Nothing Special   »   [go: up one dir, main page]

JP2011130534A - Power supply device for vehicle - Google Patents

Power supply device for vehicle Download PDF

Info

Publication number
JP2011130534A
JP2011130534A JP2009284453A JP2009284453A JP2011130534A JP 2011130534 A JP2011130534 A JP 2011130534A JP 2009284453 A JP2009284453 A JP 2009284453A JP 2009284453 A JP2009284453 A JP 2009284453A JP 2011130534 A JP2011130534 A JP 2011130534A
Authority
JP
Japan
Prior art keywords
current
electric double
layer capacitor
double layer
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009284453A
Other languages
Japanese (ja)
Other versions
JP5503957B2 (en
Inventor
Yosuke Aoyama
陽介 青山
Kunihiko Hikiri
邦彦 肥喜里
Tatsuji Miyata
達司 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UD Trucks Corp
Original Assignee
UD Trucks Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UD Trucks Corp filed Critical UD Trucks Corp
Priority to JP2009284453A priority Critical patent/JP5503957B2/en
Publication of JP2011130534A publication Critical patent/JP2011130534A/en
Application granted granted Critical
Publication of JP5503957B2 publication Critical patent/JP5503957B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To miniaturize an electric double-layer capacitor of a power supply device for a vehicle, which includes a secondary battery and the electric double-layer capacitor. <P>SOLUTION: The electric double-layer capacitor includes the secondary battery 10 which feeds power to a load 1 mounted to a vehicle, the electric double-layer capacitor 20 connected to the secondary battery 10 in parallel therewith, a power converter 30 which is interposed between the secondary battery 10 and the electric double-layer capacitor 20, and switched in both directions so as to be chargeable and dischargeable between the secondary battery 10 and the electric double-layer capacitor 20, and a control unit 40 which outputs a charging/discharging switching command of the electric double-layer capacitor 20 to the power converter 30 on the basis of a load current of the load 1 and a capacitor current of the electric double-layer capacitor 20. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、車両に電源を供給する車両用電源装置に関するものである。   The present invention relates to a vehicle power supply device that supplies power to a vehicle.

近年、電気自動車やハイブリッド自動車などの車両用電源装置として、鉛蓄電池やニッケル水素電池などの二次電池に加え、電気二重層キャパシタが併用されている。二次電池は、エネルギ容量は大きいがエネルギ密度は低いという特性を有するのに対し、電気二重層キャパシタは、エネルギ容量は小さいがエネルギ密度は高いという相対する特性を有している。   In recent years, electric double layer capacitors have been used in combination with secondary batteries such as lead storage batteries and nickel metal hydride batteries as power supply devices for vehicles such as electric vehicles and hybrid vehicles. The secondary battery has the characteristic that the energy capacity is large but the energy density is low, whereas the electric double layer capacitor has the opposite characteristic that the energy density is small but the energy density is high.

特許文献1には、電気二重層キャパシタと二次電池とを備え、電気二重層キャパシタと二次電池との間で相互に充放電が可能なハイブリッド車両の蓄電装置が開示されている。この蓄電装置では、電気二重層キャパシタから負荷に電気を供給し、二次電池は電気二重層キャパシタを充電するのに用いられている。   Patent Document 1 discloses a power storage device for a hybrid vehicle that includes an electric double layer capacitor and a secondary battery and is capable of charging and discharging between the electric double layer capacitor and the secondary battery. In this power storage device, electricity is supplied from an electric double layer capacitor to a load, and a secondary battery is used to charge the electric double layer capacitor.

特開2005−160154号公報Japanese Patent Laid-Open No. 2005-160154

しかしながら、特許文献1のような蓄電装置では、電気二重層キャパシタから負荷に電力が直接供給されるため、エネルギ容量の小さな電気二重層キャパシタのセルを直列に多数接続し、負荷を駆動可能な電圧を得ている。そのため、高い電圧を維持するために、電気二重層キャパシタが大型化するおそれがあった。   However, in a power storage device such as Patent Document 1, since power is directly supplied from an electric double layer capacitor to a load, a large number of electric double layer capacitor cells having a small energy capacity are connected in series to drive the load. Have gained. Therefore, the electric double layer capacitor may be increased in size in order to maintain a high voltage.

そこで、本発明では、二次電池と電気二重層キャパシタとを備える車両用電源装置の電気二重層キャパシタを小型化することを目的とする。   Therefore, an object of the present invention is to reduce the size of an electric double layer capacitor of a vehicle power supply device including a secondary battery and an electric double layer capacitor.

本発明は、車両に搭載された負荷に電力を供給する二次電池と、前記二次電池に並列に接続される電気二重層キャパシタと、前記二次電池と前記電気二重層キャパシタとの間に介設され、前記二次電池と前記電気二重層キャパシタとの間で双方向に充放電可能に切り換えるパワーコンバータと、前記負荷の負荷電流と前記電気二重層キャパシタのキャパシタ電流とに基づき、前記電気二重層キャパシタの充放電のスイッチング指令を前記パワーコンバータに出力する制御部と、を備えることを特徴とする。   The present invention provides a secondary battery for supplying power to a load mounted on a vehicle, an electric double layer capacitor connected in parallel to the secondary battery, and between the secondary battery and the electric double layer capacitor. A power converter that is interposed and switches between the secondary battery and the electric double layer capacitor so as to be able to charge and discharge bidirectionally, and based on the load current of the load and the capacitor current of the electric double layer capacitor, And a control unit that outputs a switching command for charging and discharging the double layer capacitor to the power converter.

本発明によれば、負荷に電流を供給する二次電池と並列に電気二重層キャパシタがパワーコンバータを介して接続される。電気二重層キャパシタの端子電圧は、パワーコンバータで昇圧されて負荷に供給されるため、直列に複数接続して電圧を高める必要は無く、電気二重層キャパシタを小型化することが可能である。   According to the present invention, the electric double layer capacitor is connected via the power converter in parallel with the secondary battery that supplies current to the load. Since the terminal voltage of the electric double layer capacitor is boosted by the power converter and supplied to the load, there is no need to increase the voltage by connecting multiple terminals in series, and the electric double layer capacitor can be downsized.

なお、二次電池は、エネルギ容量が大きいため、所望の電圧を得るために直列に複数接続されず、単独で数百ボルトの高い電圧を得ることが可能である。よって、負荷を駆動可能な電圧を得るために二次電池が直列に接続されて大型化することは抑制される。   Since the secondary battery has a large energy capacity, a plurality of secondary batteries are not connected in series to obtain a desired voltage, and a high voltage of several hundred volts can be obtained independently. Therefore, it is suppressed that a secondary battery is connected in series and enlarged in order to obtain the voltage which can drive a load.

本発明の実施の形態に係る車両用電源装置の構成図である。It is a lineblock diagram of the power supply device for vehicles concerning an embodiment of the invention. 車両用電源装置における制御部の構成図である。It is a block diagram of the control part in the power supply device for vehicles. 車両用電源装置の充放電電流の変化を示す図である。It is a figure which shows the change of the charging / discharging electric current of the power supply device for vehicles.

以下では、図面を参照しながら本発明の実施の形態に係る車両用電源装置100について説明する。   Below, the power supply device 100 for vehicles which concerns on embodiment of this invention is demonstrated, referring drawings.

まず、図1を参照しながら、車両用電源装置100の構成について説明する。   First, the configuration of the vehicle power supply device 100 will be described with reference to FIG.

車両用電源装置100は、電気自動車やハイブリッド自動車などの車両(図示省略)に電源を供給する装置である。車両用電源装置100は、車両の駆動用モータ(図示省略)を駆動するために、高電圧かつ大電流を供給する必要がある。   The vehicle power supply device 100 is a device that supplies power to a vehicle (not shown) such as an electric vehicle or a hybrid vehicle. The vehicle power supply device 100 needs to supply a high voltage and a large current in order to drive a vehicle drive motor (not shown).

車両用電源装置100は、負荷1に電力を供給する二次電池10と、二次電池10に並列に接続される電気二重層キャパシタ20と、二次電池10と電気二重層キャパシタ20との間に介設されるパワーコンバータ30と、パワーコンバータ30の制御を行う制御部40とを備える。   The vehicle power supply device 100 includes a secondary battery 10 that supplies power to a load 1, an electric double layer capacitor 20 that is connected in parallel to the secondary battery 10, and between the secondary battery 10 and the electric double layer capacitor 20. And a control unit 40 that controls the power converter 30.

本明細書では、負荷1が発生する電流及び負荷1に流れる電流を負荷電流といい、二次電池10が発生する電流及び二次電池10に流れる電流をバッテリ電流といい、電気二重層キャパシタ20が発生する電流及び電気二重層キャパシタ20に流れる電流をキャパシタ電流という。   In this specification, the current generated by the load 1 and the current flowing through the load 1 are referred to as load current, the current generated by the secondary battery 10 and the current flowing through the secondary battery 10 are referred to as battery current, and the electric double layer capacitor 20 And the current flowing through the electric double layer capacitor 20 are referred to as capacitor current.

負荷1は、駆動用モータのような車両に搭載された電装装置である。負荷1が駆動用モータである場合、駆動電圧は例えば200V程度であり、車両に搭載される他の補器類と比べて駆動電圧が高い。駆動用モータは、車両の加速時等には電力の供給を受けて車両の駆動力を発生し、減速時等には走行エネルギを回生してジェネレータとして発電をする。負荷1には、負荷電流の大きさを検知する負荷電流センサ2が直列に接続される。   The load 1 is an electrical equipment mounted on a vehicle such as a drive motor. When the load 1 is a driving motor, the driving voltage is about 200 V, for example, and the driving voltage is higher than other auxiliary devices mounted on the vehicle. The driving motor receives electric power to generate a driving force of the vehicle when the vehicle is accelerated or the like, and regenerates traveling energy to generate power as a generator when the vehicle is decelerated or the like. A load current sensor 2 for detecting the magnitude of the load current is connected to the load 1 in series.

二次電池10は、充電可能な化学電池である。二次電池10の電圧は、負荷1を駆動するのに必要な電圧に調整されており、負荷1が駆動用モータである場合には、例えば200V程度に調整されている。二次電池10は、電気二重層キャパシタ20と比べて、エネルギ容量は大きいが、エネルギ密度が低いという特性を有する。よって、二次電池10は、一定の電流を長時間供給し続ける性能が電気二重層キャパシタ20より優れている。   The secondary battery 10 is a rechargeable chemical battery. The voltage of the secondary battery 10 is adjusted to a voltage necessary for driving the load 1. When the load 1 is a driving motor, the voltage is adjusted to about 200V, for example. The secondary battery 10 has a characteristic that the energy capacity is large but the energy density is low as compared with the electric double layer capacitor 20. Therefore, the secondary battery 10 is superior to the electric double layer capacitor 20 in the ability to continue supplying a constant current for a long time.

二次電池10の端子電圧は、エネルギ容量が空になるまで殆ど変化せずに略一定の電圧を維持する。二次電池10は、化学反応を利用して電気を蓄える化学電池であり、充放電を高い頻度で行うと劣化しやすい。   The terminal voltage of the secondary battery 10 is maintained at a substantially constant voltage with almost no change until the energy capacity becomes empty. The secondary battery 10 is a chemical battery that stores electricity using a chemical reaction, and is easily deteriorated when charging and discharging are performed at a high frequency.

電気二重層キャパシタ20は、陽極と陰極との二つの電極の間の電解質のイオンが電気二重層を構成して電気を蓄えるキャパシタセルが複数接続されて積層されたもので、直列に複数接続されて所望の電圧に調整され、並列に複数接続されて所望のエネルギ容量に調整される。   The electric double layer capacitor 20 is formed by stacking a plurality of capacitor cells in which electrolyte ions between two electrodes, an anode and a cathode, form an electric double layer and store electricity, and are connected in series. Thus, the voltage is adjusted to a desired voltage, and a plurality of them are connected in parallel to adjust to a desired energy capacity.

電気二重層キャパシタ20は、二次電池10と比べて、エネルギ容量は小さいがエネルギ密度が高いという特性を有する。よって、電気二重層キャパシタ20は、急激に大量の電流を充放電する性能が二次電池10より優れている。   The electric double layer capacitor 20 has a characteristic that the energy density is small but the energy density is high compared to the secondary battery 10. Therefore, the electric double layer capacitor 20 is superior to the secondary battery 10 in the ability to rapidly charge and discharge a large amount of current.

電気二重層キャパシタ20の端子電圧は、貯蔵エネルギの平方根に比例して変動する。電気二重層キャパシタ20は、電気を電子のまま蓄えるものであり、充放電を繰り返しても殆ど劣化しない。電気二重層キャパシタ20の寿命は保持電圧に依存することが知られており、保持電圧が高いほど寿命が短くなる。電気二重層キャパシタ20の各々のキャパシタセルの耐電圧は約3V程度である。よって、電気二重層キャパシタ20が200Vの電圧を得るためには、数十個のキャパシタセルを直列に接続する必要がある。   The terminal voltage of the electric double layer capacitor 20 varies in proportion to the square root of the stored energy. The electric double layer capacitor 20 stores electricity as electrons, and hardly deteriorates even when charging and discharging are repeated. It is known that the life of the electric double layer capacitor 20 depends on the holding voltage. The higher the holding voltage, the shorter the life. The withstand voltage of each capacitor cell of the electric double layer capacitor 20 is about 3V. Therefore, in order for the electric double layer capacitor 20 to obtain a voltage of 200 V, it is necessary to connect several tens of capacitor cells in series.

電気二重層キャパシタ20は、端子電圧が第1の電圧より高くなると充電を停止し、かつ、端子電圧が第2の電圧より低くなると放電を停止する保護回路(図示省略)を備える。   The electric double layer capacitor 20 includes a protection circuit (not shown) that stops charging when the terminal voltage becomes higher than the first voltage and stops discharging when the terminal voltage becomes lower than the second voltage.

第1の電圧は、電気二重層キャパシタ20がフル充電であるときの高い電圧である。保護回路が設けられることによって、電気二重層キャパシタ20は、フル充電状態から更に充電を行って過充電状態となることが防止され、過充電によって寿命が短くなることが防止される。   The first voltage is a high voltage when the electric double layer capacitor 20 is fully charged. By providing the protection circuit, the electric double layer capacitor 20 is further charged from the fully charged state to be prevented from being overcharged, and the life is prevented from being shortened due to overcharging.

第2の電圧は、電気二重層キャパシタ20が負荷1に電力を供給できないような低い電圧である。つまり、第2の電圧は、第1の電圧より低く設定される。保護回路が設けられることによって、電気二重層キャパシタ20のエネルギ容量が空の場合には、二次電池10から負荷1に全ての電力が供給される。   The second voltage is a low voltage at which the electric double layer capacitor 20 cannot supply power to the load 1. That is, the second voltage is set lower than the first voltage. By providing the protection circuit, all electric power is supplied from the secondary battery 10 to the load 1 when the energy capacity of the electric double layer capacitor 20 is empty.

電気二重層キャパシタ20には、キャパシタ電流を検出するためのキャパシタ電流センサ21が直列に設けられる。   The electric double layer capacitor 20 is provided with a capacitor current sensor 21 for detecting a capacitor current in series.

パワーコンバータ30は、二次電池10と電気二重層キャパシタ20との間で双方向に充放電可能に切り換える双方向DC/DCコンバータである。   The power converter 30 is a bidirectional DC / DC converter that switches between the secondary battery 10 and the electric double layer capacitor 20 so as to be chargeable / dischargeable in both directions.

電気二重層キャパシタ20から負荷1に電力を供給する場合、及び電気二重層キャパシタ20が二次電池10を充電する場合には、パワーコンバータ30は、電気二重層キャパシタ20から供給される電力を二次電池10と同等の電圧に昇圧する。これにより、貯蔵エネルギの量によって電気二重層キャパシタ20の端子電圧が変動した場合でも、電気二重層キャパシタ20の端子電圧に関わらず、電気二重層キャパシタ20の電力を一定の電圧に昇圧して負荷1に供給することが可能である。   When electric power is supplied from the electric double layer capacitor 20 to the load 1 and when the electric double layer capacitor 20 charges the secondary battery 10, the power converter 30 supplies electric power supplied from the electric double layer capacitor 20 to The voltage is boosted to a voltage equivalent to that of the secondary battery 10. As a result, even when the terminal voltage of the electric double layer capacitor 20 varies depending on the amount of stored energy, the electric double layer capacitor 20 is boosted to a certain voltage regardless of the terminal voltage of the electric double layer capacitor 20 to increase the load. 1 can be supplied.

一方、負荷1又は二次電池10が電気二重層キャパシタ20を充電する場合には、パワーコンバータ30は、負荷1又は二次電池10から供給される電力を電気二重層キャパシタ20の耐電圧より低い電圧に降圧する。これにより、電気二重層キャパシタ20に耐電圧を超えるまで充電されることが防止される。   On the other hand, when the load 1 or the secondary battery 10 charges the electric double layer capacitor 20, the power converter 30 lowers the power supplied from the load 1 or the secondary battery 10 than the withstand voltage of the electric double layer capacitor 20. Step down to voltage. This prevents the electric double layer capacitor 20 from being charged until the withstand voltage is exceeded.

一般に、電気二重層キャパシタ20は、直列に多数接続されて高電圧(例えば200V)の端子電圧に調整される。電気二重層キャパシタ20に蓄えられる電気エネルギは、大半が高電圧を維持するために必要な電気エネルギであるため、負荷1を駆動するのに利用できる電気エネルギはほんの一部に過ぎない。   In general, a large number of electric double layer capacitors 20 are connected in series and adjusted to a high voltage (for example, 200 V) terminal voltage. Since most of the electric energy stored in the electric double layer capacitor 20 is necessary to maintain a high voltage, only a part of the electric energy can be used to drive the load 1.

これに対して、車両用電源装置100では、パワーコンバータ30を介して電気二重層キャパシタ20を二次電池10に並列に接続しているため、電気二重層キャパシタ20の出力電圧はパワーコンバータ30で昇圧される。よって、電気二重層キャパシタ20のセルを直列に複数接続して高電圧に調整しておく必要は無いため、電気二重層キャパシタ20の小型化が可能である。   On the other hand, in the vehicle power supply device 100, since the electric double layer capacitor 20 is connected in parallel to the secondary battery 10 via the power converter 30, the output voltage of the electric double layer capacitor 20 is the power converter 30. Boosted. Therefore, since it is not necessary to connect a plurality of cells of the electric double layer capacitor 20 in series and adjust the voltage to a high voltage, the electric double layer capacitor 20 can be downsized.

なお、二次電池10は、所望の電圧を得るために直列に複数接続されるものではなく、単独で数百ボルトの電圧を得ることが可能であるため、電気二重層キャパシタ20が小型化されたのに伴って二次電池10が大型化することは抑制される。   Note that the secondary battery 10 is not connected in series in order to obtain a desired voltage, but can obtain a voltage of several hundred volts independently, so that the electric double layer capacitor 20 is downsized. As a result, the secondary battery 10 is prevented from being enlarged.

また、電気二重層キャパシタ20から供給される電力は、パワーコンバータ30で昇圧されるため、端子電圧が下がってもそのまま使用可能でき、電気二重層キャパシタ20のエネルギ容量が空になるまで使用できる。よって、漏れ電流による損失を低減でき、電気二重層キャパシタ20の寿命を延ばすことができる。   Further, since the electric power supplied from the electric double layer capacitor 20 is boosted by the power converter 30, it can be used as it is even if the terminal voltage is lowered, and can be used until the energy capacity of the electric double layer capacitor 20 becomes empty. Therefore, loss due to leakage current can be reduced, and the life of the electric double layer capacitor 20 can be extended.

車両用電源装置100は、二次電池10にパワーコンバータ30を介して電気二重層キャパシタ20を接続したものであるため、従来から用いられているような、二次電池10が単独で負荷1に電力を供給するシステムに、パワーコンバータ30と電気二重層キャパシタ20とを外装することによっても得ることができる。   Since the vehicle power supply device 100 is obtained by connecting the electric double layer capacitor 20 to the secondary battery 10 via the power converter 30, the secondary battery 10, which has been conventionally used, is used alone as the load 1. It can also be obtained by mounting the power converter 30 and the electric double layer capacitor 20 on a system for supplying electric power.

次に、図2を参照しながら、制御部40の構成について説明する。   Next, the configuration of the control unit 40 will be described with reference to FIG.

制御部40は、CPU(中央演算処理装置)、ROM(リードオンリメモリ)、RAM(ランダムアクセスメモリ)、及びI/Oインターフェース(入出力インターフェース)を備えたマイクロコンピュータで構成される。RAMはCPUの処理におけるデータを記憶し、ROMはCPUの制御プログラム等を予め記憶し、I/Oインターフェースは接続された機器との情報の入出力に使用される。CPUやRAMなどをROMに格納されたプログラムに従って動作させることによって車両用電源装置100の制御が実現される。   The control unit 40 includes a microcomputer having a CPU (Central Processing Unit), ROM (Read Only Memory), RAM (Random Access Memory), and I / O interface (input / output interface). The RAM stores data in the processing of the CPU, the ROM stores a control program of the CPU in advance, and the I / O interface is used for input / output of information with the connected device. Control of the power supply device 100 for vehicles is implement | achieved by operating CPU, RAM, etc. according to the program stored in ROM.

制御部40は、負荷電流とキャパシタ電流とに基づき、電気二重層キャパシタ20の充放電の切り換え指令をパワーコンバータ30に出力する。制御部40は、負荷電流の一次遅れ要素でありバッテリ電流の指令値であるバッテリ電流指令値を導出するローパスフィルタ41と、負荷電流とバッテリ電流指令値とを比較した差分でありキャパシタ電流の指令値であるキャパシタ電流指令値を算出する比較部42と、パワーコンバータ30にスイッチング指令を出力する電流制御部43とを備える。   The control unit 40 outputs a charge / discharge switching command for the electric double layer capacitor 20 to the power converter 30 based on the load current and the capacitor current. The control unit 40 is a difference obtained by comparing the load current and the battery current command value with a low-pass filter 41 that derives a battery current command value that is a primary delay element of the load current and is a command value of the battery current. A comparison unit 42 that calculates a capacitor current command value that is a value and a current control unit 43 that outputs a switching command to the power converter 30 are provided.

ローパスフィルタ41は、負荷電流センサ2で検出した負荷電流をもとに、設定された周波数以上の高周波の周波数をカットし、方形波状のステップ入力に対して一次遅れ要素の出力を得るものである。よって、負荷電流が方形波状に変化した場合、方形波状の入力がローパスフィルタ41によって鈍らされて一次遅れ要素となり、バッテリ電流指令値として出力される。   The low-pass filter 41 cuts a frequency having a frequency higher than a set frequency based on the load current detected by the load current sensor 2 and obtains an output of a first-order lag element with respect to a square-wave step input. . Therefore, when the load current changes to a square wave, the square wave input is dulled by the low-pass filter 41 to become a first-order lag element, and is output as a battery current command value.

ローパスフィルタ41は、制御部40内のソフトウェア処理により制御されるが、制御部40の外部にローパスフィルタを設けて同様の制御を行うことも可能である。   The low-pass filter 41 is controlled by software processing in the control unit 40, but it is also possible to perform the same control by providing a low-pass filter outside the control unit 40.

比較部42には、負荷電流センサ2で検出した実際の負荷電流値と、ローパスフィルタ41から出力されたバッテリ電流指令値とが入力される。比較部42は、負荷電流からバッテリ電流指令値を減じて、これらの差であるキャパシタ電流指令値を算出する。   The actual load current value detected by the load current sensor 2 and the battery current command value output from the low-pass filter 41 are input to the comparison unit 42. The comparison unit 42 subtracts the battery current command value from the load current to calculate a capacitor current command value that is the difference between them.

電流制御部43には、キャパシタ電流センサ21で検出した実際のキャパシタ電流と、比較部42から出力されたキャパシタ電流指令値とが入力される。電流制御部43は、実際のキャパシタ電流と比較部42で演算されたキャパシタ電流指令値とを比較し、実際のキャパシタ電流がキャパシタ電流指令値になるようにパワーコンバータ30にスイッチング指令を出力する。スイッチング指令によって、パワーコンバータ30は、電気二重層キャパシタ20から負荷1に電力を供給するように、負荷1が電気二重層キャパシタ20を充電するように、又は二次電池10と電気二重層キャパシタ20との間で双方向に電力の授受を行うように切り換える。   The current control unit 43 receives the actual capacitor current detected by the capacitor current sensor 21 and the capacitor current command value output from the comparison unit 42. Current control unit 43 compares the actual capacitor current with the capacitor current command value calculated by comparison unit 42, and outputs a switching command to power converter 30 so that the actual capacitor current becomes the capacitor current command value. Depending on the switching command, the power converter 30 supplies power to the load 1 from the electric double layer capacitor 20, so that the load 1 charges the electric double layer capacitor 20, or the secondary battery 10 and the electric double layer capacitor 20 Switching to and from the two-way power.

ここで、バッテリ電流指令値は、キャパシタ電流指令値を算出するための値であるため、二次電池10のバッテリ電流は、バッテリ電流指令値に基づいて制御されない。しかしながら、バッテリ電流とキャパシタ電流との和が負荷電流であるため、負荷電流とキャパシタ電流とによってバッテリ電流は決定される。即ち、負荷電流に基づいてキャパシタ電流が制御されれば、同時にバッテリ電流も制御されることとなる。よって、電気二重層キャパシタ20の実際のキャパシタ電流がキャパシタ電流指令値になるようにパワーコンバータ30が制御されたとき、二次電池10の電流はバッテリ電流指令値になる。   Here, since the battery current command value is a value for calculating the capacitor current command value, the battery current of the secondary battery 10 is not controlled based on the battery current command value. However, since the sum of the battery current and the capacitor current is the load current, the battery current is determined by the load current and the capacitor current. That is, if the capacitor current is controlled based on the load current, the battery current is also controlled at the same time. Therefore, when the power converter 30 is controlled so that the actual capacitor current of the electric double layer capacitor 20 becomes the capacitor current command value, the current of the secondary battery 10 becomes the battery current command value.

以下では、図3を参照しながら、車両用電源装置100の作用について説明する。   Below, the effect | action of the power supply device 100 for vehicles is demonstrated, referring FIG.

図3では、横軸が時間、縦軸が充放電電流の大きさであり、負荷電流の変化を細実線で示し、バッテリ電流の変化を太実線で示し、キャパシタ電流の変化を破線で示している。図3では、キャパシタ電流及びバッテリ電流を模式的に直線で示しているが、実際には、負荷電流の一次遅れ要素になるため直線的には変化しない。   In FIG. 3, the horizontal axis represents time, the vertical axis represents the charge / discharge current, the load current change is indicated by a thin solid line, the battery current change is indicated by a thick solid line, and the capacitor current change is indicated by a broken line. Yes. In FIG. 3, the capacitor current and the battery current are schematically shown as straight lines.

図3の時間Aでは、負荷1から負荷電流として、方形波状の充電電流が入力される。これは、電気自動車やハイブリッド自動車などで、回生ブレーキが働いて駆動用モータがジェネレータになり発電を行うような場合である。   At time A in FIG. 3, a square-wave charging current is input from the load 1 as a load current. This is the case in an electric vehicle or a hybrid vehicle in which a regenerative brake works and the drive motor becomes a generator to generate electricity.

二次電池10に充電されるバッテリ電流の電流値は、負荷電流の一次遅れ要素であるため、充電開始時には零であるが、時間の経過とともに大きくなり、やがて負荷電流と等しくなる。一方、電気二重層キャパシタ20に充電されるキャパシタ電流の電流値は、制御部40によって負荷電流からバッテリ電流を減じた差分に調整されるため、充電開始と同時に最大値まで上昇し、バッテリ電流が大きくなるにつれて相対的に小さくなり、やがて零になる。つまり、エネルギ密度が高く大電流の充放電が可能な電気二重層キャパシタ20を急激に充電し、エネルギ容量の大きな二次電池10をゆっくりと充電している。   Since the current value of the battery current charged in the secondary battery 10 is a primary delay element of the load current, it is zero at the start of charging, but becomes larger with the passage of time and eventually becomes equal to the load current. On the other hand, the current value of the capacitor current charged in the electric double layer capacitor 20 is adjusted to the difference obtained by subtracting the battery current from the load current by the control unit 40. As it gets larger, it becomes relatively smaller and eventually becomes zero. That is, the electric double layer capacitor 20 having a high energy density and capable of charging / discharging with a large current is rapidly charged, and the secondary battery 10 having a large energy capacity is slowly charged.

ここで、電気二重層キャパシタ20は、内部抵抗が小さい特性を有する。よって、充電開始と同時に電気二重層キャパシタ20に大電力が急激に充電されることで、エネルギ回収率を向上することができる。   Here, the electric double layer capacitor 20 has a characteristic that the internal resistance is small. Therefore, the energy recovery rate can be improved by rapidly charging the electric double layer capacitor 20 with a large amount of power simultaneously with the start of charging.

図3の時間Bでは、方形波状の負荷電流が零になり、負荷1は、電気二重層キャパシタ20及び二次電池10を充電しなくなる。   At time B in FIG. 3, the square-wave load current becomes zero, and the load 1 does not charge the electric double layer capacitor 20 and the secondary battery 10.

バッテリ電流の電流値は、負荷電流の一次遅れ要素であるため、負荷電流が零になると同時に零になることはなく、徐々に小さくなってやがて零になる。このとき、負荷1は充電電流を発生していないため、負荷電流が零になった後には、電気二重層キャパシタ20がパワーコンバータ30を介して二次電池10に電力を供給し、二次電池10を充電している。   Since the current value of the battery current is a first-order lag element of the load current, it does not become zero at the same time as the load current becomes zero, but gradually becomes smaller and eventually becomes zero. At this time, since the load 1 does not generate a charging current, the electric double layer capacitor 20 supplies power to the secondary battery 10 via the power converter 30 after the load current becomes zero, and the secondary battery 10 is charging.

図3の時間Cでは、負荷1に方形波状の電流が出力される。これは、電気自動車やハイブリッド自動車などで、駆動用モータが駆動されたような場合である。   At time C in FIG. 3, a square wave current is output to the load 1. This is a case where the drive motor is driven in an electric vehicle or a hybrid vehicle.

二次電池10から放電されるバッテリ電流の電流値は、負荷電流の一次遅れ要素であるため、放電開始時には零であるが、時間の経過とともに大きくなり、やがて負荷電流と等しくなる。一方、電気二重層キャパシタ20から放電されるキャパシタ電流の電流値は、制御部40によって負荷電流からバッテリ電流を減じた差分に調整されるため、放電開始と同時に最大値まで上昇し、バッテリ電流が大きくなるにつれて相対的に小さくなり、やがて零になる。つまり、エネルギ密度が高く大電流の充放電が可能な電気二重層キャパシタ20から急激に放電し、エネルギ容量の大きな二次電池10からゆっくりと放電している。   Since the current value of the battery current discharged from the secondary battery 10 is a primary delay element of the load current, it is zero at the start of discharge, but becomes larger with the passage of time and eventually becomes equal to the load current. On the other hand, the current value of the capacitor current discharged from the electric double layer capacitor 20 is adjusted to the difference obtained by subtracting the battery current from the load current by the control unit 40. As it gets larger, it becomes relatively smaller and eventually becomes zero. That is, the electric double layer capacitor 20 having a high energy density and capable of charging / discharging a large current is rapidly discharged, and the secondary battery 10 having a large energy capacity is slowly discharged.

図3の時間Dでは、方形波状の負荷電流が零になり、電気二重層キャパシタ20及び二次電池10から負荷1に放電されなくなる。   At time D in FIG. 3, the square-wave load current becomes zero, and the electric double layer capacitor 20 and the secondary battery 10 are not discharged to the load 1.

バッテリ電流の電流値は、負荷電流の一次遅れ要素であるため、負荷電流が零になると同時に零になることはなく、徐々に小さくなってやがて零になる。負荷1は電力を消費していないため、負荷電流が零になった後には、二次電池10がパワーコンバータ30を介して電気二重層キャパシタ20に電力を供給し、電気二重層キャパシタ20を充電している。   Since the current value of the battery current is a first-order lag element of the load current, it does not become zero at the same time as the load current becomes zero, but gradually becomes smaller and eventually becomes zero. Since the load 1 does not consume power, the secondary battery 10 supplies power to the electric double layer capacitor 20 via the power converter 30 and charges the electric double layer capacitor 20 after the load current becomes zero. is doing.

以上のように、負荷1が電力を発生する充電時及び負荷1が電気エネルギを消費する放電時の両方で、過渡分の電力を電気二重層キャパシタ20が負担し、定常分の電力を二次電池10が負担している。電気二重層キャパシタ20は大電流の急激な充放電の性能に優れており、二次電池10は電気容量が大きいという特性を有する。よって、車両用電源装置100では、電気二重層キャパシタ20及び二次電池10のそれぞれの特性を活かしている。   As described above, the electric double layer capacitor 20 bears the transient power at both the charging time when the load 1 generates power and the discharging time when the load 1 consumes electric energy, and the secondary power is supplied as the secondary power. The battery 10 bears. The electric double layer capacitor 20 is excellent in the performance of rapid charge and discharge with a large current, and the secondary battery 10 has a characteristic that the electric capacity is large. Therefore, in the vehicle power supply device 100, the characteristics of the electric double layer capacitor 20 and the secondary battery 10 are utilized.

また、二次電池10の充放電電流は緩やかに変化するため、二次電池10のエネルギスループットを抑え、二次電池10の寿命を延ばすことができる。   Moreover, since the charging / discharging current of the secondary battery 10 changes gradually, the energy throughput of the secondary battery 10 can be suppressed and the life of the secondary battery 10 can be extended.

以上の実施の形態によれば、以下の効果を奏する。   According to the above embodiment, the following effects are produced.

車両用電源装置100では、負荷1に電流を供給する二次電池10と並列に電気二重層キャパシタ20がパワーコンバータ30を介して接続される。電気二重層キャパシタ20の端子電圧は、パワーコンバータ30で昇圧されて負荷1に供給されるため、直列に複数接続して電圧を高める必要は無く、電気二重層キャパシタ20を小型化することが可能である。   In vehicle power supply device 100, electric double layer capacitor 20 is connected via power converter 30 in parallel with secondary battery 10 that supplies current to load 1. Since the terminal voltage of the electric double layer capacitor 20 is boosted by the power converter 30 and supplied to the load 1, it is not necessary to increase the voltage by connecting multiple terminals in series, and the electric double layer capacitor 20 can be downsized. It is.

なお、二次電池10は、所望の電圧を得るために直列に複数接続されるものではなく、単独で数百ボルトの電圧を得ることが可能であるため、電気二重層キャパシタ20が小型化されたのに伴って二次電池10が大型化することは抑制される。   Note that the secondary battery 10 is not connected in series in order to obtain a desired voltage, but can obtain a voltage of several hundred volts independently, so that the electric double layer capacitor 20 is downsized. As a result, the secondary battery 10 is prevented from being enlarged.

本発明は上記の実施の形態に限定されずに、その技術的な思想の範囲内において種々の変更がなしうることは明白である。   The present invention is not limited to the above-described embodiment, and it is obvious that various modifications can be made within the scope of the technical idea.

本発明に係る車両用電源装置は、電気自動車やハイブリッド自動車のような車両の電源装置として利用することができる。   The vehicle power supply device according to the present invention can be used as a power supply device for a vehicle such as an electric vehicle or a hybrid vehicle.

100 車両用電源装置
1 負荷
10 二次電池
20 電気二重層キャパシタ
30 パワーコンバータ
40 制御部
41 ローパスフィルタ
42 比較部
43 電流制御部
DESCRIPTION OF SYMBOLS 100 Vehicle power supply device 1 Load 10 Secondary battery 20 Electric double layer capacitor 30 Power converter 40 Control part 41 Low pass filter 42 Comparison part 43 Current control part

Claims (3)

車両に搭載された負荷に電力を供給する二次電池と、
前記二次電池に並列に接続される電気二重層キャパシタと、
前記二次電池と前記電気二重層キャパシタとの間に介設され、前記二次電池と前記電気二重層キャパシタとの間で双方向に充放電可能に切り換えるパワーコンバータと、
前記負荷の負荷電流と前記電気二重層キャパシタのキャパシタ電流とに基づき、前記電気二重層キャパシタの充放電のスイッチング指令を前記パワーコンバータに出力する制御部と、を備えることを特徴とする車両用電源装置。
A secondary battery for supplying power to a load mounted on the vehicle;
An electric double layer capacitor connected in parallel to the secondary battery;
A power converter that is interposed between the secondary battery and the electric double layer capacitor, and switches between the secondary battery and the electric double layer capacitor in a bidirectionally chargeable and dischargeable manner;
A vehicle power supply comprising: a control unit that outputs a switching command for charging and discharging the electric double layer capacitor to the power converter based on a load current of the load and a capacitor current of the electric double layer capacitor. apparatus.
前記制御部は、
前記負荷電流の一次遅れ要素であり、前記二次電池の電流の指令値であるバッテリ電流指令値を導出するローパスフィルタと、
前記負荷電流から前記バッテリ電流指令値を減じて前記キャパシタ電流の指令値であるキャパシタ電流指令値を算出する比較部と、
前記キャパシタ電流と前記キャパシタ電流指令値に基づいてスイッチング指令を前記パワーコンバータに送る電流制御部と、を備えることを特徴とする請求項1に記載の車両用電源装置。
The controller is
A low-pass filter that is a primary delay element of the load current and derives a battery current command value that is a command value of the current of the secondary battery;
A comparator that subtracts the battery current command value from the load current to calculate a capacitor current command value that is a command value of the capacitor current;
The vehicle power supply device according to claim 1, further comprising: a current control unit that sends a switching command to the power converter based on the capacitor current and the capacitor current command value.
前記電気二重層キャパシタは、第1の電圧より高いときに充電を停止し、かつ、第1の電圧より低く設定された第2の電圧より低いときに放電を停止する保護回路を備えることを特徴とする請求項1又は2に記載の車両用電源装置。
The electric double layer capacitor includes a protection circuit that stops charging when it is higher than a first voltage and stops discharging when it is lower than a second voltage set lower than the first voltage. The vehicle power supply device according to claim 1 or 2.
JP2009284453A 2009-12-15 2009-12-15 Vehicle power supply Active JP5503957B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009284453A JP5503957B2 (en) 2009-12-15 2009-12-15 Vehicle power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009284453A JP5503957B2 (en) 2009-12-15 2009-12-15 Vehicle power supply

Publications (2)

Publication Number Publication Date
JP2011130534A true JP2011130534A (en) 2011-06-30
JP5503957B2 JP5503957B2 (en) 2014-05-28

Family

ID=44292491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009284453A Active JP5503957B2 (en) 2009-12-15 2009-12-15 Vehicle power supply

Country Status (1)

Country Link
JP (1) JP5503957B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011055698A (en) * 2009-08-05 2011-03-17 Nakanishi Metal Works Co Ltd Self-propelled transfer system using electric double-layer capacitor and secondary battery as power source
JP2012080612A (en) * 2010-09-30 2012-04-19 Nakanishi Metal Works Co Ltd Self-propelled conveying system using capacitor and secondary battery as power sources
CN109835199A (en) * 2018-12-25 2019-06-04 江苏理工学院 Vehicle-mounted composite power source power distribution optimization method
WO2020080630A1 (en) * 2018-10-15 2020-04-23 김동휘 Device and method for emergency charging of vehicle battery
EP3292018B1 (en) * 2015-05-06 2023-10-25 The Regents of the University of Michigan Hybrid energy storage system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109532518B (en) * 2018-12-27 2020-11-10 西安交通大学 Composite power supply comprising two unidirectional direct current converters and control method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002320302A (en) * 2001-04-19 2002-10-31 Mitsubishi Heavy Ind Ltd Power unit
JP2003219566A (en) * 2002-01-17 2003-07-31 Komatsu Ltd Hybrid power supply system
JP2004056995A (en) * 2002-05-30 2004-02-19 Nec Tokin Corp Hybrid power supply system
JP2005168231A (en) * 2003-12-04 2005-06-23 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Charging circuit for electric double-layer capacitor with parallel monitors
JP2007209149A (en) * 2006-02-03 2007-08-16 Ricoh Co Ltd Power supply device and image forming apparatus
WO2009013891A1 (en) * 2007-07-25 2009-01-29 Panasonic Corporation Electric power source device for vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002320302A (en) * 2001-04-19 2002-10-31 Mitsubishi Heavy Ind Ltd Power unit
JP2003219566A (en) * 2002-01-17 2003-07-31 Komatsu Ltd Hybrid power supply system
JP2004056995A (en) * 2002-05-30 2004-02-19 Nec Tokin Corp Hybrid power supply system
JP2005168231A (en) * 2003-12-04 2005-06-23 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Charging circuit for electric double-layer capacitor with parallel monitors
JP2007209149A (en) * 2006-02-03 2007-08-16 Ricoh Co Ltd Power supply device and image forming apparatus
WO2009013891A1 (en) * 2007-07-25 2009-01-29 Panasonic Corporation Electric power source device for vehicle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011055698A (en) * 2009-08-05 2011-03-17 Nakanishi Metal Works Co Ltd Self-propelled transfer system using electric double-layer capacitor and secondary battery as power source
JP2012080612A (en) * 2010-09-30 2012-04-19 Nakanishi Metal Works Co Ltd Self-propelled conveying system using capacitor and secondary battery as power sources
EP3292018B1 (en) * 2015-05-06 2023-10-25 The Regents of the University of Michigan Hybrid energy storage system
WO2020080630A1 (en) * 2018-10-15 2020-04-23 김동휘 Device and method for emergency charging of vehicle battery
CN109835199A (en) * 2018-12-25 2019-06-04 江苏理工学院 Vehicle-mounted composite power source power distribution optimization method
CN109835199B (en) * 2018-12-25 2020-10-30 江苏理工学院 Power distribution optimization method for vehicle-mounted composite power supply

Also Published As

Publication number Publication date
JP5503957B2 (en) 2014-05-28

Similar Documents

Publication Publication Date Title
US6781343B1 (en) Hybrid power supply device
JP5199673B2 (en) Hybrid fuel cell system with battery / capacitor energy storage system
JP5571129B2 (en) Hybrid power system
US9711979B2 (en) Power supply system
EP2058918A2 (en) Hybrid power source
EP3026752A1 (en) Battery pack and method for controlling the same
JP2011199934A (en) Power supply device
JP4400669B2 (en) Fuel cell system
JP5503957B2 (en) Vehicle power supply
CN107615561B (en) Power storage device and connection control method
KR101567557B1 (en) Voltage balancing apparatus and method of secondary battery cells
JP6614010B2 (en) Battery system
JP2021023018A (en) On-vehicle power supply system
US10525835B2 (en) Power control apparatus and power control system
US10576835B2 (en) Energy storage device, transport apparatus, and control method
US10618419B2 (en) Energy storage arrangement comprising multiple energy stores
WO2016132580A1 (en) Charging and discharging control device, mobile body, and electric power allocation amount determining method
WO2014184861A1 (en) Battery system, mobile body and power storage system provided with battery system, and control method for battery system
KR101599962B1 (en) Energe storage system
JP6186845B2 (en) Auxiliary battery system
JP6485871B2 (en) Fuel cell system
WO2013105139A1 (en) Method for controlling and device for controlling secondary battery
EP4173886B1 (en) Battery system and method for controlling a battery system
JP2012003870A (en) Power storage system
JP2011126344A (en) Power supply device for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140317

R150 Certificate of patent or registration of utility model

Ref document number: 5503957

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250