Nothing Special   »   [go: up one dir, main page]

JP2011129378A - Laminated sealed battery - Google Patents

Laminated sealed battery Download PDF

Info

Publication number
JP2011129378A
JP2011129378A JP2009286700A JP2009286700A JP2011129378A JP 2011129378 A JP2011129378 A JP 2011129378A JP 2009286700 A JP2009286700 A JP 2009286700A JP 2009286700 A JP2009286700 A JP 2009286700A JP 2011129378 A JP2011129378 A JP 2011129378A
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
battery
hole
battery element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009286700A
Other languages
Japanese (ja)
Inventor
Kaname Sasaki
要 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Envision AESC Energy Devices Ltd
Original Assignee
NEC Energy Devices Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Energy Devices Ltd filed Critical NEC Energy Devices Ltd
Priority to JP2009286700A priority Critical patent/JP2011129378A/en
Publication of JP2011129378A publication Critical patent/JP2011129378A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laminated sealed battery which has a structure with no appearance defects by impregnating an electrolyte in the whole battery element and in which the whole battery element can contribute to charge and discharge. <P>SOLUTION: The laminated sealed battery houses a battery element 2 in which a positive electrode and a negative electrode are laminated through a separator, in a sheath material 1. A negative electrode side through hole 11 which penetrates the front and rear is installed in the negative electrode, and a positive electrode side through hole which has an area same as or larger than the negative electrode side through hole is installed in one set or more at a position corresponding to the negative electrode side through hole in the positive electrode. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、外装材に電池要素を収納した積層密閉型電池に関する。   The present invention relates to a stacked sealed battery in which a battery element is housed in an exterior material.

近年、電気自動車やハイブリッド自動車の普及に伴って、長時間稼動させるための駆動電源となる非水電解液二次電池の高エネルギー化および高容量化への技術的要求は一段と高まっている。   In recent years, with the widespread use of electric vehicles and hybrid vehicles, technical demands for higher energy and higher capacity of non-aqueous electrolyte secondary batteries that serve as drive power sources for long-time operation have further increased.

これらの技術的要求に対応するため、リチウムを吸蔵、放出できる物質を使用した非水電解液二次電池の開発が活発に進められるようになった。この非水電解液二次電池のなかでも、電池要素以外が占める体積を減少させることが、電池の高エネルギー化および小型化に有利であるという技術的観点から、従来から電池外装材として使用されていた鉄やアルミニウム製の金属缶の代わりに、より薄肉化が可能で構造を自由に決定できるフィルム状の外装材を使用した積層密閉型電池が注目されている。   In order to meet these technical requirements, development of non-aqueous electrolyte secondary batteries using a substance capable of inserting and extracting lithium has been actively promoted. Among these non-aqueous electrolyte secondary batteries, reducing the volume occupied by elements other than battery elements has been conventionally used as a battery exterior material from the technical viewpoint that it is advantageous for increasing the energy and size of the battery. Instead of the metal cans made of iron or aluminum, attention has been paid to a laminated sealed battery using a film-like exterior material that can be made thinner and whose structure can be determined freely.

上記フィルム状の外装材は、電解液や水分およびガスの透過を防止することが可能なアルミニウム箔などの金属膜とナイロン、ポリエチレン、ポリプロピレンなどのプラスチックフィルムとを貼り合わせて積層して構成される。この金属ラミネート樹脂フィルムが電池外装材として使用される場合には、電池要素を収納した状態でフィルム状の外装材外周が熱融着により封止される構造が一般的に採用されている。   The film-shaped exterior material is formed by laminating and laminating a metal film such as an aluminum foil capable of preventing permeation of electrolyte solution, moisture and gas, and a plastic film such as nylon, polyethylene, and polypropylene. . When this metal laminate resin film is used as a battery outer packaging material, a structure is generally employed in which the outer periphery of the film-shaped outer packaging material is sealed by thermal fusion in a state where the battery element is accommodated.

上記封止構造を採用する場合、フィルム状の外装材の形態には大きく分けて2種類に分かれ、一つはフィルム状の外装材をそのまま袋状に形成して、その内部に電池要素を収納する形態が採用されている。   When adopting the above sealing structure, the form of the film-like exterior material is roughly divided into two types, one is forming the film-like exterior material as it is in a bag shape and storing the battery element inside The form to do is adopted.

他の一つは、フィルム状の外装材にエンボス成形加工を施し、そのエンボス成形部分に電池要素を収納する形態である。後者の形態では、収納される電池要素の形状に合致した絞り成形部分を形成しているために、前者の袋状の外装材と比較して電池全体の体積に占める電池要素の割合を大きくすることができ、電池容量を高められるという利点がある。   The other is a form in which an embossing process is performed on the film-shaped exterior material and the battery element is accommodated in the embossed part. In the latter form, since the drawn portion that matches the shape of the battery element to be housed is formed, the proportion of the battery element in the entire battery volume is increased compared to the former bag-shaped exterior material. There is an advantage that the battery capacity can be increased.

例えば特許文献1には、電池要素である発電要素から延出している外部端子の電池内部の部分にも絶縁樹脂フィルムが熱融着されており、かつ、その絶縁樹脂フィルムが熱融着されている外部端子部分が絞り成形部の内部空間で発電要素に沿って折り曲げられて、電池容量を増加させたことが記載されている。   For example, in Patent Document 1, an insulating resin film is also heat-sealed to a portion inside a battery of an external terminal extending from a power generation element that is a battery element, and the insulating resin film is heat-sealed. It is described that the external terminal portion is bent along the power generation element in the internal space of the drawn portion to increase the battery capacity.

特開2005−222901号公報(図1)Japanese Patent Laying-Open No. 2005-222901 (FIG. 1)

図7〜9は、従来の積層密閉型電池を示す図であり、図7は従来の積層密閉型電池の斜視図、図8は従来の積層密閉型電池の分解斜視図、図9は従来の積層密閉電池の注液時の側面図である。   7 to 9 are views showing a conventional stacked sealed battery, FIG. 7 is a perspective view of the conventional stacked sealed battery, FIG. 8 is an exploded perspective view of the conventional stacked sealed battery, and FIG. It is a side view at the time of liquid injection of a laminated sealed battery.

図8に示すように、負極集電体露出部3が負極タブ5と、正極集電体露出部4が正極タブ6と接続されており、正極と負極がセパレータを介して積層された電池要素2がフィルム状の外装材1に収納される。集電体を含めた電池要素2はフィルム状の外装材1の内部に収納され、図9に示すように、負極タブ5と正極タブ6が外部に引き出され、フィルム状の外装材1の外周3辺を熱融着し封止部18を形成する。   As shown in FIG. 8, a battery element in which the negative electrode current collector exposed portion 3 is connected to the negative electrode tab 5, the positive electrode current collector exposed portion 4 is connected to the positive electrode tab 6, and the positive electrode and the negative electrode are stacked via a separator. 2 is accommodated in the film-shaped exterior material 1. The battery element 2 including the current collector is housed inside the film-shaped exterior material 1, and as shown in FIG. 9, the negative electrode tab 5 and the positive electrode tab 6 are pulled out to the outside, and the outer periphery of the film-shaped exterior material 1 Three sides are heat-sealed to form the sealing portion 18.

図9に示すように、熱融着していない辺から定量ポンプなどを使用し、電解液7を注入する。真空条件下に一定時間放置することにより、電解液7を電池要素に含浸させ、真空状態にて熱融着していない辺を熱融着により封止部を形成する。   As shown in FIG. 9, the electrolyte solution 7 is injected from a side that is not thermally fused using a metering pump or the like. The battery element is impregnated with the electrolytic solution 7 by being left for a certain period of time under vacuum conditions, and a sealed portion is formed by thermal fusion at the side not thermally fused in the vacuum state.

積層密閉型電池の高エネルギー化および高容量化への技術的要求に対応するため、電池要素2は体積を増加する傾向にある。しかし積層密閉型電池を厚くすると、電池の充放電を繰り返すことにより電池内部に熱が蓄積される恐れがある。そこで電池内部への熱の蓄積を防止し、かつ高容量化に対応する為、積層密閉型電池の電極面積は拡大する傾向にある。   In order to meet the technical demands for higher energy and higher capacity of the laminated sealed battery, the battery element 2 tends to increase in volume. However, if the laminated sealed battery is made thick, heat may be accumulated inside the battery by repeatedly charging and discharging the battery. Therefore, in order to prevent heat accumulation in the battery and to cope with a higher capacity, the electrode area of the laminated sealed battery tends to be increased.

電極面積が大きくなるに従って、電解液7が電池要素2の中央部までに含浸しにくくなり、電池要素2の内部に空気等の気体が溜まり易くなる課題がある。   As the electrode area increases, the electrolytic solution 7 is less likely to be impregnated to the center of the battery element 2, and there is a problem that gas such as air tends to accumulate inside the battery element 2.

上記の理由としては、電池要素2の負極および正極およびセパレータ間に電解液を注入する際、電池要素2の周囲から電解液7が含浸して、負極とセパレータと正極が密着し、真空状態においても電池要素2内部に溜まった気体を排出することができなくなる為である。   The reason for this is that when the electrolyte solution is injected between the negative electrode and the positive electrode of the battery element 2 and the separator, the electrolyte solution 7 is impregnated from the periphery of the battery element 2 so that the negative electrode, the separator and the positive electrode are in close contact with each other. This is because the gas accumulated in the battery element 2 cannot be discharged.

電解液7が電池要素2に含浸しない部分はセパレータと電極の間に空間を作り密着せず、セパレータ10にしわが発生し易くなり、図7に示すように、フィルム状の外装材1にも電池のしわ17として認識され、外観欠点となり歩留を悪化させるという課題がある。   A portion where the electrolyte element 7 is not impregnated in the battery element 2 creates a space between the separator and the electrode and does not adhere to the separator 10, and the separator 10 is liable to be wrinkled. As shown in FIG. There is a problem that it is recognized as a wrinkle 17 and becomes a defect in appearance and deteriorates the yield.

また、電池要素2に対して電解液7が含浸しない状態で充放電を行うと、電解液7が含浸していない空間と対応する電極部分は充放電に寄与できず、電池容量が低下するという課題もある。   Moreover, when charging / discharging the battery element 2 in a state where the electrolytic solution 7 is not impregnated, the electrode portion corresponding to the space not impregnated with the electrolytic solution 7 cannot contribute to charging / discharging, and the battery capacity decreases. There are also challenges.

そこで本発明は電解液7を電池要素2全体に含浸させることにより、外観欠点の無い構造を有し、電池要素2全体が充放電に寄与できる積層密閉型電池の提供を目的とする。   Accordingly, an object of the present invention is to provide a laminated sealed battery that has a structure having no appearance defect by impregnating the entire battery element 2 with the electrolytic solution 7 and can contribute to charge and discharge.

上記の課題を解決するため、本発明の積層密閉型電池は、負極および正極がセパレータを介して積層した電池要素を外装材に収納した積層型密閉型電池であって、前記負極には表裏を貫通する負極側貫通穴が設けられ、且つ前記正極において前記負極側貫通穴に対応した位置には前記負極側貫通穴よりも平面積が同じか、大きな正極側貫通穴が1組以上設けられたことを特徴とする。また、前記負極の平面積が0.02m以上のときに0.02m毎に一個の前記負極側貫通穴を設けたことを特徴とする。さらに、前記負極側貫通穴の平面積が0.5‐2.0mmであることを特徴とする。 In order to solve the above-described problems, a laminated sealed battery according to the present invention is a laminated sealed battery in which a battery element in which a negative electrode and a positive electrode are stacked via a separator is housed in an exterior material, and the negative electrode has a front and back sides. A negative electrode side through hole penetrating therethrough is provided, and at least one set of positive electrode side through holes having the same or larger plane area than the negative electrode side through hole is provided at a position corresponding to the negative electrode side through hole in the positive electrode. It is characterized by that. Further, a plane area of the negative electrode is characterized in that a one of the negative electrode side through hole for each 0.02 m 2 at 0.02 m 2 or more. Furthermore, the planar area of the negative electrode side through hole is 0.5-2.0 mm 2 .

すなわち、本発明によれば、電解液を電池要素に含浸する際、電池要素内部に電解液が含浸できず、空気溜まりが発生した場合に於いても、前記の負極側貫通穴及び正極側貫通穴を経由して電池要素の外に逃がすことができる積層密閉型電池が得られる。   That is, according to the present invention, when the battery element is impregnated with the electrolytic solution, the negative electrode side through hole and the positive electrode side penetration can be obtained even when the battery element cannot be impregnated with the electrolytic solution and an air pocket is generated. A stacked hermetic battery that can escape to the outside of the battery element through the hole is obtained.

本発明は電池要素全体に電解液を含浸させ、内部に空気が溜まることを防止でき、電極とセパレータが密着して、電池の外観欠点が無く、電池要素全体が充放電に寄与できる積層密閉型電池が得られるという効果を奏する。   The present invention impregnates the entire battery element with an electrolyte, prevents air from accumulating inside, the electrode and the separator are in close contact, there is no defect in the appearance of the battery, and the entire battery element can contribute to charge and discharge. There is an effect that a battery is obtained.

本発明の実施の形態1に係わる電池要素の一部の模式的斜視図。1 is a schematic perspective view of a part of a battery element according to Embodiment 1 of the present invention. 本発明の実施の形態1に係わる電池要素に用いる正極、負極、セパレータを示す平面図。The top view which shows the positive electrode, negative electrode, and separator which are used for the battery element concerning Embodiment 1 of this invention. 本発明の実施の形態1に係わる電池要素の一部の模式的断面図。1 is a schematic cross-sectional view of a part of a battery element according to Embodiment 1 of the present invention. 本発明の積層型密閉電池の斜視図。The perspective view of the lamination type sealed battery of the present invention. 本発明の実施の形態2に係わる電池要素に用いる正極、負極、セパレータを示す平面図。The top view which shows the positive electrode, negative electrode, and separator which are used for the battery element concerning Embodiment 2 of this invention. 本発明の実施の形態2に係わる電池要素の一部の模式的斜視図。The typical perspective view of a part of battery element concerning Embodiment 2 of this invention. 従来の積層密閉型電池の斜視図。The perspective view of the conventional laminated sealed battery. 従来の積層密閉型電池の分解斜視図。The disassembled perspective view of the conventional laminated sealed battery. 従来の積層密閉電池の注液時の側面図。The side view at the time of liquid injection of the conventional multilayer sealed battery.

以下、本発明の実施の形態1について図1〜図4に基づいて詳細に説明する。   Hereinafter, Embodiment 1 of the present invention will be described in detail with reference to FIGS.

本発明の実施の形態1の積層密閉型電池は図1に示すように、フィルム状の外装材1と、外装材1の中に収納される電池要素2と、電池要素2から引き出された負極集電体露出部3および正極集電体露出部4にそれぞれ接続された負極タブ5および正極タブ6と、電池要素2の内部に含浸させた電解液7とから大略構成されている。   As shown in FIG. 1, a laminated sealed battery according to Embodiment 1 of the present invention includes a film-shaped exterior material 1, a battery element 2 housed in the exterior material 1, and a negative electrode drawn from the battery element 2. It is mainly composed of a negative electrode tab 5 and a positive electrode tab 6 connected to the current collector exposed portion 3 and the positive electrode current collector exposed portion 4, respectively, and an electrolyte solution 7 impregnated in the battery element 2.

電池要素2は図2に示すように、負極8および正極9の間にセパレータ10を介在させ、それぞれを複数枚積層することにより構成されている。   As shown in FIG. 2, the battery element 2 is configured by interposing a separator 10 between a negative electrode 8 and a positive electrode 9 and laminating a plurality of each.

図3に示すように、負極8は負極集電体14上に負極活物質13が形成されたものである。グラファイトの粉末からなる負極活物質13をPVDFからなる接着剤とともにスラリー状となるよう調整した調剤を、銅などの金属からなる負極集電体14の両面に塗布、乾燥し、ロールプレス機により圧延することで形成される。負極8に負極側貫通穴11が形成されている。この実施の形態1では負極8の中央部に負極側貫通穴11が形成されている。負極側貫通穴の形成は圧延後にプレス機等による加工により行うことができる。   As shown in FIG. 3, the negative electrode 8 is obtained by forming a negative electrode active material 13 on a negative electrode current collector 14. A negative electrode active material 13 made of graphite powder and a preparation prepared in a slurry state together with an adhesive made of PVDF were applied to both sides of a negative electrode current collector 14 made of metal such as copper, dried, and rolled by a roll press. It is formed by doing. A negative electrode side through hole 11 is formed in the negative electrode 8. In the first embodiment, a negative electrode side through hole 11 is formed in the central portion of the negative electrode 8. Formation of the negative electrode side through hole can be performed by processing with a press machine or the like after rolling.

図3に示すように、正極9は正極集電体16上に正極活物質15が形成されたものである。コバルト酸リチウムからなる正極活物質にPVDFからなる接着剤とアセチレンブラックからなる導電剤を添加してスラリー状となるように調整した調剤を、アルミニウムなどの金属からなる正極集電体16の両面に塗布、乾燥し、ロールプレス機により圧延することで、正極9が形成される。正極側貫通穴の形成は圧延後にプレス加工等により行うことができる。   As shown in FIG. 3, the positive electrode 9 is obtained by forming a positive electrode active material 15 on a positive electrode current collector 16. A formulation prepared by adding an adhesive made of PVDF and a conductive agent made of acetylene black to a positive electrode active material made of lithium cobalt oxide and adjusted to form a slurry is formed on both surfaces of the positive electrode current collector 16 made of a metal such as aluminum. The positive electrode 9 is formed by coating, drying, and rolling with a roll press. Formation of the positive electrode side through hole can be performed by pressing or the like after rolling.

負極側貫通穴11に対応した正極9には負極側貫通穴11の面積よりも同等以上の正極側貫通穴12が形成されている。   The positive electrode 9 corresponding to the negative electrode side through hole 11 is formed with a positive electrode side through hole 12 that is equal to or larger than the area of the negative electrode side through hole 11.

負極8と正極9の間にセパレータ10を介在させ、所定の数量だけ積層して電池要素を作成する。正極側貫通穴12は負極側貫通穴11に包含されるような大小関係となっている。そして、このような大小関係を設定したことにより、充放電中におけるリチウム金属の析出が回避されるようになっている。   A separator 10 is interposed between the negative electrode 8 and the positive electrode 9 and a predetermined number of layers are stacked to produce a battery element. The positive electrode side through hole 12 has a size relationship as contained in the negative electrode side through hole 11. And by setting such a magnitude relationship, precipitation of lithium metal during charging / discharging is avoided.

セパレータ10は、ポリエチレンまたはポリプロピレンなどで構成されている。このセパレータ10は、全体にわたって多数の小孔を有している。   The separator 10 is made of polyethylene or polypropylene. The separator 10 has a large number of small holes throughout.

図4に示すように、負極タブ5を電池要素の負極集電体露出部と溶接する。また正極タブ6を電池要素の正極集電体露出部と溶接する。   As shown in FIG. 4, the negative electrode tab 5 is welded to the negative electrode current collector exposed portion of the battery element. Further, the positive electrode tab 6 is welded to the exposed portion of the positive electrode current collector of the battery element.

フィルム状の外装材1は、ナイロン/アルミ/ポリプロピレンの3層構造を有しており、電池要素を収納するため外装材1に絞り加工による収納部をポリプロピレン側が凹状となるように設けた。   The film-shaped exterior material 1 has a three-layer structure of nylon / aluminum / polypropylene. In order to accommodate the battery element, the exterior material 1 is provided with a storage portion by drawing so that the polypropylene side is concave.

タブ溶接済みの電池要素を外装材1の電池要素収納部に収納し、もう一方の外装材1で電池要素を覆い、接合部を重ね合わせて熱融着によって外装材1の外周3辺を封止部18を形成する(図9参照)。熱融着されていない1辺から電池要素収納部に電解液7を注液し、注液後、真空にて熱融着によって封止を行い外装材1の外周に封止部を有する積層密閉型電池が作製される。   The tab-welded battery element is stored in the battery element storage portion of the outer packaging material 1, the battery element is covered with the other outer packaging material 1, the joints are overlapped, and the outer periphery 3 of the outer packaging material 1 is sealed by thermal fusion. A stop 18 is formed (see FIG. 9). The electrolyte solution 7 is poured into the battery element housing part from one side that is not heat-sealed, and after the liquid is poured, sealing is performed by heat-sealing in a vacuum, and a laminated hermetic seal having a sealing part on the outer periphery of the exterior material 1 A type battery is produced.

図3に示すように、注液の際、電池要素の内部に溜まった空気は、負極側貫通穴11および正極側貫通穴12およびセパレータの小孔から電池要素の外に排出され、注液後の真空熱融着することにより電池の内部に空気が残留することがない。   As shown in FIG. 3, the air accumulated in the battery element during the injection is discharged out of the battery element through the negative electrode side through hole 11, the positive electrode side through hole 12, and the small holes of the separator. Thus, no air remains inside the battery.

負極面積が0.02m以上となる場合、図2に示すように、負極8の中央部にφ1mm程度の負極側貫通穴11を、また負極側貫通穴11と対応する正極にはφ1.5mm程度の正極側貫通穴12を設けることで、電池要素2内の空気を残留することを防止できる。負極側貫通穴の大きさは平面積として0.5‐2.0mm(直径0.8‐1.6mm)であることが好ましい。2.0mmを超えるとしわは発生しなくとも穴の形状として認識されやすくなり外観欠点が発生しやすくなり好ましくない。また0.5mm未満の場合には電解液の含浸や気体の排出および加工時の作業性から好ましくない。 When the area of the negative electrode is 0.02 m 2 or more, as shown in FIG. 2, the negative electrode side through hole 11 having a diameter of about 1 mm is formed at the center of the negative electrode 8, and the positive electrode corresponding to the negative electrode side through hole 11 is φ1.5 mm. Providing the positive electrode side through hole 12 to the extent can prevent the air in the battery element 2 from remaining. The size of the negative electrode side through hole is preferably 0.5 to 2.0 mm 2 (diameter 0.8 to 1.6 mm) as a flat area. Even if wrinkles do not occur when it exceeds 2.0 mm 2 , it is easily recognized as the shape of the hole and appearance defects are likely to occur, which is not preferable. Moreover, when less than 0.5 mm < 2 >, it is unpreferable from workability | operativity at the time of the impregnation of electrolyte solution, discharge | emission of gas, and a process.

次に本発明の実施の形態2について図5、6を参照して説明する。実施の形態2においては負極側貫通穴および正極側貫通穴をそれぞれ2個設けた場合について説明する。図5に示すように負極8を長さ方向に3等分したときの端部からそれぞれ1/3の幅方向の中央付近にφ1mm程度の負極側貫通穴11を2箇所、また負極側貫通穴11と対応する正極9にはφ1.5mm程度の正極側貫通穴12を2箇所設ける。負極と正極との間にセパレータを介在させてそれぞれ複数枚積層して電池要素を形成し、図6に示すようにフィルム状の外装材1と、外装材1の中に収納される電池要素2と、電池要素2から引き出された負極集電体露出部3および正極集電体露出部4にそれぞれ接続された負極タブ5および正極タブ6とを備え、電池要素2の内部に電解液7を注液し含浸させる。注液後、真空にて熱融着によって封止を行い外装材1の外周に封止部を有する積層密閉型電池が作製される。負極面積が0.04m以上となる場合には、負極側貫通穴、正極側貫通穴がそれぞれ1箇所では充分でない場合があり、0.02m毎に負極側貫通穴、正極側貫通穴をそれぞれ少なくとも1箇所設けると、電池要素内の空気が残留することを充分防止できる。即ち0.02m以上0.04m未満では少なくとも1箇所、0.04m以上0.06m未満では少なくとも2箇所の貫通穴を設けるとよい。 Next, a second embodiment of the present invention will be described with reference to FIGS. In the second embodiment, a case where two negative through holes and two positive through holes are provided will be described. As shown in FIG. 5, two negative side through holes 11 having a diameter of about 1 mm are provided in the vicinity of the center in the width direction of 1/3 from the end when the negative electrode 8 is divided into three equal parts in the length direction. The positive electrode 9 corresponding to 11 is provided with two positive-side through holes 12 having a diameter of about 1.5 mm. A battery element is formed by stacking a plurality of separators with a separator interposed between the negative electrode and the positive electrode, and a film-shaped exterior member 1 and a battery element 2 accommodated in the exterior member 1 as shown in FIG. And a negative electrode tab 5 and a positive electrode tab 6 respectively connected to the negative electrode current collector exposed portion 3 and the positive electrode current collector exposed portion 4 drawn from the battery element 2, and the electrolyte 7 is placed inside the battery element 2. Inject and impregnate. After pouring, sealing is performed by heat sealing in vacuum, and a laminated sealed battery having a sealing portion on the outer periphery of the outer packaging material 1 is manufactured. When the negative electrode area is 0.04 m 2 or more, there may be cases where the negative electrode side through hole and the positive electrode side through hole are not sufficient in one place, and the negative electrode side through hole and the positive electrode side through hole are provided every 0.02 m 2. Providing at least one location for each can sufficiently prevent air in the battery element from remaining. That 0.02 m 2 or more 0.04m least one location is less than 2, may 0.04m 2 or 0.06m is less than 2 providing through holes in at least two places.

以下、本発明に係る実施例および比較例について説明する。   Hereinafter, examples and comparative examples according to the present invention will be described.

(実施例1)
実施例1について実施の形態1に用いた図1〜図3で説明する。図3に示すように、負極活物質13は、厚さ10μmの銅箔からなる負極集電体14上に形成されたものである。グラファイト粉末からなる負極活物質をPVDFからなる接着剤とともにスラリー状となるよう調整した調剤を負極集電体14上の両面に塗布、乾燥し、ロールプレス機により圧延することで負極8が形成された。負極活物質13を塗布した面積は長さ200mm、幅100mmとして、負極9の中央部にφ0.8mmの負極側貫通穴11を形成した。
Example 1
Example 1 will be described with reference to FIGS. 1 to 3 used in the first embodiment. As shown in FIG. 3, the negative electrode active material 13 is formed on a negative electrode current collector 14 made of a copper foil having a thickness of 10 μm. A negative electrode 8 is formed by applying a negative electrode active material made of graphite powder on both sides of the negative electrode current collector 14 with a slurry prepared together with an adhesive made of PVDF, drying it, and rolling it with a roll press. It was. The area where the negative electrode active material 13 was applied was 200 mm long and 100 mm wide, and a negative electrode side through hole 11 having a diameter of 0.8 mm was formed in the center of the negative electrode 9.

正極活物質15は、厚さ20μmのアルミニウム箔からなる正極集電体16上に形成されたものである。コバルト酸リチウムからなる正極活物質に、PVDFからなる接着剤とアセチレンブラックからなる導電剤を添加してスラリー状となるように調整した調剤を正極集電体16上の両面に塗布、乾燥し、ロールプレス機により圧延することで正極9が形成された。正極活物質13を塗布した面積は長さ198mm、幅98mmとした。また、負極側貫通穴11に対応する正極9の中央部にφ1.5mmの正極側貫通穴12を形成させた。   The positive electrode active material 15 is formed on a positive electrode current collector 16 made of an aluminum foil having a thickness of 20 μm. The positive electrode active material made of lithium cobaltate was coated on both sides of the positive electrode current collector 16 with a preparation adjusted to form a slurry by adding an adhesive made of PVDF and a conductive agent made of acetylene black, and dried. The positive electrode 9 was formed by rolling with a roll press. The area where the positive electrode active material 13 was applied was 198 mm long and 98 mm wide. Further, a positive electrode side through hole 12 having a diameter of 1.5 mm was formed in the central portion of the positive electrode 9 corresponding to the negative electrode side through hole 11.

負極8と正極9電極の間にはポリエチレン不織布のセパレータ10を介して負極9枚、正極8枚を積層させて電池要素を作製した。図1に示すように、負極タブ5を負極集電体露出部3の先端部で溶接した。また正極タブ6を正極集電体露出部4の先端部で溶接した。フィルム状の外装材は、ナイロン/アルミ/ポリプロピレンの3層構造を有し、電池要素2を収納するため絞り加工による収納部をポリプロピレン側が凹状となるように設けた。   Between the negative electrode 8 and the positive electrode 9, 9 negative electrodes and 8 positive electrodes were laminated via a polyethylene nonwoven fabric separator 10 to produce a battery element. As shown in FIG. 1, the negative electrode tab 5 was welded at the tip of the negative electrode current collector exposed portion 3. The positive electrode tab 6 was welded at the tip of the positive electrode current collector exposed portion 4. The film-shaped exterior material has a three-layer structure of nylon / aluminum / polypropylene, and a storage portion by drawing is provided so that the polypropylene side is concave to store the battery element 2.

タブを溶接した電池要素2を絞り加工を施したフィルム状の外装材1の電池要素収納部に収納し、同様に絞り加工を施した外装材1で電池要素を覆い、重ね合わせて熱融着によって外装材1の外周3辺を融着した。熱融着されていない1辺より電池要素収納部に電解液7を注液した。注液後、真空にて熱融着機によって封止を行いフィルム状の外装材1で被覆した積層密閉型電池を作製した。   The battery element 2 to which the tab is welded is stored in the battery element housing portion of the film-shaped outer packaging material 1 that has been subjected to drawing processing, and the battery element is similarly covered with the outer packaging material 1 that has been subjected to drawing processing. Thus, the outer periphery 3 sides of the exterior material 1 were fused. The electrolyte solution 7 was injected into the battery element storage portion from one side that was not heat-sealed. After the liquid injection, sealing was performed in a vacuum with a heat-sealing machine, and a laminated sealed battery covered with a film-like exterior material 1 was produced.

作製した3個の積層密閉型電池のフィルム状の外装材1表面のしわの長さを計測した。また、前記の積層密閉型電池に充電を行い、実際の充電容量/理論上の充電容量を計算した。   The length of the wrinkles on the surface of the film-shaped outer packaging material 1 of the three laminated sealed batteries produced was measured. Further, the stacked sealed battery was charged, and the actual charge capacity / theoretical charge capacity was calculated.

(実施例2)
負極側貫通穴をφ1.6mm、正極側貫通穴をφ1.8mmとした以外は実施例1と同様に積層密閉型電池を作製し、しわの長さを計測し、充電容量を計算した。
(Example 2)
A laminated sealed battery was prepared in the same manner as in Example 1 except that the negative electrode side through hole was φ1.6 mm and the positive electrode side through hole was φ1.8 mm, the wrinkle length was measured, and the charge capacity was calculated.

(比較例1)
負極および正極に対して貫通穴を設けない以外は実施例1と同様にして積層密閉型電池を作製した。作製した積層密閉型電池のフィルム状の外装材表面のしわの長さを計測した。また、実施例1と同様にして充電を行い、実際の充電容量/理論上の充電容量を計算した。
(Comparative Example 1)
A laminated sealed battery was produced in the same manner as in Example 1 except that no through hole was provided in the negative electrode and the positive electrode. The length of the wrinkle on the surface of the film-like exterior material of the produced laminated sealed battery was measured. Further, charging was performed in the same manner as in Example 1, and the actual charge capacity / theoretical charge capacity was calculated.

フィルム状の外装材表面のしわ長さと実際の充電容量/理論充電容量の関係を調査した。その結果を表1に示す。   The relationship between the wrinkle length of the film-like exterior material surface and the actual charge capacity / theoretical charge capacity was investigated. The results are shown in Table 1.

Figure 2011129378
Figure 2011129378

比較例1ではフィルム状の外装材の表面に合計しわ長さは90mm発生するが、実施例1、2では電極の貫通穴があることで、電池要素内に空気溜まりの発生を防止でき、外観欠点の無い積層密閉型電池が得られた。また、同様の理由により比較例1は実際の充電容量/理論充電容量は0.97と低いが、実施例1では1.00となり、理論値の充電容量を得ることができた。   In Comparative Example 1, a total wrinkle length of 90 mm occurs on the surface of the film-shaped exterior material, but in Examples 1 and 2, the presence of electrode through holes can prevent the occurrence of air accumulation in the battery element, and the appearance A laminated sealed battery free from defects was obtained. For the same reason, in Comparative Example 1, the actual charge capacity / theoretical charge capacity was as low as 0.97, but in Example 1, it was 1.00, and a theoretical charge capacity could be obtained.

(実施例3)
次に、本発明の実施例2について、本発明に係る実施の形態2の説明で用いた図5および図6を参照して説明する。基本的な積層密閉型電池の作製方法は実施例1と同じであるが、負極および正極の大きさがそれぞれ幅200mm、長さ210mm、幅198mm、長さ208mmと大きくなったことおよび電極への貫通穴を2箇所にしたことが異なる。負極側貫通穴11を負極8の長さ方向に3等分したときの端部からそれぞれ1/3即ち端部からそれぞれ70mmの位置の幅方向の中央部にφ1.0mmで形成した。対応する正極側貫通穴12をφ1.5mmで形成した。
(Example 3)
Next, Example 2 of the present invention will be described with reference to FIGS. 5 and 6 used in the description of Embodiment 2 according to the present invention. The basic manufacturing method of the laminated sealed battery is the same as that in Example 1. However, the negative electrode and the positive electrode were increased in size to a width of 200 mm, a length of 210 mm, a width of 198 mm, and a length of 208 mm, respectively. The difference is that there are two through holes. The negative electrode side through hole 11 was formed with a diameter of 1.0 mm at the central portion in the width direction at 1/3 from the end when the negative electrode 8 was divided into three equal parts, that is, 70 mm from the end. Corresponding positive electrode side through-holes 12 were formed with a diameter of 1.5 mm.

作製した3個の積層密閉型電池のフィルム状の外装材表面のしわの長さを計測した。また、前記の積層密閉型電池に充電を行い、実際の充電容量/理論上の充電容量を計算した。   The length of the wrinkles on the surface of the film-like exterior material of the three laminated sealed batteries produced was measured. Further, the stacked sealed battery was charged, and the actual charge capacity / theoretical charge capacity was calculated.

(比較例2)
負極および正極に対して貫通穴を設けない以外は実施例2と同様にして積層密閉型電池を作製した。作製した積層密閉型電池のフィルム状の外装表面のしわの長さを計測した。また、実施例2と同様にして充電を行い、実際の充電容量/理論上の充電容量を計算した。
(Comparative Example 2)
A laminated sealed battery was produced in the same manner as in Example 2 except that no through hole was provided in the negative electrode and the positive electrode. The wrinkle length of the film-like exterior surface of the produced laminated sealed battery was measured. Moreover, it charged similarly to Example 2, and calculated actual charge capacity / theoretical charge capacity.

フィルム状の外装材表面のしわ長さと実際の充電容量/理論充電容量の関係を調査した。その結果を表2に示す。   The relationship between the wrinkle length of the film-like exterior material surface and the actual charge capacity / theoretical charge capacity was investigated. The results are shown in Table 2.

Figure 2011129378
Figure 2011129378

比較例2ではフィルム状の外装材の表面にしわが合計150mm発生するが、実施例3では電極の2箇所の貫通穴があることで、電池要素内に空気溜まりの発生を防止でき、外観欠点の無い積層密閉型電池が得られた。また、同様の理由により比較例2は実際の充電容量/理論充電容量は0.94と低いが、実施例3では1.00となり、理論値の充電容量を得ることができた。   In Comparative Example 2, wrinkles are generated on the surface of the film-like exterior material in total of 150 mm. However, in Example 3, since there are two through holes in the electrode, it is possible to prevent the occurrence of air accumulation in the battery element, Thus, a laminated sealed battery was obtained. For the same reason, in Comparative Example 2, the actual charge capacity / theoretical charge capacity was as low as 0.94, but in Example 3, the charge capacity was 1.00, and a theoretical charge capacity could be obtained.

1 外装材
2 電池要素
3 負極集電体露出部
4 正極集電体露出部
5 負極タブ
6 正極タブ
7 電解液
8 負極
9 正極
10 セパレータ
11 負極側貫通穴
12 正極側貫通穴
13 負極活物質
14 負極集電体
15 正極活物質
16 正極集電体
17 しわ
18 封止部
DESCRIPTION OF SYMBOLS 1 Exterior material 2 Battery element 3 Negative electrode collector exposed part 4 Positive electrode collector exposed part 5 Negative electrode tab 6 Positive electrode tab 7 Electrolytic solution 8 Negative electrode 9 Positive electrode 10 Separator 11 Negative electrode side through-hole 12 Positive electrode side through hole 13 Negative electrode active material 14 Negative electrode current collector 15 Positive electrode active material 16 Positive electrode current collector 17 Wrinkle 18 Sealing portion

Claims (3)

負極および正極がセパレータを介して積層した電池要素を外装材に収納した積層型密閉型電池であって、前記負極には表裏を貫通する負極側貫通穴が設けられ、且つ前記正極において前記負極側貫通穴に対応した位置には前記負極側貫通穴よりも平面積が同じか、大きな正極側貫通穴が1組以上設けられたことを特徴とする積層密閉型電池。   A stacked-type sealed battery in which a battery element in which a negative electrode and a positive electrode are stacked via a separator is housed in an exterior material, wherein the negative electrode is provided with a negative-side through hole penetrating the front and back, and the negative electrode side of the positive electrode A laminated sealed battery characterized in that at least one set of positive electrode side through holes having the same or larger plane area than the negative electrode side through hole is provided at a position corresponding to the through hole. 前記負極の平面積が0.02m以上のときに0.02m毎に一個の前記負極側貫通穴を設けたことを特徴とする請求項1に記載の積層密閉型電池。 2. The stacked sealed battery according to claim 1, wherein one negative electrode side through hole is provided for every 0.02 m 2 when a plane area of the negative electrode is 0.02 m 2 or more. 前記負極側貫通穴の平面積が0.5‐2.0mmであることを特徴とする請求項1または2に記載の積層密閉型電池。 3. The laminated sealed battery according to claim 1, wherein a planar area of the negative electrode side through hole is 0.5 to 2.0 mm 2. 4 .
JP2009286700A 2009-12-17 2009-12-17 Laminated sealed battery Pending JP2011129378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009286700A JP2011129378A (en) 2009-12-17 2009-12-17 Laminated sealed battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009286700A JP2011129378A (en) 2009-12-17 2009-12-17 Laminated sealed battery

Publications (1)

Publication Number Publication Date
JP2011129378A true JP2011129378A (en) 2011-06-30

Family

ID=44291755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009286700A Pending JP2011129378A (en) 2009-12-17 2009-12-17 Laminated sealed battery

Country Status (1)

Country Link
JP (1) JP2011129378A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015065178A (en) * 2014-12-02 2015-04-09 日本電気株式会社 Method for manufacturing film exterior battery
US10219395B2 (en) 2013-11-28 2019-02-26 Semiconductor Energy Laboratory Co., Ltd. Power storage unit and electronic device including the same
US10320025B2 (en) 2013-10-22 2019-06-11 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and electronic device
US10586954B2 (en) 2014-05-23 2020-03-10 Semiconductor Energy Laboratory Co., Ltd. Electronic device including secondary battery
US10908640B2 (en) 2013-11-15 2021-02-02 Semiconductor Energy Laboratory Co., Ltd. Electronic device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000058103A (en) * 1998-08-04 2000-02-25 Nissan Motor Co Ltd Battery
JP2000090979A (en) * 1998-09-16 2000-03-31 Toshiba Corp Sealed battery
JP2001093511A (en) * 1999-09-22 2001-04-06 Honda Motor Co Ltd Wound cylindrical battery
WO2001065624A1 (en) * 2000-02-29 2001-09-07 Koninklijke Philips Electronics N.V. Lithium battery
JP2006210031A (en) * 2005-01-26 2006-08-10 Toyota Motor Corp Wound type power storage device
JP2008053102A (en) * 2006-08-25 2008-03-06 Toyota Motor Corp Power storage device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000058103A (en) * 1998-08-04 2000-02-25 Nissan Motor Co Ltd Battery
JP2000090979A (en) * 1998-09-16 2000-03-31 Toshiba Corp Sealed battery
JP2001093511A (en) * 1999-09-22 2001-04-06 Honda Motor Co Ltd Wound cylindrical battery
WO2001065624A1 (en) * 2000-02-29 2001-09-07 Koninklijke Philips Electronics N.V. Lithium battery
JP2006210031A (en) * 2005-01-26 2006-08-10 Toyota Motor Corp Wound type power storage device
JP2008053102A (en) * 2006-08-25 2008-03-06 Toyota Motor Corp Power storage device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10320025B2 (en) 2013-10-22 2019-06-11 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and electronic device
US11316189B2 (en) 2013-10-22 2022-04-26 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and electronic device
US11677095B2 (en) 2013-10-22 2023-06-13 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and electronic device
US10908640B2 (en) 2013-11-15 2021-02-02 Semiconductor Energy Laboratory Co., Ltd. Electronic device
US11347263B2 (en) 2013-11-15 2022-05-31 Semiconductor Energy Laboratory Co., Ltd. Electronic device
US10219395B2 (en) 2013-11-28 2019-02-26 Semiconductor Energy Laboratory Co., Ltd. Power storage unit and electronic device including the same
US10586954B2 (en) 2014-05-23 2020-03-10 Semiconductor Energy Laboratory Co., Ltd. Electronic device including secondary battery
US11626637B2 (en) 2014-05-23 2023-04-11 Semiconductor Energy Laboratory Co., Ltd. Secondary battery comprising the opening
JP2015065178A (en) * 2014-12-02 2015-04-09 日本電気株式会社 Method for manufacturing film exterior battery

Similar Documents

Publication Publication Date Title
US10847850B2 (en) Cooling plate for secondary battery and secondary battery module including the same
TWI723968B (en) Power storage device and manufacturing method thereof
JP6572204B2 (en) Secondary battery and manufacturing method thereof
JP5187733B2 (en) Manufacturing method of multilayer secondary battery
JP2017168462A (en) Lithium ion secondary battery
WO2018079817A1 (en) Electrode for electrochemical device, electrochemical device, and method for producing same
JP5255538B2 (en) Unit cell for secondary battery having conductive sheet layer and lithium ion secondary battery using the same
KR20130113301A (en) Battery cell of stair-like structure
JP2019021805A (en) Electrode body and electric storage device
JP2008097991A (en) Electric storage device
JP4974856B2 (en) Power storage device and manufacturing method thereof
JP7014294B2 (en) Secondary battery
JP7108052B2 (en) Storage element and method for manufacturing storage element
JP2011129378A (en) Laminated sealed battery
JP4359809B2 (en) Storage element module and manufacturing method thereof
JP2015088605A (en) Method of manufacturing power storage device and power storage device
KR20140012601A (en) Secondary battery and electrochemical cell having the same
KR101387137B1 (en) Electrode assembly and rechargeable battery with the same
JP6853504B2 (en) Negative electrode composite structure of lithium-air battery
JP2018198163A (en) Secondary battery
JP5483397B2 (en) Stacked sealed battery
JP2016062717A (en) Power storage device and manufacturing method thereof
JP7024540B2 (en) Electrochemical element
JP7123687B2 (en) BIPOLAR BATTERY AND METHOD OF MANUFACTURING BIPOLAR BATTERY
JP2009199962A (en) Separator-incorporated electrode, its manufacturing method, and power storage device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140318

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140514

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140519

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141104