記第1導電性膜に囲まれるように形成されていることを特徴とする半導体装置。
The semiconductor device according to claim 5,
In the planar shape, the third groove portion is formed so as to be surrounded by the first conductive film.
請求項7に記載の半導体装置において、
平面形状において、前記第3溝部は円形状であることを特徴とする半導体装置。
The semiconductor device according to claim 7,
In the planar shape, the third groove portion has a circular shape.
請求項7に記載の半導体装置において、
平面形状において、前記第3溝部は長方形状であることを特徴とする半導体装置。
The semiconductor device according to claim 7,
In the planar shape, the third groove portion is rectangular.
請求項1〜9の何れか1項に記載の半導体装置において、
前記第1導電性膜は多結晶シリコン膜であることを特徴とする半導体装置。
The semiconductor device according to any one of claims 1 to 9,
The semiconductor device according to claim 1, wherein the first conductive film is a polycrystalline silicon film.
請求項1〜10の何れか1項に記載の半導体装置において、
前記第2絶縁膜は酸化シリコン膜であることを特徴とする半導体装置。
The semiconductor device according to claim 1,
The semiconductor device, wherein the second insulating film is a silicon oxide film.
JP2011145659A 2011-06-30 2011-06-30 Semiconductor device Pending JP2011216901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011145659A JP2011216901A (en) 2011-06-30 2011-06-30 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011145659A JP2011216901A (en) 2011-06-30 2011-06-30 Semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004188290A Division JP4860122B2 (en) 2004-06-25 2004-06-25 Manufacturing method of semiconductor device

Publications (1)

Publication Number Publication Date
JP2011216901A true JP2011216901A (en) 2011-10-27

Family

ID=44946266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011145659A Pending JP2011216901A (en) 2011-06-30 2011-06-30 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2011216901A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07335871A (en) * 1994-06-15 1995-12-22 Hitachi Ltd Insulated gate semiconductor device and its manufacturing method
JPH09326434A (en) * 1996-06-04 1997-12-16 Sony Corp Semiconductor device and manufacture thereof
JP2001267538A (en) * 2000-03-15 2001-09-28 Nec Corp Manufacturing method of semiconductor device
JP2003264289A (en) * 2003-01-27 2003-09-19 Hitachi Ltd Insulated gate semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07335871A (en) * 1994-06-15 1995-12-22 Hitachi Ltd Insulated gate semiconductor device and its manufacturing method
JPH09326434A (en) * 1996-06-04 1997-12-16 Sony Corp Semiconductor device and manufacture thereof
JP2001267538A (en) * 2000-03-15 2001-09-28 Nec Corp Manufacturing method of semiconductor device
JP2003264289A (en) * 2003-01-27 2003-09-19 Hitachi Ltd Insulated gate semiconductor device

Similar Documents

Publication Publication Date Title
JP4860102B2 (en) Semiconductor device
US9793342B2 (en) Insulated gate type semiconductor device and method for fabricating the same
US7271068B2 (en) Method of manufacture of semiconductor device
JP4892172B2 (en) Semiconductor device and manufacturing method thereof
WO2016080269A1 (en) Semiconductor device and method for producing semiconductor device
JP6324838B2 (en) Semiconductor device and manufacturing method thereof
US7494876B1 (en) Trench-gated MIS device having thick polysilicon insulation layer at trench bottom and method of fabricating the same
CN107910267B (en) Power semiconductor device and method of manufacturing the same
JP5687127B2 (en) Semiconductor device and manufacturing method thereof
US9276075B2 (en) Semiconductor device having vertical MOSFET structure that utilizes a trench-type gate electrode and method of producing the same
JP5420225B2 (en) Semiconductor device and manufacturing method thereof
TWI702722B (en) Semiconductor device and method of manufacturing semiconductor device
JP2007053226A (en) Semiconductor device and its manufacturing method
CN107910270B (en) Power semiconductor device and method of manufacturing the same
JP2011029675A (en) Semiconductor device
JP2011216901A (en) Semiconductor device
US20240162222A1 (en) Semiconductor device and method of manufacturing the same
JP2007036299A (en) Semiconductor device and method for fabricating the same
JP2008034449A (en) Semiconductor device and its manufacturing method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130509

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130910