Nothing Special   »   [go: up one dir, main page]

JP2011112327A - Air conditioner and refrigerating device - Google Patents

Air conditioner and refrigerating device Download PDF

Info

Publication number
JP2011112327A
JP2011112327A JP2009271390A JP2009271390A JP2011112327A JP 2011112327 A JP2011112327 A JP 2011112327A JP 2009271390 A JP2009271390 A JP 2009271390A JP 2009271390 A JP2009271390 A JP 2009271390A JP 2011112327 A JP2011112327 A JP 2011112327A
Authority
JP
Japan
Prior art keywords
gas
refrigerant
heat exchanger
liquid separator
outdoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009271390A
Other languages
Japanese (ja)
Inventor
Akira Fujitaka
章 藤高
Kazuhiko Marumoto
一彦 丸本
Yoshikazu Kawabe
義和 川邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009271390A priority Critical patent/JP2011112327A/en
Publication of JP2011112327A publication Critical patent/JP2011112327A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioner with high efficiency by reducing pressure loss of an outdoor heat exchanger, an indoor heat exchanger and a connection pipe even when using a refrigerant with a small refrigeration capability per unit volume compared with a refrigerant R410A. <P>SOLUTION: The air conditioner is characterized by using a refrigerant with a small refrigeration capability per unit volume compared with a refrigerant R410A as a refrigerant to be sealed in a refrigerant circuit, separating a gas refrigerant and a liquid refrigerant from a refrigerant which is gas-liquid two phase coming out of a first indoor heat exchanger by an indoor gas-liquid separator, and the liquid refrigerant only is made to flow into a second indoor heat exchanger. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、冷媒を用いた冷暖房装置および冷凍装置に関する。   The present invention relates to a cooling / heating apparatus and a refrigeration apparatus using a refrigerant.

フロンの使用によるオゾン層破壊が問題化した後は、代替冷媒としてHCFCが用いられ、現在ではHFC(R410A)が多く用いられている(特許文献1)。   After ozone layer destruction due to the use of CFCs has become a problem, HCFC is used as an alternative refrigerant, and HFC (R410A) is now widely used (Patent Document 1).

特開2008−111661号公報JP 2008-111161 A

しかし、R410A冷媒の地球温暖化係数(GWP)は2088と大きく、地球温暖化防止の観点から問題であった。   However, the global warming potential (GWP) of the R410A refrigerant is as large as 2088, which is a problem from the viewpoint of preventing global warming.

地球温暖化防止の観点からは、GWPの小さな冷媒として、例えばGWP4のHFO1234yfが提案されているが、本冷媒はR410A冷媒に比べて単位体積当たりの冷凍能力が小さな冷媒である。   From the viewpoint of preventing global warming, for example, HFO1234yf of GWP4 has been proposed as a refrigerant having a small GWP, but this refrigerant is a refrigerant having a small refrigerating capacity per unit volume compared to the R410A refrigerant.

従って、この冷媒を従来の装置のまま適用してR410A冷媒と同一の能力を得ようとすると、圧縮機の回転数を上昇させて冷媒の体積循環量を増加させる必要があるが、R410A冷媒と同一の能力となるまで圧縮機の回転数を上昇させると、熱交換器を含む配管の圧力損失が大きくなり、性能低下を招いてしまう。   Therefore, if this refrigerant is applied as it is in the conventional apparatus to obtain the same capacity as the R410A refrigerant, it is necessary to increase the rotational speed of the compressor and increase the volume circulation amount of the refrigerant. When the rotation speed of the compressor is increased until the same capacity is obtained, the pressure loss of the pipe including the heat exchanger becomes large, resulting in a decrease in performance.

そこで、本発明は、R410A冷媒に比べて単位体積当たりの冷凍能力が小さな冷媒を用いた場合でも、室外熱交換器、室内熱交換器(蒸発器、凝縮器)、及び接続管の圧力損失を低減して効率の高い冷凍装置および冷暖房装置を提供することを目的とする。   Therefore, the present invention reduces the pressure loss of the outdoor heat exchanger, the indoor heat exchanger (evaporator, condenser), and the connecting pipe, even when a refrigerant having a smaller refrigeration capacity per unit volume than the R410A refrigerant is used. An object of the present invention is to provide a highly efficient refrigeration apparatus and air conditioning apparatus that are reduced.

上記課題を解決するため本発明は、請求項1の発明では、圧縮機、四方弁、室外熱交換器、絞り装置、液接続管、及び第1の室内熱交換器、再熱除湿用絞り装置、室内側気液分離器、第2の室内熱交換器、ガス接続管を順次接続管で接続して環状の冷媒回路を構成し、冷房運転時には、冷媒は前記圧縮機、前記四方弁、前記室外熱交換器、前記絞り装置、前記液接続管、前記第1の室内熱交換器、前記再熱除湿用絞り装置、前記室内側気液分離器、前記第2の室内熱交換器、前記ガス接続管の順に流れ、前記再熱除湿用絞り装置の出口は前記室内側気液分離器と接続され、前記室内側気液分離器の液出口配管と前記第2の室内側熱交換器が接続され、前記室内側気液分離器のガス出口配管は室内側逆止弁を介し前記第2の室内側熱交換器の出口と接続された冷暖房装置であって、前記冷媒回路に封入する冷媒として、R410A冷媒に比べて単位体積当たりの冷凍能力が小さな冷媒を用いたことを特徴とする。   In order to solve the above-mentioned problems, the present invention provides a compressor, a four-way valve, an outdoor heat exchanger, a throttle device, a liquid connection pipe, a first indoor heat exchanger, and a reheat dehumidifying throttle device. , The indoor side gas-liquid separator, the second indoor heat exchanger, and the gas connection pipe are sequentially connected by a connection pipe to form an annular refrigerant circuit, and during cooling operation, the refrigerant is the compressor, the four-way valve, the Outdoor heat exchanger, the expansion device, the liquid connection pipe, the first indoor heat exchanger, the reheat dehumidification expansion device, the indoor side gas-liquid separator, the second indoor heat exchanger, the gas The outlet of the reheat dehumidifying throttling device is connected to the indoor side gas-liquid separator, and the liquid outlet pipe of the indoor side gas-liquid separator and the second indoor side heat exchanger are connected. The gas outlet pipe of the indoor gas-liquid separator is connected to the outlet of the second indoor heat exchanger via an indoor check valve. A connected air conditioner and, as a refrigerant sealed in the refrigerant circuit, characterized in that the refrigerating capacity per unit volume as compared with R410A refrigerant with little refrigerant.

また、請求項2記載の本発明は、上記本発明の冷暖房装置において、前記絞り装置と前記液接続管の間に室外側気液分離器を設け、冷房運転時には、前記絞り装置の出口は前記室外側気液分離器と接続され、前記室外側気液分離器の液出口配管と前記液接続管が接続され、前記室外側気液分離器のガス出口配管は二方弁を介し前記四方弁と前記圧縮機の間の低圧側配管に接続された冷暖房装置であって、前記冷媒回路に封入する冷媒として、R
410A冷媒に比べて単位体積当たりの冷凍能力が小さな冷媒を用いたことを特徴とする。
Further, the present invention according to claim 2 is the air conditioning apparatus according to the present invention, wherein an outdoor gas-liquid separator is provided between the expansion device and the liquid connection pipe, and the outlet of the expansion device is the air outlet during cooling operation. Connected to the outdoor gas-liquid separator, the liquid outlet pipe of the outdoor gas-liquid separator and the liquid connection pipe are connected, and the gas outlet pipe of the outdoor gas-liquid separator is connected to the four-way valve via a two-way valve. And a cooling / heating device connected to a low-pressure side pipe between the compressor and the refrigerant enclosed in the refrigerant circuit as R
A refrigerant having a small refrigerating capacity per unit volume as compared with the 410A refrigerant is used.

また、請求項3記載の本発明は、圧縮機、四方弁、第1の室外熱交換器、第2の室外側気液分離器、第2の室外熱交換器、絞り装置、液接続管、室内熱交換器、ガス接続管を順次接続管で接続して環状の冷媒回路を構成し、暖房運転時には、冷媒は前記圧縮機、前記四方弁、前記ガス接続管、前記室内熱交換器、前記液接続管、前記絞り装置、前記第2の室外熱交換器、前記第2の室外側気液分離器、前記第1の室外熱交換器の順に流れ、前記第2の室外側熱交換器の出口は前記第2の室外側気液分離器と接続され、前記第2の室外側気液分離器の液出口配管と前記第1の室外側熱交換器の入口が接続され、前記第2の室外側気液分離器のガス出口配管は室外側逆止弁を介し前記第1の室外側熱交換器の出口と接続された冷暖房装置であって、前記冷媒回路に封入する冷媒として、R410A冷媒に比べて単位体積当たりの冷凍能力が小さな冷媒を用いたことを特徴とする。   The present invention according to claim 3 includes a compressor, a four-way valve, a first outdoor heat exchanger, a second outdoor gas-liquid separator, a second outdoor heat exchanger, a throttling device, a liquid connection pipe, An indoor heat exchanger, gas connection pipes are sequentially connected by a connection pipe to form an annular refrigerant circuit, and during heating operation, the refrigerant is the compressor, the four-way valve, the gas connection pipe, the indoor heat exchanger, The liquid connection pipe, the expansion device, the second outdoor heat exchanger, the second outdoor gas-liquid separator, and the first outdoor heat exchanger flow in this order, and the second outdoor heat exchanger The outlet is connected to the second outdoor gas-liquid separator, the liquid outlet pipe of the second outdoor gas-liquid separator is connected to the inlet of the first outdoor heat exchanger, and the second A gas outlet pipe of the outdoor gas-liquid separator is an air conditioner connected to the outlet of the first outdoor heat exchanger via an outdoor check valve. As refrigerant sealed in the refrigerant circuit, characterized in that the refrigerating capacity per unit volume as compared with R410A refrigerant with little refrigerant.

更に請求項4記載の本発明は、圧縮機、四方弁、第1の室外熱交換器、第2の室外側気液分離器、第2の室外熱交換器、絞り装置、第1の室外側気液分離器、液接続管、及び第1の室内熱交換器、再熱除湿用絞り装置、室内側気液分離器、第2の室内熱交換器、ガス接続管を順次接続管で接続して環状の冷媒回路を構成し、冷房運転時には、冷媒は前記圧縮機、前記四方弁、前記第1の室外熱交換器、前記第2の室外側気液分離器、前記第2の室外側熱交換器、前記絞り装置、前記室外側気液分離器、前記液接続管、前記第1の室内熱交換器、前記再熱除湿用絞り装置、前記室内側気液分離器、前記第2の室内熱交換器、前記ガス接続管の順に流れ、前記絞り装置の出口は前記室外側気液分離器と接続され、前記室外側気液分離器の液出口配管と前記液接続管が接続され、前記室外側気液分離器のガス出口配管は二方弁を介し前記四方弁と前記圧縮機の間の低圧側配管に接続し、前記再熱除湿用絞り装置は、前記室内側気液分離器と接続され、前記室内側気液分離器の液出口配管と前記第2の室内側熱交換器が接続され、前記室内側気液分離器のガス出口配管は室内側逆止弁を介し前記第2の室内側熱交換器の出口と接続され、暖房運転時には、冷媒は前記圧縮機、前記四方弁、前記ガス接続管、前記第2の室内熱交換器、前記室内側気液分離器、前記再熱除湿用絞り装置、前記第1の室内熱交換器、前記液接続管、前記室外側気液分離器、前記絞り装置、前記第2の室外熱交換器、前記第2の室外側気液分離器、前記第1の室外熱交換器の順に流れ、前記第1の室外側熱交換器の出口は前記2の室外側気液分離器と接続され、前記第2の室外側気液分離器の出口配管と前記第2の室外側熱交換器の入口が接続され、前記第2の室外側気液分離器のガス出口配管は室外側逆止弁を介し前記第1の室外側熱交換器の入口と接続された冷暖房装置であって、前記冷媒回路に封入する冷媒として、R410A冷媒に比べて単位体積当たりの冷凍能力が小さな冷媒を用いたことを特徴とする。   Furthermore, the present invention according to claim 4 is a compressor, a four-way valve, a first outdoor heat exchanger, a second outdoor gas-liquid separator, a second outdoor heat exchanger, a throttling device, and a first outdoor side. A gas-liquid separator, a liquid connection pipe, and a first indoor heat exchanger, a reheat dehumidifying expansion device, an indoor side gas-liquid separator, a second indoor heat exchanger, and a gas connection pipe are sequentially connected by the connection pipe. In the cooling operation, the refrigerant is the compressor, the four-way valve, the first outdoor heat exchanger, the second outdoor gas-liquid separator, and the second outdoor heat. Exchanger, throttle device, outdoor gas-liquid separator, liquid connection pipe, first indoor heat exchanger, reheat dehumidifying throttle device, indoor gas-liquid separator, second indoor The heat exchanger and the gas connection pipe flow in this order, the outlet of the expansion device is connected to the outdoor gas-liquid separator, and the liquid outlet arrangement of the outdoor gas-liquid separator And the liquid connection pipe is connected, and the gas outlet pipe of the outdoor gas-liquid separator is connected to a low-pressure side pipe between the four-way valve and the compressor via a two-way valve, and the reheat dehumidifying throttling device Is connected to the indoor gas-liquid separator, the liquid outlet pipe of the indoor gas-liquid separator is connected to the second indoor heat exchanger, and the gas outlet pipe of the indoor gas-liquid separator is It is connected to the outlet of the second indoor heat exchanger via an indoor check valve, and during heating operation, the refrigerant is the compressor, the four-way valve, the gas connection pipe, the second indoor heat exchanger, The indoor-side gas-liquid separator, the reheat dehumidifying throttling device, the first indoor heat exchanger, the liquid connecting pipe, the outdoor-side gas-liquid separator, the throttling device, and the second outdoor heat exchanger The second outdoor gas-liquid separator flows in the order of the first outdoor heat exchanger, and the first outdoor heat exchanger The mouth is connected to the second outdoor gas-liquid separator, the outlet pipe of the second outdoor gas-liquid separator and the inlet of the second outdoor heat exchanger are connected, and the second outdoor side A gas outlet pipe of the gas-liquid separator is an air conditioning apparatus connected to the inlet of the first outdoor heat exchanger via an outdoor check valve, and is used as a refrigerant sealed in the refrigerant circuit as compared with the R410A refrigerant. Thus, a refrigerant having a small refrigeration capacity per unit volume is used.

また、請求5記載の本発明の冷凍装置は、圧縮機、凝縮器、第1絞り装置、第1蒸発器、気液分離器、第2蒸発器を順次接続して環状の冷媒回路を構成し、冷媒は前記圧縮機、前記凝縮器、前記第1絞り装置、前記第1蒸発器、前記気液分離器、前記第2蒸発器の順に流れ、前記第1蒸発器の出口は前記気液分離器と接続され、前記気液分離器の液出口配管と前記第2の蒸発器が接続され、前記気液分離器のガス出口配管は逆止弁を介し前記第2蒸発器の出口と接続される構成とするとともに、前記冷媒回路に封入する冷媒として、R410A冷媒に比べて単位体積当たりの冷凍能力が小さな冷媒を用いたことを特徴とする。   The refrigeration apparatus of the present invention according to claim 5 comprises an annular refrigerant circuit by sequentially connecting a compressor, a condenser, a first throttle device, a first evaporator, a gas-liquid separator, and a second evaporator. The refrigerant flows in the order of the compressor, the condenser, the first throttling device, the first evaporator, the gas-liquid separator, and the second evaporator, and the outlet of the first evaporator is the gas-liquid separation. A gas outlet line of the gas-liquid separator and the second evaporator are connected, and a gas outlet pipe of the gas-liquid separator is connected to the outlet of the second evaporator via a check valve. In addition, a refrigerant having a smaller refrigeration capacity per unit volume than the R410A refrigerant is used as the refrigerant sealed in the refrigerant circuit.

また、請求項6記載の本発明の冷凍装置では、圧縮機、第1凝縮器、第2気液分離器、第2凝縮器、絞り装置、蒸発器を順次接続して環状の冷媒回路を構成し、冷媒は前記圧縮機、前記第1凝縮器、前記第2気液分離器、前記第2凝縮器、前記絞り装置、前記蒸発器の順に流れ、前記第1凝縮器の出口は前記第2気液分離器と接続され、前記第2気液分離
器のガス出口配管と前記第2の凝縮器の入口が接続され、前記第2気液分離器の液出口配管は逆止弁を介し前記第2凝縮器の出口と接続される構成とするとともに、前記冷媒回路に封入する冷媒として、R410A冷媒に比べて単位体積当たりの冷凍能力が小さな冷媒を用いたことを特徴とする。
In the refrigeration apparatus of the present invention according to claim 6, an annular refrigerant circuit is configured by sequentially connecting the compressor, the first condenser, the second gas-liquid separator, the second condenser, the expansion device, and the evaporator. The refrigerant flows in the order of the compressor, the first condenser, the second gas-liquid separator, the second condenser, the expansion device, and the evaporator, and the outlet of the first condenser is the second Connected to a gas-liquid separator, a gas outlet pipe of the second gas-liquid separator and an inlet of the second condenser are connected, and the liquid outlet pipe of the second gas-liquid separator is connected to the gas outlet pipe via a check valve. In addition to being configured to be connected to the outlet of the second condenser, a refrigerant having a small refrigerating capacity per unit volume as compared with the R410A refrigerant is used as the refrigerant sealed in the refrigerant circuit.

更に請求項7記載の本発明は、上記各発明において、前記冷媒として、ハイドロフルオロオレフィンはテトラフルオロプロペンまたはトリフルオロプロペンをベース成分とし、ジフルオロメタンまたはペンタフルオロエタンまたはテトラフルオロエタンを、地球温暖化係数が5以上、750以下となるように、望ましくは350以下、さらに望ましくは150以下となるようにそれぞれ2成分混合もしくは3成分混合した冷媒を用いたことを特徴とする。   Further, in the present invention according to claim 7, in each of the above inventions, as the refrigerant, the hydrofluoroolefin is based on tetrafluoropropene or trifluoropropene, and difluoromethane, pentafluoroethane or tetrafluoroethane is used as a global warming. It is characterized in that a refrigerant in which two components or three components are mixed is used so that the coefficient is 5 or more and 750 or less, preferably 350 or less, and more preferably 150 or less.

また、請求項8記載の本発明は、前記各発明において、前記圧縮機に用いる冷凍機油として、ポリオキシアルキレングリコール類、ポリビニルエーテル類、ポリ(オキシ)アルキレングリコールまたはそのモノエーテルとポリビニルエーテルの共重合体、ポリオールエステル類、及びポリカーボネート類のいずれかの含酸素化合物を主成分とする合成油か、アルキルベンゼン類やαオレフィン類を主成分とする合成油を用いることを特徴とする。   Further, according to the present invention of claim 8, in each of the above inventions, as the refrigerating machine oil used in the compressor, polyoxyalkylene glycols, polyvinyl ethers, poly (oxy) alkylene glycol or a monoether thereof and polyvinyl ether A synthetic oil mainly containing an oxygen-containing compound of any of polymers, polyol esters and polycarbonates, or a synthetic oil mainly containing alkylbenzenes and α-olefins is used.

本発明によれば、R410A冷媒に比べて単位体積当たりの冷凍能力が小さな冷媒を用いた場合でも冷媒回路の圧力損失を低減することで冷暖房装置の効率向上ができる。   According to the present invention, even when a refrigerant having a smaller refrigeration capacity per unit volume than that of the R410A refrigerant is used, the efficiency of the air conditioner can be improved by reducing the pressure loss of the refrigerant circuit.

本発明の実施の形態1による冷暖房装置の構成図The block diagram of the air-conditioning apparatus by Embodiment 1 of this invention R410A冷媒とHFO1234yf冷媒との単位体積当たりの冷凍能力の比較を示す図The figure which shows the comparison of the refrigerating capacity per unit volume of R410A refrigerant | coolant and HFO1234yf refrigerant | coolant. R410A冷媒とHFO1234yf冷媒との配管内流速を示す図The figure which shows the flow velocity in piping of R410A refrigerant | coolant and HFO1234yf refrigerant | coolant. 冷房運転での冷媒の流れを示す図The figure which shows the flow of the refrigerant in the cooling operation 暖房運転での冷媒の流れを示す図Diagram showing refrigerant flow in heating operation 再熱除湿運転での冷媒の流れを示す図Diagram showing refrigerant flow in reheat dehumidification operation HFO1234yfの混合割合と冷凍能力比の関係を示す図The figure which shows the relationship between the mixing ratio of HFO1234yf, and refrigerating capacity ratio

本発明の第1の実施の形態による冷暖房装置は、室内ユニットの再熱除湿用絞り装置と第2の室内熱交換器の間に、室内側気液分離器を設け、冷媒回路に封入する冷媒として、R410A冷媒に比べて単位体積当たりの冷凍能力が小さな冷媒を用いたものである。本実施の形態によれば、冷房運転時に、第1の室内熱交換器を出た気液二相の冷媒を室内側気液分離器で、ガス冷媒と液冷媒に分離し、液冷媒のみ第2の室内熱交換器に流れるため、冷媒速度を抑えて、第2の室内熱交換器の圧力損失を低減できる。   The air-conditioning apparatus according to the first embodiment of the present invention is a refrigerant in which an indoor-side gas-liquid separator is provided between a reheat dehumidifying expansion device for an indoor unit and a second indoor heat exchanger and sealed in a refrigerant circuit. As described above, a refrigerant having a small refrigerating capacity per unit volume as compared with the R410A refrigerant is used. According to the present embodiment, during the cooling operation, the gas-liquid two-phase refrigerant that has exited the first indoor heat exchanger is separated into the gas refrigerant and the liquid refrigerant by the indoor side gas-liquid separator, and only the liquid refrigerant is used. Since the refrigerant flows through the second indoor heat exchanger, the refrigerant speed can be suppressed and the pressure loss of the second indoor heat exchanger can be reduced.

本発明の第2の実施の形態は、第1の実施の形態による冷暖房装置において、室外ユニットの絞り装置と室外ユニットと室内ユニットを接続する液接続管の間に室外側気液分離器を設け、冷媒回路に封入する冷媒として、R410A冷媒に比べて単位体積当たりの冷凍能力が小さな冷媒を用いたものである。本実施の形態によれば、冷房運転時に、絞り装置を出た気液二相の冷媒を室外側気液分離器で、ガス冷媒と液冷媒に分離し、液冷媒のみ室内ユニットに流れるため、冷媒速度を抑えて、室内ユニットおよびガス接続管の圧力損失を低減できる。   According to a second embodiment of the present invention, in the air-conditioning apparatus according to the first embodiment, an outdoor gas-liquid separator is provided between the expansion device of the outdoor unit and the liquid connection pipe connecting the outdoor unit and the indoor unit. As the refrigerant to be enclosed in the refrigerant circuit, a refrigerant having a small refrigerating capacity per unit volume as compared with the R410A refrigerant is used. According to the present embodiment, during the cooling operation, the gas-liquid two-phase refrigerant exiting the expansion device is separated into the gas refrigerant and the liquid refrigerant in the outdoor gas-liquid separator, and only the liquid refrigerant flows into the indoor unit. The pressure loss of the indoor unit and the gas connection pipe can be reduced by suppressing the refrigerant speed.

本発明の第3の実施の形態は、第1の室外熱交換器と第2の室外熱交換器の間に、第2
の室外側気液分離器を設け、冷媒回路に封入する冷媒として、R410A冷媒に比べて単位体積当たりの冷凍能力が小さな冷媒を用いたものである。本実施の形態によれば、暖房運転時に、第2の室外熱交換器を出た気液二相の冷媒を第2の室外側気液分離器で、ガス冷媒と液冷媒に分離し、液冷媒のみ第1の室外熱交換器に流れるため、冷媒速度を抑えて、第1の室外熱交換器の圧力損失を低減できる。
In the third embodiment of the present invention, the second outdoor heat exchanger and the second outdoor heat exchanger are arranged between the second outdoor heat exchanger and the second outdoor heat exchanger.
A refrigerant having a small refrigeration capacity per unit volume as compared with the R410A refrigerant is used as the refrigerant enclosed in the refrigerant circuit and sealed in the refrigerant circuit. According to the present embodiment, during the heating operation, the gas-liquid two-phase refrigerant that has exited the second outdoor heat exchanger is separated into the gas refrigerant and the liquid refrigerant by the second outdoor-side gas-liquid separator, Since only the refrigerant flows to the first outdoor heat exchanger, the refrigerant speed can be suppressed and the pressure loss of the first outdoor heat exchanger can be reduced.

本発明の第4の実施の形態は、室内ユニットの再熱除湿用絞り装置と第2の室内熱交換器の間に、室内側気液分離器を設け、室外ユニットの絞り装置と液接続管の間に室外側気液分離器を設け、第1の室外熱交換器と第2の室外熱交換器の間に、第2の室外側気液分離器を設け、冷媒回路に封入する冷媒として、R410A冷媒に比べて単位体積当たりの冷凍能力が小さな冷媒を用いたものである。本実施の形態によれば、冷房運転時に、絞り装置を出た気液二相の冷媒を室外側気液分離器で、ガス冷媒と液冷媒に分離し、液冷媒のみ室内ユニットに流れるため、冷媒速度を抑えて、室内ユニットおよびガス接続管の圧力損失を低減し、第1の室内熱交換器を出た気液二相の冷媒を室内側気液分離器で、ガス冷媒と液冷媒に分離し、液冷媒のみ第2の室内熱交換器に流れるため、冷媒速度を抑えて、第2の室内熱交換器の圧力損失を低減できる。さらに、暖房運転時に、第2の室外熱交換器を出た気液二相の冷媒を第2の室外側気液分離器で、ガス冷媒と液冷媒に分離し、液冷媒のみ第1の室外熱交換器に流れるため、冷媒速度を抑えて、第2の室外熱交換器の圧力損失を低減できる。   In the fourth embodiment of the present invention, an indoor side gas-liquid separator is provided between the reheat dehumidifying expansion device for the indoor unit and the second indoor heat exchanger, and the expansion device for the outdoor unit and the liquid connection pipe are provided. An outdoor gas-liquid separator is provided between the first outdoor heat exchanger and the second outdoor heat exchanger, and a second outdoor gas-liquid separator is provided between the first outdoor heat exchanger and the refrigerant circuit. , A refrigerant having a smaller refrigeration capacity per unit volume than the R410A refrigerant is used. According to the present embodiment, during the cooling operation, the gas-liquid two-phase refrigerant exiting the expansion device is separated into the gas refrigerant and the liquid refrigerant in the outdoor gas-liquid separator, and only the liquid refrigerant flows into the indoor unit. The refrigerant speed is suppressed, pressure loss of the indoor unit and the gas connection pipe is reduced, and the gas-liquid two-phase refrigerant exiting the first indoor heat exchanger is converted into gas refrigerant and liquid refrigerant by the indoor side gas-liquid separator. Since the liquid refrigerant is separated and flows only to the second indoor heat exchanger, the refrigerant speed can be suppressed and the pressure loss of the second indoor heat exchanger can be reduced. Further, during the heating operation, the gas-liquid two-phase refrigerant that has exited the second outdoor heat exchanger is separated into gas refrigerant and liquid refrigerant by the second outdoor-side gas-liquid separator, and only the liquid refrigerant is in the first outdoor unit. Since it flows to the heat exchanger, the refrigerant speed can be suppressed and the pressure loss of the second outdoor heat exchanger can be reduced.

また、本発明の請求5の冷凍装置では、圧縮機、凝縮器、第1絞り装置、第1蒸発器、気液分離器、第2蒸発器を順次接続して環状の冷媒回路を構成し、冷媒は前記圧縮機、前記凝縮器、前記第1絞り装置、前記第1蒸発器、前記気液分離器、前記第2蒸発器の順に流れ、前記第1蒸発器の出口は前記気液分離器と接続され、前記気液分離器の液出口配管と前記第2の蒸発器が接続され、前記気液分離器のガス出口配管は逆止弁を介し前記第2蒸発器の出口と接続される構成とするとともに、前記冷媒回路に封入する冷媒として、R410A冷媒に比べて単位体積当たりの冷凍能力が小さな冷媒を用いたことを特徴とする。   In the refrigeration apparatus according to claim 5 of the present invention, a compressor, a condenser, a first throttle device, a first evaporator, a gas-liquid separator, and a second evaporator are sequentially connected to form an annular refrigerant circuit, The refrigerant flows in the order of the compressor, the condenser, the first expansion device, the first evaporator, the gas-liquid separator, and the second evaporator, and the outlet of the first evaporator is the gas-liquid separator. The gas outlet pipe of the gas-liquid separator and the second evaporator are connected, and the gas outlet pipe of the gas-liquid separator is connected to the outlet of the second evaporator via a check valve. In addition to the configuration, a refrigerant having a small refrigerating capacity per unit volume compared to the R410A refrigerant is used as the refrigerant sealed in the refrigerant circuit.

また、請求項6の冷凍装置では、圧縮機、第1凝縮器、第2気液分離器、第2凝縮器、絞り装置、蒸発器を順次接続して環状の冷媒回路を構成し、冷媒は前記圧縮機、前記第1凝縮器、前記第2気液分離器、前記第2凝縮器、前記絞り装置、前記蒸発器の順に流れ、前記第1凝縮器の出口は前記第2気液分離器と接続され、前記第2気液分離器のガス出口配管と前記第2の凝縮器の入口が接続され、前記第2気液分離器の液出口配管は逆止弁を介し前記第2凝縮器の出口と接続される構成とするとともに、前記冷媒回路に封入する冷媒として、R410A冷媒に比べて単位体積当たりの冷凍能力が小さな冷媒を用いたことを特徴とする。   According to a sixth aspect of the present invention, a compressor, a first condenser, a second gas-liquid separator, a second condenser, a throttling device, and an evaporator are sequentially connected to form an annular refrigerant circuit. The compressor, the first condenser, the second gas-liquid separator, the second condenser, the throttling device, and the evaporator flow in this order, and the outlet of the first condenser is the second gas-liquid separator. And a gas outlet pipe of the second gas-liquid separator and an inlet of the second condenser are connected, and the liquid outlet pipe of the second gas-liquid separator is connected to the second condenser via a check valve. And a refrigerant having a smaller refrigeration capacity per unit volume than the R410A refrigerant is used as the refrigerant sealed in the refrigerant circuit.

そして、本発明の第7の実施の形態は、第1から第6の実施の形態において、冷媒として、ハイドロフルオロオレフィンはテトラフルオロプロペンまたはトリフルオロプロペンをベース成分とし、ジフルオロメタンまたはペンタフルオロエタンまたはテトラフルオロエタンを、地球温暖化係数が5以上、750以下となるように、望ましくは350以下、さらに望ましくは150以下となるようにそれぞれ2成分混合もしくは3成分混合した冷媒を用いたものである。本実施の形態によれば、地球温暖化係数の小さな冷媒を用いることで、回収されない冷媒が大気に放出されても、地球温暖化に対しその影響を極少に保つことができる。   And the seventh embodiment of the present invention is the first to sixth embodiments, wherein the hydrofluoroolefin is based on tetrafluoropropene or trifluoropropene as the refrigerant, and difluoromethane or pentafluoroethane or Tetrafluoroethane is a refrigerant mixed with two or three components so that the global warming potential is 5 or more and 750 or less, preferably 350 or less, and more preferably 150 or less. . According to the present embodiment, by using a refrigerant having a small global warming coefficient, even if a refrigerant that is not recovered is released into the atmosphere, the influence on global warming can be kept to a minimum.

本発明の第8の実施の形態は、第1から第7の実施の形態において、圧縮機に用いる冷凍機油として、ポリオキシアルキレングリコール類、ポリビニルエーテル類、ポリ(オキシ)アルキレングリコールまたはそのモノエーテルとポリビニルエーテルの共重合体、ポ
リオールエステル類、及びポリカーボネート類のいずれかの含酸素化合物を主成分とする合成油か、アルキルベンゼン類やαオレフィン類を主成分とする合成油を用いるものである。本実施の形態によれば、R410Aと同等の能力を得ようとしたとき、摺動損失を低減でき、圧縮機の効率低下を防ぐことができるので、ガス状態の冷媒が通過する部位の圧力損失を低減できる。
In an eighth embodiment of the present invention, polyoxyalkylene glycols, polyvinyl ethers, poly (oxy) alkylene glycols or monoethers thereof are used as the refrigerating machine oil used in the compressor in the first to seventh embodiments. And a synthetic oil mainly containing an oxygen-containing compound of any one of a copolymer of poly (vinyl ether), polyol ester and polycarbonate, or a synthetic oil mainly containing alkylbenzenes and α-olefins. According to the present embodiment, when trying to obtain the same capacity as R410A, the sliding loss can be reduced and the efficiency of the compressor can be prevented from being lowered. Therefore, the pressure loss at the portion through which the gaseous refrigerant passes. Can be reduced.

以下に、本発明を冷暖房装置を例にしてその実施の形態について説明する。なお、この実施の形態によって本発明が限定されるものではない。   In the following, an embodiment of the present invention will be described by taking an air conditioning apparatus as an example. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は本実施の形態による冷暖房装置の構成図である。
(Embodiment 1)
FIG. 1 is a configuration diagram of an air-conditioning apparatus according to the present embodiment.

本実施例による冷暖房装置は、冷媒を圧縮する圧縮機1、冷房暖房運転時の冷媒回路を切り替える四方弁2、冷媒と外気の熱を交換する第1の室外熱交換器3、第2の室外熱交換器4、暖房運転時に、第2の室外熱交換器4を出た気液二相の冷媒をガス冷媒と液冷媒に分離し、液冷媒のみ第1の室外熱交換器3に流す第2の室外側気液分離器5、冷媒を減圧する絞り装置6、冷房運転時に、絞り装置6を出た気液二相の冷媒をガス冷媒と液冷媒に分離し、液冷媒のみ第1の室内熱交換器8に流す室外側気液分離器7、冷媒と室内空気の熱を交換する第1の室内熱交換器8、第2の室内熱交換器9、冷房運転時に、第1の室内熱交換器8を出た気液二相の冷媒をガス冷媒と液冷媒に分離し、液冷媒のみ第2の室内熱交換器9に流す室内側気液分離器10、冷暖房運転時には絞り開度を大きくし、除湿運転時に絞り開度を小さくして第1の室内熱交換器8を出た液冷媒を減圧する再熱除湿用絞り装置11で構成される。   The air-conditioning apparatus according to the present embodiment includes a compressor 1 that compresses refrigerant, a four-way valve 2 that switches a refrigerant circuit during cooling and heating operation, a first outdoor heat exchanger 3 that exchanges heat between the refrigerant and outside air, and a second outdoor During the heating operation of the heat exchanger 4, the gas-liquid two-phase refrigerant that has exited the second outdoor heat exchanger 4 is separated into a gas refrigerant and a liquid refrigerant, and only the liquid refrigerant flows into the first outdoor heat exchanger 3. 2 outdoor gas-liquid separator 5, throttle device 6 for decompressing the refrigerant, and gas-liquid two-phase refrigerant exiting the throttle device 6 during the cooling operation is separated into a gas refrigerant and a liquid refrigerant, and only the liquid refrigerant is the first. The outdoor gas-liquid separator 7 that flows to the indoor heat exchanger 8, the first indoor heat exchanger 8 that exchanges heat between the refrigerant and the indoor air, the second indoor heat exchanger 9, and the first room during the cooling operation The gas-liquid two-phase refrigerant exiting the heat exchanger 8 is separated into a gas refrigerant and a liquid refrigerant, and only the liquid refrigerant flows into the second indoor heat exchanger 9. The regenerator 10 is configured with a reheat dehumidifying expansion device 11 that depressurizes the liquid refrigerant that has exited the first indoor heat exchanger 8 by increasing the throttle opening during air conditioning operation and decreasing the throttle opening during dehumidifying operation. .

圧縮機1、四方弁2、第1の室外熱交換器3、第2の室外側気液分離器5、第2の室外熱交換器4、絞り装置6、室外側気液分離器7、及び第1の室内熱交換器8、再熱除湿用絞り装置11、室内側気液分離器10、第2の室内熱交換器9は、順次接続管で環状に接続されている。   A compressor 1, a four-way valve 2, a first outdoor heat exchanger 3, a second outdoor gas-liquid separator 5, a second outdoor heat exchanger 4, a throttling device 6, an outdoor gas-liquid separator 7, and The first indoor heat exchanger 8, the reheat dehumidifying expansion device 11, the indoor side gas-liquid separator 10, and the second indoor heat exchanger 9 are sequentially connected in a ring shape with a connecting pipe.

室外側気液分離器7のガス出口配管12は二方弁13を介し四方弁2と圧縮機1の間の低圧側配管に接続され、第1の室外バイパス回路14を構成し、室外側気液分離器7の液出口配管15は液接続管26と接続され、室内側気液分離器10のガス出口配管16は室内側逆止弁17を介し第2の室内側熱交換器9の出口と接続され、室内バイパス回路18を構成し、室内側気液分離器10の液出口配管19と第2の室内側熱交換器9が接続され、第2の室外側気液分離器5のガス出口配管20は室外側逆止弁21を介し第1の室外側熱交換器3の出口と接続され、第2の室外バイパス回路23を構成し、第2の室外側気液分離器5の液出口配管22と第1の室外側熱交換器3が接続されている。   A gas outlet pipe 12 of the outdoor gas-liquid separator 7 is connected to a low-pressure side pipe between the four-way valve 2 and the compressor 1 via a two-way valve 13 to constitute a first outdoor bypass circuit 14. The liquid outlet pipe 15 of the liquid separator 7 is connected to the liquid connection pipe 26, and the gas outlet pipe 16 of the indoor gas-liquid separator 10 is connected to the outlet of the second indoor heat exchanger 9 via the indoor check valve 17. Are connected to each other to form an indoor bypass circuit 18, a liquid outlet pipe 19 of the indoor gas-liquid separator 10 is connected to the second indoor heat exchanger 9, and the gas of the second outdoor gas-liquid separator 5 is connected. The outlet pipe 20 is connected to the outlet of the first outdoor heat exchanger 3 via the outdoor check valve 21 to constitute a second outdoor bypass circuit 23, and the liquid in the second outdoor gas-liquid separator 5. The outlet pipe 22 and the first outdoor heat exchanger 3 are connected.

そして室外ユニット24と室内ユニット25とは、液接続管26とガス接続管27とで接続されている。   The outdoor unit 24 and the indoor unit 25 are connected by a liquid connection pipe 26 and a gas connection pipe 27.

冷房運転時には、圧縮機1によって圧縮された冷媒は高温高圧の冷媒となって四方弁2を通って第1の室外熱交換器3、第2の室外熱交換器4に送られる。そして、外気と熱交換して放熱し、高圧の液冷媒となり絞り装置6に送られる。絞り装置6では減圧されて低温低圧の二相冷媒となり、液接続管26を通って室内ユニット25に送られる。この時、再熱除湿用絞り装置11は開状態で、再熱除湿用絞り装置11を冷媒が流れる時に減圧されることは無く、第1の室内熱交換器8、第2の室内熱交換器9に入り室内空気と熱交換して吸熱し、蒸発気化して低温のガス冷媒となる。この時室内空気は冷却されて室内を冷房する。さらに冷媒はガス接続管27を通って、四方弁2を経由して圧縮機1に戻される。   During the cooling operation, the refrigerant compressed by the compressor 1 becomes a high-temperature and high-pressure refrigerant and is sent to the first outdoor heat exchanger 3 and the second outdoor heat exchanger 4 through the four-way valve 2. Then, heat is exchanged with the outside air to dissipate the heat, and the high-pressure liquid refrigerant is sent to the expansion device 6. In the expansion device 6, the pressure is reduced to form a low-temperature and low-pressure two-phase refrigerant, which is sent to the indoor unit 25 through the liquid connection pipe 26. At this time, the reheat dehumidifying squeezing device 11 is in an open state, and is not depressurized when the refrigerant flows through the reheat dehumidifying squeezing device 11, and the first indoor heat exchanger 8 and the second indoor heat exchanger are not depressurized. 9 enters into heat exchange with room air, absorbs heat, evaporates and becomes a low-temperature gas refrigerant. At this time, the room air is cooled to cool the room. Further, the refrigerant passes through the gas connection pipe 27 and returns to the compressor 1 through the four-way valve 2.

暖房運転時には、圧縮機1によって圧縮された冷媒は高温高圧の冷媒となって四方弁2、ガス接続管27を通り、室内ユニット25に送られる。この時、再熱除湿用絞り装置11は開状態で、再熱除湿用絞り装置11を冷媒が流れる時に減圧されることは無く、高温高圧の冷媒は第2の室内熱交換器9、第1の室内熱交換器8に入り、室内空気と熱交換して放熱し、冷却され高圧の液冷媒となる。この時室内空気は加熱されて室内を暖房する。その後、冷媒は液接続管26を通って絞り装置6に送られ、絞り装置6において減圧されて低温低圧の二相冷媒となり、第2の室外熱交換器4、第1の室外熱交換器3に送られて外気と熱交換して蒸発気化し、四方弁2を経由して圧縮機1へ戻される。   During the heating operation, the refrigerant compressed by the compressor 1 becomes a high-temperature and high-pressure refrigerant, passes through the four-way valve 2 and the gas connection pipe 27, and is sent to the indoor unit 25. At this time, the reheat dehumidifying squeezing device 11 is in an open state and is not depressurized when the refrigerant flows through the reheat dehumidifying squeezing device 11, and the high-temperature and high-pressure refrigerant is supplied to the second indoor heat exchanger 9, Enters the indoor heat exchanger 8 and exchanges heat with the indoor air to dissipate the heat and cool to become a high-pressure liquid refrigerant. At this time, the room air is heated to heat the room. Thereafter, the refrigerant is sent to the expansion device 6 through the liquid connection pipe 26 and is decompressed in the expansion device 6 to become a low-temperature and low-pressure two-phase refrigerant, and the second outdoor heat exchanger 4 and the first outdoor heat exchanger 3. To evaporate by exchanging heat with the outside air and returned to the compressor 1 via the four-way valve 2.

再熱除湿運転時には、圧縮機1によって圧縮された冷媒は高温高圧の冷媒となって四方弁2を通って第1の室外熱交換器3、第2の室外熱交換器4に送られる。しかし送風機の回転数を低くし、外気と熱交換して放熱する熱量を制御される。そして、高圧の気液二相冷媒となり絞り装置6に送られる。この時、絞り装置6は全開に制御され、減圧されず、高圧の二相冷媒のまま、液接続管26を通って、室内ユニット25に送られ、第1の室内熱交換器8で放熱され、高圧低温の液冷媒となる。この時、再熱除湿用絞り装置11は開度を小さく制御されるため、再熱除湿用絞り装置11を冷媒が流れる時に減圧され、低圧低温の冷媒となり、第2の室内熱交換器9に入り室内空気と熱交換して吸熱し、蒸発気化して低温のガス冷媒となる。この時室内空気は第2の室内熱交換器9で冷却、除湿された後、第1の室内熱交換器8で加熱されるため、室内温度を下げることなく、除湿する。そして低温のガス冷媒はガス接続管27を通って、四方弁2を経由して圧縮機1に戻される。   During the reheat dehumidifying operation, the refrigerant compressed by the compressor 1 becomes a high-temperature and high-pressure refrigerant and is sent to the first outdoor heat exchanger 3 and the second outdoor heat exchanger 4 through the four-way valve 2. However, the rotational speed of the blower is lowered, and the amount of heat dissipated by exchanging heat with the outside air is controlled. Then, it becomes a high-pressure gas-liquid two-phase refrigerant and is sent to the expansion device 6. At this time, the expansion device 6 is controlled to be fully open, is not decompressed, remains in a high-pressure two-phase refrigerant, is sent to the indoor unit 25 through the liquid connection pipe 26, and is radiated by the first indoor heat exchanger 8. High pressure and low temperature liquid refrigerant. At this time, since the opening degree of the reheat dehumidifying expansion device 11 is controlled to be small, the reheat dehumidifying expansion device 11 is depressurized when the refrigerant flows to become a low-pressure and low-temperature refrigerant, and is supplied to the second indoor heat exchanger 9. It exchanges heat with the incoming room air to absorb heat, evaporates and becomes a low-temperature gas refrigerant. At this time, the indoor air is cooled and dehumidified by the second indoor heat exchanger 9, and then heated by the first indoor heat exchanger 8, so it is dehumidified without lowering the indoor temperature. The low-temperature gas refrigerant is returned to the compressor 1 through the gas connection pipe 27 and the four-way valve 2.

このようにして冷暖房、除湿運転がなされる。   In this way, air conditioning and dehumidifying operations are performed.

本実施例による冷暖房装置を構成する冷媒回路には、R410A冷媒に比べて単位体積当たりの冷凍能力が小さな冷媒を封入している。この冷媒は、ハイドロフルオロオレフィンはテトラフルオロプロペンまたはトリフルオロプロペンをベース成分とし、ジフルオロメタンまたはペンタフルオロエタンまたはテトラフルオロエタンを、地球温暖化係数が5以上、750以下となるように、望ましくは350以下、さらに望ましくは150以下となるようにそれぞれ2成分混合もしくは3成分混合したものである。   In the refrigerant circuit constituting the air conditioning apparatus according to the present embodiment, a refrigerant having a small refrigerating capacity per unit volume compared to the R410A refrigerant is enclosed. In this refrigerant, the hydrofluoroolefin is based on tetrafluoropropene or trifluoropropene, and difluoromethane, pentafluoroethane, or tetrafluoroethane is preferably 350 or less so that the global warming potential is 5 or more and 750 or less. Hereinafter, it is a mixture of two components or three components so as to be more preferably 150 or less.

また、圧縮機1に用いる冷凍機油は、ポリオキシアルキレングリコール類、ポリビニルエーテル類、ポリ(オキシ)アルキレングリコールまたはそのモノエーテルとポリビニルエーテルの共重合体、ポリオールエステル類、及びポリカーボネート類のいずれかの含酸素化合物を主成分とする合成油か、アルキルベンゼン類やαオレフィン類を主成分とする合成油である。   The refrigerating machine oil used for the compressor 1 is any one of polyoxyalkylene glycols, polyvinyl ethers, poly (oxy) alkylene glycols or their monoether and polyvinyl ether copolymers, polyol esters, and polycarbonates. It is a synthetic oil mainly composed of oxygen-containing compounds or a synthetic oil mainly composed of alkylbenzenes and α-olefins.

図2は、R410A冷媒と、R410A冷媒に比べて単位体積当たりの冷凍能力が小さな冷媒であるテトラフルオロプロペンHFO1234yf冷媒との単位体積当たりの冷凍能力を、同じ冷凍装置を用いた実験値で比較したものである。   FIG. 2 compares the refrigeration capacity per unit volume of the R410A refrigerant and the tetrafluoropropene HFO1234yf refrigerant, which is a refrigerant having a smaller refrigeration capacity per unit volume compared to the R410A refrigerant, by experimental values using the same refrigeration apparatus. Is.

図2では、蒸発器入口での冷媒温度、蒸発器出口での冷媒温度、蒸発器出入口の平均飽和温度、蒸発器出入口の平均温度での蒸発潜熱、圧縮機吸入温度、圧縮機吸入温度での飽和ガス密度、及び蒸発器の単位体積当たりの冷凍能力(圧縮機吸入飽和ガス密度×蒸発潜熱)を示している。R410A冷媒については実験値を示し、HFO1234yf冷媒については実験値を示すとともに、蒸発器入口での冷媒温度、蒸発器出口での冷媒温度、及び圧縮機吸入温度がR410Aと同等の場合における蒸発器の単位体積当たりの冷凍能力を示している。   In FIG. 2, the refrigerant temperature at the evaporator inlet, the refrigerant temperature at the evaporator outlet, the average saturation temperature at the evaporator inlet / outlet, the latent heat of vaporization at the average temperature at the evaporator inlet / outlet, the compressor suction temperature, and the compressor suction temperature The saturation gas density and the refrigeration capacity per unit volume of the evaporator (compressor suction saturated gas density × evaporation latent heat) are shown. Experimental values are shown for the R410A refrigerant, experimental values are shown for the HFO1234yf refrigerant, and the evaporator temperature when the refrigerant temperature at the evaporator inlet, the refrigerant temperature at the evaporator outlet, and the compressor suction temperature are equivalent to the R410A. The refrigeration capacity per unit volume is shown.

図2に示すように、冷房運転時における単位体積当たりの冷凍能力は、R410Aでは10149.72kJ/m3、HFO1234yfでは3722.55kJ/m3であり、HFO1234yfはR410Aの約1/2.7倍となる。よって、圧縮機1の冷凍能力をR410Aと同程度にするためには気筒容積を約2.7倍にして、単位時間当たりの体積流量を増加する必要がある。   As shown in FIG. 2, the refrigeration capacity per unit volume during cooling operation is 10149.72 kJ / m3 for R410A and 3722.55 kJ / m3 for HFO1234yf, and HFO1234yf is about 1 / 2.7 times that of R410A. . Therefore, in order to make the refrigerating capacity of the compressor 1 comparable to that of R410A, it is necessary to increase the volumetric flow rate per unit time by increasing the cylinder volume by about 2.7 times.

なお、圧縮機1の単位時間当たりの体積流量を増加する手段として回転数を増加させる方法が考えられるが、回転数を増加することにより圧縮機1の摺動損失の増加につながり、圧縮機1の効率が低下するために好ましくない。   In addition, although the method of increasing a rotation speed can be considered as a means to increase the volume flow rate per unit time of the compressor 1, it leads to the increase in the sliding loss of the compressor 1 by increasing a rotation speed, and the compressor 1 is increased. This is not preferable because the efficiency is reduced.

一方、蒸発器として作用する室内熱交換器の出口温度及び圧縮機の吸入口の飽和ガス温度はR410Aの実験値に比べてHFO1234yfの実験値は低くなっている。これは配管内の流速が増加したことによる圧力損失が増加して温度か低下したものと考えられ、蒸発器性能の低下や圧縮機の吸入密度の低下による性能低下を引き起こしていると考えられる。   On the other hand, the experimental value of HFO1234yf is lower than the experimental value of R410A for the outlet temperature of the indoor heat exchanger that acts as an evaporator and the saturated gas temperature of the suction port of the compressor. This is thought to be due to an increase in pressure loss due to an increase in the flow velocity in the pipe, resulting in a decrease in temperature, and a decrease in evaporator performance and a decrease in compressor suction density.

さらに、HFO1234yfについて、R410Aと同等の圧力損失となり、更に蒸発器の出口温度及び圧縮機の吸入口の飽和ガス温度となったと仮定した場合の単位体積当たりの冷凍能力を計算した結果に示す通り、圧力損失をR410Aと同等とした場合に、蒸発器の蒸発潜熱の向上と圧縮機の吸入密度を大きくでき、単位体積当たりの冷凍能力は4529.78kJ/m3となり、実験値に比べて約20%向上している。従って、配管内での圧力損失の低減が重要である。   Furthermore, for HFO1234yf, as shown in the result of calculating the refrigerating capacity per unit volume when it is assumed that the pressure loss is equal to that of R410A, and further the outlet temperature of the evaporator and the saturated gas temperature of the suction port of the compressor are obtained. When the pressure loss is equivalent to R410A, the latent heat of vaporization of the evaporator can be improved and the suction density of the compressor can be increased. The refrigeration capacity per unit volume is 4529.78 kJ / m3, which is about 20% of the experimental value. It has improved. Therefore, it is important to reduce the pressure loss in the piping.

一方、暖房運転時においても、蒸発器として作用する室外熱交換器の圧力損失を低減することで、効率向上を図ることができる。   On the other hand, even during the heating operation, efficiency can be improved by reducing the pressure loss of the outdoor heat exchanger acting as an evaporator.

この時、圧力損失を△P、配管内の冷媒流速をVとすると、一般的に式(1)が成立する。
△P∝V2 ・・・(1)
従って、圧力損失を低減するには通過面積を大きくして冷媒流速を低くする必要がある。
At this time, when the pressure loss is ΔP and the refrigerant flow velocity in the pipe is V, the equation (1) is generally established.
△ P∝V2 (1)
Therefore, in order to reduce the pressure loss, it is necessary to increase the passage area and lower the refrigerant flow rate.

図3は、R410A冷媒とHFO1234yf冷媒との配管内流速を実験値で比較したものである。   FIG. 3 is a comparison of the in-pipe flow rates of the R410A refrigerant and the HFO1234yf refrigerant with experimental values.

図3では、冷媒循環量、蒸発器出口飽和密度、蒸発器出口配管断面積(冷媒通過面積)、冷媒の配管内流速管内速度比を示している。   FIG. 3 shows the refrigerant circulation amount, the evaporator outlet saturation density, the evaporator outlet pipe cross-sectional area (refrigerant passage area), and the refrigerant pipe flow velocity / pipe velocity ratio.

図3に示すように、冷房運転時における配管内流速は、R410A冷媒では約5.4m/s、HFO1234yf冷媒では約14.4m/sとなり、同一の通過面積の配管を使用した場合には、R410A冷媒に対してHFO1234yf冷媒の圧力損失は大きい。   As shown in FIG. 3, the flow velocity in the pipe during the cooling operation is about 5.4 m / s for the R410A refrigerant and about 14.4 m / s for the HFO1234yf refrigerant, and when pipes having the same passage area are used, The pressure loss of HFO1234yf refrigerant is larger than that of R410A refrigerant.

従って、R410A同等の適切な圧力損失とするためには、通過面積を大きくする必要がある。   Therefore, in order to obtain an appropriate pressure loss equivalent to R410A, it is necessary to increase the passage area.

しかし、冷房運転時、蒸発器として作用する時に配管内流速を最適化すると、暖房運転時、凝縮器として作用する時には、高圧であるため冷媒密度が大きく、流速の低下が大きく、配管内の冷媒の熱伝達率が低下し、圧力損失の増加による性能低下と比べ、熱伝達率の低下による性能低下が大きい。従って、冷房と暖房で性能のバランスを取るためには、配管の通過面積を大きくするだけでなく、異なる方法で圧力損失を低減する必要がある。   However, if the flow velocity in the pipe is optimized when acting as an evaporator during cooling operation, the refrigerant density is large because of the high pressure when acting as a condenser during heating operation, and the flow velocity is greatly reduced. The heat transfer coefficient decreases, and the performance deterioration due to the decrease in heat transfer coefficient is larger than the performance deterioration due to the increase in pressure loss. Therefore, in order to balance performance between cooling and heating, it is necessary not only to increase the passage area of the pipe but also to reduce the pressure loss by different methods.

圧力損失は、循環冷媒がガス状態で流れるときに大きくなる。しかし、熱交換器が蒸発器として作用する場合、液冷媒が蒸発する時に熱交換器により空気から吸熱するため、ガス冷媒が熱交換器に流れても、吸熱には作用しない。従って、熱交換器が蒸発器として作用する場合、絞り装置と蒸発器入口の間で気液分離器により、ガス冷媒と液冷媒に分離し、蒸発器には液冷媒のみを流すようにすれば、熱交換器の配管内流速は低下し、圧力損失は低下する。また、蒸発器として作用する熱交換器の途中に気液分離器を設け、ガス冷媒と液冷媒に分離し、液冷媒のみ残りの熱交換器に流し、ガス冷媒は熱交換器出口にバイパスすれば、熱交換器の圧力損失を低減できる。   The pressure loss increases when the circulating refrigerant flows in a gas state. However, when the heat exchanger functions as an evaporator, the heat exchanger absorbs heat from the air when the liquid refrigerant evaporates, so even if the gas refrigerant flows into the heat exchanger, it does not affect the heat absorption. Therefore, when the heat exchanger acts as an evaporator, the gas and liquid separators separate the gas refrigerant and liquid refrigerant between the expansion device and the evaporator inlet, and only the liquid refrigerant flows through the evaporator. The flow rate in the pipe of the heat exchanger is reduced and the pressure loss is reduced. In addition, a gas-liquid separator is provided in the middle of the heat exchanger that acts as an evaporator to separate the gas refrigerant and liquid refrigerant, and only the liquid refrigerant flows to the remaining heat exchanger, and the gas refrigerant is bypassed to the heat exchanger outlet. Thus, the pressure loss of the heat exchanger can be reduced.

次に、本実施例による冷暖房装置の冷媒圧力損失を低減するバイパス回路の作用について説明する。   Next, the effect | action of the bypass circuit which reduces the refrigerant | coolant pressure loss of the air conditioning apparatus by a present Example is demonstrated.

図4は冷房運転での冷媒の流れを示す図である。   FIG. 4 is a diagram showing the flow of the refrigerant in the cooling operation.

冷房運転時には、圧縮機1によって圧縮された冷媒は高温高圧の冷媒となって四方弁2を通って第1の室外熱交換器3、第2の室外熱交換器4に送られる。この時、第2の室外バイパス回路23には室外側逆止弁21により冷媒は流れない。そして、高温高圧の冷媒は第1の室外熱交換器3、第2の室外熱交換器4で外気と熱交換して放熱し、高圧の液冷媒となり絞り装置6に送られる。絞り装置6では減圧されて低温低圧の二相冷媒となる。そして、室外側気液分離器7でガス冷媒と液冷媒に分離され、ガス冷媒は、室外側気液分離器7のガス出口配管12、二方弁13から構成される第1の室外バイパス回路14を通り、四方弁2と圧縮機1の間の低圧側配管に流れ、室内ユニット25から戻ってくるガス冷媒と合流し圧縮機1に吸入される。また、室外側気液分離器7で分離された液冷媒は、液接続管26を通って室内ユニット25に送られる。この時、再熱除湿用絞り装置11は開状態で、再熱除湿用絞り装置11を冷媒が流れる時に減圧されることは無く、低圧低温の液冷媒は第1の室内熱交換器8で、室内空気と熱交換して吸熱し、一部が蒸発気化して気液二相の低温冷媒となる。そして、室内側気液分離器10でガス冷媒と液冷媒に分離され、ガス冷媒は、室内側気液分離器10のガス出口配管16、室内側逆止弁17から構成される室内バイパス回路18を通り、第2の室内熱交換器9の出口に流れ、第2の室内熱交換器9から流れてくるガス冷媒と合流する。また、室内側気液分離器10で分離された液冷媒は、第2の室内熱交換器9に入り室内空気と熱交換して吸熱し、蒸発気化して低温のガス冷媒となる。この時室内空気は冷却されて室内を冷房する。さらに第2の室内熱交換器9から流れてくるガス冷媒は、室内バイパス回路18から流れてくるガス冷媒と合流し、ガス接続管27を通って、四方弁2を経由して圧縮機1に戻される。この時、室外側気液分離器7で分離されたガス冷媒は、室内ユニット25を流れることが無く、室内ユニット25、ガス接続管27での圧力損失を低減することができる。また、室内側気液分離器10で分離されたガス冷媒は、第2の室内熱交換器9を流れることが無く、第2の室内熱交換器9での圧力損失を低減することができる。   During the cooling operation, the refrigerant compressed by the compressor 1 becomes a high-temperature and high-pressure refrigerant and is sent to the first outdoor heat exchanger 3 and the second outdoor heat exchanger 4 through the four-way valve 2. At this time, no refrigerant flows into the second outdoor bypass circuit 23 by the outdoor check valve 21. Then, the high-temperature and high-pressure refrigerant exchanges heat with the outside air in the first outdoor heat exchanger 3 and the second outdoor heat exchanger 4 to dissipate heat, and becomes high-pressure liquid refrigerant and is sent to the expansion device 6. In the expansion device 6, the pressure is reduced to become a low-temperature and low-pressure two-phase refrigerant. And it isolate | separates into a gas refrigerant and a liquid refrigerant in the outdoor side gas-liquid separator 7, and a gas refrigerant is the 1st outdoor bypass circuit comprised from the gas outlet piping 12 and the two-way valve 13 of the outdoor side gas-liquid separator 7. 14, flows into the low-pressure side pipe between the four-way valve 2 and the compressor 1, merges with the gas refrigerant returning from the indoor unit 25, and is sucked into the compressor 1. The liquid refrigerant separated by the outdoor gas-liquid separator 7 is sent to the indoor unit 25 through the liquid connection pipe 26. At this time, the reheat dehumidifying squeezing device 11 is in an open state and is not depressurized when the refrigerant flows through the reheat dehumidifying squeezing device 11, and the low-pressure and low-temperature liquid refrigerant is supplied from the first indoor heat exchanger 8. It exchanges heat with room air and absorbs heat, and part of it evaporates and becomes a gas-liquid two-phase low-temperature refrigerant. Then, the indoor side gas-liquid separator 10 separates the refrigerant into a gas refrigerant and a liquid refrigerant, and the gas refrigerant is an indoor bypass circuit 18 configured by the gas outlet pipe 16 and the indoor side check valve 17 of the indoor side gas-liquid separator 10. And flows to the outlet of the second indoor heat exchanger 9 and merges with the gas refrigerant flowing from the second indoor heat exchanger 9. Further, the liquid refrigerant separated by the indoor side gas-liquid separator 10 enters the second indoor heat exchanger 9 to exchange heat with the indoor air, absorbs heat, evaporates and becomes a low-temperature gas refrigerant. At this time, the room air is cooled to cool the room. Further, the gas refrigerant flowing from the second indoor heat exchanger 9 merges with the gas refrigerant flowing from the indoor bypass circuit 18, passes through the gas connection pipe 27, and passes through the four-way valve 2 to the compressor 1. Returned. At this time, the gas refrigerant separated by the outdoor gas-liquid separator 7 does not flow through the indoor unit 25, and pressure loss in the indoor unit 25 and the gas connection pipe 27 can be reduced. Further, the gas refrigerant separated by the indoor side gas-liquid separator 10 does not flow through the second indoor heat exchanger 9, and the pressure loss in the second indoor heat exchanger 9 can be reduced.

図5は暖房運転での冷媒の流れを示す図である。   FIG. 5 is a diagram showing the flow of the refrigerant in the heating operation.

暖房運転時には、圧縮機1によって圧縮された冷媒は高温高圧の冷媒となって四方弁2、ガス接続管27を通り、室内ユニット25に送られる。この時、再熱除湿用絞り装置11は開状態で、再熱除湿用絞り装置11を冷媒が流れる時に減圧されることは無く、高温高圧の冷媒は第2の室内熱交換器9、第1の室内熱交換器8に入り、室内空気と熱交換して放熱し、冷却され高圧の液冷媒となる。この時、室内バイパス回路18には室内側逆止弁17により冷媒は流れない。室内空気は第2の室内熱交換器9、第1の室内熱交換器8で加熱されて室内を暖房する。その後、冷媒は液接続管26を通って絞り装置6に送られ、絞り装置6において減圧されて低温低圧の二相冷媒となる。この時、第1の室外バイパ
ス回路14の二方弁13は閉じられており、冷媒は流れない。絞り装置6において減圧されて低温低圧の二相冷媒は第2の室外熱交換器4で、室外空気と熱交換して吸熱し、一部が蒸発気化してガス冷媒の多い気液二相の低温冷媒となる。そして、第2の室外側気液分離器5でガス冷媒と液冷媒に分離され、ガス冷媒は、第2の室外側気液分離器5のガス出口配管20、室外側逆止弁21から構成される第2の室外バイパス回路23を通り、第1の室外熱交換器3の出口に流れ、第1の室外熱交換器3から流れてくるガス冷媒と合流する。また、第2の室外側気液分離器5で分離された液冷媒は、第1の室外熱交換器3に入り室外空気と熱交換して吸熱し、蒸発気化して低温のガス冷媒となり、第2の室外バイパス回路23から流れてくるガス冷媒と合流して、四方弁2を経由して圧縮機1へ戻される。
During the heating operation, the refrigerant compressed by the compressor 1 becomes a high-temperature and high-pressure refrigerant, passes through the four-way valve 2 and the gas connection pipe 27, and is sent to the indoor unit 25. At this time, the reheat dehumidifying squeezing device 11 is in an open state and is not depressurized when the refrigerant flows through the reheat dehumidifying squeezing device 11, and the high-temperature and high-pressure refrigerant is supplied to the second indoor heat exchanger 9, Enters the indoor heat exchanger 8 and exchanges heat with the indoor air to dissipate the heat and cool to become a high-pressure liquid refrigerant. At this time, the refrigerant does not flow into the indoor bypass circuit 18 due to the indoor check valve 17. The room air is heated by the second indoor heat exchanger 9 and the first indoor heat exchanger 8 to heat the room. Thereafter, the refrigerant is sent to the expansion device 6 through the liquid connection pipe 26 and is reduced in pressure by the expansion device 6 to become a low-temperature low-pressure two-phase refrigerant. At this time, the two-way valve 13 of the first outdoor bypass circuit 14 is closed, and the refrigerant does not flow. The low-temperature and low-pressure two-phase refrigerant decompressed in the expansion device 6 exchanges heat with the outdoor air in the second outdoor heat exchanger 4 and absorbs heat. It becomes a low-temperature refrigerant. And it isolate | separates into a gas refrigerant and a liquid refrigerant in the 2nd outdoor side gas-liquid separator 5, and a gas refrigerant is comprised from the gas outlet piping 20 of the 2nd outdoor side gas-liquid separator 5, and the outdoor side non-return valve 21. The second refrigerant flows through the second outdoor bypass circuit 23 to the outlet of the first outdoor heat exchanger 3 and merges with the gas refrigerant flowing from the first outdoor heat exchanger 3. Further, the liquid refrigerant separated by the second outdoor gas-liquid separator 5 enters the first outdoor heat exchanger 3 to exchange heat with outdoor air, absorbs heat, evaporates and becomes a low-temperature gas refrigerant, The gas refrigerant flowing from the second outdoor bypass circuit 23 is merged and returned to the compressor 1 via the four-way valve 2.

この時、第2の室外側気液分離器5で分離されたガス冷媒は、第1の室外熱交換器3を流れることが無く、第1の室外熱交換器3での圧力損失を低減することができる。   At this time, the gas refrigerant separated by the second outdoor-side gas-liquid separator 5 does not flow through the first outdoor heat exchanger 3 and reduces the pressure loss in the first outdoor heat exchanger 3. be able to.

図6は再熱除湿運転での冷媒の流れを示す図である。   FIG. 6 is a diagram showing a refrigerant flow in the reheat dehumidification operation.

再熱除湿運転時には、圧縮機1によって圧縮された冷媒は高温高圧の冷媒となって四方弁2を通って第1の室外熱交換器3、第2の室外熱交換器4に送られる。この時、第2の室外バイパス回路23には室外側逆止弁21により冷媒は流れない。そして、この時、送風機の回転数を低く制御されるため、高温高圧の冷媒は外気と熱交換して放熱する熱量を制御される。そして、高圧の気液二相冷媒となり絞り装置6に送られる。この時、絞り装置6は全開に制御され、減圧されない。また、第1の室外バイパス回路14の二方弁13は閉じられており、冷媒は流れない。そして、絞り装置6を通った高圧の二相冷媒は、液接続管26を通って、室内ユニット25に送られ、第1の室内熱交換器8で放熱され、高圧低温の液冷媒となる。この時、再熱除湿用絞り装置11は開度を小さく制御されるため、再熱除湿用絞り装置11を冷媒が流れる時に減圧され、低圧低温の二相冷媒となる。そして、室内側気液分離器10でガス冷媒と液冷媒に分離され、ガス冷媒は、室内側気液分離器10のガス出口配管16、室内側逆止弁17から構成される室内バイパス回路18を通り、第2の室内熱交換器9の出口に流れ、第2の室内熱交換器9から流れてくるガス冷媒と合流する。また、室内側気液分離器10で分離された液冷媒は、第2の室内熱交換器9に入り室内空気と熱交換して吸熱し、蒸発気化して低温のガス冷媒となる。この時室内空気は第2の室内熱交換器9で冷却、除湿された後、第1の室内熱交換器8で加熱されるため、室内温度を下げることなく、除湿する。そして低温のガス冷媒はガス接続管27を通って、四方弁2を経由して圧縮機1に戻される。   During the reheat dehumidifying operation, the refrigerant compressed by the compressor 1 becomes a high-temperature and high-pressure refrigerant and is sent to the first outdoor heat exchanger 3 and the second outdoor heat exchanger 4 through the four-way valve 2. At this time, no refrigerant flows into the second outdoor bypass circuit 23 by the outdoor check valve 21. At this time, since the rotational speed of the blower is controlled to be low, the amount of heat that the heat of the high-temperature and high-pressure refrigerant radiates by exchanging heat with outside air is controlled. Then, it becomes a high-pressure gas-liquid two-phase refrigerant and is sent to the expansion device 6. At this time, the expansion device 6 is controlled to be fully opened and is not depressurized. Further, the two-way valve 13 of the first outdoor bypass circuit 14 is closed, and the refrigerant does not flow. The high-pressure two-phase refrigerant that has passed through the expansion device 6 passes through the liquid connection pipe 26 and is sent to the indoor unit 25 where it is dissipated by the first indoor heat exchanger 8 and becomes high-pressure and low-temperature liquid refrigerant. At this time, since the opening degree of the reheat dehumidifying squeezing device 11 is controlled to be small, the reheat dehumidifying squeezing device 11 is depressurized when the refrigerant flows and becomes a low-pressure low-temperature two-phase refrigerant. Then, the indoor side gas-liquid separator 10 separates the refrigerant into a gas refrigerant and a liquid refrigerant, and the gas refrigerant is an indoor bypass circuit 18 configured by the gas outlet pipe 16 and the indoor side check valve 17 of the indoor side gas-liquid separator 10. And flows to the outlet of the second indoor heat exchanger 9 and merges with the gas refrigerant flowing from the second indoor heat exchanger 9. Further, the liquid refrigerant separated by the indoor side gas-liquid separator 10 enters the second indoor heat exchanger 9 to exchange heat with the indoor air, absorbs heat, evaporates and becomes a low-temperature gas refrigerant. At this time, the indoor air is cooled and dehumidified by the second indoor heat exchanger 9, and then heated by the first indoor heat exchanger 8, so it is dehumidified without lowering the indoor temperature. The low-temperature gas refrigerant is returned to the compressor 1 through the gas connection pipe 27 and the four-way valve 2.

なお、R410A冷媒に比べて単位体積当たりの冷凍能力が小さく、冷媒地球温暖化係数が5以上で750以下となる冷媒としては、例えば、R32とHFO1234yfとを混合することで得ることができる。なお、R32のGWPは675でありHFO1234yfのGWPは4であるので、混合割合に関わらずその混合物のGWPは650以下となる。   In addition, as a refrigerant | coolant whose refrigerating capacity per unit volume is small compared with a R410A refrigerant | coolant and a refrigerant | coolant global warming coefficient is 5 or more and 750 or less, it can obtain by mixing R32 and HFO1234yf, for example. Since the GWP of R32 is 675 and the GWP of HFO1234yf is 4, the GWP of the mixture is 650 or less regardless of the mixing ratio.

図7にR32とHFO1234yfの混合割合と、R410Aを1としたときの単位体積当たりの冷凍能力比との関係を示す。   FIG. 7 shows the relationship between the mixing ratio of R32 and HFO1234yf and the refrigerating capacity ratio per unit volume when R410A is 1.

なお、図7では、冷房運転相当の17℃での単位体積当たりの冷凍能力冷凍比、暖房運転相当の3℃での単位体積当たりの冷凍能力冷凍比を示している。   FIG. 7 shows the refrigeration capacity refrigeration ratio per unit volume at 17 ° C. corresponding to the cooling operation and the refrigeration capacity refrigeration ratio per unit volume at 3 ° C. equivalent to the heating operation.

図7に示すように、冷房運転相当の温度17℃でも暖房運転相当の温度3℃においても、HFO1234yfの混合割合が7wt%を超えると、単位体積当たりの冷凍能力冷凍比がR410Aに比べて小さくなることが判る。   As shown in FIG. 7, the refrigeration capacity refrigeration ratio per unit volume is smaller than that of R410A when the mixing ratio of HFO1234yf exceeds 7 wt% even at a temperature of 17 ° C. equivalent to cooling operation or 3 ° C. equivalent to heating operation. It turns out that it becomes.

従って、R32とHFO1234yfを混合した場合の混合割合の範囲は、HFO1234yfが7wt%以下(R32が93wt%以上)となる。   Therefore, the range of the mixing ratio when R32 and HFO1234yf are mixed is 7 wt% or less for HFO1234yf (R32 is 93 wt% or more).

また、ハイドロフルオロオレフィンとしてテトラフルオロプロペンHFO1234yfで説明したが、HFO1234zeまたはトリフルオロプロペンHFO1243zfを用いても同様な効果がある。   Moreover, although tetrafluoropropene HFO1234yf was demonstrated as hydrofluoroolefin, even if it uses HFO1234ze or trifluoropropene HFO1243zf, there exists the same effect.

さらに、ハイドロフルオロオレフィンとの混合冷媒をジフルオロメタンR32で説明したが、ペンタフルオロエタンR125、またはテトラフルオロエタンR134aを用いても同様な効果がある。   Furthermore, although the mixed refrigerant with hydrofluoroolefin has been described with difluoromethane R32, the same effect can be obtained by using pentafluoroethane R125 or tetrafluoroethane R134a.

なお、上記実施例では、冷房能力ランクが4kWの場合で説明したが、異なる能力ランクにおいても同様である。   In addition, although the said Example demonstrated the case where the cooling capability rank was 4 kW, it is the same also in a different capability rank.

また、本発明は、冷媒の比容積が大きく、より流速が速い低圧側の熱交換器や配管の圧力損失について重要であるが、高圧側部位についてもR410A同等の流速として圧力損失の低減を図ることが望ましい。   Further, the present invention is important for the pressure loss of the low-pressure side heat exchanger and piping having a large specific volume of the refrigerant and a higher flow rate, but the pressure loss is also reduced for the high-pressure side part to a flow rate equivalent to R410A. It is desirable.

以上のように本発明は、R410A冷媒に比べて単位体積当たりの冷凍能力が小さな冷媒を用い、R410A冷媒使用時に比べて気筒容積を大きくした圧縮機1を用いて、圧縮機1の効率低下を抑制すると共に、冷房運転では室内ユニット25とガス接続管27の圧力損失を、また、暖房運転では第1の室外熱交換器3の圧力損失を低減し、また、冷房運転では凝縮器として作用する室外熱交換器の冷媒流速の低下を、また、暖房運転では凝縮器として作用する室内熱交換器の冷媒流速の低下を防ぐことで熱伝達率の低下を防止し、効率の高い冷暖房装置を提供することができる。   As described above, the present invention reduces the efficiency of the compressor 1 by using the compressor 1 having a smaller refrigeration capacity per unit volume than the R410A refrigerant and using the compressor 1 having a larger cylinder volume than when the R410A refrigerant is used. In the cooling operation, the pressure loss of the indoor unit 25 and the gas connection pipe 27 is reduced. In the heating operation, the pressure loss of the first outdoor heat exchanger 3 is reduced. In the cooling operation, the pressure loss acts as a condenser. Providing a highly efficient air conditioning system that prevents a decrease in the heat transfer rate by preventing a decrease in the refrigerant flow rate of the outdoor heat exchanger and a decrease in the refrigerant flow rate of the indoor heat exchanger that acts as a condenser in heating operation can do.

次に、上記実施の形態では冷暖房装置として説明したが、四方弁を有しない加熱専用、例えば給湯機等や、冷却専用、例えばクーラーや冷凍庫等としても応用できるものであり、加熱専用とする場合は上記実施の形態で説明した暖房運転時の回路構成とし、冷却専用とする場合は冷房運転時の回路構成とすればよく、その場合室内熱交換器、室外熱交換器は凝縮器と蒸発器ということになる。   Next, in the above embodiment, the air-conditioning apparatus has been described. However, it is applicable only to heating that does not have a four-way valve, such as a water heater, or cooling only, such as a cooler or a freezer. Is the circuit configuration at the time of heating operation described in the above embodiment, and if it is exclusively for cooling, it may be the circuit configuration at the time of cooling operation. In that case, the indoor heat exchanger and the outdoor heat exchanger are a condenser and an evaporator. It turns out that.

本発明によれば、例えばGWP4のHFO1234yfをはじめとする、GWPの小さな冷媒を利用することができる。   According to the present invention, it is possible to use a refrigerant having a small GWP, such as the HFO 1234yf of GWP4.

1 圧縮機
2 四方弁
3 第1の室外熱交換器
4 第2の室外熱交換器
5 第2の室外側気液分離器
6 絞り装置
7 室外側機液分離機
8 第1の室内熱交換器
9 第2の室内熱交換器
10 室内側気液分離器
11 再熱除湿用絞り装置
12 室外側気液分離器のガス出口配管
13 二方弁
14 第1の室外バイパス回路
15 室外側気液分離器の液出口配管
16 室内側気液分離器のガス出口配管
17 室内側逆止弁
18 室内バイパス回路
19 室内側気液分離器の液出口配管
20 第2の室外側気液分離器のガス出口配管
21 室外側逆止弁
22 第2の室外側気液分離器の液出口配管
23 第2の室外バイパス回路
24 室外ユニット
25 室内ユニット
26 液接続管
27 ガス接続管
DESCRIPTION OF SYMBOLS 1 Compressor 2 Four-way valve 3 1st outdoor heat exchanger 4 2nd outdoor heat exchanger 5 2nd outdoor side gas-liquid separator 6 Throttle device 7 Outdoor side machine liquid separator 8 1st indoor heat exchanger 9 Second indoor heat exchanger 10 Indoor side gas-liquid separator
DESCRIPTION OF SYMBOLS 11 Reheating dehumidification apparatus 12 Gas outlet piping of outdoor side gas-liquid separator 13 Two-way valve 14 First outdoor bypass circuit 15 Liquid outlet piping of outdoor side gas-liquid separator 16 Gas outlet of indoor side gas-liquid separator Piping 17 Indoor check valve 18 Indoor bypass circuit 19 Liquid outlet piping of indoor gas-liquid separator 20 Gas outlet piping of second outdoor gas-liquid separator 21 Outdoor check valve 22 Second outdoor gas-liquid Liquid outlet piping of separator 23 Second outdoor bypass circuit 24 Outdoor unit 25 Indoor unit 26 Liquid connection pipe 27 Gas connection pipe

Claims (8)

圧縮機、四方弁、室外熱交換器、絞り装置、液接続管、及び第1の室内熱交換器、再熱除湿用絞り装置、室内側気液分離器、第2の室内熱交換器、ガス接続管を順次接続管で接続して環状の冷媒回路を構成し、冷房運転時には、冷媒は前記圧縮機、前記四方弁、前記室外熱交換器、前記絞り装置、前記液接続管、前記第1の室内熱交換器、前記再熱除湿用絞り装置、前記室内側気液分離器、前記第2の室内熱交換器、前記ガス接続管の順に流れ、前記再熱除湿用絞り装置の出口は前記室内側気液分離器と接続され、前記室内側気液分離器の液出口配管と前記第2の室内側熱交換器が接続され、前記室内側気液分離器のガス出口配管は室内側逆止弁を介し前記第2の室内側熱交換器の出口と接続された冷暖房装置であって、前記冷媒回路に封入する冷媒として、R410A冷媒に比べて単位体積当たりの冷凍能力が小さな冷媒を用いたことを特徴とする冷暖房装置。 Compressor, four-way valve, outdoor heat exchanger, expansion device, liquid connection pipe, first indoor heat exchanger, reheat dehumidification expansion device, indoor side gas-liquid separator, second indoor heat exchanger, gas Connecting pipes are sequentially connected by a connecting pipe to form an annular refrigerant circuit, and during cooling operation, the refrigerant is the compressor, the four-way valve, the outdoor heat exchanger, the expansion device, the liquid connection pipe, the first Flow in the order of the indoor heat exchanger, the reheat dehumidifying expansion device, the indoor side gas-liquid separator, the second indoor heat exchanger, and the gas connection pipe, and the outlet of the reheat dehumidifying expansion device is the Connected to the indoor side gas-liquid separator, the liquid outlet pipe of the indoor side gas-liquid separator and the second indoor side heat exchanger are connected, and the gas outlet pipe of the indoor side gas-liquid separator is reverse to the indoor side A cooling / heating device connected to an outlet of the second indoor heat exchanger via a stop valve, and enclosed in the refrigerant circuit That as a refrigerant, air conditioner, characterized in that the refrigeration capacity per unit volume as compared with R410A refrigerant with little refrigerant. 前記絞り装置と前記液接続管の間に室外側気液分離器を設け、冷房運転時には、前記絞り装置の出口は前記室外側気液分離器と接続され、前記室外側気液分離器の液出口配管と前記液接続管が接続され、前記室外側気液分離器のガス出口配管は二方弁を介し前記四方弁と前記圧縮機の間の低圧側配管に接続したことを特徴とする請求項1に記載の冷暖房装置。 An outdoor gas-liquid separator is provided between the expansion device and the liquid connection pipe, and the outlet of the expansion device is connected to the outdoor gas-liquid separator during cooling operation, and the liquid in the outdoor gas-liquid separator is An outlet pipe and the liquid connection pipe are connected, and a gas outlet pipe of the outdoor gas-liquid separator is connected to a low-pressure side pipe between the four-way valve and the compressor via a two-way valve. Item 2. The air conditioning apparatus according to item 1. 圧縮機、四方弁、第1の室外熱交換器、第2の室外側気液分離器、第2の室外熱交換器、絞り装置、液接続管、室内熱交換器、ガス接続管を順次接続管で接続して環状の冷媒回路を構成し、暖房運転時には、冷媒は前記圧縮機、前記四方弁、前記ガス接続管、前記室内熱交換器、前記液接続管、前記絞り装置、前記第2の室外熱交換器、前記第2の室外側気液分離器、前記第1の室外熱交換器の順に流れ、前記第2の室外側熱交換器の出口は前記第2の室外側気液分離器と接続され、前記第2の室外側気液分離器の液出口配管と前記第1の室外側熱交換器の入口が接続され、前記第2の室外側気液分離器のガス出口配管は室外側逆止弁を介し前記第1の室外側熱交換器の出口と接続された冷暖房装置であって、
前記冷媒回路に封入する冷媒として、R410A冷媒に比べて単位体積当たりの冷凍能力が小さな冷媒を用いたことを特徴とする冷暖房装置。
Compressor, four-way valve, first outdoor heat exchanger, second outdoor gas-liquid separator, second outdoor heat exchanger, expansion device, liquid connection pipe, indoor heat exchanger, gas connection pipe An annular refrigerant circuit is configured by connecting with a pipe, and during heating operation, the refrigerant is the compressor, the four-way valve, the gas connection pipe, the indoor heat exchanger, the liquid connection pipe, the expansion device, the second The outdoor heat exchanger, the second outdoor gas-liquid separator, and the first outdoor heat exchanger flow in this order, and the outlet of the second outdoor heat exchanger is the second outdoor gas-liquid separator. Is connected to a liquid outlet pipe of the second outdoor gas-liquid separator and an inlet of the first outdoor heat exchanger, and a gas outlet pipe of the second outdoor gas-liquid separator is An air conditioner connected to an outlet of the first outdoor heat exchanger via an outdoor check valve,
A cooling / heating apparatus using a refrigerant having a small refrigerating capacity per unit volume as compared with the R410A refrigerant as the refrigerant sealed in the refrigerant circuit.
圧縮機、四方弁、第1の室外熱交換器、第2の室外側気液分離器、第2の室外熱交換器、絞り装置、第1の室外側気液分離器、液接続管、及び第1の室内熱交換器、再熱除湿用絞り装置、室内側気液分離器、第2の室内熱交換器、ガス接続管を順次接続管で接続して環状の冷媒回路を構成し、冷房運転時には、冷媒は前記圧縮機、前記四方弁、前記第1の室外熱交換器、前記第2の室外側気液分離器、前記第2の室外側熱交換器、前記絞り装置、前記室外側気液分離器、前記液接続管、前記第1の室内熱交換器、前記再熱除湿用絞り装置、前記室内側気液分離器、前記第2の室内熱交換器、前記ガス接続管の順に流れ、前記絞り装置の出口は前記室外側気液分離器と接続され、前記室外側気液分離器の液出口配管と前記液接続管が接続され、前記室外側気液分離器のガス出口配管は二方弁を介し前記四方弁と前記圧縮機の間の低圧側配管に接続し、前記再熱除湿用絞り装置は、前記室内側気液分離器の下部と接続され、前記室内側気液分離器の液出口配管と前記第2の室内側熱交換器が接続され、前記室内側気液分離器のガス出口配管は室内側逆止弁を介し前記第2の室内側熱交換器の出口と接続され、暖房運転時には、冷媒は前記圧縮機、前記四方弁、前記ガス接続管、前記第2の室内熱交換器、前記室内側気液分離器、前記再熱除湿用絞り装置、前記第1の室内熱交換器、前記液接続管、前記室外側気液分離器、前記絞り装置、前記第2の室外熱交換器、前記第2の室外側気液分離器、前記第1の室外熱交換器の順に流れ、前記第1の室外側熱交換器の出口は前記2の室外側気液分離器と接続され、前記第2の室外側気液分離器の出口配管と前記第2の室外側熱交換器の入口が接続され、前記第2の室外側気液分離器のガス出口配管は室外側逆止弁を介し前記第1の室外側熱交換器の入口と接続された冷暖房装置であって、前記冷媒回路に封入する冷媒として、R410A冷
媒に比べて単位体積当たりの冷凍能力が小さな冷媒を用いたことを特徴とする冷暖房装置。
A compressor, a four-way valve, a first outdoor heat exchanger, a second outdoor gas-liquid separator, a second outdoor heat exchanger, a throttling device, a first outdoor gas-liquid separator, a liquid connection pipe, and The first indoor heat exchanger, the reheat dehumidifying throttling device, the indoor side gas-liquid separator, the second indoor heat exchanger, and the gas connection pipe are sequentially connected by a connection pipe to form an annular refrigerant circuit, During operation, the refrigerant is the compressor, the four-way valve, the first outdoor heat exchanger, the second outdoor gas-liquid separator, the second outdoor heat exchanger, the expansion device, and the outdoor side. A gas-liquid separator, the liquid connection pipe, the first indoor heat exchanger, the reheat dehumidifying expansion device, the indoor side gas-liquid separator, the second indoor heat exchanger, and the gas connection pipe in this order. The outlet of the throttle device is connected to the outdoor gas-liquid separator, the liquid outlet pipe of the outdoor gas-liquid separator and the liquid connection pipe are connected, The gas outlet pipe of the outdoor gas-liquid separator is connected to a low-pressure side pipe between the four-way valve and the compressor via a two-way valve, and the reheat dehumidifying throttle device is connected to the indoor gas-liquid separator. The liquid outlet pipe of the indoor side gas-liquid separator and the second indoor side heat exchanger are connected, and the gas outlet pipe of the indoor side gas-liquid separator is connected via an indoor check valve. It is connected to the outlet of the second indoor heat exchanger, and during heating operation, the refrigerant is the compressor, the four-way valve, the gas connection pipe, the second indoor heat exchanger, and the indoor gas-liquid separator. The reheat dehumidifying throttling device, the first indoor heat exchanger, the liquid connection pipe, the outdoor gas-liquid separator, the throttling device, the second outdoor heat exchanger, and the second outdoor side The gas-liquid separator and the first outdoor heat exchanger flow in this order, and the outlet of the first outdoor heat exchanger is the second outdoor air exchanger. Connected to a separator, an outlet pipe of the second outdoor gas-liquid separator and an inlet of the second outdoor heat exchanger are connected, and a gas outlet pipe of the second outdoor gas-liquid separator is An air conditioner connected to the inlet of the first outdoor heat exchanger via an outdoor check valve, and has a lower refrigeration capacity per unit volume as a refrigerant to be sealed in the refrigerant circuit than an R410A refrigerant. A cooling and heating apparatus using a refrigerant.
圧縮機、凝縮器、第1絞り装置、第1蒸発器気液分離器、第2蒸発器を順次接続して環状の冷媒回路を構成し、冷媒は前記圧縮機、前記凝縮器、前記第1絞り装置、前記第1蒸発器、前記気液分離器、前記第2蒸発器の順に流れ、前記第1蒸発器の出口は前記気液分離器と接続され、前記気液分離器の液出口配管と前記第2の蒸発器が接続され、前記気液分離器のガス出口配管は逆止弁を介し前記第2蒸発器の出口と接続される構成とするとともに、前記冷媒回路に封入する冷媒として、R410A冷媒に比べて単位体積当たりの冷凍能力が小さな冷媒を用いたことを特徴とする冷凍装置。 A compressor, a condenser, a first expansion device, a first evaporator gas-liquid separator, and a second evaporator are sequentially connected to form an annular refrigerant circuit, and the refrigerant is the compressor, the condenser, and the first The throttle device, the first evaporator, the gas-liquid separator, and the second evaporator flow in this order, the outlet of the first evaporator is connected to the gas-liquid separator, and the liquid outlet pipe of the gas-liquid separator And the second evaporator are connected, and the gas outlet pipe of the gas-liquid separator is connected to the outlet of the second evaporator via a check valve, and the refrigerant sealed in the refrigerant circuit A refrigerating apparatus using a refrigerant having a refrigerating capacity per unit volume smaller than that of the R410A refrigerant. 圧縮機、第1凝縮器、第2気液分離器、第2凝縮器、絞り装置、蒸発器を順次接続して環状の冷媒回路を構成し、冷媒は前記圧縮機、前記第1凝縮器、前記第2気液分離器、前記第2凝縮器、前記絞り装置、前記蒸発器の順に流れ、前記第1凝縮器の出口は前記第2気液分離器と接続され、前記第2気液分離器のガス出口配管と前記第2の凝縮器の入口が接続され、前記第2気液分離器の液出口配管は逆止弁を介し前記第2凝縮器の出口と接続される構成とするとともに、前記冷媒回路に封入する冷媒として、R410A冷媒に比べて単位体積当たりの冷凍能力が小さな冷媒を用いたことを特徴とする冷凍装置。 A compressor, a first condenser, a second gas-liquid separator, a second condenser, a throttling device, and an evaporator are sequentially connected to form an annular refrigerant circuit, and the refrigerant is the compressor, the first condenser, The second gas-liquid separator, the second condenser, the throttling device, and the evaporator flow in this order. The outlet of the first condenser is connected to the second gas-liquid separator, and the second gas-liquid separation The gas outlet pipe of the condenser is connected to the inlet of the second condenser, and the liquid outlet pipe of the second gas-liquid separator is connected to the outlet of the second condenser via a check valve. A refrigerating apparatus using a refrigerant having a small refrigerating capacity per unit volume as compared with the R410A refrigerant as the refrigerant sealed in the refrigerant circuit. 前記冷媒として、ハイドロフルオロオレフィンはテトラフルオロプロペンまたはトリフルオロプロペンをベース成分とし、ジフルオロメタンまたはペンタフルオロエタンまたはテトラフルオロエタンを、地球温暖化係数が5以上、750以下となるように、望ましくは350以下、さらに望ましくは150以下となるようにそれぞれ2成分混合もしくは3成分混合した冷媒を用いたことを特徴とする請求項1から請求項4のいずれかに記載の冷暖房装置。 As the refrigerant, the hydrofluoroolefin is based on tetrafluoropropene or trifluoropropene, and difluoromethane, pentafluoroethane, or tetrafluoroethane is preferably 350 so that the global warming potential is 5 or more and 750 or less. The cooling / heating apparatus according to any one of claims 1 to 4, wherein a refrigerant mixed with two components or a mixture of three components is used so as to be more preferably 150 or less. 前記圧縮機に用いる冷凍機油として、ポリオキシアルキレングリコール類、ポリビニルエーテル類、ポリ(オキシ)アルキレングリコールまたはそのモノエーテルとポリビニルエーテルの共重合体、ポリオールエステル類、及びポリカーボネート類のいずれかの含酸素化合物を主成分とする合成油か、アルキルベンゼン類やαオレフィン類を主成分とする合成油を用いることを特徴とする請求項1から請求項4、請求項7のいずれかに記載の冷暖房装置。 As the refrigerating machine oil used in the compressor, polyoxyalkylene glycols, polyvinyl ethers, poly (oxy) alkylene glycols or their monoether and polyvinyl ether copolymers, polyol esters, and polycarbonates containing oxygen The air conditioning apparatus according to any one of claims 1 to 4, wherein a synthetic oil mainly comprising a compound or a synthetic oil mainly comprising an alkylbenzene or an α-olefin is used.
JP2009271390A 2009-11-30 2009-11-30 Air conditioner and refrigerating device Pending JP2011112327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009271390A JP2011112327A (en) 2009-11-30 2009-11-30 Air conditioner and refrigerating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009271390A JP2011112327A (en) 2009-11-30 2009-11-30 Air conditioner and refrigerating device

Publications (1)

Publication Number Publication Date
JP2011112327A true JP2011112327A (en) 2011-06-09

Family

ID=44234796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009271390A Pending JP2011112327A (en) 2009-11-30 2009-11-30 Air conditioner and refrigerating device

Country Status (1)

Country Link
JP (1) JP2011112327A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013069044A1 (en) * 2011-11-07 2013-05-16 三菱電機株式会社 Air-conditioning apparatus
KR101366186B1 (en) * 2012-08-07 2014-02-25 이용래 Refrigeration circuit
CN103727696A (en) * 2013-11-26 2014-04-16 中山市蓝水能源科技发展有限公司 Self-adjusting air conditioner system
CN103765124A (en) * 2011-09-01 2014-04-30 大金工业株式会社 Refrigeration device
CN103994596A (en) * 2014-05-28 2014-08-20 合肥美的电冰箱有限公司 Refrigeration equipment and refrigeration system
CN104185766A (en) * 2012-07-10 2014-12-03 夏普株式会社 Heat-pump-type heating device
CN105276859A (en) * 2015-10-23 2016-01-27 云南热泊尔太阳能设备有限公司 Air energy recovery system
CN106765742A (en) * 2016-11-21 2017-05-31 珠海格力电器股份有限公司 Air conditioning unit with flooded shell and tube heat exchanger
CN112902536A (en) * 2021-03-05 2021-06-04 苏州聚焓新能源科技有限公司 Novel one-driving-two freezing, refrigerating and drying system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5741559A (en) * 1980-08-26 1982-03-08 Mitsubishi Electric Corp Heat exchanger
JP2003028518A (en) * 2001-07-19 2003-01-29 Fujitsu General Ltd Air conditioner
JP2003343895A (en) * 2002-05-24 2003-12-03 Hitachi Home & Life Solutions Inc Air conditioner
JP2008196762A (en) * 2007-02-13 2008-08-28 Daikin Ind Ltd Flow divider, heat exchanger unit and refrigerating device
JP2008266423A (en) * 2007-04-18 2008-11-06 Idemitsu Kosan Co Ltd Lubricating oil composition for refrigerator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5741559A (en) * 1980-08-26 1982-03-08 Mitsubishi Electric Corp Heat exchanger
JP2003028518A (en) * 2001-07-19 2003-01-29 Fujitsu General Ltd Air conditioner
JP2003343895A (en) * 2002-05-24 2003-12-03 Hitachi Home & Life Solutions Inc Air conditioner
JP2008196762A (en) * 2007-02-13 2008-08-28 Daikin Ind Ltd Flow divider, heat exchanger unit and refrigerating device
JP2008266423A (en) * 2007-04-18 2008-11-06 Idemitsu Kosan Co Ltd Lubricating oil composition for refrigerator

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103765124B (en) * 2011-09-01 2015-11-25 大金工业株式会社 Refrigerating plant
CN103765124A (en) * 2011-09-01 2014-04-30 大金工业株式会社 Refrigeration device
AU2011380810B2 (en) * 2011-11-07 2015-04-16 Mitsubishi Electric Corporation Air-conditioning apparatus
CN103917834A (en) * 2011-11-07 2014-07-09 三菱电机株式会社 Air-conditioning apparatus
JPWO2013069044A1 (en) * 2011-11-07 2015-04-02 三菱電機株式会社 Air conditioner
WO2013069044A1 (en) * 2011-11-07 2013-05-16 三菱電機株式会社 Air-conditioning apparatus
CN103917834B (en) * 2011-11-07 2015-12-16 三菱电机株式会社 Conditioner
US9797610B2 (en) 2011-11-07 2017-10-24 Mitsubishi Electric Corporation Air-conditioning apparatus with regulation of injection flow rate
CN104185766A (en) * 2012-07-10 2014-12-03 夏普株式会社 Heat-pump-type heating device
KR101366186B1 (en) * 2012-08-07 2014-02-25 이용래 Refrigeration circuit
CN103727696A (en) * 2013-11-26 2014-04-16 中山市蓝水能源科技发展有限公司 Self-adjusting air conditioner system
CN103994596A (en) * 2014-05-28 2014-08-20 合肥美的电冰箱有限公司 Refrigeration equipment and refrigeration system
CN105276859A (en) * 2015-10-23 2016-01-27 云南热泊尔太阳能设备有限公司 Air energy recovery system
CN106765742A (en) * 2016-11-21 2017-05-31 珠海格力电器股份有限公司 Air conditioning unit with flooded shell and tube heat exchanger
CN112902536A (en) * 2021-03-05 2021-06-04 苏州聚焓新能源科技有限公司 Novel one-driving-two freezing, refrigerating and drying system

Similar Documents

Publication Publication Date Title
JP2011112327A (en) Air conditioner and refrigerating device
US11906207B2 (en) Refrigeration apparatus
US20200333049A1 (en) Refrigeration apparatus
JP5797354B1 (en) Air conditioner
JP2011002217A (en) Refrigerating device and air conditioning apparatus
JP2013139990A (en) Air conditioner
WO2016059696A1 (en) Refrigeration cycle device
JP5908183B1 (en) Air conditioner
JPWO2002095302A1 (en) Refrigeration cycle device
JP2010112693A (en) Air conditioner
JP6774769B2 (en) Refrigeration cycle equipment
WO2015140885A1 (en) Refrigeration cycle apparatus
JP2008002742A (en) Refrigerating device
EP2578966A1 (en) Refrigeration device and cooling and heating device
JP2011033289A (en) Refrigerating cycle device
AU766849B2 (en) Refrigerating device
JP5895662B2 (en) Refrigeration equipment
WO2013084455A1 (en) Heat exchanger and air conditioner provided with same
WO2023047440A1 (en) Air conditioner
WO2015140881A1 (en) Refrigeration cycle apparatus
JP2013120029A (en) Air conditioner
JPWO2019198175A1 (en) Refrigeration cycle equipment
US20220214081A1 (en) Air conditioning apparatus and outdoor unit
JP2011094964A (en) Refrigerating cycle device
JP2010096486A (en) Refrigerating device

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20110928

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20111220

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20120529

Free format text: JAPANESE INTERMEDIATE CODE: A02