Nothing Special   »   [go: up one dir, main page]

JP2011252547A - Constant velocity universal joint - Google Patents

Constant velocity universal joint Download PDF

Info

Publication number
JP2011252547A
JP2011252547A JP2010126979A JP2010126979A JP2011252547A JP 2011252547 A JP2011252547 A JP 2011252547A JP 2010126979 A JP2010126979 A JP 2010126979A JP 2010126979 A JP2010126979 A JP 2010126979A JP 2011252547 A JP2011252547 A JP 2011252547A
Authority
JP
Japan
Prior art keywords
joint member
shaft
constant velocity
velocity universal
shaft hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010126979A
Other languages
Japanese (ja)
Inventor
Suguru Nishioka
英 西岡
Tadashi Suzuki
正 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2010126979A priority Critical patent/JP2011252547A/en
Publication of JP2011252547A publication Critical patent/JP2011252547A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a constant velocity universal joint that is superior in productivity and can smoothly absorb axial directional displacement when colliding by reducing the number of parts and the number of machining steps.SOLUTION: The constant velocity universal joint has an outside joint member 3 and an inside joint member 6 transmitting torque between the outside joint member 3 and the same while allowing angular displacement. A shaft 11 is fitted into a shaft hole of the inside joint member 6 and the inside joint member 6 and the shaft 11 are integrally coupled via an uneven fitting structure M with which the whole area of a fitting and contacting site 38 with a protrusion 31 and a recess 32 comes into closer contact. shaft directional press fitting load in press fitting is made larger than the axial directional sliding resistance of the joint inside part S arranged within the outside joint member 3. The axial directional press fitting load is made smaller than the axial directional impact load applied to the joint inside part S.

Description

本発明は、自動車や各種産業機械の動力伝達系において使用される等速自在継手に関し、特に、自動車推進軸(プロペラシャフト)用の等速自在継手に関する。   The present invention relates to a constant velocity universal joint used in power transmission systems of automobiles and various industrial machines, and more particularly, to a constant velocity universal joint for an automobile propulsion shaft (propeller shaft).

プロペラシャフト(推進軸)は、FR車や4WD車の車体中央を前後にはしる回転軸であり、エンジンの回転力をデファレンシャルギヤなどに伝達するシャフトである。このため、車両衝突時の安全性向上の為、プロペラシャフトには衝撃力を逃がすために、衝突時の軸方向変位を吸収する機能・機構を備えたものがある(特許文献1及び特許文献2)。   The propeller shaft (propulsion shaft) is a rotating shaft that moves forward and backward in the center of the body of an FR vehicle or 4WD vehicle, and is a shaft that transmits the rotational force of the engine to a differential gear or the like. For this reason, in order to improve safety at the time of vehicle collision, some propeller shafts have a function / mechanism for absorbing axial displacement at the time of collision in order to release the impact force (Patent Document 1 and Patent Document 2). ).

特許文献1に記載のものは、車両などの衝突時に駆動シャフトから等速自在継手に軸方向の入力荷重が作用し、等速自在継手が従動シャフト内にスライド移動した場合に、この等速自在継手の継手内部部品は内側カールに突き当たることなく、該内側カールの内側を通過させることができるようにしたものである。これによって、十分なストローク量のスライド移動が可能になり、この大きなスライド移動量によって衝撃を十分に吸収することができるようにしている。   The one described in Patent Document 1 is free of constant velocity when an axial input load acts on the constant velocity universal joint from the drive shaft at the time of a vehicle collision, and the constant velocity universal joint slides into the driven shaft. The joint internal part of the joint is configured to allow the inside of the inner curl to pass through without hitting the inner curl. As a result, a slide movement with a sufficient stroke amount becomes possible, and the impact can be sufficiently absorbed by this large slide movement amount.

ところで、この等速自在継手は、アウターレースを構成する円筒状の保持部と、管軸部とが摩擦溶接にて接合されたものであって、この摩擦溶接時に外側カール及び前記内側カールが発生する。   By the way, this constant velocity universal joint is formed by joining the cylindrical holding part constituting the outer race and the pipe shaft part by friction welding, and the outer curl and the inner curl are generated during the friction welding. To do.

特許文献2に記載のものは、等速自在継手の内輪をプロペラシャフトに固定するための固定装置と、プロペラシャフトに所定値を越える軸方向が作用したときに固定装置による内輪の固定を解除する解除装置とを具備したものである。このため、等速自在継手とプロペラシャフトの中間軸との間で軸方向の相対移動が許容されるようにしている。これによって、車体に過大な軸方向力が作用した時のショックを軽減するようにしている。   Patent Document 2 discloses a fixing device for fixing an inner ring of a constant velocity universal joint to a propeller shaft, and releasing the fixing of the inner ring by the fixing device when an axial direction exceeding a predetermined value acts on the propeller shaft. And a release device. For this reason, relative movement in the axial direction is allowed between the constant velocity universal joint and the intermediate shaft of the propeller shaft. This reduces the shock when an excessive axial force acts on the vehicle body.

固定装置としては、シャフトに形成された周方向溝に装着されるクリップが用いられる。そして、この周方向溝の断面形状を、プロペラシャフトに所定値を越える軸方向が作用したときに、クリップが周方向溝から外れるように設定している。   As the fixing device, a clip attached to a circumferential groove formed in the shaft is used. The cross-sectional shape of the circumferential groove is set so that the clip is detached from the circumferential groove when an axial direction exceeding a predetermined value acts on the propeller shaft.

特開2003−146098号公報JP 2003-146098 A 特開平9−295517号公報Japanese Patent Laid-Open No. 9-295517

前記特許文献1に記載のものでは、継手内部部品(内側継手部材、ボール等からなる部品)よりも、管軸部の内径を大きくする必要がある。このため、用途が限られることになる。また、前記特許文献2に記載のものでは、周方向溝を特殊な形状とする必要があり、加工性に問題があり、生産性に劣り、コスト高となる。   In the thing of the said patent document 1, it is necessary to make the internal diameter of a pipe shaft part larger than a joint internal component (components which consist of an inner joint member, a ball | bowl, etc.). For this reason, the application is limited. Moreover, in the thing of the said patent document 2, it is necessary to make a circumferential groove | channel into a special shape, and there exists a problem in workability, it is inferior in productivity, and becomes high-cost.

本発明は、前記課題に鑑みて、部品点数及び加工工数の減少を図って、生産性に優れ、しかも、衝突時にスムーズに軸方向変位を吸収すること等が可能な等速自在継手を提供する。   In view of the above problems, the present invention provides a constant velocity universal joint that is excellent in productivity by reducing the number of parts and the number of processing steps, and can absorb axial displacement smoothly at the time of a collision. .

本発明の第1の等速自在継手は、外側継手部材と、この外側継手部材との間で角度変位を許容しながらトルクを伝達する内側継手部材とを備え、前記内側継手部材の軸孔にシャフトが嵌入され、内側継手部材とシャフトとは凹凸嵌合構造を介して一体連結された等速自在継手であって、前記シャフトの軸孔嵌入部の外径面に軸方向に延びる凸部を設け、シャフトの軸孔嵌入部を内側継手部材の軸孔に圧入し、この圧入によって内側継手部材の内径面の一部を押し出し及び/又は切削して、内側継手部材の内径面に前記凸部に密着嵌合する凹部を軸方向に沿って形成することにより、凸部と凹部との嵌合接触部位全域が密着する前記凹凸嵌合構造を構成し、かつ前記圧入の軸方向圧入荷重を、前記内側継手部材を含む継手内部部品に負荷される軸方向衝撃荷重よりも小さくしたものである。   A first constant velocity universal joint according to the present invention includes an outer joint member and an inner joint member that transmits torque while allowing angular displacement between the outer joint member and a shaft hole of the inner joint member. A constant velocity universal joint in which a shaft is inserted and the inner joint member and the shaft are integrally connected through an uneven fitting structure, and a convex portion extending in the axial direction on the outer diameter surface of the shaft hole insertion portion of the shaft. The shaft hole insertion portion of the shaft is press-fitted into the shaft hole of the inner joint member, and a part of the inner surface of the inner joint member is extruded and / or cut by this press-fitting, and the convex portion is formed on the inner surface of the inner joint member. Forming the concave and convex fitting structure along the axial direction to form the concave and convex fitting structure in which the entire fitting contact portion between the convex and concave portions is in close contact, and the axial press-fitting load of the press-fitting, Loaded on joint internal parts including the inner joint member It is obtained by less than in the direction impact load.

本発明の第2の等速自在継手は、外側継手部材と、この外側継手部材との間で角度変位を許容しながらトルクを伝達する内側継手部材とを備え、前記内側継手部材の軸孔にシャフトが嵌入され、内側継手部材とシャフトとは凹凸嵌合構造を介して一体連結された等速自在継手であって、前記シャフトの軸孔嵌入部の外径面に軸方向に延びる凸部を設け、シャフトの軸孔嵌入部を内側継手部材の軸孔に圧入し、この圧入によって内側継手部材の内径面の一部を押し出し及び/又は切削して、内側継手部材の内径面に前記凸部に密着嵌合する凹部を軸方向に沿って形成することにより、凸部と凹部との嵌合接触部位全域が密着する前記凹凸嵌合構造を構成し、かつ前記圧入の軸方向圧入荷重を、前記内側継手部材を含む継手内部部品の軸方向摺動抵抗よりも大きくしたものである。   A second constant velocity universal joint of the present invention includes an outer joint member and an inner joint member that transmits torque while allowing angular displacement between the outer joint member and a shaft hole of the inner joint member. A constant velocity universal joint in which a shaft is inserted and the inner joint member and the shaft are integrally connected through an uneven fitting structure, and a convex portion extending in the axial direction on the outer diameter surface of the shaft hole insertion portion of the shaft. The shaft hole insertion portion of the shaft is press-fitted into the shaft hole of the inner joint member, and a part of the inner surface of the inner joint member is extruded and / or cut by this press-fitting, and the convex portion is formed on the inner surface of the inner joint member. Forming the concave and convex fitting structure along the axial direction to form the concave and convex fitting structure in which the entire fitting contact portion between the convex and concave portions is in close contact, and the axial press-fitting load of the press-fitting, Axial sliding of joint internal parts including the inner joint member It is made larger than the anti.

本発明の第3の等速自在継手は、外側継手部材と、この外側継手部材との間で角度変位を許容しながらトルクを伝達する内側継手部材とを備え、前記内側継手部材の軸孔にシャフトが嵌入され、内側継手部材とシャフトとは凹凸嵌合構造を介して一体連結された等速自在継手であって、前記シャフトの軸孔嵌入部の外径面に軸方向に延びる凸部を設け、シャフトの軸孔嵌入部を内側継手部材の軸孔に圧入し、この圧入によって内側継手部材の内径面の一部を押し出し及び/又は切削して、内側継手部材の軸孔の内径面に前記凸部に密着嵌合する凹部を軸方向に沿って形成することにより、凸部と凹部との嵌合接触部位全域が密着する前記凹凸嵌合構造を構成し、かつ前記圧入の軸方向圧入荷重を、前記内側継手部材を含む継手内部部品の軸方向摺動抵抗よりも大きくするとともに、前記継手内部部品に負荷される軸方向衝撃荷重よりも小さくしたものである。   A third constant velocity universal joint according to the present invention includes an outer joint member and an inner joint member that transmits torque while allowing angular displacement between the outer joint member and the shaft joint of the inner joint member. A constant velocity universal joint in which a shaft is inserted and the inner joint member and the shaft are integrally connected through an uneven fitting structure, and a convex portion extending in the axial direction on the outer diameter surface of the shaft hole insertion portion of the shaft. The shaft hole insertion portion of the shaft is press-fitted into the shaft hole of the inner joint member, and a part of the inner diameter surface of the inner joint member is extruded and / or cut by this press-fitting to the inner diameter surface of the shaft hole of the inner joint member. By forming a concave portion that closely fits to the convex portion along the axial direction, the concave / convex fitting structure in which the entire fitting contact portion between the convex portion and the concave portion is in close contact is formed, and the axial press-fitting of the press-fitting is performed. The axial direction of the joint internal parts including the inner joint member With larger than the sliding resistance is obtained by less than the axial impact load applied to the joint inner part.

本発明の等速自在継手によれば、シャフトの軸孔嵌入部を内側継手部材の軸孔に圧入すれば、内側継手部材の軸孔の内径面にシャフトの凸部に密着嵌合する凹部を軸方向に沿って形成することができる。しかも、凹凸嵌合構造は、凸部と凹部との嵌合接触部位の全体が密着しているので、この嵌合構造において、径方向及び円周方向においてガタが生じる隙間が形成されない。このため、シャフトと内側継手部材とは安定した結合力にて一体化される。   According to the constant velocity universal joint of the present invention, when the shaft hole fitting portion of the shaft is press-fitted into the shaft hole of the inner joint member, the concave portion that fits closely to the convex portion of the shaft on the inner diameter surface of the shaft hole of the inner joint member. It can be formed along the axial direction. And since the whole fitting contact site | part of a convex part and a recessed part is closely_contact | adhering, the clearance gap which produces backlash in radial direction and the circumferential direction is not formed in this fitting structure. For this reason, the shaft and the inner joint member are integrated with a stable coupling force.

第1の等速自在継手によれば、軸方向圧入荷重を、内側継手部材を含む継手内部部品に負荷される軸方向衝撃荷重よりも小さくしているので、軸方向衝撃荷重が負荷されれば、この凹凸嵌合構造の圧入状態が解除される。この際、継手内部部品はこの衝撃によって継手奥側へ移動するが、この移動は外側継手部材の底壁に当接して規制させ、継手内部部品に対してシャフトが軸方向にスライドすることになる。   According to the first constant velocity universal joint, the axial press-fit load is made smaller than the axial impact load applied to the joint internal parts including the inner joint member. The press-fitted state of the concave / convex fitting structure is released. At this time, the joint internal part moves to the back side of the joint due to the impact, but this movement abuts on the bottom wall of the outer joint member to be regulated, and the shaft slides in the axial direction with respect to the joint internal part. .

第2の等速自在継手によれば、軸方向圧入荷重を、外側継手部材を含む継手内部部品の軸方向摺動抵抗よりも大きくしているので、通常の使用状態での継手内部部品の外側継手部材内での軸方向の摺動では、継手内部部品に対してシャフトが軸方向にスライドしない。   According to the second constant velocity universal joint, since the axial press-fit load is made larger than the axial sliding resistance of the joint internal part including the outer joint member, the outer side of the joint internal part in a normal use state. In axial sliding within the joint member, the shaft does not slide axially relative to the joint internal parts.

第3の等速自在継手によれば、軸方向圧入荷重を、内側継手部材を含む継手内部部品に負荷される軸方向衝撃荷重よりも小さくするとともに、継手内部部品の軸方向摺動抵抗よりも大きくしているので、軸方向衝撃荷重が負荷されれば、この凹凸嵌合構造の圧入状態が解除され、継手内部部品に対してシャフトが軸方向にスライドし、通常の使用状態での継手内部部品の外側継手部材内での軸方向の摺動では、継手内部部品に対してシャフトが軸方向にスライドしない。   According to the third constant velocity universal joint, the axial press-fit load is made smaller than the axial impact load applied to the joint internal parts including the inner joint member, and more than the axial sliding resistance of the joint internal parts. If the impact load in the axial direction is applied, the press-fitted state of this uneven fitting structure is released, and the shaft slides in the axial direction with respect to the joint internal parts. In axial sliding within the outer joint member of the part, the shaft does not slide axially relative to the joint internal part.

本発明の等速自在継手として、外側継手部材と内側継手部材との間で角度変位のみを許容する固定式であっても、外側継手部材と内側継手部材との間で角度変位及び軸方向変位を許容する摺動式であってもよい。   As the constant velocity universal joint of the present invention, even if it is a fixed type that allows only angular displacement between the outer joint member and the inner joint member, the angular displacement and axial displacement between the outer joint member and the inner joint member. It may be a sliding type that allows

シャフトの軸孔嵌入部の外径面に複数の前記凸部を周方向に沿って所定ピッチで配設し、凸部の頂点が描く円弧の直径を、内側継手部材の軸孔の内径よりも大きくするのが好ましい。このように設定することによって、圧入した際には、凸部が安定して内側継手部材の内径面の一部を押し出し及び/又は切削することができ、嵌合接触部位の密着性向上を図ることができる。   A plurality of the convex portions are arranged on the outer diameter surface of the shaft hole insertion portion of the shaft at a predetermined pitch along the circumferential direction, and the diameter of the arc drawn by the vertex of the convex portion is larger than the inner diameter of the shaft hole of the inner joint member. It is preferable to enlarge it. By setting in this way, when press-fitted, the convex portion can stably push out and / or cut a part of the inner diameter surface of the inner joint member, thereby improving the adhesion of the fitting contact portion. be able to.

シャフトの軸孔嵌入部の外径面に複数の前記凸部を周方向に沿って所定ピッチで配設し、周方向に隣り合う凸部間に設けられる凹部の底が描く円弧の直径を内側継手部材の軸孔の内径よりも小さくしてもよい。このように設定することによって、軸方向衝撃荷重が負荷時におけるシャフトのスライドを許容する設定が容易となる。   A plurality of the convex portions are arranged on the outer diameter surface of the shaft hole insertion portion of the shaft at a predetermined pitch along the circumferential direction, and the diameter of the arc drawn by the bottom of the concave portion provided between the convex portions adjacent in the circumferential direction is set on the inner side. You may make it smaller than the internal diameter of the shaft hole of a joint member. By setting in this way, it is easy to set to allow the shaft to slide when an axial impact load is applied.

凸部の硬度を内側継手部材の軸孔の内径面の硬度よりも高く設定するのが好ましい。このように設定することによって、シャフトの圧入性の向上を図ることができる。   It is preferable to set the hardness of the convex portion higher than the hardness of the inner diameter surface of the shaft hole of the inner joint member. By setting in this way, the press-fit property of the shaft can be improved.

この等速自在継手を自動車のプロペラシャフト用等速自在継手に用いることができる。   This constant velocity universal joint can be used as a constant velocity universal joint for an automobile propeller shaft.

本発明によれば、シャフトと内側継手部材とは安定した結合力にて一体化されるので、等速自在継手としての機能を安定して発揮することができる。しかも、従来のように、固定装置(固定手段)として、止め輪等を必要としない。このため、部品点数の削減を図ることができるとともに、組み付け作業性の向上を図ることができる。また、止め輪が必要とされないことによって、止め輪が装着される溝をシャフトに設ける必要が無くなって、溝加工を省略することができ、さらに、内側継手部材の内径面には、予め、凸部が嵌合する凹溝を形成しておく必要がない。このため、加工工程の削減を図ることができ、低コスト化を達成できる。   According to the present invention, since the shaft and the inner joint member are integrated with a stable coupling force, the function as a constant velocity universal joint can be stably exhibited. Moreover, there is no need for a retaining ring or the like as a fixing device (fixing means) as in the prior art. For this reason, it is possible to reduce the number of parts and improve the assembly workability. In addition, since the retaining ring is not required, it is not necessary to provide a groove in which the retaining ring is mounted on the shaft, and the groove processing can be omitted. Further, the inner joint surface of the inner joint member has a convex shape in advance. There is no need to form a concave groove into which the part fits. For this reason, reduction of a processing process can be aimed at and cost reduction can be achieved.

軸方向圧入荷重を軸方向衝撃荷重よりも小さくしたものであれば、軸方向衝撃荷重が負荷されれば、継手内部部品に対してシャフトが軸方向にスライドすることなって、この軸方向衝撃荷重を緩和吸収できる。しかも、継手内部部品が等速自在継手から飛び出さないので、この等速自在継手に接続される管部材(管軸部)を大径とする必要がなくなり、用途が広がる利点がある。   If the axial press-fit load is smaller than the axial impact load, if the axial impact load is applied, the shaft will slide in the axial direction with respect to the internal parts of the joint. Can be relaxed and absorbed. In addition, since the internal parts of the joint do not jump out of the constant velocity universal joint, there is no need to increase the diameter of the pipe member (tube shaft portion) connected to the constant velocity universal joint, and there is an advantage that the application is widened.

軸方向圧入荷重を継手内部部品の軸方向摺動抵抗よりも大きくしたものであれば、通常の使用状態では、継手内部部品に対してシャフトが軸方向にスライドせず、等速自在継手(摺動型等速自在継手)として高精度の機能を発揮することができる。   If the axial press-fit load is greater than the axial sliding resistance of the internal parts of the joint, the shaft will not slide axially relative to the internal parts of the joint under normal operating conditions. High-precision function as a dynamic constant velocity universal joint).

凸部の頂点が描く円弧の直径を、内側継手部材の内径よりも大きく設定し、嵌合接触部位の密着性向上を図ることで、より安定した嵌合状態を維持できる。また、周方向に隣り合う凸部間に設けられる凹部の底が描く円弧の直径を内側継手部材の軸孔の内径よりも小さくすることによって、軸方向衝撃荷重が負荷時におけるシャフトのスライドを許容する設定が容易となり、軸方向衝撃荷重が負荷時における緩和吸収を安定して発揮できる。   A more stable fitting state can be maintained by setting the diameter of the arc drawn by the apex of the convex portion to be larger than the inner diameter of the inner joint member and improving the adhesion at the fitting contact portion. In addition, by making the diameter of the circular arc drawn by the bottom of the concave portion provided between the convex portions adjacent in the circumferential direction smaller than the inner diameter of the shaft hole of the inner joint member, the shaft can be slid when an axial impact load is applied. This makes it easy to set up, and can stably exhibit relaxation absorption when an axial impact load is applied.

凸部の硬度を内側継手部材の軸孔の内径面の硬度よりも高く設定することによって、シャフトの圧入が容易となって、組立性の向上を図ることができる。   By setting the hardness of the convex portion higher than the hardness of the inner diameter surface of the shaft hole of the inner joint member, the shaft can be easily press-fitted and the assemblability can be improved.

このように、本発明の等速自在継手を自動車のプロペラシャフト用等速自在継手に最適となる。   Thus, the constant velocity universal joint of the present invention is most suitable as a constant velocity universal joint for a propeller shaft of an automobile.

本発明の等速自在継手の断面図である。It is sectional drawing of the constant velocity universal joint of this invention. 前記図1に示す等速自在継手の内側継手部材とシャフトとの関係説明図である。FIG. 2 is an explanatory diagram of a relationship between an inner joint member and a shaft of the constant velocity universal joint illustrated in FIG. 1. 前記図1に示す等速自在継手の要部断面図である。It is principal part sectional drawing of the constant velocity universal joint shown in the said FIG. 前記図1のX−X線断面図である。It is the XX sectional view taken on the line of FIG. 前記図1のY−Y線断面図である。It is the YY sectional view taken on the line of the said FIG. 前記図3のZ−Z線断面図である。FIG. 4 is a sectional view taken along the line ZZ in FIG. 3. 前記図6の要部拡大断面図である。It is a principal part expanded sectional view of the said FIG. 内側継手部材にシャフトが嵌入されている状態を示し、(a)は軸方向摺動抵抗が発生していないときの断面図であり、(b)は軸方向摺動抵抗が発生しているときの断面図である。The shaft is inserted into the inner joint member, (a) is a sectional view when no axial sliding resistance is generated, and (b) is when axial sliding resistance is generated FIG. 内側継手部材にシャフトが嵌入されている状態を示し、(a)は軸方向衝撃荷重が負荷されていないときの断面図であり、(b)は軸方向衝撃荷重が負荷されているときの断面図である。The shaft is inserted in the inner joint member, (a) is a sectional view when no axial impact load is applied, and (b) is a sectional view when an axial impact load is applied. FIG. 継手内部部品に軸方向衝撃荷重が負荷された状態を示し、(a)は継手内部部品が外側継手部材の底壁に達した状態の断面図であり、(b)は継手内部部品がシャフトのスプラインから外れた状態の断面図である。The joint internal component is shown in a state where an axial impact load is applied, (a) is a sectional view of the joint internal component reaching the bottom wall of the outer joint member, and (b) is a joint internal component of the shaft. It is sectional drawing of the state remove | deviated from the spline.

以下、本発明の実施形態を図面に従って説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1に示す実施形態の等速自在継手はダブルオフセットタイプの摺動型等速自在継手であって、円筒形状内周面1に軸方向に延びる複数のトラック溝2を形成した外側継手部材3と、球面状外周面4に軸方向に延びる複数のトラック溝5を形成した内側継手部材6と、外側継手部材3と内側継手部材6との間に介在してトルク伝達を行うトルク伝達部材7とを備える。この場合、トルク伝達部材7は、外側継手部材3のトラック溝2と前記内側継手部材6のトラック溝5との対で形成されるボールトラックに一個ずつ組み込んだ複数のトルク伝達ボール7aである。トルク伝達ボール7aは、ケージ9のポケット8に保持される。   The constant velocity universal joint of the embodiment shown in FIG. 1 is a double offset type sliding type constant velocity universal joint, and an outer joint member 3 in which a plurality of track grooves 2 extending in the axial direction are formed on a cylindrical inner peripheral surface 1. And an inner joint member 6 in which a plurality of track grooves 5 extending in the axial direction are formed on the spherical outer peripheral surface 4, and a torque transmission member 7 that transmits torque by being interposed between the outer joint member 3 and the inner joint member 6. With. In this case, the torque transmission member 7 is a plurality of torque transmission balls 7 a each incorporated in a ball track formed by a pair of the track groove 2 of the outer joint member 3 and the track groove 5 of the inner joint member 6. The torque transmission ball 7 a is held in the pocket 8 of the cage 9.

ケージ9の球面状外周面9aの曲率中心O1と球面状内周面9bの曲率中心O2を、継手中心Oを挟んで軸方向に互いに逆方向に等距離だけオフセットさせたものである。なお、外側継手部材3の内周面開口端部には、継手内部部品S(内側継手部材6とケージ9とボール7a等)の抜け止めとしてのリング体(Oリング)15が付設されている。   The center of curvature O1 of the spherical outer peripheral surface 9a of the cage 9 and the center of curvature O2 of the spherical inner peripheral surface 9b are offset by an equal distance in the opposite directions in the axial direction across the joint center O. In addition, a ring body (O-ring) 15 is attached to the inner peripheral surface opening end of the outer joint member 3 to prevent the joint internal component S (the inner joint member 6, the cage 9, the ball 7a, etc.) from coming off. .

また、内側継手部材6の軸孔6a(図2と図4等参照)には、シャフト11の軸孔嵌入部11aが嵌入される。そして、この内側継手部材6とシャフト11の軸孔嵌入部11aとは凹凸嵌合構造Mを介して一体化されている。   Further, the shaft hole insertion portion 11 a of the shaft 11 is inserted into the shaft hole 6 a (see FIGS. 2 and 4) of the inner joint member 6. And this inner joint member 6 and the shaft hole insertion part 11a of the shaft 11 are integrated via the uneven | corrugated fitting structure M. As shown in FIG.

外側継手部材3の開口部は密封装置20にて塞がれている。ゴム材料又は樹脂材料等の可撓性材料にて構成されるブーツ22と、金属製のアダプタ23とからなる。ブーツ22は大径部22aと、小径部22bと、大径部22aと小径部22bとを連結する断面略U字形の屈曲部22cとを備える。アダプタ23は略円筒形で、一端部23aが外側継手部材3の端部外周面29に圧入され、他端部23bがブーツ22の大径部22aを加締めにて保持している。   The opening of the outer joint member 3 is closed by the sealing device 20. It comprises a boot 22 made of a flexible material such as a rubber material or a resin material, and a metal adapter 23. The boot 22 includes a large-diameter portion 22a, a small-diameter portion 22b, and a bent portion 22c having a substantially U-shaped cross section that connects the large-diameter portion 22a and the small-diameter portion 22b. The adapter 23 has a substantially cylindrical shape, one end 23 a is press-fitted into the outer peripheral surface 29 of the outer joint member 3, and the other end 23 b holds the large-diameter portion 22 a of the boot 22 by crimping.

また、ブーツ22は、その小径部22bがシャフト11のブーツ装着部11bに外嵌されてブーツバンド24で締め付けられている。この場合、アダプタ23の一端部23aは大径に形成されて、一端部23aと中間胴部23cとの間に径方向壁部23dが形成される。この径方向壁部23dが外側継手部材3のシャフト突出側の端面3aに当接している。   Further, the boot 22 has a small-diameter portion 22 b that is externally fitted to the boot mounting portion 11 b of the shaft 11 and is fastened by a boot band 24. In this case, one end portion 23a of the adapter 23 is formed with a large diameter, and a radial wall portion 23d is formed between the one end portion 23a and the intermediate body portion 23c. The radial wall portion 23 d is in contact with the end surface 3 a on the shaft protruding side of the outer joint member 3.

外側継手部材3の端部外周面には周方向溝25が設けられ、この周方向溝25にシールリングとしてのOリング26が装着されている。また、この周方向溝25よりも反開口側(継手奥側)には、ブーツアダプタ23の反ブーツ側端部が内径側へ加締られてなる縮径部27が嵌合する嵌合凹溝28が形成されている。   A circumferential groove 25 is provided on the outer peripheral surface of the end portion of the outer joint member 3, and an O-ring 26 as a seal ring is attached to the circumferential groove 25. Further, on the side opposite to the opening side of the circumferential groove 25 (the joint back side), a fitting concave groove into which a reduced diameter portion 27 formed by crimping the anti-boot side end portion of the boot adapter 23 toward the inner diameter side is fitted. 28 is formed.

外側継手部材3の底壁30には窓部51が設けられ、この窓部51がキャップ52にて塞がれている。この場合、キャップ52は、円盤状の本体部52aと、この本体部52aの外周縁から軸方向外方に延びる周壁部52bとからなる。また、窓部51は、継手内部側の小径部51aと、継手外部側の大径部51bとからなる。そして、キャップ52の周壁部52bが窓部51の大径部51bに圧入されることによって、キャップ52は外側継手部材3の底壁30の窓部51に装着される。この圧入状態では、キャップ52の本体部52aの外周縁部が窓部51の段差部に当接している。   A window portion 51 is provided on the bottom wall 30 of the outer joint member 3, and the window portion 51 is closed with a cap 52. In this case, the cap 52 includes a disk-shaped main body 52a and a peripheral wall 52b extending axially outward from the outer peripheral edge of the main body 52a. Moreover, the window part 51 consists of the small diameter part 51a inside a coupling, and the large diameter part 51b outside a coupling. The cap 52 is attached to the window portion 51 of the bottom wall 30 of the outer joint member 3 by press-fitting the peripheral wall portion 52 b of the cap 52 into the large diameter portion 51 b of the window portion 51. In this press-fitted state, the outer peripheral edge portion of the main body portion 52 a of the cap 52 is in contact with the step portion of the window portion 51.

また、この外側継手部材3には管軸部55が接続される。すなわち、外側継手部材3の底壁30から短円筒部56が突設され、この短円筒部56に管軸部55が接合される。短円筒部56と管軸部55との接合は、摩擦接合が用いられている。摩擦接合は、接合する部材(金属やセラミックス)を高速回転ですり合わせ、その時に生じる摩擦熱によって部材を溶融または軟化させた後、圧力を加えて接合する技術である。このため、接合部57において、内径側カール部57aと外径側カール部57bとが形成される。この内径側カール部57aの内径を窓部51の大径部51bの内径よりも大径とし、外径側カール部57bの外径を外側継手部材3の外径よりも小さくなるように設定している。   Further, a pipe shaft portion 55 is connected to the outer joint member 3. That is, the short cylindrical portion 56 protrudes from the bottom wall 30 of the outer joint member 3, and the tube shaft portion 55 is joined to the short cylindrical portion 56. For joining the short cylindrical portion 56 and the tube shaft portion 55, friction joining is used. Friction welding is a technique in which members (metals and ceramics) to be joined are joined together at high speed, the members are melted or softened by frictional heat generated at that time, and then pressure is applied to join them. For this reason, the inner diameter side curl portion 57 a and the outer diameter side curl portion 57 b are formed in the joint portion 57. The inner diameter side curl portion 57 a is set to have an inner diameter larger than the inner diameter of the large diameter portion 51 b of the window portion 51, and the outer diameter of the outer diameter side curl portion 57 b is set to be smaller than the outer diameter of the outer joint member 3. ing.

前記凹凸嵌合構造Mは、図5〜図7等に示すように、例えば、シャフト11の軸孔嵌入部11aに設けられる軸方向に延びる凸部31と、内側継手部材6の軸孔6aの内径面45に形成される凹部32とからなり、シャフト11中の凸部31とその凸部31に嵌合する凹部32との嵌合接触部位33全域が密着している。すなわち、周方向全周にわたって、凸部31とこれに嵌合する凹部32とがタイトフィットしている。   As shown in FIGS. 5 to 7 and the like, the uneven fitting structure M includes, for example, a protruding portion 31 provided in the shaft hole insertion portion 11a of the shaft 11 and an axial hole 6a of the inner joint member 6. It consists of a recess 32 formed in the inner diameter surface 45, and the entire fitting contact portion 33 between the projection 31 in the shaft 11 and the recess 32 fitted into the projection 31 is in close contact. That is, the convex part 31 and the concave part 32 fitted to this are tight-fitted over the entire circumference.

この場合、各凸部31は、その断面が凸アール状の頂点を有する三角形状(山形状)であり、嵌合接触部位(凹部嵌合部位)33とは範囲Hであり、断面における山形の中腹部から山頂にいたる範囲である。   In this case, each convex portion 31 has a triangular shape (mountain shape) having a convex round-shaped apex in the cross section, and is in the range H from the fitting contact portion (recessed portion fitting portion) 33, and has a mountain shape in the cross section. It is the range from the mid-abdomen to the summit.

ところで、図2と図5に示すように、軸方向に沿う凸歯と凹歯とからなるスプライン35を形成する。そして、スプライン35の凸歯が硬化処理されて、この凸歯が凹凸嵌合構造Mの凸部31となる。この熱硬化処理としては、高周波焼入れや浸炭焼入れ等の種々の熱処理を採用することができる。ここで、高周波焼入れとは、高周波電流の流れているコイル中に焼入れに必要な部分を入れ、電磁誘導作用により、ジュール熱を発生させて、伝導性物体を加熱する原理を応用した焼入れ方法である。また、浸炭焼入れとは、低炭素材料の表面から炭素を浸入/拡散させ、その後に焼入れを行う方法である。   By the way, as shown in FIG. 2 and FIG. 5, the spline 35 which consists of a convex tooth and a concave tooth along an axial direction is formed. And the convex tooth of the spline 35 is hardened, and this convex tooth becomes the convex part 31 of the concave-convex fitting structure M. As this thermosetting treatment, various heat treatments such as induction hardening and carburizing and quenching can be employed. Here, induction hardening is a hardening method that applies the principle of heating a conductive object by placing Joule heat in a coil through which high-frequency current flows, and generating Joule heat by electromagnetic induction. is there. In addition, carburizing and quenching is a method in which carbon is infiltrated / diffused from the surface of a low carbon material and then quenched.

内側継手部材6の内径面45側においては熱硬化処理を行わない未硬化部(未焼き状態)とする。凸部31と内側継手部材6の未硬化部との硬度差は、例えば、HRCで20ポイント以上とする。さらに、具体的には、凸部31の表面の硬度を50HRCから65HRC程度とし、未硬化部の硬度を10HRCから30HRC程度とする。   On the inner diameter surface 45 side of the inner joint member 6, an uncured portion (unbaked state) in which no thermosetting treatment is performed. The hardness difference between the convex portion 31 and the uncured portion of the inner joint member 6 is, for example, 20 points or more in HRC. More specifically, the hardness of the surface of the convex portion 31 is set to about 50 HRC to 65 HRC, and the hardness of the uncured portion is set to about 10 HRC to about 30 HRC.

この際、凸部31の突出方向中間部位が、凹部形成前の凹部形成面(この場合、内側継手部材6の内径面45)の位置に対応する。すなわち、図2に示すように、内側継手部材6の内径面45の内径寸法dを、凸部31の最大外径、つまりスプライン35の凸歯である前記凸部31の頂部を結ぶ円の直径寸法(外接円直径)Dよりも小さく、凸部間の谷底(スプライン35の凹歯の底)を結ぶ円の直径寸法Bよりも大きく設定される。すなわち、D<d<Bとされる。このため、シャフト11の凸部31は、少なくとも頂点から突出方向中間部位までが、内側継手部材6の内径面45に圧入される。また、図7に示すように、内径面45とスプライン35の凹歯の底との間に隙間42が形成される。なお、軸孔嵌入部11aとブーツ装着部11bとの間のシャフト小径部11cの外径Aは、軸孔嵌入部11aの最小外径(前記直径寸法B)よりも小径とされている。また、図3に示すように、凸部31の軸方向長さをL1と、内側継手部材6の軸方向長さをLとした場合、L1>Lに設定されている。   At this time, the intermediate portion in the protruding direction of the convex portion 31 corresponds to the position of the concave portion forming surface (in this case, the inner diameter surface 45 of the inner joint member 6) before the concave portion is formed. That is, as shown in FIG. 2, the inner diameter dimension d of the inner diameter surface 45 of the inner joint member 6 is the maximum outer diameter of the convex portion 31, that is, the diameter of a circle connecting the tops of the convex portions 31 that are convex teeth of the spline 35. It is set to be smaller than the dimension (circumscribed circle diameter) D and larger than the diameter dimension B of the circle connecting the valley bottoms (the bottoms of the concave teeth of the spline 35) between the convex portions. That is, D <d <B. For this reason, the convex part 31 of the shaft 11 is press-fitted into the inner diameter surface 45 of the inner joint member 6 at least from the apex to the intermediate part in the protruding direction. Further, as shown in FIG. 7, a gap 42 is formed between the inner diameter surface 45 and the bottom of the concave teeth of the spline 35. The outer diameter A of the small shaft diameter portion 11c between the shaft hole insertion portion 11a and the boot mounting portion 11b is smaller than the minimum outer diameter (the diameter dimension B) of the shaft hole insertion portion 11a. Moreover, as shown in FIG. 3, when the axial length of the convex portion 31 is L1 and the axial length of the inner joint member 6 is L, L1> L is set.

スプライン35は、従来からの公知公用の手段である転造加工、切削加工、プレス加工、引き抜き加工等の種々の加工方法によって、形成することがきる。また、熱硬化処理としては、高周波焼入れ、浸炭焼入れ等の種々の熱処理を採用することができる。なお、スプライン35を形成することによって構成された凸部31の圧入開始端面31a(図2参照)は、軸部軸線方向に対して直交する平坦面とされる。   The spline 35 can be formed by various processing methods such as rolling processing, cutting processing, press processing, and drawing processing, which are known and publicly known means. Moreover, various heat processing, such as induction hardening and carburizing hardening, can be employ | adopted as a thermosetting process. The press-fitting start end surface 31a (see FIG. 2) of the convex portion 31 formed by forming the spline 35 is a flat surface orthogonal to the axial direction of the shaft portion.

次に、シャフト11と内側継手部材6とを一体化する方法を説明する。まず、シャフト11の軸心と内側継手部材6の軸心とを合わせた状態とする。この状態で、内側継手部材6に対して、内側継手部材6の軸孔6aを挿入(圧入)していく。この際、内側継手部材6の軸孔6aの内径面45の内径寸法dと、凸部31の直径寸法Dと、スプライン35の凹歯の直径寸法Bとが前記のような関係であり、しかも、凸部31の硬度が内側継手部材6の軸孔6aの内径面45の硬度よりも20ポイント以上大きいので、シャフト11を内側継手部材6の軸孔6aに圧入していけば、この凸部31が内側継手部材6の内径面45に食い込んでいき、凸部31が、この凸部31が嵌合する凹部32を、軸方向に沿って形成していくことになる。   Next, a method for integrating the shaft 11 and the inner joint member 6 will be described. First, the shaft center of the shaft 11 and the shaft center of the inner joint member 6 are combined. In this state, the shaft hole 6 a of the inner joint member 6 is inserted (press-fitted) into the inner joint member 6. At this time, the inner diameter dimension d of the inner diameter surface 45 of the shaft hole 6a of the inner joint member 6, the diameter dimension D of the convex portion 31, and the diameter dimension B of the concave teeth of the spline 35 are as described above. Since the hardness of the convex portion 31 is 20 points or more larger than the hardness of the inner diameter surface 45 of the shaft hole 6a of the inner joint member 6, if the shaft 11 is press-fitted into the shaft hole 6a of the inner joint member 6, the convex portion 31 bites into the inner diameter surface 45 of the inner joint member 6, and the convex portion 31 forms a concave portion 32 into which the convex portion 31 is fitted along the axial direction.

ところで、凸部31の軸方向長さをL1とし、内側継手部材6の軸方向長さをLとした場合、L1>Lに設定されている。このため、この圧入は、図3に示すように、凸部31の先端(圧入開始端面31a)が内側継手部材6の継手奥側の端面40よりも僅かに突出する状態まで行われる。この状態では、凸部31の基端が内側継手部材6の継手開口側の端面41よりも僅かに突出する状態となっている。   By the way, when the axial length of the convex portion 31 is L1 and the axial length of the inner joint member 6 is L, L1> L is set. For this reason, as shown in FIG. 3, the press-fitting is performed until the tip of the convex portion 31 (the press-fitting start end face 31 a) slightly protrudes from the end face 40 on the joint back side of the inner joint member 6. In this state, the base end of the convex portion 31 is slightly protruded from the end surface 41 on the joint opening side of the inner joint member 6.

これによって、図7に示すように、シャフト11の凸部31と、これに嵌合する凹部32との嵌合接触部位33の全体が密着している。すなわち、相手側の凹部形成面(この場合、内側継手部材6の軸孔6aの内径面45)に凸部31の形状の転写を行うことになる。この際、凸部31が内径面45に食い込んでいくことによって、内側継手部材6の軸孔6aが僅かに拡径した状態となって、凸部31の軸方向の移動を許容し、軸方向の移動が停止すれば、軸孔6aが元の径に戻ろうとして縮径することになる。言い換えれば、凸部31の圧入時に軸孔6aが径方向に弾性変形し、この弾性変形分の予圧が凸部31の歯面(凹部嵌合部位の表面)に付与される。このため、凸部31の凹部嵌合部位の全体がその対応する凹部32に対して密着する凹凸嵌合構造Mを確実に形成することができる。すなわち、シャフト11のスプライン(雄スプライン)35によって、内側継手部材6の軸孔6aの内径面45に、雄スプライン35に密着する雌スプライン36が形成される。   As a result, as shown in FIG. 7, the entire fitting contact portion 33 between the convex portion 31 of the shaft 11 and the concave portion 32 fitted therein is in close contact. That is, the shape of the convex portion 31 is transferred to the concave-part-forming surface on the other side (in this case, the inner diameter surface 45 of the shaft hole 6a of the inner joint member 6). At this time, as the convex portion 31 bites into the inner diameter surface 45, the shaft hole 6 a of the inner joint member 6 is slightly expanded in diameter, and the axial movement of the convex portion 31 is allowed. If the movement stops, the diameter of the shaft hole 6a is reduced to return to the original diameter. In other words, when the convex portion 31 is press-fitted, the shaft hole 6a is elastically deformed in the radial direction, and a preload corresponding to the elastic deformation is applied to the tooth surface of the convex portion 31 (surface of the concave portion fitting portion). For this reason, the concave / convex fitting structure M in which the entire concave portion fitting portion of the convex portion 31 is in close contact with the corresponding concave portion 32 can be reliably formed. That is, a female spline 36 that is in close contact with the male spline 35 is formed on the inner diameter surface 45 of the shaft hole 6 a of the inner joint member 6 by the spline (male spline) 35 of the shaft 11.

なお、シャフト11を圧入していけば、はみ出し部が形成されることになる。ここで、はみ出し部とは、凸部31が嵌入(嵌合)する凹部32の容量の材料分であって、形成される凹部32から押し出されたもの、凹部32を形成するために切削されたもの、又は押し出されたものと切削されたものの両者等から構成される。このため、圧入後、このはみ出し部を除去するのが好ましい。   In addition, if the shaft 11 is press-fitted, a protruding portion is formed. Here, the protruding portion is the material of the capacity of the concave portion 32 into which the convex portion 31 is fitted (fitted), and is extruded from the formed concave portion 32 and cut to form the concave portion 32. It is comprised from what was extruded, what was extruded, and what was cut. For this reason, it is preferable to remove the protruding portion after press-fitting.

前記圧入の軸方向圧入荷重を、外側継手部材3に内装される継手内部部品S(内側継手部材6とケージ9とボール7a等)の軸方向摺動抵抗よりも大きくする。ここで、軸方向摺動抵抗とは、外側継手部材3内において、この継手内部部品Sが図8(a)に示す矢印X1のように継手軸方向に相対的に摺動する際の抵抗である。なお、図8(a)は軸方向摺動抵抗が発生していない状態である。ところで、軸方向圧入荷重は、前記D<d<Bの関係やシャフト11の凸部31と内側継手部材6の内径面45の硬度差等に基づいて決定される。   The axial press-fitting load of the press-fitting is made larger than the axial sliding resistance of the joint internal part S (the inner joint member 6, the cage 9, the ball 7a, etc.) housed in the outer joint member 3. Here, the axial sliding resistance is a resistance when the joint internal component S slides relatively in the joint axial direction as indicated by an arrow X1 in FIG. is there. FIG. 8A shows a state where no axial sliding resistance is generated. Incidentally, the axial press-fit load is determined based on the relationship of D <d <B, the hardness difference between the convex portion 31 of the shaft 11 and the inner surface 45 of the inner joint member 6, and the like.

このように設定することによって、軸方向摺動抵抗が発生したとしても、図8(b)に示すように、継手内部部品Sがシャフト11の軸孔嵌入部11aからずれない。   By setting in this way, even if axial sliding resistance occurs, the joint internal component S does not deviate from the shaft hole insertion portion 11a of the shaft 11 as shown in FIG.

また、前記圧入の圧入荷重を、継手内部部品Sに負荷される軸方向衝撃荷重よりも小さく設定する。ここで、軸方向衝撃荷重とは、例えば、この等速自在継手が用いられている車両等が衝突した際に、図9(a)の矢印のように、内側継手部材6の一方の端面40に作用する押圧力X2である。   Further, the press-fitting load of the press-fitting is set smaller than the axial impact load applied to the joint internal part S. Here, the axial impact load is, for example, one end face 40 of the inner joint member 6 as shown by an arrow in FIG. 9A when a vehicle or the like using the constant velocity universal joint collides. The pressing force X2 acting on the.

このため、図9(a)に示すように、シャフト11の軸孔嵌入部11aが凹凸嵌合構造Mを介して内側継手部材6に固定された状態において、内側継手部材6に軸方向衝撃荷重が負荷されれば、図9(b)に示すように、内側継手部材6がシャフト11の軸孔嵌入部11aから矢印X2方向にずれて外れることになる。   For this reason, as shown in FIG. 9A, in the state where the shaft hole insertion portion 11a of the shaft 11 is fixed to the inner joint member 6 via the concave-convex fitting structure M, the axial impact load is applied to the inner joint member 6. 9 is loaded, the inner joint member 6 is displaced from the shaft hole insertion portion 11a of the shaft 11 in the direction of the arrow X2, as shown in FIG. 9B.

次に、組み付けられた状態において、軸方向衝撃荷重が負荷された場合を説明する。この場合、外側継手部材3が軸方向に移動できない状態で、シャフト11に矢印X3方向の荷重が負荷される。これによって、図10(a)に示すように、継手内部部品Sがこの矢印X3方向に、外側継手部材3内を移動(スライド)する。そして、ケージ9が外側継手部材3の底壁30の内面に当接してこの矢印X3方向のスライドが停止する。   Next, a case where an axial impact load is applied in the assembled state will be described. In this case, a load in the direction of the arrow X3 is applied to the shaft 11 in a state where the outer joint member 3 cannot move in the axial direction. As a result, as shown in FIG. 10A, the joint internal component S moves (slides) in the outer joint member 3 in the direction of the arrow X3. Then, the cage 9 comes into contact with the inner surface of the bottom wall 30 of the outer joint member 3, and the sliding in the direction of the arrow X3 stops.

この状態からさらに矢印X3方向の押圧力が作用することによって、継手内部部品Sに外側継手部材3の底壁30からの反力として、前記X2の軸方向衝撃荷重が負荷される。この際、前記したように、圧入の圧入荷重を、継手内部部品Sに負荷される軸方向衝撃荷重よりも小さく設定しているので、図10(b)に示すように、シャフト11の軸孔嵌入部11aが管軸部55側に突き出た状態となる。これによって、軸方向衝撃荷重を緩和吸収できる。   When the pressing force in the direction of the arrow X3 further acts from this state, the axial impact load of X2 is applied to the joint internal component S as a reaction force from the bottom wall 30 of the outer joint member 3. At this time, as described above, since the press-fitting load of press-fitting is set smaller than the axial impact load applied to the joint internal part S, as shown in FIG. The fitting portion 11a protrudes toward the tube shaft portion 55 side. As a result, the axial impact load can be relaxed and absorbed.

本発明では、シャフト11と内側継手部材6とは安定した結合力にて一体化されるので、等速自在継手としての機能を安定して発揮することができる。しかも、従来のように、固定装置(固定手段)として、止め輪等を必要としない。このため、部品点数の削減を図ることができるとともに、組み付け作業性の向上を図ることができる。また、止め輪が必要とされないことによって、止め輪が装着される溝をシャフトに設ける必要が無くなって、溝加工を省略することができ、さらに、内側継手部材6の内径面45には、予め、凸部31が嵌合する凹溝を形成しておく必要がない。このため、加工工程の削減を図ることができ、低コスト化を達成できる。   In the present invention, since the shaft 11 and the inner joint member 6 are integrated with a stable coupling force, the function as a constant velocity universal joint can be stably exhibited. Moreover, there is no need for a retaining ring or the like as a fixing device (fixing means) as in the prior art. For this reason, it is possible to reduce the number of parts and improve the assembly workability. Further, since no retaining ring is required, it is not necessary to provide a groove in which the retaining ring is mounted on the shaft, so that the groove processing can be omitted, and the inner diameter surface 45 of the inner joint member 6 is preliminarily provided. There is no need to form a concave groove into which the convex portion 31 is fitted. For this reason, reduction of a processing process can be aimed at and cost reduction can be achieved.

軸方向圧入荷重を軸方向衝撃荷重よりも小さくしているので、軸方向衝撃荷重が負荷されれば、継手内部部品Sに対してシャフト11が軸方向にスライドすることなって、この軸方向衝撃荷重を緩和吸収できる。しかも、継手内部部品Sが等速自在継手から飛び出さないので、この等速自在継手に接続される管部材(管軸部)を大径とする必要がなくなり、用途が広がる利点がある。   Since the axial press-fit load is made smaller than the axial impact load, if an axial impact load is applied, the shaft 11 slides in the axial direction with respect to the joint internal part S, and this axial impact The load can be relaxed and absorbed. In addition, since the joint internal part S does not jump out of the constant velocity universal joint, there is no need to increase the diameter of the pipe member (tube shaft portion) connected to the constant velocity universal joint, and there is an advantage that the application is widened.

軸方向圧入荷重を継手内部部品Sの軸方向摺動抵抗よりも大きくしているので、通常の使用状態では、継手内部部品Sに対してシャフト11が軸方向にスライドせず、等速自在継手(摺動型等速自在継手)として高精度の機能を発揮することができる。   Since the axial press-fit load is larger than the axial sliding resistance of the joint internal part S, the shaft 11 does not slide in the axial direction with respect to the joint internal part S in a normal use state, and the constant velocity universal joint As a (sliding type constant velocity universal joint), a highly accurate function can be exhibited.

凸部31の頂点が描く円弧の直径を、内側継手部材6の内径よりも大きく設定し、嵌合接触部位の密着性向上を図ることで、より安定した嵌合状態を維持できる。また、周方向に隣り合う凸部31,31間に設けられる凹部32の底が描く円弧の直径を内側継手部材6の軸孔6aの内径よりも小さくすることによって、軸方向衝撃荷重が負荷時におけるシャフト11のスライドを許容する設定が容易となり、軸方向衝撃荷重が負荷時における緩和吸収を安定して発揮できる。   A more stable fitting state can be maintained by setting the diameter of the arc drawn by the apex of the convex portion 31 to be larger than the inner diameter of the inner joint member 6 and improving the adhesion of the fitting contact portion. Further, by making the diameter of the arc drawn by the bottom of the concave portion 32 provided between the convex portions 31 and 31 adjacent in the circumferential direction smaller than the inner diameter of the shaft hole 6a of the inner joint member 6, an axial impact load is applied. It is easy to set to allow the shaft 11 to slide, and it is possible to stably exhibit relaxation absorption when the axial impact load is applied.

凸部31の硬度を内側継手部材6の軸孔6aの内径面45の硬度よりも高く設定することによって、シャフト11の圧入が容易となって、組立性の向上を図ることができる。   By setting the hardness of the convex portion 31 higher than the hardness of the inner diameter surface 45 of the shaft hole 6a of the inner joint member 6, the shaft 11 can be easily press-fitted and the assemblability can be improved.

このように、本発明の等速自在継手を自動車のプロペラシャフト用等速自在継手に最適となる。   Thus, the constant velocity universal joint of the present invention is most suitable as a constant velocity universal joint for a propeller shaft of an automobile.

ところで、前記実施形態では、ダブルオフセットタイプの摺動型等速自在継手であったが、トリポードタイプの摺動型等速自在継手であってもよい。ここで、トリポードタイプの摺動型等速自在継手は、内周に軸線方向に延びる三本のトラック溝を設けると共に各トラック溝の内側壁に互いに対向するローラ案内面を設けた外側継手部材と、三本の脚軸を有するトリポード部材と、前記脚軸に回転自在に支持されるトルク伝達部材としてのローラ部材とを備えたものである。また、トルク伝達部材としてのローラ部材として、シングルローラタイプであっても、内側ローラと外側ローラとのダブルローラタイプであってもよい。   By the way, in the said embodiment, although it was a double offset type sliding type constant velocity universal joint, a tripod type sliding type constant velocity universal joint may be sufficient. Here, the tripod type sliding type constant velocity universal joint includes an outer joint member provided with three track grooves extending in the axial direction on the inner periphery and provided with roller guide surfaces facing each other on the inner side wall of each track groove. And a tripod member having three leg shafts, and a roller member as a torque transmission member rotatably supported by the leg shafts. Further, the roller member as the torque transmission member may be a single roller type or a double roller type of an inner roller and an outer roller.

さらには、バーフィールドタイプやアンダーカットフリータイプのトルク伝達部材にボールを用いた固定型等速自在継手であってもよい。このような固定型等速自在継手は、内球面に複数のトラック溝が円周方向等間隔に軸方向に沿って形成された外側継手部材と、外球面に外側継手部材のトラック溝と対をなす複数のトラック溝が円周方向等間隔に軸方向に沿って形成された内側継手部材と、外側継手部材のトラック溝と内側継手部材のトラック溝との間に介在してトルクを伝達する複数のボールと、外側継手部材の内球面と内側継手部材の外球面との間に介在してボールを保持するケージとを備えたものである。そして、バーフィールドタイプは、トラック溝底が円弧部のみであるものであり、アンダーカットフリータイプは、トラック溝底が円弧部及び直線部とを備えたものである。   Furthermore, it may be a fixed type constant velocity universal joint using a ball for a barfield type or undercut free type torque transmission member. Such a fixed type constant velocity universal joint has an outer joint member in which a plurality of track grooves are formed on the inner spherical surface along the axial direction at equal intervals in the circumferential direction, and a track groove of the outer joint member is paired on the outer spherical surface. A plurality of track grooves formed between the inner joint member formed along the axial direction at equal intervals in the circumferential direction, and a plurality of torque grooves interposed between the track grooves of the outer joint member and the track grooves of the inner joint member. And a cage for holding the ball interposed between the inner spherical surface of the outer joint member and the outer spherical surface of the inner joint member. In the bar field type, the track groove bottom has only an arc portion, and in the undercut free type, the track groove bottom has an arc portion and a straight portion.

以上、本発明の実施形態につき説明したが、本発明は前記実施形態に限定されることなく種々の変形が可能であって、例えば、凸部31の断面形状として、前記実施形態では断面三角形状であったが、他の台形形状、半円形状、半楕円形状、矩形形状等の種々の形状のものを採用でき、凸部31の面積、数、周方向配設ピッチ等も任意に変更できる。すなわち、スプライン35を形成し、このスプライン35の凸歯をもって凹凸嵌合構造Mの凸部31とする必要はなく、キーのようなものであってもよく、曲線状の波型の合わせ面を形成するものであってもよい。要は、軸方向に沿って配設される凸部31を相手側に圧入し、この凸部31にて凸部31に密着嵌合する凹部32を相手側に形成することができて、凸部31とこれに嵌合する凹部32との嵌合接触部位33の全体が密着すればよい。   As described above, the embodiments of the present invention have been described. However, the present invention is not limited to the above-described embodiments, and various modifications are possible. However, various shapes such as other trapezoidal shapes, semicircular shapes, semielliptical shapes, rectangular shapes, etc. can be adopted, and the area, number, circumferential arrangement pitch, etc. of the convex portions 31 can be arbitrarily changed. . That is, it is not necessary to form the spline 35 and use the convex teeth of the spline 35 as the convex portion 31 of the concave-convex fitting structure M, and it may be a key, and a curved corrugated mating surface may be used. It may be formed. The point is that the convex portion 31 disposed along the axial direction can be press-fitted into the mating side, and the concave portion 32 can be formed on the mating side with the convex portion 31 so as to closely fit the convex portion 31. The entire fitting contact portion 33 between the portion 31 and the concave portion 32 fitted thereto may be in close contact.

凸部31の圧入始端部のみが、凹部32が形成される部位より硬度が高ければよいので、凸部31の全体の硬度を高くする必要がない。また、前記実施形態では、凹凸嵌合構造Mにおいては、図4に示すように、周方向に隣り合う凸部31、31間に隙間42が形成されるが、凸部31全体が食い込んで隙間42がなくなるようなものであってもよい。なお、凸部31側と、凸部31にて形成される凹部形成面側(内側継手部材6の内径面45側)との硬度差としては、HRCで20ポイント以上とするのが好ましいが、凸部31が圧入可能であれば20ポイント未満であってもよい。   Since only the press-fitting start end portion of the convex portion 31 only needs to be harder than the portion where the concave portion 32 is formed, it is not necessary to increase the overall hardness of the convex portion 31. Moreover, in the said embodiment, in the uneven | corrugated fitting structure M, as shown in FIG. 4, although the clearance gap 42 is formed between the convex parts 31 and 31 adjacent to the circumferential direction, the convex part 31 whole bites in and a clearance gap is formed. 42 may be eliminated. In addition, as a hardness difference between the convex portion 31 side and the concave portion forming surface side formed on the convex portion 31 (inner diameter surface 45 side of the inner joint member 6), it is preferable that the HRC is 20 points or more, If the convex part 31 can be press-fitted, it may be less than 20 points.

凸部31の端面(圧入始端)は前記実施形態では軸方向に対して直交する面であったが、軸方向に対して、所定角度で傾斜するものであってもよい。この場合、内径側から外径側に向かって反凸部側に傾斜しても凸部側に傾斜してもよい。また、圧入する場合、内側継手部材6側を固定して、シャフト11側を移動させるようにしても、シャフト11側を固定して、内側継手部材6側を移動させるように、内側継手部材6とシャフト11との両者を移動させるようにしてもよい。   Although the end surface (press-fit start end) of the convex portion 31 is a surface orthogonal to the axial direction in the embodiment, it may be inclined at a predetermined angle with respect to the axial direction. In this case, it may be inclined from the inner diameter side toward the outer diameter side toward the anti-convex portion side or inclined toward the convex portion side. Moreover, when press-fitting, even if the inner joint member 6 side is fixed and the shaft 11 side is moved, the inner joint member 6 is fixed so that the shaft 11 side is fixed and the inner joint member 6 side is moved. And the shaft 11 may be moved.

さらに、内径面45に、周方向に沿って所定ピッチで配設される小凹部を設けてもよい。小凹部としては、凹部32の容積よりも小さくする必要がある。このように小凹部を設けることによって、凸部31の圧入性の向上を図ることができる。すなわち、小凹部を設けることによって、凸部31の圧入時に形成されるはみ出し部の容量を減少させることができて、圧入抵抗の低減を図ることができる。なお、小凹部の形状は、半楕円状、矩形等の種々のものを採用でき、数も任意に設定できる。   Furthermore, you may provide the small recessed part arrange | positioned in the internal diameter surface 45 with a predetermined pitch along the circumferential direction. The small recess needs to be smaller than the volume of the recess 32. Thus, by providing a small recessed part, the press-fit property of the convex part 31 can be aimed at. That is, by providing the small concave portion, the capacity of the protruding portion formed when the convex portion 31 is press-fitted can be reduced, and the press-fit resistance can be reduced. Various shapes such as a semi-elliptical shape and a rectangular shape can be adopted as the shape of the small concave portion, and the number can be arbitrarily set.

用途としてプロペラシャフトに限るものではなく、他の各種産業機械にも用いることができる。   The application is not limited to the propeller shaft, and it can be used for other various industrial machines.

3 外側継手部材
6 内側継手部材
6a 軸孔
11 シャフト
11a 軸孔嵌入部
31 凸部
32 凹部
M 凹凸嵌合構造
S 継手内部部品
3 Outer joint member 6 Inner joint member 6a Shaft hole 11 Shaft 11a Shaft hole fitting part 31 Convex part 32 Concave part Concavity and convexity fitting structure S Joint internal part

Claims (9)

外側継手部材と、この外側継手部材との間で角度変位を許容しながらトルクを伝達する内側継手部材とを備え、前記内側継手部材の軸孔にシャフトが嵌入され、内側継手部材とシャフトとは凹凸嵌合構造を介して一体連結された等速自在継手であって、
前記シャフトの軸孔嵌入部の外径面に軸方向に延びる凸部を設け、シャフトの軸孔嵌入部を内側継手部材の軸孔に圧入し、この圧入によって内側継手部材の内径面の一部を押し出し及び/又は切削して、内側継手部材の内径面に前記凸部に密着嵌合する凹部を軸方向に沿って形成することにより、凸部と凹部との嵌合接触部位全域が密着する前記凹凸嵌合構造を構成し、かつ前記圧入の軸方向圧入荷重を、前記外側継手部材に内装される継手内部部品に負荷される軸方向衝撃荷重よりも小さくしたことを特徴とする等速自在継手。
An outer joint member and an inner joint member that transmits torque while allowing angular displacement between the outer joint member, and a shaft is fitted into the shaft hole of the inner joint member. It is a constant velocity universal joint that is integrally connected through an uneven fitting structure,
A convex portion extending in the axial direction is provided on the outer diameter surface of the shaft hole insertion portion of the shaft, and the shaft hole insertion portion of the shaft is press-fitted into the shaft hole of the inner joint member, and this press-fitting causes a part of the inner diameter surface of the inner joint member. Is formed by extruding and / or cutting the inner joint surface of the inner joint member so that the convex portion is in close contact with the convex portion along the axial direction. The constant velocity freedom is characterized in that it constitutes the concave-convex fitting structure, and the axial press-fitting load of the press-fitting is smaller than the axial impact load applied to the joint internal parts housed in the outer joint member. Fittings.
外側継手部材と、この外側継手部材との間で角度変位を許容しながらトルクを伝達する内側継手部材とを備え、前記内側継手部材の軸孔にシャフトが嵌入され、内側継手部材とシャフトとは凹凸嵌合構造を介して一体連結された等速自在継手であって、
前記シャフトの軸孔嵌入部の外径面に軸方向に延びる凸部を設け、シャフトの軸孔嵌入部を内側継手部材の軸孔に圧入し、この圧入によって内側継手部材の内径面の一部を押し出し及び/又は切削して、内側継手部材の内径面に前記凸部に密着嵌合する凹部を軸方向に沿って形成することにより、凸部と凹部との嵌合接触部位全域が密着する前記凹凸嵌合構造を構成し、かつ前記圧入の軸方向圧入荷重を、外側継手部材に内装される継手内部部品の軸方向摺動抵抗よりも大きくしたことを特徴とする等速自在継手。
An outer joint member and an inner joint member that transmits torque while allowing angular displacement between the outer joint member, and a shaft is fitted into the shaft hole of the inner joint member. It is a constant velocity universal joint that is integrally connected through an uneven fitting structure,
A convex portion extending in the axial direction is provided on the outer diameter surface of the shaft hole insertion portion of the shaft, and the shaft hole insertion portion of the shaft is press-fitted into the shaft hole of the inner joint member, and this press-fitting causes a part of the inner diameter surface of the inner joint member. Is formed by extruding and / or cutting the inner joint surface of the inner joint member so that the convex portion is in close contact with the convex portion along the axial direction. A constant velocity universal joint comprising the concave-convex fitting structure and having an axial press-fitting load of the press-fitting greater than an axial sliding resistance of a joint internal component housed in an outer joint member.
外側継手部材と、この外側継手部材との間で角度変位を許容しながらトルクを伝達する内側継手部材とを備え、前記内側継手部材の軸孔にシャフトが嵌入され、内側継手部材とシャフトとは凹凸嵌合構造を介して一体連結された等速自在継手であって、
前記シャフトの軸孔嵌入部の外径面に軸方向に延びる凸部を設け、シャフトの軸孔嵌入部を内側継手部材の軸孔に圧入し、この圧入によって内側継手部材の内径面の一部を押し出し及び/又は切削して、内側継手部材の軸孔の内径面に前記凸部に密着嵌合する凹部を軸方向に沿って形成することにより、凸部と凹部との嵌合接触部位全域が密着する前記凹凸嵌合構造を構成し、かつ前記圧入の軸方向圧入荷重を、外側継手部材に内装される継手内部部品の軸方向摺動抵抗よりも大きくするとともに、前記継手内部部品に負荷される軸方向衝撃荷重よりも小さくしたことを特徴とする等速自在継手。
An outer joint member and an inner joint member that transmits torque while allowing angular displacement between the outer joint member, and a shaft is fitted into the shaft hole of the inner joint member. It is a constant velocity universal joint that is integrally connected through an uneven fitting structure,
A convex portion extending in the axial direction is provided on the outer diameter surface of the shaft hole insertion portion of the shaft, and the shaft hole insertion portion of the shaft is press-fitted into the shaft hole of the inner joint member, and this press-fitting causes a part of the inner diameter surface of the inner joint member. Is formed by extruding and / or cutting the inner joint surface of the inner joint member so that the convex portion is closely fitted to the convex portion along the axial direction. And the axial press-fitting load of the press-fitting is made larger than the axial sliding resistance of the joint internal component housed in the outer joint member, and the load is applied to the joint internal component. The constant velocity universal joint is characterized by being smaller than the axial impact load.
外側継手部材と内側継手部材との間で角度変位のみを許容する固定式であることを特徴とする請求項1に記載の等速自在継手。   The constant velocity universal joint according to claim 1, wherein the constant velocity universal joint is a fixed type that allows only an angular displacement between the outer joint member and the inner joint member. 外側継手部材と内側継手部材との間で角度変位及び軸方向変位を許容する摺動式であることを特徴とする請求項1〜請求項3のいずれか1項に記載の等速自在継手。   The constant velocity universal joint according to any one of claims 1 to 3, wherein the constant velocity universal joint is of a sliding type that allows angular displacement and axial displacement between the outer joint member and the inner joint member. シャフトの軸孔嵌入部の外径面に複数の前記凸部を周方向に沿って所定ピッチで配設し、凸部の頂点が描く円弧の直径を、内側継手部材の軸孔の内径よりも大きくしたことを特徴とする請求項1〜請求項5のいずれか1項に記載の等速自在継手。   A plurality of the convex portions are arranged on the outer diameter surface of the shaft hole insertion portion of the shaft at a predetermined pitch along the circumferential direction, and the diameter of the arc drawn by the vertex of the convex portion is larger than the inner diameter of the shaft hole of the inner joint member. The constant velocity universal joint according to any one of claims 1 to 5, wherein the constant velocity universal joint is increased. シャフトの軸孔嵌入部の外径面に複数の前記凸部を周方向に沿って所定ピッチで配設し、周方向に隣り合う凸部間に設けられる凹部の底が描く円弧の直径を内側継手部材の軸孔の内径よりも小さくしたことを特徴とする請求項1〜請求項6のいずれか1項に記載の等速自在継手。   A plurality of the convex portions are arranged on the outer diameter surface of the shaft hole insertion portion of the shaft at a predetermined pitch along the circumferential direction, and the diameter of the arc drawn by the bottom of the concave portion provided between the convex portions adjacent in the circumferential direction is set on the inner side. The constant velocity universal joint according to any one of claims 1 to 6, wherein the constant velocity universal joint is smaller than an inner diameter of a shaft hole of the joint member. 前記凸部の硬度を内側継手部材の軸孔の内径面の硬度よりも高く設定したことを特徴とする請求項1〜請求項7のいずれか1項に記載の等速自在継手。   The constant velocity universal joint according to any one of claims 1 to 7, wherein the hardness of the convex portion is set to be higher than the hardness of the inner diameter surface of the shaft hole of the inner joint member. 自動車のプロペラシャフト用等速自在継手に用いたことを特徴とする請求項1〜請求項8のいずれか1項に記載の等速自在継手。   The constant velocity universal joint according to any one of claims 1 to 8, wherein the constant velocity universal joint is used for a constant velocity universal joint for a propeller shaft of an automobile.
JP2010126979A 2010-06-02 2010-06-02 Constant velocity universal joint Pending JP2011252547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010126979A JP2011252547A (en) 2010-06-02 2010-06-02 Constant velocity universal joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010126979A JP2011252547A (en) 2010-06-02 2010-06-02 Constant velocity universal joint

Publications (1)

Publication Number Publication Date
JP2011252547A true JP2011252547A (en) 2011-12-15

Family

ID=45416631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010126979A Pending JP2011252547A (en) 2010-06-02 2010-06-02 Constant velocity universal joint

Country Status (1)

Country Link
JP (1) JP2011252547A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017082068A1 (en) * 2015-11-12 2017-05-18 Ntn株式会社 Sliding constant-velocity universal joint
CN107002770A (en) * 2014-10-20 2017-08-01 Gkn 动力传动系统有限公司 longitudinal shaft assembly for a motor vehicle
JP2017203486A (en) * 2016-05-11 2017-11-16 株式会社ジェイテクト Manufacturing method of outer ring of constant velocity joint
WO2019018777A1 (en) * 2017-07-21 2019-01-24 Dana Automative Systems Group, LLC Constant velocity joint with crash collapse feature
WO2024057748A1 (en) * 2022-09-12 2024-03-21 日立Astemo株式会社 Power transmission shaft and propeller shaft

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107002770A (en) * 2014-10-20 2017-08-01 Gkn 动力传动系统有限公司 longitudinal shaft assembly for a motor vehicle
WO2017082068A1 (en) * 2015-11-12 2017-05-18 Ntn株式会社 Sliding constant-velocity universal joint
JP2017089787A (en) * 2015-11-12 2017-05-25 Ntn株式会社 Slide-type constant velocity universal joint
JP2017203486A (en) * 2016-05-11 2017-11-16 株式会社ジェイテクト Manufacturing method of outer ring of constant velocity joint
CN107366689A (en) * 2016-05-11 2017-11-21 株式会社捷太格特 The manufacture method of the outer ring of constant velocity cardan joint
US11033953B2 (en) 2016-05-11 2021-06-15 Jtekt Corporation Method for manufacturing outer ring of constant velocity joint
WO2019018777A1 (en) * 2017-07-21 2019-01-24 Dana Automative Systems Group, LLC Constant velocity joint with crash collapse feature
US11428273B2 (en) 2017-07-21 2022-08-30 Dana Automotive Systems Group, Llc Constant velocity joint with crash collapse feature
WO2024057748A1 (en) * 2022-09-12 2024-03-21 日立Astemo株式会社 Power transmission shaft and propeller shaft

Similar Documents

Publication Publication Date Title
EP1375943B1 (en) Rolling ball slip joint formed from two tubular members
WO2010090053A1 (en) Constant velocity universal joint
JP2011252547A (en) Constant velocity universal joint
CN102439326B (en) Drive shaft and method for assembling drive shaft
KR20040027383A (en) Fixed type constant velocity joint and method of producing the same
JP2008115943A (en) Constant velocity universal joint structure
JP2018009583A (en) Power transmission shaft
WO2018061611A1 (en) Slidable constant speed universal joint
JP2018112290A (en) Power transmission device
JP2011220351A (en) Power transmission shaft
JP2008286308A (en) Constant velocity universal joint
JP6486694B2 (en) Constant velocity universal joint
JP2007225012A (en) Wheel bearing device
JP2009074594A (en) Sliding type constant velocity universal joint
JP5349762B2 (en) Constant velocity universal joint
JP4422594B2 (en) Shock absorption propeller shaft for automobile
JP2011241922A (en) Outside joint member of constant motion universal joint
JP2011106566A (en) Shaft structure for power transmission, intermediate shaft, and outside joint member
JP2008275175A (en) Fixed type constant velocity universal joint
JP2007064266A (en) Hollow shaft
JP2010031910A (en) Outside joint member of constant velocity universal joint and constant velocity universal joint
JP2020148283A (en) Outside joint member for constant velocity universal joint
JP2008296695A (en) Driving wheel bearing device
JP2007046713A (en) Fixed constant velocity universal joint
JP2015137696A (en) constant velocity joint assembly