JP2011194305A - Membrane-separation activated sludge treatment method and apparatus for sewage - Google Patents
Membrane-separation activated sludge treatment method and apparatus for sewage Download PDFInfo
- Publication number
- JP2011194305A JP2011194305A JP2010062689A JP2010062689A JP2011194305A JP 2011194305 A JP2011194305 A JP 2011194305A JP 2010062689 A JP2010062689 A JP 2010062689A JP 2010062689 A JP2010062689 A JP 2010062689A JP 2011194305 A JP2011194305 A JP 2011194305A
- Authority
- JP
- Japan
- Prior art keywords
- biological reaction
- reaction tank
- membrane separation
- pipe
- activated sludge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Activated Sludge Processes (AREA)
Abstract
【課題】膜分離活性汚泥法及び装置において、膜分離槽内に設置した浸漬膜ユニットの洗浄に要する空気量を削減し、コスト低減と省エネルギー化を図る。
【解決手段】生物反応槽1と浸漬膜ユニット3を浸漬した膜分離槽2とを別置きにして設け、生物反応槽1の上部空間17に気相を形成した状態で密閉し、上部空間17と膜分離槽2内に浸漬した浸漬膜ユニット3の下方に設置した浸漬膜ユニット洗浄用の散気管4とを配管16で連結し、生物反応槽1に吹き込まれた空気のオフガスを浸漬膜ユニットの洗浄に使用する。
【選択図】図2In a membrane separation activated sludge method and apparatus, the amount of air required for cleaning an immersion membrane unit installed in a membrane separation tank is reduced, thereby reducing costs and saving energy.
A biological reaction tank 1 and a membrane separation tank 2 in which a submerged membrane unit 3 is immersed are provided separately, sealed in a state where a gas phase is formed in an upper space 17 of the biological reaction tank 1, and an upper space 17 And the aeration pipe 4 for washing the immersion membrane unit installed below the immersion membrane unit 3 immersed in the membrane separation tank 2 are connected by a pipe 16, and the off-gas of the air blown into the biological reaction tank 1 is immersed in the immersion membrane unit. Used for cleaning.
[Selection] Figure 2
Description
本発明は、生物反応槽とは別置きに設置するようにした、膜分離槽内に浸漬された状態で設置されている浸漬膜ユニットの洗浄のための空気量を低減し、コスト低減及び省エネルギーを図ることを可能とする汚水の膜分離活性汚泥処理方法及び装置に関する。 The present invention reduces the amount of air for cleaning the submerged membrane unit installed in a state where it is immersed in the membrane separation tank, which is installed separately from the biological reaction tank, thereby reducing costs and saving energy. The present invention relates to a method and an apparatus for treating activated sludge with membrane separation of sewage.
産業廃水、生活排水、下水などの汚水を浄化して、高品質の処理水を得るとともに、装置のコンパクト化が図れる汚水の処理方法として、「膜分離活性汚泥法」(以下、「MBR」という。)及びその装置が近年注目されている。 As a wastewater treatment method that purifies industrial wastewater, domestic wastewater, sewage, and other sewage to obtain high-quality treated water and can reduce the size of the equipment, the "membrane separation activated sludge method" (hereinafter referred to as "MBR") ) And its devices have attracted attention in recent years.
一方、従来の活性汚泥処理方法及び装置は、汚水と活性汚泥とを、空気を吹き込みながら混合接触させ、生物化学的反応により、有機物などの汚濁物質を酸化分解し浄化するための曝気槽(以下、「生物反応槽」という。)と、この生物反応槽から流出する活性汚泥と処理水との混合液を自然沈降による固液分離手段によって処理水と沈殿汚泥とに分離するための沈殿槽とから構成されている。
ところで、従来の活性汚泥処理方法においては、沈殿による固液分離能力に限界があることから、生物反応槽内に保持できる活性汚泥濃度(以下、「MLSS濃度」という。)にも自ずから限界があり、一般的にMLSS濃度は、概ね2,000〜3,000mg/Lの範囲で運転されている。
On the other hand, the conventional activated sludge treatment method and apparatus is an aeration tank (hereinafter referred to as an aeration tank) for bringing sewage and activated sludge into mixed contact while blowing air and oxidatively degrading and purifying pollutants such as organic substances by biochemical reaction. And a sedimentation tank for separating the mixed liquid of activated sludge and treated water flowing out of this biological reaction tank into treated water and precipitated sludge by means of solid-liquid separation by natural sedimentation. It is composed of
By the way, in the conventional activated sludge treatment method, since there is a limit to the solid-liquid separation ability by precipitation, the activated sludge concentration (hereinafter referred to as “MLSS concentration”) that can be held in the biological reaction tank is naturally limited. In general, the MLSS concentration is generally operated in the range of 2,000 to 3,000 mg / L.
これに対して、MBRでは、生物反応槽内に浸漬された状態で設置されている浸漬膜ユニットを介してポンプにより吸引ろ過を行うことにより、従来の沈殿による固液分離に比して、生物反応槽内のMLSS濃度を8,000〜12,000mg/L程度に保持できるので、生物反応槽内の活性汚泥量に対して取り得る有機物負荷を一定とすれば、生物反応槽内のMLSS濃度を高く保持できる分、生物反応槽を含む装置全体を著しくコンパクトなものとすることが可能である。 On the other hand, in MBR, by performing suction filtration with a pump through a submerged membrane unit installed in a state of being immersed in a biological reaction tank, compared to solid-liquid separation by conventional precipitation, Since the MLSS concentration in the reaction vessel can be maintained at about 8,000 to 12,000 mg / L, the MLSS concentration in the biological reaction vessel can be kept constant if the organic load that can be taken with respect to the amount of activated sludge in the biological reaction vessel is constant. As a result, the entire apparatus including the biological reaction tank can be made extremely compact.
このMBRでは、活性汚泥混合液の分離のために、表面の孔径が概ね0.1〜0.4μmの範囲にある中空糸状、あるいは平膜状の精密ろ過膜(MF膜)を用いることが公知となっている。これらの膜を集積して面積を大きくしユニット化した浸漬膜ユニットを生物反応槽若しくは膜分離槽内に浸漬した状態で設置し、ポンプ吸引により連続的に膜ろ過を行って処理水を得る方式が公知である。このような方式を「槽浸漬型MBR」と呼んでいる。 In this MBR, it is known to use a hollow fiber-shaped or flat membrane-shaped microfiltration membrane (MF membrane) having a surface pore diameter in the range of about 0.1 to 0.4 μm for the separation of the activated sludge mixed liquid. It has become. A system in which these membranes are integrated to increase the area and unitized so that the immersed membrane unit is immersed in a biological reaction tank or membrane separation tank, and the membrane is continuously filtered by pump suction to obtain treated water. Is known. Such a method is called “tank immersion type MBR”.
活性汚泥混合液を連続的に膜ろ過すると、微細化された活性汚泥の粒子や活性汚泥の代謝生産物である高分子状物質が膜の表面に蓄積することにより、ゲル層と呼ばれるろ過抵抗層が形成されることにより、ろ過圧力が急激に上昇する。
このゲル層の形成を防止するために、特許文献1及び特許文献2に開示されているように、浸漬膜ユニットの下部より連続的にブロワからの空気を浸漬膜ユニットの下方に設置した散気装置を介して吹き込むことにより防止する方法が公知の方法として用いられている。このような操作はエアバブリングあるいはエアスクラビングと呼ばれており、膜の物理的な洗浄方法の一種である。
この操作の効果としては、比較的粗大な気泡が膜面に沿って上昇することにより、形成される気泡同伴上昇流の剪断効果によって膜面に形成されたゲル層を連続的に剥離することによるものと、同伴上昇流によって膜が揺籃することによるものが主なものとされている。
When the activated sludge mixture is continuously membrane-filtered, finer activated sludge particles and polymer substances that are metabolites of activated sludge accumulate on the surface of the membrane, resulting in a filtration resistance layer called a gel layer. As a result, the filtration pressure rises rapidly.
In order to prevent the formation of this gel layer, as disclosed in
The effect of this operation is that the relatively coarse bubbles rise along the membrane surface, thereby continuously peeling the gel layer formed on the membrane surface due to the shear effect of the bubble entrained upward flow formed. The main reason is that the film is shaken by the accompanying upward flow.
ゲル層の形成を良好に防止しながら、膜ろ過を安定的に継続するためには、一定量以上の空気量が必要とされており、非特許文献1には、中空糸状のMF浸漬膜ユニットの場合の必要空気量の例として、0.2m3/m2膜面積/時以上が必要であることが示されている。
上記の必要空気量は生物反応槽内の活性汚泥による有機物の分解やアンモニア性窒素の硝酸化に必要な空気量と同量若しくはそれ以上の量であり、生物反応槽用とは別途にブロワが必要なことやブロワ運転に必要なエネルギー消費量が増加するので、このことがMBR装置の設置コスト及び運転コストを押し上げる結果、MBRの普及を阻害する要因となっている。
In order to continue the membrane filtration stably while favorably preventing the formation of the gel layer, an air amount of a certain amount or more is required. Non-Patent
The above required air amount is the same or more than the amount of air required for the decomposition of organic matter by activated sludge in the biological reaction tank and the nitrification of ammonia nitrogen, and a blower is separately provided for the biological reaction tank. This increases the energy consumption necessary for the operation of the blower, and this increases the installation cost and the operation cost of the MBR device, which is a factor that hinders the spread of MBR.
本発明の課題は、浸漬膜ユニットの洗浄に必要な空気量を削減するとともに、必要なブロワの台数を減らし、MBR装置コスト及び運転コストを低減することによって、MBR及びその装置の汚水処理分野における普及を今後さらに促進することにある。 An object of the present invention is to reduce the amount of air necessary for cleaning the submerged membrane unit, reduce the number of necessary blowers, and reduce the MBR device cost and the operating cost, thereby reducing the MBR and the wastewater treatment field of the device. The purpose is to further promote dissemination in the future.
前記課題を解決するために、本発明においては、生物反応槽と浸漬膜ユニットを浸漬した状態で設置した膜分離槽を分離して設置し(以下、「膜分離槽別置型MBR」という。)、生物反応槽の上部空間に気相部を形成するようにして密閉し、該生物反応槽の上部空間と膜分離槽内の浸漬膜ユニットの下方に設置した散気装置とを配管により連結し、生物反応槽に吹き込まれた空気のオフガスを浸漬膜ユニットの空気洗浄に利用するようにした。 In order to solve the above-mentioned problems, in the present invention, a membrane separation tank installed in a state where a biological reaction tank and an immersion membrane unit are immersed is separated and installed (hereinafter referred to as “membrane separation tank separate type MBR”). The upper space of the biological reaction tank is sealed so as to form a gas phase, and the upper space of the biological reaction tank is connected to the air diffuser installed below the submerged membrane unit in the membrane separation tank by a pipe. The off-gas of air blown into the biological reaction tank was used for air cleaning of the submerged membrane unit.
より具体的には、本発明の汚水の膜分離活性汚泥処理方法は、有機物等の汚濁物を含む汚水を活性汚泥と接触させて溶存酸素が存在する好気条件のもとで反応させる生物反応槽と、活性汚泥と処理水を分離する膜分離槽とを別置きで設置するようにした汚水の膜分離活性汚泥処理方法であって、生物反応槽の上部空間に気相部分を形成した状態で密閉し、該気相部分と膜分離槽内に浸漬された状態で設置されている浸漬膜ユニットの下方に設置した散気管とを配管で連結し、生物反応槽に吹き込まれた空気のオフガスを前記配管を介して散気管に供給して浸漬膜ユニットの空気洗浄に利用するようにしたことを特徴とする。 More specifically, the sewage membrane separation activated sludge treatment method of the present invention is a biological reaction in which sewage containing pollutants such as organic matter is brought into contact with activated sludge and reacted under aerobic conditions in which dissolved oxygen exists. A membrane separation activated sludge treatment method in which a tank and a membrane separation tank for separating activated sludge and treated water are installed separately, with a gas phase part formed in the upper space of the biological reaction tank The gas phase part is connected to the diffuser pipe installed below the submerged membrane unit in a state immersed in the membrane separation tank with a pipe, and the off-gas of the air blown into the biological reaction tank Is supplied to the diffuser pipe through the pipe and used for air cleaning of the submerged membrane unit.
また、本発明の汚水の膜分離活性汚泥処理装置は、有機物等の汚濁物を含む汚水を活性汚泥と接触させて溶存酸素が存在する好気条件のもとで反応させる生物反応槽と、活性汚泥と処理水を分離する膜分離槽とを別置きで設置するようにした汚水の膜分離活性汚泥処理装置であって、生物反応槽の上部空間に気相部分を形成した状態で密閉し、該気相部分と膜分離槽内に浸漬された状態で設置されている浸漬膜ユニットの下方に設置した散気管とを配管で連結し、生物反応槽に吹き込まれた空気のオフガスを前記配管を介して散気管に供給するようにしたことを特徴とする。 Further, the membrane separation activated sludge treatment apparatus of the present invention is a biological reaction tank in which sewage containing pollutants such as organic matter is brought into contact with activated sludge and reacted under aerobic conditions in which dissolved oxygen exists, A membrane separation activated sludge treatment device in which a sludge and a membrane separation tank for separating treated water are installed separately, sealed in a state where a gas phase portion is formed in the upper space of the biological reaction tank, The gas phase portion and a diffuser pipe installed below the submerged membrane unit installed in a state of being immersed in the membrane separation tank are connected by a pipe, and the off-gas of air blown into the biological reaction tank is connected to the pipe. It is characterized in that it is supplied to the diffusing tube through.
この場合において、生物反応槽気相部分と膜分離槽内に浸漬した浸漬膜ユニットの下方に設置した散気管とを連結する配管に、曝気ブロワから生物反応槽への空気管が分岐されて接続されており、該分岐した空気分岐管には圧力調整手段が設けられており、生物反応槽の上部空間と膜分離槽に浸漬した浸漬膜ユニットの下方に設置した散気管とを連結する配管には逆止弁が設けてあり、曝気ブロワから生物反応槽の散気管への空気配管には、生物反応槽の液相部に設置したセンサ及びその信号による調節器によって制御される空気流量調整手段を設けることができる。 In this case, the air pipe from the aeration blower to the biological reaction tank is branched and connected to the pipe connecting the gas phase part of the biological reaction tank and the diffuser pipe installed below the submerged membrane unit immersed in the membrane separation tank. The branched air branch pipe is provided with pressure adjusting means, and is connected to a pipe connecting the upper space of the biological reaction tank and the diffuser pipe installed below the submerged membrane unit immersed in the membrane separation tank. The air pipe from the aeration blower to the diffuser pipe of the biological reaction tank is provided with a check valve, and an air flow rate adjusting means controlled by a sensor installed in the liquid phase part of the biological reaction tank and a regulator based on the signal thereof Can be provided.
本発明の効果として、膜分離槽別置型MBRにおいて、必要なブロワの台数を減少させることができ、装置コストを低減することが可能となる。
さらに、ブロワ運転に要するエネルギーを削減できるので、運転コストの低減化と省エネルギー化も可能となる。
As an effect of the present invention, it is possible to reduce the number of required blowers in the membrane separation tank separate type MBR, and to reduce the apparatus cost.
Furthermore, since the energy required for the blower operation can be reduced, the operation cost can be reduced and the energy can be saved.
また、曝気ブロワから生物反応槽への空気管を分岐して、曝気ブロワからの空気を散気管に供給することにより、浸漬膜ユニットのゲル層の形成を良好に防止しながら、膜ろ過を安定的に継続することができる。 In addition, by branching the air tube from the aeration blower to the biological reaction tank and supplying the air from the aeration blower to the aeration tube, it is possible to stabilize the membrane filtration while preventing the formation of the gel layer of the submerged membrane unit. Can continue.
以下、本発明の内容を図面に基づいて、より詳しく説明する。 Hereinafter, the content of the present invention will be described in more detail based on the drawings.
図1は従来の膜分離槽別置型MBR装置の構成を示す図である。
この装置は、生物反応槽1と膜分離槽2とから構成されており、生物反応槽1内には空気を吹き込み生物反応に必要な酸素を溶解/供給するための散気装置5が設置されている。
散気装置5は、生物反応槽曝気用のブロワ6と配管により連結されている。
膜分離槽2には、浸漬膜ユニット3が浸漬されており、生物反応槽1より移送される生物反応槽混合液を膜ろ過ポンプ9により吸引膜ろ過を行い、膜ろ過処理水を得るように構成されている。
膜分離槽2において濃縮された活性汚泥混合液は、返送汚泥ポンプ8により生物反応槽1へ返送される。
浸漬膜ユニット3の下方には浸漬膜ユニット洗浄用の散気装置としての散気管4が設置されており、浸漬膜ユニット洗浄用のブロワ7と配管により連結されている。
なお、図1には示していないが、有機物等を分解することに伴って増加する余剰の活性汚泥を装置外へ排出する手段が別途設けられている。
FIG. 1 is a diagram showing the configuration of a conventional membrane separation tank separate MBR apparatus.
This apparatus is composed of a
The
An immersion membrane unit 3 is immersed in the
The activated sludge mixed liquid concentrated in the
Below the immersion membrane unit 3, a
In addition, although not shown in FIG. 1, the means for discharging | emitting the excess activated sludge which increases with decomposing | disassembling organic substance etc. out of an apparatus is provided separately.
図2は本発明の第1の実施例を示す図である。
本実施例においては、生物反応槽1の上部空間17に気相部を形成するように密閉し、上部空間17と膜分離槽2内に設置した浸漬膜ユニット洗浄用の散気装置としての散気管4とを配管16により連結し、生物反応槽1内に吹き込まれた空気のオフガスにより、浸漬膜ユニット3を空気洗浄するようにしている。
FIG. 2 is a diagram showing a first embodiment of the present invention.
In the present embodiment, the diffuser as a diffuser for cleaning the submerged membrane unit, which is hermetically sealed so as to form a gas phase portion in the
本実施例においては、図1に示した従来の膜分離槽別置型MBR装置に必須の浸漬膜ユニット洗浄用のブロワ7は不要となる。 In the present embodiment, the blower 7 for cleaning the submerged membrane unit, which is essential for the conventional membrane separation tank separate MBR apparatus shown in FIG. 1, is not required.
本実施例において、生物反応槽1内へ吹き込まれた空気中の酸素は、約20%程度しか消費されないので、生物反応槽1の上部空間17の気相部に滞留するオフガス中には酸素が依然として十分な濃度で残留しており、このオフガスを膜分離槽2内へ浸漬膜ユニット3の洗浄のために導入したとしても、膜分離槽2内の液相部において酸素不足の状態になることはない。
また、主として窒素、酸素から構成されている空気の溶解度は低いので、生物反応槽1で減少する空気量は極めて僅かなものである。したがって、生物反応槽1で発生するオフガス量は生物反応槽1に吹き込んだ空気量とほぼ同量と考えてよい。
In this embodiment, only about 20% of the oxygen in the air blown into the
Further, since the solubility of air mainly composed of nitrogen and oxygen is low, the amount of air reduced in the
ここで、本実施例におけるブロワ6の吐出空気量は、以下のように決定する。
生物反応に必要な空気量が浸漬膜ユニット3の洗浄に必要な空気量よりも大きい場合には、生物反応に必要な空気量に基づいて決定する。
逆に、浸漬膜ユニット3の洗浄に必要な空気量が生物反応に必要な空気量よりも大きい場合には、浸漬膜ユニット3の洗浄に必要な空気量に基づいて、それぞれの量を上回るように決定する。
Here, the amount of air discharged from the blower 6 in this embodiment is determined as follows.
When the amount of air necessary for the biological reaction is larger than the amount of air necessary for cleaning the submerged membrane unit 3, the amount is determined based on the amount of air necessary for the biological reaction.
Conversely, if the amount of air required for cleaning the submerged membrane unit 3 is greater than the amount of air required for biological reaction, it will exceed the respective amount based on the amount of air required for cleaning the submerged membrane unit 3. To decide.
本実施例におけるブロワ6の吐出圧力は、生物反応槽用の散気装置5の水位、膜分離槽2における浸漬膜ユニット洗浄用の散気装置としての散気管4の水位、各散気装置における圧力損失及び空気配管での圧力損失の合計よりも大きいものとする。ブロワ6の吐出圧力としては、好ましくは70kPa以上である。
The discharge pressure of the blower 6 in the present embodiment is such that the water level of the
なお、本実施例においては、生物反応槽1から膜分離槽2への配管の途中に、生物反応槽混合液の移流量を、ほぼ一定に制御するための生物反応槽混合液移流量調整機構18を設けている。
In this embodiment, a biological reaction tank mixed liquid transfer flow rate adjusting mechanism for controlling the transfer flow rate of the biological reaction tank mixed liquid almost constant in the middle of the piping from the
図3は本発明の第2の実施例を示す図である。
本実施例においては、生物反応槽曝気用のブロワ6と生物反応槽用の散気装置5の間の空気配管の途中に空気流量調節弁12を設けている。
この空気流量調節弁12は、生物反応槽1内に設置したセンサ10の信号により調節計11を介して開閉するようになっている。センサ10は溶存酸素濃度(DO)センサあるいは酸化還元電位(ORP)センサであり、これらの値が一定となるように、原水の有機物等の濃度に応じて空気流量調節弁12を介して生物反応槽1への空気流量を制御するようにしたものである。
FIG. 3 is a diagram showing a second embodiment of the present invention.
In this embodiment, an air flow
The air flow
余剰の空気は、生物反応槽曝気用のブロワ6と生物反応槽用の散気装置5の間の空気配管から分岐され、生物反応槽1の上部空間17と浸漬膜ユニット洗浄用の散気装置としての散気管4とを接続する配管16に接続された空気分岐管15を介して、浸漬膜ユニット洗浄用の空気として利用され、浸漬膜ユニット3のゲル層の形成を良好に防止しながら、膜ろ過を安定的に継続することができる。
Excess air is branched from the air pipe between the blower 6 for aeration of the biological reaction tank and the
生物反応槽曝気用のブロワ6と生物反応槽用の散気装置5の間の空気配管から分岐された空気分岐管15の途中には圧力調整弁13が、生物反応槽1の上部空間17と浸漬膜ユニット洗浄用の散気装置としての散気管4とを接続する配管16の途中には逆止弁14が設けられており、圧力の不均衡による空気分岐管15から配管16への空気の逆流を防止するようにしている。
In the middle of the
なお、本実施例において、生物反応槽1から膜分離槽2への配管の途中に、生物反応槽混合液の移流量を、ほぼ一定に制御するための生物反応槽混合液移流量調整機構18を設けている点は、実施例1と同様である。
In the present embodiment, the biological reaction tank mixed liquid transfer flow
図2及び図3に示す実施例は本発明の実施態様の一部を示すものであり、本発明の主旨を逸脱しない範囲において、本発明の実施態様は必ずしもこれらに限定されるものではない。 The examples shown in FIGS. 2 and 3 show a part of the embodiments of the present invention, and the embodiments of the present invention are not necessarily limited to these embodiments without departing from the gist of the present invention.
本発明の膜分離活性汚泥法及び装置は、簡易な機構によって、膜分離槽内に設置した浸漬膜ユニットの洗浄に要する空気量を削減し、コスト低減と省エネルギー化を図ることができることから、新設の膜分離槽別置型MBR装置のほか、既設の膜分離槽別置型MBR装置にも広く適用できるものである。 The membrane separation activated sludge method and apparatus of the present invention are newly installed because a simple mechanism can reduce the amount of air required for cleaning the submerged membrane unit installed in the membrane separation tank, thereby reducing costs and saving energy. The present invention can be widely applied to the existing MBR apparatus with separate membrane separation tanks as well as the existing MBR apparatus with separate membrane separation tanks.
1 生物反応槽
2 膜分離槽
3 浸漬膜ユニット
4 散気管(浸漬膜ユニット洗浄用の散気装置)
5 生物反応槽用の散気装置
6 生物反応槽曝気用のブロワ
7 浸漬膜ユニット洗浄用ブロワ
8 返送汚泥ポンプ
9 膜ろ過ポンプ
10 生物反応槽内に設置したセンサ
11 調節計
12 空気流量調節弁
13 圧力調節弁
14 逆止弁
15 生物反応槽曝気用のブロワからの空気分岐管
16 生物反応槽の上部空間と浸漬膜ユニット洗浄用散気装置を接続する配管
17 生物反応槽の上部空間
18 生物反応槽混合液移流量調整機構
DESCRIPTION OF
5 Aeration device for biological reaction tank 6 Blower for aeration of biological reaction tank 7 Blower for washing submerged membrane unit 8 Return sludge pump 9
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010062689A JP2011194305A (en) | 2010-03-18 | 2010-03-18 | Membrane-separation activated sludge treatment method and apparatus for sewage |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010062689A JP2011194305A (en) | 2010-03-18 | 2010-03-18 | Membrane-separation activated sludge treatment method and apparatus for sewage |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011194305A true JP2011194305A (en) | 2011-10-06 |
Family
ID=44873183
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010062689A Pending JP2011194305A (en) | 2010-03-18 | 2010-03-18 | Membrane-separation activated sludge treatment method and apparatus for sewage |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011194305A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101579488B1 (en) * | 2015-05-21 | 2015-12-22 | 주식회사삼성환경엔지니어링 | Apparatus for Cleaning Automatic Separation Membrane and Method Using the Same |
US9333464B1 (en) | 2014-10-22 | 2016-05-10 | Koch Membrane Systems, Inc. | Membrane module system with bundle enclosures and pulsed aeration and method of operation |
USD779632S1 (en) | 2015-08-10 | 2017-02-21 | Koch Membrane Systems, Inc. | Bundle body |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05337479A (en) * | 1992-06-08 | 1993-12-21 | Kurita Water Ind Ltd | Aerobic treatment equipment |
JP2000197896A (en) * | 1999-01-11 | 2000-07-18 | Kubota Corp | Flow control type biological reactor |
JP2009285582A (en) * | 2008-05-29 | 2009-12-10 | Hitachi Plant Technologies Ltd | Membrane separation activated sludge treatment apparatus and its method |
-
2010
- 2010-03-18 JP JP2010062689A patent/JP2011194305A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05337479A (en) * | 1992-06-08 | 1993-12-21 | Kurita Water Ind Ltd | Aerobic treatment equipment |
JP2000197896A (en) * | 1999-01-11 | 2000-07-18 | Kubota Corp | Flow control type biological reactor |
JP2009285582A (en) * | 2008-05-29 | 2009-12-10 | Hitachi Plant Technologies Ltd | Membrane separation activated sludge treatment apparatus and its method |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9333464B1 (en) | 2014-10-22 | 2016-05-10 | Koch Membrane Systems, Inc. | Membrane module system with bundle enclosures and pulsed aeration and method of operation |
US9956530B2 (en) | 2014-10-22 | 2018-05-01 | Koch Membrane Systems, Inc. | Membrane module system with bundle enclosures and pulsed aeration and method of operation |
US10702831B2 (en) | 2014-10-22 | 2020-07-07 | Koch Separation Solutions, Inc. | Membrane module system with bundle enclosures and pulsed aeration and method of operation |
KR101579488B1 (en) * | 2015-05-21 | 2015-12-22 | 주식회사삼성환경엔지니어링 | Apparatus for Cleaning Automatic Separation Membrane and Method Using the Same |
USD779632S1 (en) | 2015-08-10 | 2017-02-21 | Koch Membrane Systems, Inc. | Bundle body |
USD779631S1 (en) | 2015-08-10 | 2017-02-21 | Koch Membrane Systems, Inc. | Gasification device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106132518B (en) | Water treatment method and water treatment device using membrane | |
KR101050375B1 (en) | Submerged membrane bioreactor easy to cope with load variation and sewage treatment method using the same | |
AU2015410935A1 (en) | Wastewater treatment system and wastewater treatment method | |
JPH07155758A (en) | Waste water treating device | |
WO2016115008A2 (en) | Eductor-based membrane bioreactor | |
KR100876323B1 (en) | Advanced Wastewater and Sewage Treatment System Using Activator | |
CN110431114A (en) | Waste water treatment system and method | |
CN111315691A (en) | Aerobic biological treatment device | |
JP6210063B2 (en) | Fresh water generation method and fresh water generation apparatus | |
KR20110058989A (en) | Hybrid diffuser system | |
JP2011194305A (en) | Membrane-separation activated sludge treatment method and apparatus for sewage | |
JP2014000495A (en) | Sewage treatment apparatus, and sewage treatment method using the same | |
JP4271991B2 (en) | Ozone water treatment equipment | |
WO2009081118A1 (en) | Improvements relating to water treatment | |
JP5947067B2 (en) | Wastewater treatment system and method | |
JP2008000705A (en) | Wastewater treatment equipment at a satellite treatment plant | |
JP4403495B2 (en) | Wastewater treatment equipment | |
JP2014133206A (en) | Waste water treatment apparatus, and update/modification method thereof | |
CN206289134U (en) | Electro-osmosis sludge high-drying dehydration extrusion liquid treatment integrated apparatus | |
JP4709792B2 (en) | Wastewater treatment system | |
JP6424807B2 (en) | Water treatment system and water treatment method | |
KR102059988B1 (en) | Membrane water treatment apparatus using micro-bubble | |
CN101648763A (en) | Low energy-consumption integrative membrane bioreactor | |
JP2005074345A (en) | Wastewater treatment method | |
KR100506008B1 (en) | Woven tubular fiber membrane module for waste water treatment system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120412 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120424 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120815 |