JP2011211056A - Rare earth sintered magnet, motor, and automobile - Google Patents
Rare earth sintered magnet, motor, and automobile Download PDFInfo
- Publication number
- JP2011211056A JP2011211056A JP2010078710A JP2010078710A JP2011211056A JP 2011211056 A JP2011211056 A JP 2011211056A JP 2010078710 A JP2010078710 A JP 2010078710A JP 2010078710 A JP2010078710 A JP 2010078710A JP 2011211056 A JP2011211056 A JP 2011211056A
- Authority
- JP
- Japan
- Prior art keywords
- rare earth
- sintered magnet
- compound
- magnet
- earth sintered
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Hard Magnetic Materials (AREA)
- Permanent Field Magnets Of Synchronous Machinery (AREA)
Abstract
Description
本発明は、希土類焼結磁石、モーター及び自動車に関する。 The present invention relates to a rare earth sintered magnet, a motor, and an automobile.
R−T−B(Rは希土類元素、TはFe等の金属元素)系の組成を有する希土類磁石は、優れた磁気特性を有する磁石であり、その磁気特性、特に残留磁束密度(Br)及び保磁力(HcJ)の更なる向上を目指して多くの検討がなされている(例えば、特許文献1)。 A rare earth magnet having a R-T-B (R is a rare earth element, T is a metal element such as Fe) series composition is a magnet having excellent magnetic properties, and particularly its magnetic properties, particularly residual magnetic flux density (Br) and Many studies have been made with the aim of further improving the coercive force (HcJ) (for example, Patent Document 1).
ここで、磁石の磁気特性としては、角型比(Hk/HcJ)が重要な要素の一つであるが、上述の特許文献1等に記載の従来の希土類焼結磁石は、角型比について改善の余地がある。 Here, as a magnetic characteristic of the magnet, the squareness ratio (Hk / HcJ) is one of the important elements. However, the conventional rare earth sintered magnet described in the above-mentioned Patent Document 1 has a squareness ratio. There is room for improvement.
そこで本発明は、残留磁束密度及び保磁力、特に保磁力に優れるとともに、角型比が高い希土類焼結磁石、及びそれを用いたモーター及び自動車を提供することを目的とする。 Therefore, an object of the present invention is to provide a rare earth sintered magnet having excellent residual magnetic flux density and coercive force, particularly coercive force, and having a high squareness ratio, and a motor and an automobile using the rare earth sintered magnet.
上記目的を達成するため、本発明の希土類焼結磁石は、コアと、コアを被覆するシェルとを有するR−T−B系希土類磁石の主相粒子群を備え、Rは重希土類元素(RH)及び軽希土類元素(RL)を含み、主相粒子群における2粒子界面に重希土類Cu化合物及び軽希土類Cu化合物が存在する希土類焼結磁石であって、希土類焼結磁石の表面から深さ0.3mmの位置の2粒子界面における軽希土類Cu化合物(RLCu)に対する重希土類化合物(RHCu)の質量比(RHCu/RLCu@0.3mm)が、希土類焼結磁石の表面から深さ1.5mmの位置の2粒子界面における軽希土類Cu化合物に対する重希土類化合物の質量比(RHCu/RLCu@1.5mm)の1倍より大きく5倍以下であることを特徴とする。なお、主相粒子群とは、複数の主相粒子を意味する。また、軽希土類元素に対する重希土類元素の割合(重希土類元素/軽希土類元素)が、主相粒子中心部(コア)における割合の2倍以上となっている部分をシェルと規定する。 In order to achieve the above object, a rare earth sintered magnet of the present invention comprises a main phase particle group of an R-T-B system rare earth magnet having a core and a shell covering the core, wherein R is a heavy rare earth element (RH). ) And a light rare earth element (RL), and a rare earth sintered magnet having a heavy rare earth Cu compound and a light rare earth Cu compound at the two-particle interface in the main phase particle group, and having a depth of 0 from the surface of the rare earth sintered magnet. The mass ratio (RHCu/RLCu@0.3 mm) of the heavy rare earth compound (RHCu) to the light rare earth Cu compound (RLCu) at the 2-particle interface at a position of 3 mm is 1.5 mm deep from the surface of the rare earth sintered magnet. The mass ratio of the heavy rare earth compound to the light rare earth Cu compound at the two-particle interface at the position (RHCu/RLCu@1.5 mm) is greater than 1 and less than 5 times. The main phase particle group means a plurality of main phase particles. Further, a portion where the ratio of heavy rare earth element to light rare earth element (heavy rare earth element / light rare earth element) is more than twice the ratio in the main phase particle center (core) is defined as a shell.
上記本発明の希土類焼結磁石は、残留磁束密度及び保磁力、特に保磁力に優れるとともに、角型比が高い。 The rare earth sintered magnet of the present invention is excellent in residual magnetic flux density and coercive force, particularly coercive force, and has a high squareness ratio.
上記希土類焼結磁石において、希土類焼結磁石における酸素元素の含有割合は2500ppm以下であってもよい。上記主相粒子の粒径は3.0μm以上6.5μm以下であってもよい。上記希土類焼結磁石は、0.05質量%以上0.40質量%以下の含有割合でGa元素を含んでいてもよい。上記シェルの厚みが500nm以下であってもよい。 In the rare earth sintered magnet, the oxygen element content in the rare earth sintered magnet may be 2500 ppm or less. The particle size of the main phase particles may be 3.0 μm or more and 6.5 μm or less. The rare earth sintered magnet may contain a Ga element in a content ratio of 0.05% by mass or more and 0.40% by mass or less. The thickness of the shell may be 500 nm or less.
本発明のモーターは、上記本発明の希土類焼結磁石を備える。 The motor of the present invention includes the rare earth sintered magnet of the present invention.
本発明の希土類焼結磁石の残留磁束密度、保磁力及び角型比は高いので、本発明の焼結磁石の体積及び形状が従来のR−T−B系希土類焼結磁石と同じである場合、本発明の焼結磁石の磁束数は従来よりも増加する。したがって、本発明の焼結磁石を備えるモーターによれば、従来よりもエネルギー変換効率が向上する。 When the residual magnetic flux density, coercive force and squareness ratio of the rare earth sintered magnet of the present invention are high, the volume and shape of the sintered magnet of the present invention are the same as those of the conventional R-T-B rare earth sintered magnet The number of magnetic fluxes of the sintered magnet of the present invention is increased as compared with the prior art. Therefore, according to the motor provided with the sintered magnet of the present invention, the energy conversion efficiency is improved as compared with the conventional case.
本発明の希土類焼結磁石の体積が従来のR−T−B系希土類焼結磁石よりも小さい場合であっても、残留磁束密度、保磁力及び角型比が高い本発明の希土類焼結磁石は従来の磁石と同等の数の磁束を有する。つまり、本発明の希土類焼結磁石は、従来の磁石と比べて磁束数を減らすことなく小型化できる。その結果、本発明によれば、ヨーク体積及び巻線の量も焼結磁石の小型化に応じて減るため、モーターの小型化及び軽量化が可能となる。さらに、本発明の希土類焼結磁石は、角型比が高いので、高温減磁を抑制することができる。 Even if the volume of the rare earth sintered magnet of the present invention is smaller than that of the conventional RTB-based rare earth sintered magnet, the rare earth sintered magnet of the present invention has a high residual magnetic flux density, coercive force and squareness ratio. Has the same number of magnetic fluxes as a conventional magnet. That is, the rare earth sintered magnet of the present invention can be reduced in size without reducing the number of magnetic fluxes as compared with the conventional magnet. As a result, according to the present invention, the yoke volume and the amount of winding are also reduced in accordance with the size reduction of the sintered magnet, so that the motor can be reduced in size and weight. Furthermore, since the rare earth sintered magnet of the present invention has a high squareness ratio, high temperature demagnetization can be suppressed.
本発明の自動車は、上記本発明のモーターを備える。すなわち、本発明の自動車は、本発明のモーターによって駆動される。なお、本発明において、自動車とは、例えば、本発明のモーターによって駆動される電気自動車、ハイブリッド自動車、又は燃料電池車である。 The automobile of the present invention includes the motor of the present invention. That is, the automobile of the present invention is driven by the motor of the present invention. In the present invention, the automobile is, for example, an electric vehicle, a hybrid vehicle, or a fuel cell vehicle driven by the motor of the present invention.
本発明の自動車は、従来よりもエネルギー変換効率が高い本発明のモーターによって駆動されるため、その燃費が向上する。また、本発明の自動車では、上記のように、モーターの小型化及び軽量化が可能であるため、自動車自体の小型化及び軽量化も可能となる。その結果、自動車の燃費が向上する。 Since the automobile of the present invention is driven by the motor of the present invention, which has higher energy conversion efficiency than before, its fuel efficiency is improved. In the automobile of the present invention, as described above, the motor can be reduced in size and weight, so that the automobile itself can be reduced in size and weight. As a result, the fuel efficiency of the automobile is improved.
本発明によれば、残留磁束密度及び保磁力、特に保磁力に優れるとともに、角型比が高い希土類焼結磁石、及びそれを用いたモーター及び自動車を提供することができる。 According to the present invention, it is possible to provide a rare earth sintered magnet having excellent residual magnetic flux density and coercive force, particularly coercive force and having a high squareness ratio, and a motor and an automobile using the rare earth sintered magnet.
以下、図面を参照しながら、本発明の好適な一実施形態について詳細に説明する。 Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the drawings.
(希土類焼結磁石)
図1は、実施例で作製した希土類焼結磁石(以下、単に「磁石」ともいう。)について、走査透過電子顕微鏡が備えるエネルギー分散型X線分光器(STEM−EDS)を用いて分析を行った結果に基づいて作成した、本発明の一実施形態に係る希土類焼結磁石の模式断面図である。
(Rare earth sintered magnet)
FIG. 1 shows an analysis of a rare earth sintered magnet (hereinafter, also simply referred to as “magnet”) manufactured in an example using an energy dispersive X-ray spectrometer (STEM-EDS) included in a scanning transmission electron microscope. 3 is a schematic cross-sectional view of a rare earth sintered magnet according to an embodiment of the present invention created based on the results.
希土類焼結磁石10は、複数の主相粒子2と、主相粒子2群の粒界相8とを含む。主相粒子2は、コア4と、コア4を被覆するシェル6とからなる。粒界相8のうち、特に2つの主相粒子2の間にある部分を2粒子界面という。 Rare earth sintered magnet 10 includes a plurality of main phase particles 2 and a grain boundary phase 8 of a group of main phase particles 2. The main phase particle 2 includes a core 4 and a shell 6 that covers the core 4. Of the grain boundary phase 8, a portion particularly between two main phase particles 2 is called a two-particle interface.
主相粒子2は、R−T−B系希土類磁石(例えば、R2T14B)から構成される。希土類元素Rは、軽希土類元素及び重希土類元素を含む。軽希土類元素は、La,Ce,Pr,Nd,Pm,Sm及びEuからなる群より選ばれる少なくとも一種であればよい。重希土類元素は、Gd,Tb,Dy,Ho,Er,Tm,Yb及びLuからなる群より選ばれる少なくとも一種であればよい。金属元素Tは、Fe及びCoを含む。 The main phase particle 2 is composed of an R-T-B rare earth magnet (for example, R 2 T 14 B). The rare earth element R includes a light rare earth element and a heavy rare earth element. The light rare earth element may be at least one selected from the group consisting of La, Ce, Pr, Nd, Pm, Sm, and Eu. The heavy rare earth element may be at least one selected from the group consisting of Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. The metal element T contains Fe and Co.
本実施形態においては、軽希土類元素に対する重希土類元素の割合(重希土類元素/軽希土類元素)が、主相粒子中心部(コア)における割合の2倍以上となっている部分をシェルと規定する。 In the present embodiment, the portion where the ratio of heavy rare earth element to light rare earth element (heavy rare earth element / light rare earth element) is at least twice the ratio in the central part (core) of the main phase particle is defined as the shell. .
シェル6の厚さは500nm以下であり、より好ましくは300nm以下である。また、主相粒子2の粒径は、好ましくは3.0〜6.5μmである。 The thickness of the shell 6 is 500 nm or less, more preferably 300 nm or less. Moreover, the particle size of the main phase particles 2 is preferably 3.0 to 6.5 μm.
粒界相8には重希土類Cu化合物及び軽希土類Cu化合物が存在する。希土類焼結磁石の表面から深さ0.3mmの位置の2粒子界面における軽希土類Cu化合物(RLCu)に対する重希土類化合物(RHCu)の質量比(RHCu/RLCu@0.3mm)は、希土類焼結磁石の表面から深さ1.5mmの位置の2粒子界面における軽希土類Cu化合物に対する重希土類化合物の質量比(RHCu/RLCu@1.5mm)の1倍より大きく5倍以下である。 The grain boundary phase 8 contains a heavy rare earth Cu compound and a light rare earth Cu compound. The mass ratio (RHCu/RLCu@0.3 mm) of the heavy rare earth compound (RHCu) to the light rare earth Cu compound (RLCu) at the two-particle interface at a depth of 0.3 mm from the surface of the rare earth sintered magnet The mass ratio of the heavy rare earth compound to the light rare earth Cu compound (RHCu/RLCu@1.5 mm) at the two-particle interface at a depth of 1.5 mm from the surface of the magnet is greater than 1 and less than 5 times.
なおこの指標は、RHCuが、磁石の表面の2粒子界面のみでなく、内部の2粒子界面にまで拡散していることを意味する。これにより、本実施形態の磁石は深さによる保磁力の差が小さくなり、良好な角型比が得られるものと考えられる。 This index means that RHCu diffuses not only to the two-particle interface on the surface of the magnet but also to the inner two-particle interface. Thereby, it is considered that the magnet of the present embodiment has a small difference in coercive force depending on the depth, and a good squareness ratio can be obtained.
RHCu/RLCuは、以下のようにして求めることができる。まず、STEM−EDS(Scanning Transmission Electron Microscopy - Energy Dispersive X-raySpectroscopy)を用い、2粒子界面付近を直線的に走査しながら希土類元素(R)の量(質量%)及びCu量(質量%)を測定する。 RHCu / RLCu can be obtained as follows. First, using STEM-EDS (Scanning Transmission Electron Microscopy-Energy Dispersive X-ray Spectroscopy), the amount of rare earth element (R) (% by mass) and the amount of Cu (% by mass) are measured while linearly scanning the vicinity of the two-particle interface. taking measurement.
なお、測定試料表面における電子ビームのスポット径は、5.0nm以下、特に1.0nm以下とすることが好ましい。このようにすることで薄い2粒子界面の元素分布を測定することが可能となる。また、測定ステップ(隣り合う測定ポイントの間隔)は、5.0nm以下、特に2.0nm以下とすることが好ましい。この測定ステップが大きいと、高精度の元素分布測定が困難となる。 The spot diameter of the electron beam on the measurement sample surface is preferably 5.0 nm or less, particularly 1.0 nm or less. By doing so, it is possible to measure the element distribution at the interface between two thin particles. The measurement step (the interval between adjacent measurement points) is preferably 5.0 nm or less, particularly 2.0 nm or less. If this measurement step is large, highly accurate element distribution measurement becomes difficult.
また、RHとRLが混在する場合は、表面から0.3mm及び1.5mmの位置において20箇所ずつライン分析を行い、RLCu数、RHCu数をそれぞれ混在比率を考慮してカウントし、RHCu/RLCuを算出する。 When RH and RL coexist, line analysis is performed at 20 locations at 0.3 mm and 1.5 mm positions from the surface, and the RLCu number and RHCu number are counted in consideration of the mixing ratio, and RHCu / RLCu Is calculated.
焼結体における(RHCu/RLCu@0.3mm)は、(RHCu/RLCu@1.5mm)の1倍より大きく5倍以下である。(RHCu/RLCu@0.3mm)が(RHCu/RLCu@1.5mm)の1倍である場合は、磁石表面からの重希土類の拡散が行われていないことが示唆される。5倍以上では、重希土類元素の深さ方向への拡散が不十分であり、表面付近の重希土類濃度が高い状態であるため、角型比が大きく低下する。 (RHCu/RLCu@0.3 mm) in the sintered body is larger than 1 time and smaller than 5 times (RHCu/RLCu@1.5 mm). When (RHCu/RLCu@0.3 mm) is 1 time (RHCu/RLCu@1.5 mm), it is suggested that heavy rare earth is not diffused from the magnet surface. If it is 5 times or more, the diffusion of heavy rare earth elements in the depth direction is insufficient, and the concentration of heavy rare earth near the surface is high, so the squareness ratio is greatly reduced.
2粒子界面は、Ga化合物をさらに含むことが好ましい。これにより、粒界相8の濡れ性が向上し、2粒子界面への粒界相浸入が促進される。 The two-particle interface preferably further contains a Ga compound. Thereby, the wettability of the grain boundary phase 8 is improved, and the penetration of the grain boundary phase into the two-particle interface is promoted.
焼結体における酸素元素の含有量は2500質量ppm以下であることが好ましく、1000ppm以下であることがより好ましい。酸素量が少ないほど、得られる焼結磁石中の不純物が少なくなり、焼結磁石の磁気特性が向上する。酸素量が多い場合、焼結体中の酸化物が、重希土類元素の拡散の妨げ、シェル6が形成され難い傾向がある。焼結体における酸素の含有量を低減する方法のとしては、水素吸蔵粉砕から焼結までの間、原料合金を酸素濃度が低い雰囲気下に維持することが挙げられる。ただし、焼結体における酸素の含有量が上記の範囲外であっても、本実施形態の焼結磁石の作製は可能である。 The content of oxygen element in the sintered body is preferably 2500 mass ppm or less, and more preferably 1000 ppm or less. The smaller the amount of oxygen, the fewer impurities in the resulting sintered magnet, and the magnetic properties of the sintered magnet are improved. When the amount of oxygen is large, the oxide in the sintered body tends to prevent diffusion of heavy rare earth elements, and the shell 6 tends not to be formed. As a method for reducing the oxygen content in the sintered body, it is possible to maintain the raw material alloy in an atmosphere having a low oxygen concentration from hydrogen storage and pulverization to sintering. However, even if the oxygen content in the sintered body is outside the above range, the sintered magnet of this embodiment can be produced.
本実施形態の希土類焼結磁石は、必要に応じて、Ni、Mn、Al、Zr、Nb、Ti、W、Mo、V、Zn、Si、O、C等の他の元素をさらに含んでもよく、例えば
R:29.0〜33.0質量%、
B:0.85〜0.98質量%、
Al:0.03〜0.25質量%、
Cu:0.01〜0.15質量%、
Zr:0.03〜0.25質量%、
Co:3質量%以下(ただし、0質量%を含まず。)、
Ga:0.05〜0.40質量%、
O:2500ppm以下(ただし、0ppmを含まず。)、
C:500ppm〜1500ppm、
Fe:残部、
からなる組成を有するものとすることができる。
The rare earth sintered magnet of the present embodiment may further include other elements such as Ni, Mn, Al, Zr, Nb, Ti, W, Mo, V, Zn, Si, O, and C as necessary. For example, R: 29.0-33.0 mass%,
B: 0.85-0.98 mass%,
Al: 0.03-0.25 mass%,
Cu: 0.01 to 0.15 mass%,
Zr: 0.03 to 0.25% by mass,
Co: 3% by mass or less (excluding 0% by mass),
Ga: 0.05-0.40 mass%,
O: 2500 ppm or less (excluding 0 ppm),
C: 500 ppm to 1500 ppm,
Fe: balance,
It can have the composition which consists of.
焼結体における主相粒子の粒径は3.0μm以上6.5μm以下であることが好ましい。粒径が3.0μm未満であると、粒子表面積の増加により、表面の酸化、炭化等が促進され、結果焼結体中の不純物が増加し、重希土類元素の拡散を抑制してしまう傾向がある。また、粒径が6.5μm以上より大きいと、重希土類を拡散する前の希土類焼結磁石の保磁力が低下し、重希土類元素を拡散しても保磁力の向上効果が低下する。 The particle size of the main phase particles in the sintered body is preferably 3.0 μm or more and 6.5 μm or less. If the particle size is less than 3.0 μm, surface oxidation, carbonization, etc. are promoted by increasing the particle surface area, resulting in an increase in impurities in the sintered body and a tendency to suppress the diffusion of heavy rare earth elements. is there. On the other hand, when the particle size is larger than 6.5 μm or more, the coercive force of the rare earth sintered magnet before diffusing the heavy rare earth decreases, and even if the heavy rare earth element is diffused, the effect of improving the coercive force decreases.
(希土類焼結磁石の製造方法)
図2は、好適な実施形態に係る磁石(希土類磁石)の製造工程を示すフローチャートである。
(Production method of rare earth sintered magnet)
FIG. 2 is a flowchart showing manufacturing steps of a magnet (rare earth magnet) according to a preferred embodiment.
本実施形態の希土類磁石の製造においては、まず、所望の組成を有する希土類磁石が得られるような合金を準備する(ステップS11)。この工程では、例えば、希土類磁石の組成に対応する金属等の元素を含む単体、合金や化合物等を、真空又はアルゴン等の不活性ガス雰囲気下で溶解した後、これを用いて鋳造法やストリップキャスト法等の合金製造プロセスを行うことによって所望の組成を有する合金を作製する。 In the production of the rare earth magnet of this embodiment, first, an alloy is prepared so that a rare earth magnet having a desired composition can be obtained (step S11). In this process, for example, a simple substance, an alloy, a compound, or the like containing an element such as a metal corresponding to the composition of the rare earth magnet is dissolved in an inert gas atmosphere such as vacuum or argon, and then used for casting or stripping. An alloy having a desired composition is manufactured by performing an alloy manufacturing process such as a casting method.
合金としては、希土類磁石における主相を構成する組成の合金(主相合金)と、粒界相を構成する組成の合金(粒界相合金)との2種類を使用することもできる。なお、このように2種類の合金を用いる場合には、粒界相合金における軽希土類金属(RL)と重希土類金属(RH)との比(RL:RH)を50:50〜100:0とすることが好ましい。 Two types of alloys can be used: an alloy having a composition constituting the main phase in the rare earth magnet (main phase alloy) and an alloy having a composition constituting the grain boundary phase (grain boundary phase alloy). When two types of alloys are used in this way, the ratio (RL: RH) of light rare earth metal (RL) to heavy rare earth metal (RH) in the grain boundary phase alloy is 50:50 to 100: 0. It is preferable to do.
次に、得られた合金を粗粉砕して、数百μm程度の粒径を有する粒子とする(ステップS12)。合金の粗粉砕は、例えば、ジョークラッシャー、ブラウンミル、スタンプミル等の粗粉砕機を用いるか、又は、合金に水素を吸蔵させた後、異なる相間の水素吸蔵量の相違に基づく自己崩壊的な粉砕を生じさせる(水素吸蔵粉砕)ことによって行うことができる。 Next, the obtained alloy is coarsely pulverized to obtain particles having a particle size of about several hundred μm (step S12). The coarse pulverization of the alloy is performed by using a coarse pulverizer such as a jaw crusher, a brown mill, a stamp mill, or the like. It can be performed by causing pulverization (hydrogen occlusion pulverization).
続いて、粗粉砕により得られた粉末をさらに微粉砕することで(ステップS13)、好ましくは1〜10μm、より好ましくは3〜6μm程度の粒径を有する希土類磁石の原料粉末(以下、単に「原料粉末」という)を得る。微粉砕は、粗粉砕された粉末に対し、粉砕時間等の条件を適宜調整しながら、ジェットミル、ボールミル、振動ミル、湿式アトライター等の微粉砕機を用いて更なる粉砕を行うことによって実施する。 Subsequently, by further finely pulverizing the powder obtained by coarse pulverization (step S13), the raw material powder of a rare earth magnet having a particle diameter of preferably about 1 to 10 μm, more preferably about 3 to 6 μm (hereinafter simply referred to as “ The raw material powder ") is obtained. Fine pulverization is performed by further pulverizing the coarsely pulverized powder using a fine pulverizer such as a jet mill, a ball mill, a vibration mill, and a wet attritor while appropriately adjusting conditions such as pulverization time. To do.
なお、合金の製造において主相合金と粒界相合金の2種類を調整した場合は、各合金に対して粗粉砕及び微粉砕をそれぞれ行い、これにより得られた2種類の微粉末を混合することによって原料粉末を調製してもよい。 When two types of main phase alloy and grain boundary phase alloy are prepared in the production of the alloy, coarse pulverization and fine pulverization are performed for each alloy, and the two types of fine powder obtained thereby are mixed. The raw material powder may be prepared by this.
次に、上述のようにして得られた原料粉末を、目的の形状に成形する(ステップS14)。成形は、磁場を印加しながら行い、これにより原料粉末に所定の配向を生じさせる。成形は、例えば、プレス成形により行うことができる。具体的には、原料粉末を金型キャビティ内に充填した後、充填された粉末を上パンチと下パンチとの間で挟むようにして加圧することによって、原料粉末を所定形状に成形することができる。成形によって得られる成形体の形状は特に制限されず、柱状、平板状、リング状等、所望とする希土類磁石の形状に応じて変更することができる。成形時の加圧は、50〜200MPaで行うことが好ましい。また、印加する磁場は、950〜1600kAとすることが好ましい。なお、成形方法としては、上記のように原料粉末をそのまま成形する乾式成形の他、原料粉末を油等の溶媒に分散させたスラリーを成形する湿式成形を適用することもできる。 Next, the raw material powder obtained as described above is formed into a target shape (step S14). The molding is performed while applying a magnetic field, thereby causing the raw material powder to have a predetermined orientation. The molding can be performed, for example, by press molding. Specifically, the raw material powder can be formed into a predetermined shape by filling the raw material powder into the mold cavity and then pressing the filled powder between the upper punch and the lower punch. The shape of the molded body obtained by molding is not particularly limited, and can be changed according to the desired shape of the rare earth magnet, such as a columnar shape, a flat plate shape, or a ring shape. The pressing at the time of molding is preferably performed at 50 to 200 MPa. The applied magnetic field is preferably 950 to 1600 kA. In addition, as a forming method, in addition to dry forming in which the raw material powder is formed as it is, wet forming in which a slurry in which the raw material powder is dispersed in a solvent such as oil is formed can be applied.
次いで、成形体に対して、例えば、真空中又は不活性ガスの存在下、1010〜1110℃、2〜6時間で加熱する処理を行うことにより焼成を行う(ステップS15)。これにより、原料粉末が液相焼結を生じ、主相の体積比率が向上した焼結体(希土類磁石の焼結体)が得られる。 Next, the molded body is fired, for example, by performing a treatment in vacuum or in the presence of an inert gas at 1010 to 1110 ° C. for 2 to 6 hours (step S15). Thereby, the raw material powder undergoes liquid phase sintering, and a sintered body (sintered body of rare earth magnet) in which the volume ratio of the main phase is improved is obtained.
焼結体に対しては、適宜所望の大きさや形状に加工した後、例えば焼結体の表面を酸溶液によって処理する表面処理を行う(ステップS16)ことが好ましい。表面処理に用いる酸溶液としては、硝酸、塩酸等の水溶液と、アルコールとの混合溶液が好適である。この表面処理は、例えば、焼結体を酸溶液に浸漬したり、焼結体に酸溶液を噴霧したりすることによって行うことができる。 The sintered body is preferably subjected to surface treatment for treating the surface of the sintered body with an acid solution, for example, after being appropriately processed into a desired size and shape (step S16). As the acid solution used for the surface treatment, a mixed solution of an aqueous solution such as nitric acid or hydrochloric acid and an alcohol is suitable. This surface treatment can be performed, for example, by immersing the sintered body in an acid solution or spraying the acid solution on the sintered body.
かかる表面処理によって、焼結体に付着していた汚れや酸化層等を除去して清浄な表面を得ることができ、後述する重希土類化合物の付着及び拡散が有利となる。汚れや酸化層等の除去をさらに良好に行う観点からは、酸溶液に超音波を印加しながら表面処理を行ってもよい。 By such surface treatment, dirt, oxide layer, etc. adhering to the sintered body can be removed to obtain a clean surface, and adhesion and diffusion of the heavy rare earth compound described later are advantageous. From the viewpoint of performing better removal of dirt and oxide layers, surface treatment may be performed while applying ultrasonic waves to the acid solution.
その後、表面処理が施された焼結体の表面に、重希土類元素を含む重希土類化合物を付着させる(ステップS17)。重希土類化合物に含まれる重希土類元素としては、保磁力の高い希土類焼結磁石を得る観点から、Dy又はTbが好ましい。重希土類化合物としては、例えば重希土類元素の水素化物、酸化物、ハロゲン化物、水酸化物が挙げられる。これらの重希土類化合物のうち、DyH2、DyF3又はTbH2が好ましい。 Thereafter, a heavy rare earth compound containing a heavy rare earth element is adhered to the surface of the sintered body that has been subjected to the surface treatment (step S17). The heavy rare earth element contained in the heavy rare earth compound is preferably Dy or Tb from the viewpoint of obtaining a rare earth sintered magnet having a high coercive force. Examples of heavy rare earth compounds include hydrides, oxides, halides, and hydroxides of heavy rare earth elements. Of these heavy rare earth compounds, DyH 2 , DyF 3 or TbH 2 is preferred.
焼結体に付着させる重希土類化合物は、粒子状であることが好ましく、その平均粒径は100nm〜50μmであると好ましく、1μm〜10μmであるとより好ましく、1〜5μmであるとさらに好ましく、1〜3.5μmであると一層好ましい。重希土類化合物の粒径が100nm未満であると、熱処理により焼結体に拡散される重希土類化合物の量が過度に多くなり、得られる希土類磁石のBrが不十分となるおそれがある。一方、50μmを超えると、焼結体中への重希土類化合物の拡散が生じ難くなって、HcJの向上効果が十分に得られなくなる場合がある。また特に、重希土類化合物の平均粒径が5μm以下であると、焼結体への重希土類化合物の付着が有利となり、より高いHcJの向上効果が得られる傾向にある。 The heavy rare earth compound to be adhered to the sintered body is preferably in the form of particles, the average particle diameter is preferably 100 nm to 50 μm, more preferably 1 μm to 10 μm, and even more preferably 1 to 5 μm, It is still more preferable that it is 1-3.5 micrometers. If the particle size of the heavy rare earth compound is less than 100 nm, the amount of the heavy rare earth compound diffused into the sintered body by the heat treatment becomes excessively large, and the resulting rare earth magnet may have insufficient Br. On the other hand, if it exceeds 50 μm, diffusion of the heavy rare earth compound into the sintered body becomes difficult to occur, and the effect of improving HcJ may not be sufficiently obtained. In particular, when the average particle size of the heavy rare earth compound is 5 μm or less, adhesion of the heavy rare earth compound to the sintered body is advantageous, and a higher HcJ improvement effect tends to be obtained.
焼結体に重希土類化合物を付着させる方法としては、例えば、重希土類化合物の粒子をそのまま焼結体に吹き付ける方法、重希土類化合物を溶媒に溶解した溶液を焼結体に塗布する方法、重希土類化合物の粒子を溶媒に分散させたスラリーを焼結体に塗布する方法等が挙げられる。なかでも、スラリーを焼結体に塗布する方法が、重希土類化合物を焼結体に均一に付着させることができ、しかも後述する熱処理での拡散が良好に生じることから好ましい。 Examples of the method for attaching the heavy rare earth compound to the sintered body include, for example, a method in which particles of the heavy rare earth compound are directly sprayed on the sintered body, a method in which a solution in which the heavy rare earth compound is dissolved in a solvent is applied to the sintered body, Examples include a method of applying a slurry in which compound particles are dispersed in a solvent to a sintered body. Especially, the method of apply | coating a slurry to a sintered compact is preferable from the fact that a heavy rare earth compound can adhere uniformly to a sintered compact, and also the diffusion by the heat processing mentioned later arises favorably.
また、スラリーを焼結体に塗布する場合、例えば、焼結体をスラリー中に浸漬させる方法や、スラリー中に焼結体を入れ、所定のメディアとともに攪拌する方法が挙げられる。後者の方法としては、例えば、ボールミル法を適用できる。このようにメディアとともに攪拌させることで、焼結体に対する重希土類化合物の付着をより確実に生じさせることができ、いったん付着した後の脱落等を低減して、重希土類化合物の付着量を安定化することが可能となる。また、このような方法により、一度に大量の焼結体を処理することも可能となる。なお、焼結体の形状によっては、前者の浸漬による方法の方が付着に有利なこともあることから、実際には両方の方法を適宜選択して用いればよい。 Moreover, when apply | coating a slurry to a sintered compact, the method of immersing a sintered compact in a slurry and the method of putting a sintered compact in a slurry and stirring with a predetermined medium are mentioned, for example. As the latter method, for example, a ball mill method can be applied. By stirring together with the media in this way, the adhesion of the heavy rare earth compound to the sintered body can be more reliably generated, and the amount of heavy rare earth compound deposited can be stabilized by reducing the dropout after the adhesion. It becomes possible to do. Moreover, it becomes possible to process a large amount of sintered bodies at a time by such a method. Depending on the shape of the sintered body, the former method of immersion may be more advantageous for adhesion, so in practice, both methods may be appropriately selected and used.
スラリーに用いる溶媒としては、重希土類化合物を溶解させずに均一に分散させ得るものが好ましく、例えば、アルコール、アルデヒド、ケトン等が挙げられ、なかでもアルコールが好ましい。また、焼結体へのスラリーの塗布は、スラリー中に焼結体を浸漬させたり、あるいは、焼結体にスラリーを滴下したりすることによって行うことができる。 As the solvent used in the slurry, those that can be uniformly dispersed without dissolving the heavy rare earth compound are preferable, and examples thereof include alcohols, aldehydes, and ketones, and alcohols are particularly preferable. Moreover, application | coating of the slurry to a sintered compact can be performed by immersing a sintered compact in a slurry, or dropping a slurry on a sintered compact.
スラリーを用いる場合、スラリー中の重希土類化合物の含有量は、10〜60質量%であると好ましく、40〜50質量%であるとより好ましい。スラリー中の重希土類化合物の含有量が少なすぎたり、多すぎたりすると、焼結体に重希土類化合物が均一に付着し難くなる傾向にあり、十分な角形比が得られ難くなるおそれがある。また、多すぎる場合、焼結体の表面が荒れてしまい、得られる磁石の耐食性を向上させるためのめっき等の形成が困難となる場合もある。 When using a slurry, the content of the heavy rare earth compound in the slurry is preferably 10 to 60% by mass, and more preferably 40 to 50% by mass. If the content of the heavy rare earth compound in the slurry is too small or too large, the heavy rare earth compound tends to be difficult to uniformly adhere to the sintered body, and it may be difficult to obtain a sufficient squareness ratio. Moreover, when there are too many, the surface of a sintered compact may become rough and formation of plating etc. for improving the corrosion resistance of the magnet obtained may become difficult.
なお、スラリー中には、必要に応じて重希土類化合物以外の成分をさらに含有させてもよい。スラリーに含有させてもよい他の成分としては、例えば、重希土類化合物の粒子の凝集を防ぐための分散剤等が挙げられる。 In addition, you may further contain components other than a heavy rare earth compound in a slurry as needed. Examples of other components that may be contained in the slurry include a dispersant for preventing aggregation of particles of the heavy rare earth compound.
上記のような方法により、焼結体に重希土類化合物が付着するが、特に良好な磁気特性の向上効果を得る観点からは、かかる重希土類化合物の付着量は、一定の範囲内であることが好ましい。具体的には、希土類磁石の質量(焼結体と重希土類化合物との合計質量)に対する重希土類化合物の付着量(付着率;%)で、0.1〜3質量%であると好ましく、0.1〜2質量%であるとより好ましく、0.2〜1質量%であるとさらに好ましい。 Although the heavy rare earth compound adheres to the sintered body by the method as described above, the amount of such heavy rare earth compound attached may be within a certain range from the viewpoint of obtaining particularly good magnetic property improvement effect. preferable. Specifically, the adhesion amount (adhesion rate;%) of the heavy rare earth compound to the mass of the rare earth magnet (total mass of the sintered body and the heavy rare earth compound) is preferably 0.1 to 3% by mass, 0 More preferably, it is 1-2 mass%, and it is further more preferable that it is 0.2-1 mass%.
続いて、重希土類化合物が付着した焼結体に対し、熱処理を施す(ステップS18)。これにより、焼結体の表面に付着した重希土類化合物が焼結体の内部に拡散する。熱処理は、例えば2段階の工程で行うことができる。この場合、1段階目では800〜1000℃程度で10分〜10時間の熱処理を行い、2段階目では500〜600℃程度で1〜4時間の熱処理を行うことが好ましい。このような2段階の熱処理では、例えば、1段階目で主に重希土類化合物の拡散が生じ、2段階目の熱処理はいわゆる時効処理となって磁気特性の向上(特にHcJ)に寄与する。なお、熱処理は必ずしも2段階で行う必要はなく、少なくとも重希土類化合物の拡散が生じるように行えばよい。 Subsequently, heat treatment is performed on the sintered body to which the heavy rare earth compound is adhered (step S18). As a result, the heavy rare earth compound adhering to the surface of the sintered body diffuses into the sintered body. The heat treatment can be performed in, for example, a two-stage process. In this case, it is preferable to perform the heat treatment at about 800 to 1000 ° C. for 10 minutes to 10 hours in the first stage and to perform the heat treatment at about 500 to 600 ° C. for 1 to 4 hours in the second stage. In such a two-stage heat treatment, for example, the heavy rare earth compound is mainly diffused in the first stage, and the second-stage heat treatment becomes a so-called aging treatment and contributes to the improvement of magnetic properties (particularly HcJ). Note that the heat treatment is not necessarily performed in two stages, and may be performed so that at least diffusion of the heavy rare earth compound occurs.
熱処理により、焼結体の表面から内部への重希土類化合物の拡散が生じるが、この際、重希土類化合物は主に焼結体を構成している主相粒子の境界および粒界相に沿って拡散すると考えられる。その結果、得られる磁石においては、重希土類化合物に由来する重希土類元素が主相粒子の外縁領域や粒界相に偏在するようになり、これによって主相粒子が重希土類元素の層に覆われたような構造が形成される。 The heat treatment causes diffusion of the heavy rare earth compound from the surface to the inside of the sintered body. At this time, the heavy rare earth compound mainly follows the boundary of the main phase particles constituting the sintered body and the grain boundary phase. It is thought to spread. As a result, in the obtained magnet, heavy rare earth elements derived from heavy rare earth compounds are unevenly distributed in the outer edge region and grain boundary phase of the main phase particles, thereby covering the main phase particles with the layer of heavy rare earth elements. Such a structure is formed.
その後、重希土類化合物を拡散させた焼結体を、必要に応じて所望のサイズに切断したり、表面処理を施したりすることによって、目的とする希土類磁石が得られる。なお、得られた希土類磁石には、その表面上にめっき層、酸化層又は樹脂層等の劣化を防止するための保護層がさらに設けられてもよい。 Thereafter, the sintered body in which the heavy rare earth compound is diffused is cut to a desired size or subjected to a surface treatment as necessary to obtain a target rare earth magnet. In addition, the obtained rare earth magnet may further be provided with a protective layer for preventing deterioration of a plated layer, an oxide layer, a resin layer, or the like on the surface.
(モーター)
図3は、本実施形態のモーターの内部構造の一例を示す説明図である。本実施形態のモーター100は、永久磁石同期モーター(IPMモーター)であり、円筒状のロータ20と該ロータ20の外側に配置されるステータ30とを備えている。ロータ20は、円筒状のロータコア22と、円筒状のロータコア22の外周面に沿って所定の間隔で希土類焼結磁石10を収容する複数の磁石収容部24と、磁石収容部24に収容された複数の希土類焼結磁石10とを有する。
(motor)
FIG. 3 is an explanatory diagram showing an example of the internal structure of the motor of this embodiment. The motor 100 of the present embodiment is a permanent magnet synchronous motor (IPM motor), and includes a cylindrical rotor 20 and a stator 30 disposed outside the rotor 20. The rotor 20 is housed in a cylindrical rotor core 22, a plurality of magnet housing portions 24 that house the rare earth sintered magnet 10 at predetermined intervals along the outer peripheral surface of the cylindrical rotor core 22, and the magnet housing portion 24. A plurality of rare earth sintered magnets 10.
ロータ20の円周方向に沿って隣り合う希土類焼結磁石10は、N極とS極の位置が互いに逆になるように磁石収容部24に収容されている。これによって、円周方向に沿って隣り合う希土類焼結磁石10は、ロータ20の径方向に沿って互いに逆の方向の磁力線を発生する。 The rare earth sintered magnets 10 adjacent to each other in the circumferential direction of the rotor 20 are accommodated in the magnet accommodating portion 24 so that the positions of the N pole and the S pole are opposite to each other. Thereby, the rare earth sintered magnets 10 adjacent along the circumferential direction generate lines of magnetic force in opposite directions along the radial direction of the rotor 20.
ステータ30は、ロータ20の外周面に沿って、所定の間隔で設けられた複数のコイル部32を有している。このコイル部32と希土類焼結磁石10とは互いに対向するように配置されている。ステータ30は、電磁気的作用によってロータ20にトルクを与え、ロータ20は円周方向に回転する。 The stator 30 has a plurality of coil portions 32 provided at predetermined intervals along the outer peripheral surface of the rotor 20. The coil portion 32 and the rare earth sintered magnet 10 are disposed so as to face each other. The stator 30 applies torque to the rotor 20 by electromagnetic action, and the rotor 20 rotates in the circumferential direction.
IPMモーター100は、ロータ20に、上記実施形態に係る希土類焼結磁石10を備える。希土類焼結磁石10は、優れた磁気特性を有するとともに、容易に剥離しないめっき膜を有する。このため、IPMモーター100は信頼性に優れる。IPMモーター100は、従来よりも長い期間に亘って高出力を維持することができる。IPMモーター100は、希土類焼結磁石10以外の点について、通常のモーター部品を用いて通常の方法によって製造することができる。 The IPM motor 100 includes the rare earth sintered magnet 10 according to the above embodiment in the rotor 20. The rare earth sintered magnet 10 has an excellent magnetic property and a plating film that does not easily peel off. For this reason, the IPM motor 100 is excellent in reliability. The IPM motor 100 can maintain a high output for a longer period than before. The IPM motor 100 can be manufactured by an ordinary method using ordinary motor parts except for the rare earth sintered magnet 10.
本発明のモーターは、永久磁石同期モーターの場合IPMモーターに限定されるものではなくSPMモーターであってもよい。また、永久磁石同期モーターの他に永久磁石直流モーター、リニア同期モーター、ボイスコイルモーター、振動モーターであってもよい。 In the case of a permanent magnet synchronous motor, the motor of the present invention is not limited to an IPM motor, and may be an SPM motor. In addition to the permanent magnet synchronous motor, a permanent magnet DC motor, a linear synchronous motor, a voice coil motor, and a vibration motor may be used.
(自動車)
図4は、本実施形態の自動車の発電機構、蓄電機構及び駆動機構を示す概念図である、ただし、本実施形態の自動車の構造は、図4に示すものに限定されない。図4に示すように、本実施形態に係る自動車50は、上記本実施形態のモーター100、車輪48、蓄電池44、発電機42及びエンジン40を備える。
(Car)
FIG. 4 is a conceptual diagram showing a power generation mechanism, a power storage mechanism, and a drive mechanism of an automobile according to the present embodiment. However, the structure of the automobile according to the present embodiment is not limited to that shown in FIG. As shown in FIG. 4, the automobile 50 according to the present embodiment includes the motor 100, the wheels 48, the storage battery 44, the generator 42, and the engine 40 of the present embodiment.
エンジン40で発生した機械的エネルギーは、発電機42によって電気エネルギーに変換される。この電気エネルギーは蓄電池44に蓄電される。蓄電された電気エネルギーは、モーター100によって機械的エネルギーに変換される。モーター100からの機械的エネルギーによって、車輪48が回転し、自動車50が駆動される。 Mechanical energy generated in the engine 40 is converted into electric energy by the generator 42. This electrical energy is stored in the storage battery 44. The stored electrical energy is converted into mechanical energy by the motor 100. The mechanical energy from the motor 100 rotates the wheels 48 and drives the automobile 50.
(実施例1)
まず、希土類磁石の原料金属を準備し、これらを用いてストリップキャスティング法により、表1で表される実施例1の基材の組成(23.50wt%Nd-1.50%Dy-7.00wt%Pr-0.90wt%Co-0.20wt%Al-0.10wt%Cu-0.10wt%Ga-0.97wt%B-bal.Fe)が得られるように原料合金を作製した。次に、得られた合金に水素を吸蔵させた後、Ar雰囲気で600℃、1時間の脱水素を行う水素破砕処理を行った。続いて、水素粉砕処理後の粉末をさらに微粉砕して、平均粒径(D50)が3.2μmの原料粉末を得た。
Example 1
First, a raw material metal for a rare earth magnet was prepared, and the composition of the base material of Example 1 shown in Table 1 (23.50 wt% Nd-1.50% Dy-7.00 wt% Pr-0.90) was prepared by using a strip casting method. The raw material alloy was prepared so as to obtain wt% Co-0.20wt% Al-0.10wt% Cu-0.10wt% Ga-0.97wt% B-bal.Fe). Next, after hydrogen was occluded in the obtained alloy, hydrogen crushing treatment was performed in which dehydrogenation was performed at 600 ° C. for 1 hour in an Ar atmosphere. Subsequently, the powder after the hydrogen pulverization treatment was further pulverized to obtain a raw material powder having an average particle diameter (D50) of 3.2 μm.
この原料粉末を、電磁石中に配置された金型内に充填し、磁場中で成形して成形体を作製した。成形では、原料粉末に1200kA/mの磁場を印加しながら、原料粉末を120MPaで加圧した。 This raw material powder was filled in a mold placed in an electromagnet and molded in a magnetic field to produce a molded body. In molding, the raw material powder was pressurized at 120 MPa while applying a magnetic field of 1200 kA / m to the raw material powder.
成形体を、真空中、980〜1060℃で4時間焼結した後、急冷して焼結体を得た。なお、水素破砕処理から焼結までの各工程を、酸素濃度が100ppm未満である雰囲気下で行った。 The molded body was sintered at 980 to 1060 ° C. in vacuum for 4 hours, and then rapidly cooled to obtain a sintered body. In addition, each process from a hydrogen crushing process to sintering was performed in the atmosphere whose oxygen concentration is less than 100 ppm.
焼結体を5mm(磁気異方化方向)×15mm×6mmに加工した。加工後の焼結体に2段階の熱処理を施し、基材1を得た。1段階目の熱処理では、焼結体をAr雰囲気において900℃で6時間加熱した。2段階目の熱処理では、焼結体をAr雰囲気において540℃で2時間加熱した。 The sintered body was processed into 5 mm (magnetic anisotropic direction) × 15 mm × 6 mm. The sintered body after processing was subjected to two stages of heat treatment to obtain a substrate 1. In the first stage heat treatment, the sintered body was heated at 900 ° C. for 6 hours in an Ar atmosphere. In the second heat treatment, the sintered body was heated at 540 ° C. for 2 hours in an Ar atmosphere.
さらに、基材1とは別に、上記の加工後の焼結体にDyH2粉末をディップ法で全面に塗布した後に、上記と同様の2段階の熱処理を施し、実施例1の希土類焼結磁石を作製した。なお、塗布の際には、塗布面積に対するDyH2粉末の重量が4.7mg/cm2となるようにした。 Further, separately from the base material 1, the DyH 2 powder was applied to the entire surface by the dipping method on the sintered body after the above processing, and then subjected to the same two-stage heat treatment as described above, and the rare earth sintered magnet of Example 1 Was made. In the application, the weight of the DyH 2 powder with respect to the application area was set to 4.7 mg / cm 2 .
(実施例2〜4、比較例1〜4)
原料粉末の平均粒径、及び焼結体における酸素量を表1に示すように変更したこと以外は実施例1と同様にして、基材2〜8並びに実施例2〜4及び比較例1〜4の希土類焼結磁石を作製した。
(Examples 2-4, Comparative Examples 1-4)
Except that the average particle diameter of the raw material powder and the oxygen content in the sintered body were changed as shown in Table 1, in the same manner as in Example 1, the substrates 2 to 8 and Examples 2 to 4 and Comparative Examples 1 to 4 rare earth sintered magnets were produced.
(実施例5)
加工後の焼結体にDyH2粉末を塗布する代わりに、Dy合金(純Dyを含む)を蒸着源としてDyを蒸着したこと以外は実施例1と同様にして、実施例5の希土類焼結磁石を作製した。
(Example 5)
Rare earth sintering of Example 5 in the same manner as in Example 1 except that Dy was vapor deposited using a Dy alloy (including pure Dy) as a vapor deposition source instead of applying DyH 2 powder to the sintered body after processing. A magnet was produced.
(実施例6)
加工後の焼結体にDyH2粉末を塗布する代わりに、Dy合金(純Dyを含む)を蒸着源としてDyを蒸着したこと以外は実施例2と同様にして、実施例6の希土類焼結磁石を作製した。
(Example 6)
Rare earth sintering of Example 6 in the same manner as Example 2 except that Dy was vapor deposited using a Dy alloy (including pure Dy) as a vapor deposition source instead of applying DyH 2 powder to the sintered body after processing. A magnet was produced.
(比較例5)
24.7wt%Nd-7.4wt%Pr-0.9wt%Co-0.2wt%Al-0.03wt%Cu-0.1wt%Ga-1.02wt%B-bal.Feの組成を有する主相合金をストリップキャストで作製した。30wt%Dy-0.2wt%Al-1.4wt%Cu-bal.Feの組成を有する粒界相合金をストリップキャストで作製した。次に、主相合金及び粒界相合金を95:5の質量比で配合した後、水素破砕処理を行い、さらに微粉砕して、平均粒径(D50)が3.2μmの原料粉末を得た。なお、このような質量比で主相合金及び粒界相合金を配合することにより、23.50wt%Nd-1.50%Dy-7.00wt%Pr-0.90wt%Co-0.20wt%Al-0.10wt%Cu-0.10wt%Ga-0.97wt%B-bal.Feの組成の焼結体が得られる。
(Comparative Example 5)
A main phase alloy having the composition of 24.7wt% Nd-7.4wt% Pr-0.9wt% Co-0.2wt% Al-0.03wt% Cu-0.1wt% Ga-1.02wt% B-bal.Fe was prepared by strip casting. did. A grain boundary phase alloy having a composition of 30 wt% Dy-0.2 wt% Al-1.4 wt% Cu-bal.Fe was prepared by strip casting. Next, after blending the main phase alloy and the grain boundary phase alloy in a mass ratio of 95: 5, hydrogen crushing treatment is performed and further pulverized to obtain a raw material powder having an average particle diameter (D50) of 3.2 μm. It was. In addition, by blending the main phase alloy and the grain boundary phase alloy at such a mass ratio, 23.50 wt% Nd-1.50% Dy-7.00 wt% Pr-0.90 wt% Co-0.20 wt% Al-0.10 wt% Cu A sintered body having a composition of -0.10 wt% Ga-0.97 wt% B-bal.Fe is obtained.
この原料粉末を、電磁石中に配置された金型内に充填し、磁場中で成形して成形体を作製した。成形では、原料粉末に1200kA/mの磁場を印加しながら、原料粉末を120MPaで加圧した。 This raw material powder was filled in a mold placed in an electromagnet and molded in a magnetic field to produce a molded body. In molding, the raw material powder was pressurized at 120 MPa while applying a magnetic field of 1200 kA / m to the raw material powder.
成形体を、真空中、980〜1060℃で4時間焼結した後、急冷して焼結体を得た。なお、水素破砕処理から焼結までの各工程を、酸素濃度が100ppm未満である雰囲気下で行った。 The molded body was sintered at 980 to 1060 ° C. in vacuum for 4 hours, and then rapidly cooled to obtain a sintered body. In addition, each process from a hydrogen crushing process to sintering was performed in the atmosphere whose oxygen concentration is less than 100 ppm.
焼結体を5mm(磁気異方化方向)×15mm×6mmに加工した。加工後の焼結体に2段階の熱処理を施し、基材9を得た。1段階目の熱処理では、焼結体をAr雰囲気において900℃で6時間加熱した。2段階目の熱処理では、焼結体をAr雰囲気において540℃で2時間加熱した。 The sintered body was processed into 5 mm (magnetic anisotropic direction) × 15 mm × 6 mm. The sintered body after processing was subjected to two stages of heat treatment to obtain a base material 9. In the first stage heat treatment, the sintered body was heated at 900 ° C. for 6 hours in an Ar atmosphere. In the second heat treatment, the sintered body was heated at 540 ° C. for 2 hours in an Ar atmosphere.
さらに、基材9とは別に、上記の加工後の焼結体にDyH2粉末をディップ法で全面に塗布した後に、上記と同様の2段階の熱処理を施し、比較例5の希土類焼結磁石を作製した。なお、塗布の際には、塗布面積に対するDyH2粉末の重量が4.7mg/cm2となるようにした。 Further, separately from the base material 9, the DyH 2 powder was applied to the entire surface by the dipping method on the processed sintered body, and then subjected to the same two-stage heat treatment as described above. Was made. In the application, the weight of the DyH 2 powder with respect to the application area was set to 4.7 mg / cm 2 .
(比較例6)
30.5wt%Nd-0.5wt%Co-0.2wt%Al-0.2wt%Zr-0.95wt%B-bal.Feの組成を有する主相合金をストリップキャストで作製した。50wt%Dy-10wt%Co-0.2wt%Al-1.4wt%Cu-3.0wt%Ga-bal.Feの組成を有する粒界相合金をストリップキャストで作製した。次に、主相合金及び粒界相合金を95:5の質量比で配合した後、水素破砕処理を行い、さらに微粉砕して、平均粒径(D50)が4.3μmの原料粉末を得た。なお、このような質量比で主相合金及び粒界相合金を配合することにより、29.00wt%Nd-2.50wt%Dy-0.50wt%Co-0.20wt%Al-0.10wt%Cu-0.20wt%Zr-0.15wt%Ga-0.95wt%B-bal.Feの組成の焼結体が得られる。
(Comparative Example 6)
A main phase alloy having a composition of 30.5 wt% Nd-0.5 wt% Co-0.2 wt% Al-0.2 wt% Zr-0.95 wt% B-bal.Fe was prepared by strip casting. A grain boundary phase alloy having a composition of 50 wt% Dy-10 wt% Co-0.2 wt% Al-1.4 wt% Cu-3.0 wt% Ga-bal.Fe was prepared by strip casting. Next, after blending the main phase alloy and the grain boundary phase alloy in a mass ratio of 95: 5, hydrogen crushing treatment is performed and further pulverized to obtain a raw material powder having an average particle size (D50) of 4.3 μm. It was. In addition, by blending the main phase alloy and the grain boundary phase alloy at such a mass ratio, 29.00 wt% Nd-2.50 wt% Dy-0.50 wt% Co-0.20 wt% Al-0.10 wt% Cu-0.20 wt% A sintered body having a composition of Zr-0.15wt% Ga-0.95wt% B-bal.Fe is obtained.
この原料粉末を、電磁石中に配置された金型内に充填し、磁場中で成形して成形体を作製した。成形では、原料粉末に15kOeの磁場を印加しながら、原料粉末を120MPaで加圧した。 This raw material powder was filled in a mold placed in an electromagnet and molded in a magnetic field to produce a molded body. In molding, the raw material powder was pressurized at 120 MPa while applying a magnetic field of 15 kOe to the raw material powder.
成形体を、真空中、1040℃で4時間焼結した後、急冷して焼結体を得た。なお、水素破砕処理から焼結までの各工程を、酸素濃度が100ppm未満である雰囲気下で行った。なお、焼結体における酸素量は580ppmであった。また、焼結体の主相粒子の粒径は4.5μmであった。 The molded body was sintered in vacuum at 1040 ° C. for 4 hours, and then rapidly cooled to obtain a sintered body. In addition, each process from a hydrogen crushing process to sintering was performed in the atmosphere whose oxygen concentration is less than 100 ppm. The oxygen content in the sintered body was 580 ppm. The particle size of the main phase particles of the sintered body was 4.5 μm.
焼結体を5mm(磁気異方化方向)×15mm×6mmに加工した。加工後の焼結体に2段階の熱処理を施し、基材10を得た。1段階目の熱処理では、焼結体をAr雰囲気において900℃で6時間加熱した。2段階目の熱処理では、焼結体をAr雰囲気において540℃で2時間加熱した。 The sintered body was processed into 5 mm (magnetic anisotropic direction) × 15 mm × 6 mm. The sintered body after processing was subjected to two stages of heat treatment to obtain a base material 10. In the first stage heat treatment, the sintered body was heated at 900 ° C. for 6 hours in an Ar atmosphere. In the second heat treatment, the sintered body was heated at 540 ° C. for 2 hours in an Ar atmosphere.
さらに、基材10とは別に、上記の加工後の焼結体にDyH2粉末をディップ法で全面に塗布した後に、上記と同様の2段階の熱処理を施し、比較例6の希土類焼結磁石を作製した。なお、塗布の際には、塗布面積に対するDyH2粉末の重量が4.7mg/cm2となるようにした。 Further, apart from the base material 10, the DyH 2 powder was applied to the entire surface of the sintered body after the above processing by the dipping method, and then subjected to the same two-stage heat treatment as described above. Was made. In the application, the weight of the DyH 2 powder with respect to the application area was set to 4.7 mg / cm 2 .
(比較例7、実施例7〜9)
主相合金の組成及び粒界相合金の組成をそれぞれ以下に示すように変更したこと以外は、比較例6と同様にして、基材11〜14、並びに比較例7及び実施例7〜9の重希土類拡散磁石を作製した。どれも焼結体における酸素量は570〜590ppmであった。また、焼結体の主相粒子の粒径は4.5〜4.7μmであった。
<比較例7>
主相合金:30.5wt%Nd-0.75wt%Dy-0.5wt%Co-0.2wt%Al-0.2wt%Zr-0.95wt%B-bal.Fe
粒界相合金:35wt%Dy-15wt%Nd-10wt%Co-0.2wt%Al-1.4wt%Cu-3.0wt%Ga-bal.Fe
<実施例7>
主相合金:30.3wt%Nd-1.50wt%Dy-0.5wt%Co-0.2wt%Al-0.2wt%Zr-0.95wt%B-bal.Fe
粒界相合金:20wt%Dy-30wt%Nd-10wt%Co-0.2wt%Al-1.4wt%Cu-3.0wt%Ga-bal.Fe
<実施例8>
主相合金:30.5wt%Nd-2.5wt%Dy-0.5wt%Co-0.2wt%Al-0.2wt%Zr-0.95wt%B-bal.Fe
粒界相合金:50wt%Nd-10wt%Co-0.2wt%Al-1.4wt%Cu-3.0wt%Ga-bal.Fe
<実施例9>
主相合金:30.3wt%Nd-1.50wt%Dy-0.5wt%Co-0.2wt%Al-0.2wt%Zr-0.95wt%B-bal.Fe
粒界相合金:20wt%Dy-30wt%Nd-10wt%Co-0.2wt%Al-1.4wt%Cu-bal.Fe
(Comparative Example 7, Examples 7-9)
Except that the composition of the main phase alloy and the composition of the grain boundary phase alloy were changed as shown below, respectively, in the same manner as in Comparative Example 6, the base materials 11 to 14 and Comparative Examples 7 and Examples 7 to 9 A heavy rare earth diffusion magnet was produced. In any case, the amount of oxygen in the sintered body was 570 to 590 ppm. The particle size of the main phase particles of the sintered body was 4.5 to 4.7 μm.
<Comparative Example 7>
Main phase alloy: 30.5wt% Nd-0.75wt% Dy-0.5wt% Co-0.2wt% Al-0.2wt% Zr-0.95wt% B-bal.Fe
Grain boundary phase alloy: 35wt% Dy-15wt% Nd-10wt% Co-0.2wt% Al-1.4wt% Cu-3.0wt% Ga-bal.Fe
<Example 7>
Main phase alloy: 30.3wt% Nd-1.50wt% Dy-0.5wt% Co-0.2wt% Al-0.2wt% Zr-0.95wt% B-bal.Fe
Grain boundary phase alloy: 20wt% Dy-30wt% Nd-10wt% Co-0.2wt% Al-1.4wt% Cu-3.0wt% Ga-bal.Fe
<Example 8>
Main phase alloy: 30.5wt% Nd-2.5wt% Dy-0.5wt% Co-0.2wt% Al-0.2wt% Zr-0.95wt% B-bal.Fe
Grain boundary phase alloy: 50wt% Nd-10wt% Co-0.2wt% Al-1.4wt% Cu-3.0wt% Ga-bal.Fe
<Example 9>
Main phase alloy: 30.3wt% Nd-1.50wt% Dy-0.5wt% Co-0.2wt% Al-0.2wt% Zr-0.95wt% B-bal.Fe
Grain boundary phase alloy: 20wt% Dy-30wt% Nd-10wt% Co-0.2wt% Al-1.4wt% Cu-bal.Fe
[基材及び希土類磁石の特性評価]
実施例及び比較例で得られた基材及び希土類磁石についての特性を下記の方法により測定した。その結果を表1、2に示す。
[Characteristic evaluation of base materials and rare earth magnets]
The characteristics of the base materials and rare earth magnets obtained in Examples and Comparative Examples were measured by the following methods. The results are shown in Tables 1 and 2.
(残留磁束密度、保磁力、角型比)
実施例及び比較例で得られた基材及び希土類磁石を用いて得られた測定用サンプルの磁気特性を、BHトレーサーによりそれぞれ測定した。得られた結果から、各測定用サンプルの残留磁束密度(Br)、保磁力(HcJ)及び角型比(Hk/HcJ)をそれぞれ求めた。
(Residual magnetic flux density, coercive force, squareness ratio)
The magnetic properties of the measurement samples obtained using the base materials and rare earth magnets obtained in Examples and Comparative Examples were measured with a BH tracer. From the obtained results, the residual magnetic flux density (Br), coercive force (HcJ), and squareness ratio (Hk / HcJ) of each measurement sample were determined.
(焼結体中の酸素含有量の測定)
含有酸素量の測定は、金属中ガス分析装置にて行った。検出方法は、試料を黒鉛るつぼでガス化(酸素はCO)し、非分散赤外線検出器にてCOを検出した。
(Measurement of oxygen content in sintered body)
The oxygen content was measured with a metal gas analyzer. As a detection method, a sample was gasified with a graphite crucible (oxygen was CO), and CO was detected with a non-dispersive infrared detector.
(2粒子界面におけるRHCu(DyCu)/RLCu(NdCu+PrCu)の測定)
上述の方法により、表面から0.3mm及び1.5mmの位置におけるRHCu/RLCuの測定を行った。
(Measurement of RHCu (DyCu) / RLCu (NdCu + PrCu) at the two-particle interface)
By the method described above, RHCu / RLCu was measured at positions of 0.3 mm and 1.5 mm from the surface.
具体的には、STEM−EDS(Scanning Transmission Electron Microscopy - Energy Dispersive X-raySpectroscopy)を用い、実施例及び比較例で得られた基材及び希土類磁石について、2粒子界面付近(図5(b)におけるLine)を直線的に走査しながら希土類元素(Nd、Pr及びDy)の量(質量%)及びCu量(質量%)を測定した。 Specifically, using STEM-EDS (Scanning Transmission Electron Microscopy-Energy Dispersive X-ray Spectroscopy), the base material and the rare earth magnet obtained in Examples and Comparative Examples are in the vicinity of the two-particle interface (FIG. 5B). The amount (mass%) of rare earth elements (Nd, Pr and Dy) and the amount of Cu (mass%) were measured while linearly scanning (Line).
図5(a)は、このようにして測定された2粒子界面付近における元素分布の一例を示すグラフである。図において、横軸は測定ライン上の位置を示し、縦軸はFe、Nd又はCuの量を示している。 FIG. 5A is a graph showing an example of the element distribution in the vicinity of the two-particle interface measured in this way. In the figure, the horizontal axis indicates the position on the measurement line, and the vertical axis indicates the amount of Fe, Nd, or Cu.
図5(b)はNdCu部分を分析した結果の例である。NdとDyが混在する場合は、表面から0.3mm及び1.5mmの位置において20箇所ずつライン分析を行い、NdCu数、DyCu数をそれぞれ混合比率を考慮してカウントし、DyCu/NdCuを算出する。 FIG. 5B is an example of the result of analyzing the NdCu portion. When Nd and Dy are mixed, line analysis is performed at 20 points at 0.3 mm and 1.5 mm from the surface, and the NdCu number and DyCu number are counted in consideration of the mixing ratio, and DyCu / NdCu is calculated. To do.
(STEM−EDSを用いたライン分析)
実施例で得られた基材及び希土類焼結磁石について、走査透過電子顕微鏡が備えるエネルギー分散型X線分光器(STEM−EDS)を用いてライン分析を行った。図6(a)は基材についての分析結果を示す図であり、図6(b)は希土類焼結磁石についての分析結果を示す図である。
図6(a)から明らかであるように、基材については粒界相付近でNdの濃度が急激に増えているものの、主相粒子の粒界相近傍に軽希土類元素(Nd)に対する重希土類元素(Dy)の割合(Dy/Nd)が、主相粒子中心部(コア)における割合の2倍以上となっている部分はなく、シェル部が存在しない。一方、図6(b)から明らかであるように、希土類焼結磁石については粒界相付近でNdの濃度が急激に増えており、主相粒子の粒界相近傍にDy/Ndが、主相粒子中心部における割合の2倍以上となっている部分があり、シェル部が存在している。なお、図6(b)中の両矢印で示されている部分がシェル部に相当する。
(Line analysis using STEM-EDS)
About the base material and rare earth sintered magnet obtained in the Example, the line analysis was performed using the energy dispersive X-ray spectrometer (STEM-EDS) with which a scanning transmission electron microscope is equipped. FIG. 6A is a diagram showing an analysis result for a base material, and FIG. 6B is a diagram showing an analysis result for a rare earth sintered magnet.
As apparent from FIG. 6 (a), although the Nd concentration in the base material is rapidly increased in the vicinity of the grain boundary phase, the heavy rare earth element for the light rare earth element (Nd) is present in the vicinity of the grain boundary phase of the main phase particles. There is no portion in which the ratio (Dy / Nd) of the element (Dy) is more than twice the ratio in the main phase particle central portion (core), and there is no shell portion. On the other hand, as is clear from FIG. 6 (b), in the rare earth sintered magnet, the concentration of Nd is rapidly increased in the vicinity of the grain boundary phase, and Dy / Nd is mainly increased in the vicinity of the grain boundary phase of the main phase particles. There is a portion that is twice or more of the ratio in the center portion of the phase particle, and a shell portion exists. In addition, the part shown with the double arrow in FIG.6 (b) corresponds to a shell part.
表1、2から明らかであるように、実施例1〜9の希土類磁石は角型比(Hk/HcJ)の低下が小さいとともに、残留磁束密度(Br)及び保磁力(HcJ)、特に保磁力に優れる。これに対し、比較例1〜7の希土類磁石は角型比の低下が大きく、保磁力が劣る。 As is clear from Tables 1 and 2, the rare-earth magnets of Examples 1 to 9 have a small decrease in the squareness ratio (Hk / HcJ) and a residual magnetic flux density (Br) and a coercive force (HcJ), particularly a coercive force. Excellent. On the other hand, the rare earth magnets of Comparative Examples 1 to 7 have a large decrease in squareness ratio and are inferior in coercive force.
2…主相粒子、4…コア、6…シェル、8…粒界相、10…希土類焼結磁石、20…ロータ、22…ロータコア、24…磁石収容部、30…ステータ、32…コイル部、40…エンジン、42…発電機、44…蓄電池、48…車輪、50…自動車、100…IPMモーター。 2 ... main phase particles, 4 ... core, 6 ... shell, 8 ... grain boundary phase, 10 ... rare earth sintered magnet, 20 ... rotor, 22 ... rotor core, 24 ... magnet housing part, 30 ... stator, 32 ... coil part, DESCRIPTION OF SYMBOLS 40 ... Engine, 42 ... Generator, 44 ... Storage battery, 48 ... Wheel, 50 ... Car, 100 ... IPM motor.
Claims (7)
前記Rは重希土類元素及び軽希土類元素を含み、
前記主相粒子群における2粒子界面に重希土類Cu化合物及び軽希土類Cu化合物が存在する希土類焼結磁石であって、
前記希土類焼結磁石の表面から深さ0.3mmの位置の前記2粒子界面における前記軽希土類Cu化合物に対する前記重希土類化合物の質量比が、前記希土類焼結磁石の表面から深さ1.5mmの位置の前記2粒子界面における前記軽希土類Cu化合物に対する前記重希土類化合物の質量比の1倍より大きく5倍以下である希土類焼結磁石。 An R-T-B rare earth magnet main phase particle group having a core and a shell covering the core;
R includes heavy rare earth elements and light rare earth elements,
A rare earth sintered magnet in which a heavy rare earth Cu compound and a light rare earth Cu compound are present at the two-particle interface in the main phase particle group,
The mass ratio of the heavy rare earth compound to the light rare earth Cu compound at the two-particle interface at a depth of 0.3 mm from the surface of the rare earth sintered magnet is 1.5 mm deep from the surface of the rare earth sintered magnet. A rare earth sintered magnet that is greater than 1 and less than or equal to 5 times the mass ratio of the heavy rare earth compound to the light rare earth Cu compound at the two-particle interface at a position.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010078710A JP2011211056A (en) | 2010-03-30 | 2010-03-30 | Rare earth sintered magnet, motor, and automobile |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010078710A JP2011211056A (en) | 2010-03-30 | 2010-03-30 | Rare earth sintered magnet, motor, and automobile |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011211056A true JP2011211056A (en) | 2011-10-20 |
Family
ID=44941793
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010078710A Pending JP2011211056A (en) | 2010-03-30 | 2010-03-30 | Rare earth sintered magnet, motor, and automobile |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011211056A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013146781A1 (en) * | 2012-03-30 | 2013-10-03 | インターメタリックス株式会社 | NdFeB-BASED SINTERED MAGNET |
JP2014027268A (en) * | 2012-06-22 | 2014-02-06 | Tdk Corp | Sintered magnet |
CN103890868A (en) * | 2011-10-28 | 2014-06-25 | Tdk株式会社 | R-t-b sintered magnet |
JP2015023285A (en) * | 2013-07-17 | 2015-02-02 | 煙台首鋼磁性材料株式有限公司 | R-t-m-b-based sintered magnet and production method therefor |
KR101529435B1 (en) * | 2013-11-21 | 2015-06-16 | 얀타이 정하이 마그네틱 머티리얼 컴퍼니 리미티드 | Method For Preparing R-Fe-B Based Sintered Magnet |
CN105453195A (en) * | 2013-08-12 | 2016-03-30 | 日立金属株式会社 | R-T-B sintered magnet and method for producing R-T-B sintered magnet |
CN105453194A (en) * | 2013-08-12 | 2016-03-30 | 日立金属株式会社 | R-t-b system sintered magnet |
CN105474337A (en) * | 2013-09-02 | 2016-04-06 | 日立金属株式会社 | Method of producing r-t-b sintered magnet |
CN105895287A (en) * | 2015-02-16 | 2016-08-24 | Tdk株式会社 | Rare Earth Based Permanent Magnet |
CN106030736A (en) * | 2014-03-26 | 2016-10-12 | 日立金属株式会社 | Method for manufacturing R-T-B series sintered magnet |
CN106716571A (en) * | 2014-09-17 | 2017-05-24 | 日立金属株式会社 | Method for producing R-T-B-based sintered magnet |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007088718A1 (en) * | 2006-01-31 | 2007-08-09 | Hitachi Metals, Ltd. | R-Fe-B RARE-EARTH SINTERED MAGNET AND PROCESS FOR PRODUCING THE SAME |
WO2008120784A1 (en) * | 2007-03-30 | 2008-10-09 | Tdk Corporation | Process for producing magnet |
WO2009004994A1 (en) * | 2007-06-29 | 2009-01-08 | Tdk Corporation | Rare earth magnet |
WO2009057592A1 (en) * | 2007-10-31 | 2009-05-07 | Ulvac, Inc. | Process for producing permanent magnet and permanent magnet |
WO2009122709A1 (en) * | 2008-03-31 | 2009-10-08 | 日立金属株式会社 | R-t-b-type sintered magnet and method for production thereof |
-
2010
- 2010-03-30 JP JP2010078710A patent/JP2011211056A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007088718A1 (en) * | 2006-01-31 | 2007-08-09 | Hitachi Metals, Ltd. | R-Fe-B RARE-EARTH SINTERED MAGNET AND PROCESS FOR PRODUCING THE SAME |
WO2008120784A1 (en) * | 2007-03-30 | 2008-10-09 | Tdk Corporation | Process for producing magnet |
WO2009004994A1 (en) * | 2007-06-29 | 2009-01-08 | Tdk Corporation | Rare earth magnet |
WO2009057592A1 (en) * | 2007-10-31 | 2009-05-07 | Ulvac, Inc. | Process for producing permanent magnet and permanent magnet |
WO2009122709A1 (en) * | 2008-03-31 | 2009-10-08 | 日立金属株式会社 | R-t-b-type sintered magnet and method for production thereof |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103890868A (en) * | 2011-10-28 | 2014-06-25 | Tdk株式会社 | R-t-b sintered magnet |
CN103890868B (en) * | 2011-10-28 | 2017-05-03 | Tdk株式会社 | R-t-b sintered magnet |
WO2013146781A1 (en) * | 2012-03-30 | 2013-10-03 | インターメタリックス株式会社 | NdFeB-BASED SINTERED MAGNET |
CN104221100A (en) * | 2012-03-30 | 2014-12-17 | 因太金属株式会社 | Ndfeb-based sintered magnet |
CN104221100B (en) * | 2012-03-30 | 2018-03-16 | 因太金属株式会社 | NdFeB based sintered magnets |
JP2014027268A (en) * | 2012-06-22 | 2014-02-06 | Tdk Corp | Sintered magnet |
JP2015023285A (en) * | 2013-07-17 | 2015-02-02 | 煙台首鋼磁性材料株式有限公司 | R-t-m-b-based sintered magnet and production method therefor |
US9672981B2 (en) | 2013-07-17 | 2017-06-06 | Yantai Shougang Magnetic Materials Inc. | Method for producing an R-T-B-M sintered magnet |
EP3038116A4 (en) * | 2013-08-12 | 2017-03-22 | Hitachi Metals, Ltd. | R-t-b system sintered magnet |
CN105453195A (en) * | 2013-08-12 | 2016-03-30 | 日立金属株式会社 | R-T-B sintered magnet and method for producing R-T-B sintered magnet |
US10847290B2 (en) | 2013-08-12 | 2020-11-24 | Hitachi Metals, Ltd. | R-T-B based sintered magnet |
US10388442B2 (en) | 2013-08-12 | 2019-08-20 | Hitachi Metals, Ltd. | R-T-B based sintered magnet and method for producing R-T-B based sintered magnet |
CN105453194A (en) * | 2013-08-12 | 2016-03-30 | 日立金属株式会社 | R-t-b system sintered magnet |
EP3035346A4 (en) * | 2013-08-12 | 2017-04-26 | Hitachi Metals, Ltd. | R-t-b sintered magnet and method for producing r-t-b sintered magnet |
CN105474337A (en) * | 2013-09-02 | 2016-04-06 | 日立金属株式会社 | Method of producing r-t-b sintered magnet |
EP3043363A4 (en) * | 2013-09-02 | 2017-05-03 | Hitachi Metals, Ltd. | Method of producing r-t-b sintered magnet |
EP3043363A1 (en) * | 2013-09-02 | 2016-07-13 | Hitachi Metals, Ltd. | Method of producing r-t-b sintered magnet |
US10658108B2 (en) | 2013-09-02 | 2020-05-19 | Hitachi Metals, Ltd. | Method for producing R-T-B based sintered magnet |
KR101529435B1 (en) * | 2013-11-21 | 2015-06-16 | 얀타이 정하이 마그네틱 머티리얼 컴퍼니 리미티드 | Method For Preparing R-Fe-B Based Sintered Magnet |
CN106030736B (en) * | 2014-03-26 | 2018-04-27 | 日立金属株式会社 | The manufacture method of R-T-B based sintered magnets |
CN106030736A (en) * | 2014-03-26 | 2016-10-12 | 日立金属株式会社 | Method for manufacturing R-T-B series sintered magnet |
CN106716571A (en) * | 2014-09-17 | 2017-05-24 | 日立金属株式会社 | Method for producing R-T-B-based sintered magnet |
US10446306B2 (en) | 2014-09-17 | 2019-10-15 | Hitachi Metals, Ltd. | Method for manufacturing R-T-B based sintered magnet |
CN105895287B (en) * | 2015-02-16 | 2017-11-21 | Tdk株式会社 | Rare earth element permanent magnet |
CN105895287A (en) * | 2015-02-16 | 2016-08-24 | Tdk株式会社 | Rare Earth Based Permanent Magnet |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5392400B2 (en) | Rare earth sintered magnet, manufacturing method thereof, motor, and automobile | |
JP2011211056A (en) | Rare earth sintered magnet, motor, and automobile | |
JP5429002B2 (en) | Sintered magnet, motor and automobile | |
WO2011122638A1 (en) | Sintered magnet, motor, automobile, and method for producing sintered magnet | |
JP5206834B2 (en) | R-Fe-B rare earth sintered magnet and method for producing the same | |
JP5561170B2 (en) | Method for producing RTB-based sintered magnet | |
JP5455056B2 (en) | Method for producing rare earth permanent magnet material | |
JP5408340B2 (en) | Rare earth sintered magnet and method for manufacturing the same, motor and automobile | |
JP3960966B2 (en) | Method for producing heat-resistant rare earth magnet | |
JP5552868B2 (en) | Sintered magnet, motor and automobile | |
JP2018504769A (en) | Manufacturing method of RTB permanent magnet | |
JP2011211071A (en) | Sintered magnet, motor, automobile, and method for producing the sintered magnet | |
JP5338956B2 (en) | Rare earth sintered magnet | |
JP2007273815A (en) | Method for manufacturing r-fe-b rare earth elements sintered magnet | |
JP6500387B2 (en) | Method of manufacturing high coercivity magnet | |
JP2019160949A (en) | R-t-b based permanent magnet | |
JP2012212808A (en) | Manufacturing method of rear earth sintered magnet | |
JP6642184B2 (en) | RTB based sintered magnet | |
JP2018174314A (en) | R-T-B based sintered magnet | |
JP2018160669A (en) | R-t-b based rare earth magnet | |
JP5885907B2 (en) | Rare earth sintered magnet and method for manufacturing the same, motor and automobile | |
JP2022152420A (en) | R-t-b based permanent magnet and method of producing the same | |
JP6511779B2 (en) | RTB based sintered magnet | |
JP2022152424A (en) | R-t-b based permanent magnet and method of producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130301 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20130823 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20130829 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131029 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131227 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140318 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140519 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140819 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20150106 |