Nothing Special   »   [go: up one dir, main page]

JP2011192476A - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery Download PDF

Info

Publication number
JP2011192476A
JP2011192476A JP2010056396A JP2010056396A JP2011192476A JP 2011192476 A JP2011192476 A JP 2011192476A JP 2010056396 A JP2010056396 A JP 2010056396A JP 2010056396 A JP2010056396 A JP 2010056396A JP 2011192476 A JP2011192476 A JP 2011192476A
Authority
JP
Japan
Prior art keywords
negative electrode
shaft core
positive electrode
electrode
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010056396A
Other languages
Japanese (ja)
Other versions
JP5334894B2 (en
Inventor
Toshiyuki Ariga
稔之 有賀
Shoji Nishihara
昭二 西原
Hiroshi Kashiwano
博志 柏野
Yasuo Arishima
康夫 有島
Masafumi Shinami
政文 志波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vehicle Energy Japan Inc
Original Assignee
Hitachi Vehicle Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Vehicle Energy Ltd filed Critical Hitachi Vehicle Energy Ltd
Priority to JP2010056396A priority Critical patent/JP5334894B2/en
Publication of JP2011192476A publication Critical patent/JP2011192476A/en
Application granted granted Critical
Publication of JP5334894B2 publication Critical patent/JP5334894B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To produce a high capacity and a high output while securing safety by reducing the deviation of temperature distribution inside an electrode. <P>SOLUTION: A shaft core 10 of a wound electrode group is formed by bonding an aluminum positive electrode shaft core part 12 and a copper negative electrode shaft core part 11 together while insulating them from each other with an insulating material 13. The positive electrode shaft core part 12 has a positive electrode current collecting plate 12b formed at one end, and a joint portion 12J formed at the other end to form a "shiplap" joint in the thickness direction. The negative electrode shaft core part 11 has a negative electrode current collecting plate 11b formed at one end, and a joint portion 11J formed at the other end. The positive electrode shaft core part 12 and the negative electrode shaft core part 11 are bonded at their joint portions together with the insulating material 13 over both sides of which an adhesive material is applied. To current collecting portions 12a, 11a of the positive electrode shaft core part 12 and the negative electrode shaft core part 11, aluminum and copper electrode connection plates are connected, respectively, with ultrasonic welding. Thus, the shaft core is connected to an external thermal load in an electrical and heat conductive manner. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、正極板と負極板とをセパレータを介して軸芯周りに捲回した捲回電極群を電池容器に収容したリチウムイオン二次電池に関する。   The present invention relates to a lithium ion secondary battery in which a wound electrode group in which a positive electrode plate and a negative electrode plate are wound around an axis via a separator is accommodated in a battery container.

電気自動車用の電源などに使用される大型リチウムイオン電池では、正負極を離隔するセパレータに多孔質ポリエチレン製フィルムが用いられている。大型リチウムイオン二次電池の過充電時には、非水電解液と活物質との化学反応に伴う発熱でポリエチレンが軟化溶融してシャットダウン(多孔を閉塞してリチウムイオンの通過を遮断)する。そのため、充放電が遮断されるので、電池温度の急激な上昇等を未然に防ぐことができる。   In a large-sized lithium ion battery used for a power source for an electric vehicle, a porous polyethylene film is used as a separator separating positive and negative electrodes. When the large lithium ion secondary battery is overcharged, the heat generated by the chemical reaction between the non-aqueous electrolyte and the active material causes the polyethylene to soften and melt and shut down (block the pores and block the passage of lithium ions). Therefore, since charging / discharging is interrupted, it is possible to prevent a sudden rise in battery temperature.

しかしながら、過充電時には、捲回電極群内部での温度分布が偏る、多孔質セパレータのシャットダウンの進行にバラツキが生じる可能性がある。   However, at the time of overcharging, there is a possibility that the temperature distribution inside the wound electrode group is biased and the progress of the shutdown of the porous separator may vary.

電池温度の上昇を抑制するために、例えば、捲回電極群の捲回中心部に金属製軸芯を配置することで電池内部の熱を電池外部に放熱する円筒形電池が知られている(特許文献1参照)。   In order to suppress an increase in battery temperature, for example, a cylindrical battery that dissipates heat inside the battery to the outside of the battery by arranging a metal shaft core at the center of the wound electrode group is known ( Patent Document 1).

特開平10−92469号公報Japanese Patent Laid-Open No. 10-92469

特許文献1の二次電池は、金属製の軸芯により電池内部の熱を電池容器から放熱するが、軸芯と正負極板は接続されていないので、温度上昇が十分に抑制できない。   The secondary battery of Patent Document 1 dissipates heat inside the battery from the battery container with a metal shaft core, but the temperature rise cannot be sufficiently suppressed because the shaft core and the positive and negative electrode plates are not connected.

(1)請求項1の発明によるリチウムイオン二次電池は、電極層が形成されるとともに、前記電極層が形成されない集電部が幅方向の一側にそれぞれ配置された正極板と負極板とをセパレータを介して前記集電部が互いに逆になるように捲回した捲回電極群と、前記捲回電極群を収納し、負極外部端子および正極外部端子を有する電池外装容器と、前記捲回電極群の中心部に延在し、前記負極板の前記集電部(負極集電部)に接続された負極軸芯部、前記正極板の集電部(正極集電部)に接続された正極軸芯部、および、前記負極軸芯部および前記正極軸芯部を電気的に絶縁する絶縁体を有する軸芯とを備え、前記負極集電部は前記負極軸芯部を経由して前記負極外部端子に接続され、前記正極集電部は前記正極軸芯部を経由して前記正極外部端子に接続されていることを特徴とする。
(2)請求項2の発明は、請求項1に記載のリチウムイオン二次電池において、前記電池外装容器は扁平角形であることを特徴とする。
(3)請求項3の発明は、請求項2に記載のリチウムイオン二次電池において、前記捲回電極群は、前記軸芯が前記電池外装容器の幅広方向に延在するように電池外装容器内に収容され、前記負極軸芯部は、前記外部負極端子に接続されている負極接続部材に接続され、前記正極軸芯部は、前記正極外部端子に接続されている正極接続部材に接続されていることを特徴とする。
(4)請求項4の発明は、請求項3に記載のリチウムイオン二次電池において、前記負極軸芯部は、前記負極集電部および前記負極接続部材に電気的、熱伝導的に接続され、前記正極軸芯部は、前記正極集電部および前記正極接続部材に電気的、熱伝導的に接続されていることを特徴とする。
(5)請求項5の発明は、請求項4に記載のリチウムイオン二次電池において、前記捲回電極群は前記軸芯を構成する前記負極軸芯部および前記正極軸芯部に捲回され、前記負極軸芯部は、捲回された電極群の前記負極集電部が接続される巻芯部(負極巻芯部)と、前記巻芯部の端部に設けられ前記負極接続部材と接続される集電板(軸芯負極集電板)とを備え、前記正極軸芯部は、捲回された電極群の前記正極集電部が接続される巻芯部(正極巻芯部)と、前記巻芯部の端部に設けられ前記正極接続部材と接続される集電板(軸芯正極集電板)とを備えていることを特徴とする。
(6)請求項6の発明は、請求項5に記載のリチウムイオン二次電池において、
前記負極巻芯部と前記正極巻芯部は、扁平形電池外装容器の幅広側面に平行に配置された平板であり、前記軸芯負極集電板と前記軸芯正極集電板は、前記巻芯部と直交して配置され、扁平形電池外装容器の幅狭側面に平行に配置された平板であることを特徴とする。
(7)請求項7の発明は、請求項6に記載のリチウムイオン二次電池において、前記負極巻芯部は前記負極板の負極集電部に、前記軸芯負極集電板は前記負極接続部材にそれぞれ超音波溶接され、前記正極巻芯部は前記正極板の正極集電部に、前記軸芯正極集電板は前記正極接続部材にそれぞれ超音波溶接されていることを特徴とする。
(8)請求項8の発明は、請求項1乃至請求項7のいずれか1項に記載のリチウムイオン二次電池において、前記絶縁体は、前記負極軸芯部と前記正極軸芯部との間に所定長さに渡って設けられ、前記負極軸芯部と前記正極軸芯部の幅は、前記正負極板の前記正負極集電部のそれぞれの幅以上であることを特徴とする。
(9)請求項9の発明は、請求項1乃至請求項8のいずれか1項に記載のリチウムイオン二次電池において、前記軸芯の外表面には、少なくとも一周以上のセパレータが捲回され、前記負極板の電極層および前記正極板の電極層を前記軸芯と絶縁したことを特徴とする。
(10)請求項10の発明は、請求項1に記載のリチウムイオン二次電池において、前記電池外装容器は円筒形であることを特徴とする。
(1) The lithium ion secondary battery according to the invention of claim 1 includes a positive electrode plate and a negative electrode plate in which an electrode layer is formed and a current collecting part on which the electrode layer is not formed is disposed on one side in the width direction. A wound electrode group wound through a separator so that the current collecting parts are opposite to each other, a battery outer container containing the wound electrode group and having a negative external terminal and a positive external terminal, A negative electrode core portion extending to the center of the rotating electrode group and connected to the current collector (negative current collector) of the negative electrode plate, and connected to a current collector (positive current collector) of the positive electrode plate A positive electrode shaft core portion, and a shaft core having an insulator that electrically insulates the negative electrode shaft core portion and the positive electrode shaft core portion, and the negative electrode current collector portion passes through the negative electrode shaft core portion. The positive current collector is connected to the negative external terminal, and the positive current collector is connected to the outside of the positive via the positive shaft core. Characterized in that it is connected to the terminal.
(2) The invention according to claim 2 is the lithium ion secondary battery according to claim 1, wherein the battery outer casing is a flat rectangular shape.
(3) A third aspect of the present invention is the lithium ion secondary battery according to the second aspect, wherein the wound electrode group includes a battery outer casing such that the shaft core extends in a width direction of the battery outer casing. The negative electrode shaft core portion is connected to a negative electrode connection member connected to the external negative electrode terminal, and the positive electrode shaft core portion is connected to a positive electrode connection member connected to the positive electrode external terminal. It is characterized by.
(4) The invention of claim 4 is the lithium ion secondary battery according to claim 3, wherein the negative electrode shaft core portion is electrically and thermally conductively connected to the negative electrode current collector and the negative electrode connecting member. The positive electrode shaft core portion is electrically and thermally conductively connected to the positive electrode current collector and the positive electrode connecting member.
(5) The invention according to claim 5 is the lithium ion secondary battery according to claim 4, wherein the wound electrode group is wound around the negative electrode core part and the positive electrode core part constituting the shaft core. The negative electrode shaft core part is provided with a core part (negative electrode core part) to which the negative electrode current collector part of the wound electrode group is connected, and the negative electrode connecting member provided at an end of the core part. A positive electrode shaft core portion connected to the positive electrode current collector portion of the wound electrode group (positive electrode core portion). And a current collector plate (axial positive electrode current collector plate) provided at an end portion of the winding core portion and connected to the positive electrode connecting member.
(6) The invention of claim 6 is the lithium ion secondary battery according to claim 5,
The negative electrode core part and the positive electrode core part are flat plates arranged in parallel to the wide side surface of the flat battery outer casing, and the axial negative electrode current collector plate and the axial positive electrode current collector plate It is a flat plate that is arranged orthogonal to the core and is arranged in parallel with the narrow side surface of the flat battery outer container.
(7) The invention according to claim 7 is the lithium ion secondary battery according to claim 6, wherein the negative electrode core portion is connected to a negative electrode current collector portion of the negative electrode plate, and the axial core negative electrode current collector plate is connected to the negative electrode. Each of the members is ultrasonically welded, the positive electrode core portion is ultrasonically welded to the positive electrode current collector of the positive electrode plate, and the axial core positive electrode current collector plate is ultrasonically welded to the positive electrode connecting member.
(8) The invention according to claim 8 is the lithium ion secondary battery according to any one of claims 1 to 7, wherein the insulator includes the negative electrode shaft core portion and the positive electrode shaft core portion. The negative electrode shaft core portion and the positive electrode shaft core portion have a width that is equal to or greater than a width of each of the positive and negative electrode current collector portions of the positive and negative electrode plates.
(9) The invention of claim 9 is the lithium ion secondary battery according to any one of claims 1 to 8, wherein at least one round or more separator is wound on the outer surface of the shaft core. The electrode layer of the negative electrode plate and the electrode layer of the positive electrode plate are insulated from the shaft core.
(10) The invention according to claim 10 is the lithium ion secondary battery according to claim 1, wherein the battery outer case is cylindrical.

(11)請求項11の発明によるリチウムイオン二次電池は、電極層が形成されるとともに、前記電極層が形成されない集電部が幅方向の一側にそれぞれ配置された正極板と負極板とをセパレータを介して前記集電部が互いに逆になるように捲回した捲回電極群と、前記捲回電極群を収納し、負極外部端子および正極外部端子を有する電池外装容器と、前記捲回電極群の中心部に延在し、前記負極板および正極板の電極層とは絶縁されつつ前記電池外装容器に接続されている金属製の軸芯とを有することを特徴とする。
(12)請求項12の発明は、請求項11に記載のリチウムイオン二次電池において、前記電池外装容器は扁平角形であり、前記軸芯の両端は、前記電池外装容器の対向幅狭側面間に突っ張るように設けられていることを特徴とする。
(11) A lithium ion secondary battery according to an eleventh aspect of the present invention includes a positive electrode plate and a negative electrode plate in which an electrode layer is formed and a current collecting portion on which the electrode layer is not formed is disposed on one side in the width direction. A wound electrode group wound through a separator so that the current collecting parts are opposite to each other, a battery outer container containing the wound electrode group and having a negative external terminal and a positive external terminal, It has a metal shaft core that extends to the center of the rotating electrode group and is connected to the battery outer casing while being insulated from the electrode layer of the negative electrode plate and the positive electrode plate.
(12) The lithium ion secondary battery according to claim 12 is the lithium ion secondary battery according to claim 12, wherein the battery outer casing is a flat rectangular shape, and both ends of the shaft core are between the opposing narrow side surfaces of the battery outer casing. It is provided so that it may stretch on.

本発明によれば、電極群内部で発生した熱を電池外装容器の外部に効果的に放熱することができる。   According to the present invention, heat generated inside the electrode group can be effectively radiated to the outside of the battery outer casing.

本発明によるリチウムイオン二次電池の第1実施形態を示す外観図。BRIEF DESCRIPTION OF THE DRAWINGS The external view which shows 1st Embodiment of the lithium ion secondary battery by this invention. 図4のリチウムイオン二次電池の捲回電極群と蓋との接続状況を示す斜視図。The perspective view which shows the connection condition of the winding electrode group and lid | cover of the lithium ion secondary battery of FIG. 図4のリチウムイオン二次電池の分解斜視図。The disassembled perspective view of the lithium ion secondary battery of FIG. 本発明によるリチウムイオン二次電池の第1実施形態における捲回電極群を示す斜視図。The perspective view which shows the winding electrode group in 1st Embodiment of the lithium ion secondary battery by this invention. 図1の捲回電極群における電極板を示す正面図。The front view which shows the electrode plate in the wound electrode group of FIG. 図1の捲回電極群における軸芯を示す斜視図。The perspective view which shows the axial center in the wound electrode group of FIG. 本発明によるリチウムイオン二次電池の第2実施形態における軸芯を示す斜視図。The perspective view which shows the axial center in 2nd Embodiment of the lithium ion secondary battery by this invention. 本発明によるリチウムイオン二次電池の第3実施形態における軸芯を示す斜視図。The perspective view which shows the axial center in 3rd Embodiment of the lithium ion secondary battery by this invention. 本発明によるリチウムイオン二次電池の第4実施形態における軸芯を示す斜視図。The perspective view which shows the axial center in 4th Embodiment of the lithium ion secondary battery by this invention. 本発明によるリチウムイオン二次電池の第5実施形態を示す分解斜視図。The disassembled perspective view which shows 5th Embodiment of the lithium ion secondary battery by this invention. 図10のリチウムイオン二次電池の横断面図。FIG. 11 is a cross-sectional view of the lithium ion secondary battery in FIG. 10. 図10のリチウムイオン二次電池の軸芯を示す斜視図。The perspective view which shows the axial center of the lithium ion secondary battery of FIG. 本発明によるリチウムイオン二次電池の第6実施形態の軸芯を示す斜視図。The perspective view which shows the axial center of 6th Embodiment of the lithium ion secondary battery by this invention. 本発明によるリチウムイオン二次電池の第7実施形態の軸芯を示す斜視図。The perspective view which shows the axial center of 7th Embodiment of the lithium ion secondary battery by this invention.

[第1実施形態]
図1〜図6を参照して、本発明による角形電池の実施形態を説明する。
[角形電池の全体構成]
図1〜図3において、角形電池70は、電池容器78内に絶縁シート79を介して扁平形捲回電極群20を収納して構成される。電池容器78の矩形開口は、矩形形状の電池蓋75を電池容器78にレーザ溶接して封止されている。電池蓋75には、正極外部端子73と、負極外部端子71とが設けられている。外部端子73,71を介して外部負荷に電力が供給され、あるいは、外部端子73,71を介して外部発電電力が捲回電極群20に充電される。
[First embodiment]
With reference to FIGS. 1-6, embodiment of the square battery by this invention is described.
[Overall configuration of prismatic battery]
1 to 3, a rectangular battery 70 is configured by housing a flat wound electrode group 20 in a battery container 78 via an insulating sheet 79. The rectangular opening of the battery container 78 is sealed by laser welding a rectangular battery lid 75 to the battery container 78. The battery lid 75 is provided with a positive external terminal 73 and a negative external terminal 71. Electric power is supplied to the external load via the external terminals 73 and 71, or external generated power is charged to the wound electrode group 20 via the external terminals 73 and 71.

電池蓋75で封止された電池容器78を電池外装容器と呼ぶ。この電池外装容器は、一対の幅広側面PWと、一対の幅狭側面PNと、底面PBと、電池蓋75とで直方体形状の扁平角形容器を構成する。   The battery container 78 sealed with the battery lid 75 is referred to as a battery outer container. In this battery exterior container, a pair of wide side surfaces PW, a pair of narrow side surfaces PN, a bottom surface PB, and a battery lid 75 constitute a rectangular parallelepiped flat rectangular container.

図2、図3に示すように、正極軸芯部12には正極接続部材74が超音波溶接にて接続され、正極接続部材74は、扁平形リチウムイオン二次電池の正極外部端子73に接続されている。一方、負極軸芯部11には負極接続部材72が超音波溶接にて接続され、負極接続部材72は扁平形リチウムイオン二次電池の負極外部端子71に接続されている。   2 and 3, a positive electrode connecting member 74 is connected to the positive electrode shaft core portion 12 by ultrasonic welding, and the positive electrode connecting member 74 is connected to a positive electrode external terminal 73 of a flat lithium ion secondary battery. Has been. On the other hand, a negative electrode connecting member 72 is connected to the negative electrode shaft portion 11 by ultrasonic welding, and the negative electrode connecting member 72 is connected to a negative electrode external terminal 71 of the flat lithium ion secondary battery.

接続部材74,72と外部端子73,71は、図示しない絶縁材によって電池蓋75と電気的に絶縁されている。また、電池蓋75の貫通孔には図示しないシール材が設けられ、電池容器からの液漏れを防止している。   The connection members 74 and 72 and the external terminals 73 and 71 are electrically insulated from the battery lid 75 by an insulating material (not shown). Further, a sealing material (not shown) is provided in the through hole of the battery lid 75 to prevent liquid leakage from the battery container.

電池蓋75には、電池容器78内に電解液を注入する注液口76が穿設され、注液口76は、電解液注入後に注液栓80によって封止される。電池蓋75にはガス排出弁77も設けられている。電池容器内の圧力が上昇すると、ガス排出弁77が開いて内部からガスが排出され、電池容器内の圧力が低減される。   The battery lid 75 is provided with a liquid injection port 76 for injecting an electrolytic solution into the battery container 78, and the liquid injection port 76 is sealed by a liquid injection plug 80 after the electrolytic solution is injected. The battery cover 75 is also provided with a gas discharge valve 77. When the pressure in the battery container rises, the gas discharge valve 77 is opened to discharge gas from the inside, and the pressure in the battery container is reduced.

電池容器78、電池蓋75は、共にアルミニウム合金で製作されている。正極側の接続部材74、外部端子73はアルミニウム合金で製作され、負極側の接続部材72、外部端子71は銅合金で製作されている。   The battery container 78 and the battery lid 75 are both made of an aluminum alloy. The positive side connecting member 74 and the external terminal 73 are made of an aluminum alloy, and the negative side connecting member 72 and the external terminal 71 are made of a copper alloy.

[捲回電極群全体構成]
捲回電極群20は、図4に示すように、正極軸芯部12と負極軸芯部11で構成される軸芯10の周りにセパレータ60を介在させつつ正負極板40,30を扁平状に捲回して構成される。軸芯10は、後述するように、正極軸芯部を構成する正極軸芯部12と負極軸芯部を構成する負極軸芯部11とを絶縁材13(図6参照)を介して一体化したものである。正負極板40,30はそれぞれ軸芯10に電気的、熱伝導的に接続されている。
[Whole electrode group configuration]
As shown in FIG. 4, the wound electrode group 20 is formed by flattening the positive and negative electrode plates 40 and 30 with a separator 60 interposed around the shaft core 10 composed of the positive electrode shaft core portion 12 and the negative electrode shaft core portion 11. It is composed by winding up to. As will be described later, the shaft core 10 is formed by integrating a positive electrode shaft core portion 12 constituting a positive electrode shaft core portion and a negative electrode shaft core portion 11 constituting a negative electrode shaft core portion via an insulating material 13 (see FIG. 6). It is a thing. The positive and negative electrode plates 40 and 30 are electrically and thermally conductively connected to the shaft core 10, respectively.

正負極板40,30は、正負極集電箔上に活物質合剤を塗布した電極層41,31を有し、各電極箔の幅方向(捲回方向に直交する方向)の一端部には、活物質合剤を塗布しない正負極集電部50a,50bがそれぞれ設けられている。したがって、正負極集電部50a,50bは、捲回電極群20の幅方向(軸芯延在方向)の反対位置にそれぞれ形成されている。正極板40の正極集電部50aは正極軸芯部12に、負極板30の負極集電部50bは負極軸芯部11にそれぞれ接続され、したがって、正負極板40,30はそれぞれ正負極軸芯部12,11に電気的、熱伝導的に接続されている。   The positive and negative electrode plates 40 and 30 have electrode layers 41 and 31 in which an active material mixture is applied on the positive and negative electrode current collector foils, at one end portion in the width direction (direction orthogonal to the winding direction) of each electrode foil. Are provided with positive and negative electrode current collectors 50a and 50b, respectively, to which no active material mixture is applied. Therefore, the positive and negative electrode current collectors 50a and 50b are formed at positions opposite to the width direction (axial core extending direction) of the wound electrode group 20, respectively. The positive electrode current collector 50a of the positive electrode plate 40 is connected to the positive electrode shaft core portion 12, and the negative electrode current collector portion 50b of the negative electrode plate 30 is connected to the negative electrode shaft core portion 11, respectively. Electrically and thermally conductively connected to the core parts 12 and 11.

[電極板]
図5に正負電極板の正面図を示す。
正負極板40,30は正負極集電箔50上に活物質合剤41,31を塗布して構成され、その幅方向(捲回方向に直交する方向)の一端部には、活物質合剤41,31を塗布しない正負極集電部50a,50bが設けられている。正負極集電部50a,50bは、捲回電極群20の幅方向の反対位置にそれぞれ形成される。
[Electrode plate]
FIG. 5 shows a front view of the positive and negative electrode plates.
The positive and negative electrode plates 40 and 30 are configured by applying the active material mixture 41 and 31 on the positive and negative electrode current collector foil 50, and at one end portion in the width direction (direction orthogonal to the winding direction), Positive and negative electrode current collectors 50a and 50b to which the agents 41 and 31 are not applied are provided. The positive and negative electrode current collectors 50a and 50b are formed at opposite positions in the width direction of the wound electrode group 20, respectively.

負極板30においては、負極活物質として非晶質炭素粉末100重量部に対して、結着剤として10重量部のポリフッ化ビニリデン(以下、PVDFという。)を添加し、これに分散溶媒としてN−メチルビロリドン(以下、NMPという。)を添加、混練した負極合剤31を作製した。この負極合剤31を厚さ10μmの銅箔の両面に無地の集電部50bを残して塗布した。その後、乾燥、プレス、裁断して銅箔を含まない負極活物質塗布部厚さ70μmの負極板30を得た。   In the negative electrode plate 30, 10 parts by weight of polyvinylidene fluoride (hereinafter referred to as PVDF) is added as a binder to 100 parts by weight of amorphous carbon powder as a negative electrode active material, and N as a dispersion solvent. -Negative electrode mixture 31 was prepared by adding and kneading methyl pyrrolidone (hereinafter referred to as NMP). This negative electrode mixture 31 was applied to both sides of a 10 μm thick copper foil leaving a solid current collecting part 50b. Then, the negative electrode active material application part thickness 70micrometer negative electrode plate 30 which does not contain copper foil was obtained by drying, pressing, and cutting.

なお、本実施形態では、負極活物質に非晶質炭素を例示したが、これに限定されるものではなく、リチウムイオンを挿入、脱挿入可能な天然黒鉛や、人造の各種黒鉛材、コークスなどの炭素質材料等でよく、その粒子形状においても、鱗片状、球状、繊維状、塊状等、特に制限されるものではない。   In this embodiment, amorphous carbon is exemplified as the negative electrode active material. However, the present invention is not limited thereto, and natural graphite capable of inserting and removing lithium ions, various artificial graphite materials, coke, etc. The carbonaceous material or the like may be used, and the particle shape is not particularly limited to a scaly shape, a spherical shape, a fibrous shape, a massive shape, or the like.

また本実施形態では、結着材にPVDFを用いた例を示したが、ポリテトラフルオロエチレン(PTFE)、ポリエチレン、ポリスチレン、ポリブタジエン、ブチルゴム、ニトリルゴム、スチレン/ブタジエンゴム、多硫化ゴム、ニトロセルロース、シアノエチルセルロース、各種ラテックス、アクリロニトリル、フッ化ビニル、フッ化ビニリデン、フッ化プロピレン、フッ化クロロプレン、アクリル系樹脂などの重合体およびこれらの混合体などを用いることができる。   Moreover, in this embodiment, although the example which used PVDF for the binder was shown, polytetrafluoroethylene (PTFE), polyethylene, polystyrene, polybutadiene, butyl rubber, nitrile rubber, styrene / butadiene rubber, polysulfide rubber, nitrocellulose Polymers such as cyanoethyl cellulose, various latexes, acrylonitrile, vinyl fluoride, vinylidene fluoride, propylene fluoride, chloroprene fluoride, and acrylic resins, and mixtures thereof can be used.

正極板40に関しては、正極活物質としてマンガン酸リチウム(化学式LiMn)100重量部に対し、導電材として10重量部の鱗片状黒鉛と結着剤として10重量部のPVDFとを添加し、これに分散溶媒としてNMPを添加、混練した正極合剤41を作製した。この正極合剤41を厚さ20μmのアルミニウム箔の両面に無地の集電部50aを残して塗布した。その後、乾燥、プレス、裁断してアルミニウム箔を含まない正極活物質塗布部厚さ90μmの正極板40を得た。 Regarding the positive electrode plate 40, 10 parts by weight of flaky graphite as a conductive material and 10 parts by weight of PVDF as a binder are added to 100 parts by weight of lithium manganate (chemical formula LiMn 2 O 4 ) as a positive electrode active material. A positive electrode mixture 41 was prepared by adding NMP as a dispersion solvent thereto and kneading. This positive electrode mixture 41 was applied to both surfaces of an aluminum foil having a thickness of 20 μm, leaving a plain current collecting part 50a. Thereafter, drying, pressing, and cutting were performed to obtain a positive electrode plate 40 having a positive electrode active material application portion thickness of 90 μm that does not include an aluminum foil.

[電解液]
以上の正負極電極板40,30を使用する第1実施形態のリチウムイオン二次電池では、以下に例示する電解液を使用することできる。例えば、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とジエチルカーボネート(DEC)の体積比1:1:1の混合溶液中に六フッ化リン酸リチウムを1mol/Lとなるように溶解したものを用いる。
[Electrolyte]
In the lithium ion secondary battery according to the first embodiment using the positive and negative electrode plates 40 and 30 described above, an electrolytic solution exemplified below can be used. For example, a solution obtained by dissolving lithium hexafluorophosphate in a mixed solution of ethylene carbonate (EC), dimethyl carbonate (DMC), and diethyl carbonate (DEC) at a volume ratio of 1: 1: 1 to 1 mol / L. Use.

[軸芯]
図6に示すように捲回電極群20の軸芯10は、正極板40と同様にアルミニウムもしくはアルミニウム合金を素材とした正極軸芯部12と、負極板30と同様に銅もしくは銅合金を用いた負極軸芯部11とを絶縁材13を介して接合してなる。正極軸芯部12は、正極巻芯部12aと正極集電板12bとを有し、負極軸芯部11は、負極巻芯部11aと負極集電板11bとを有する。
[Axis core]
As shown in FIG. 6, the shaft core 10 of the wound electrode group 20 is made of a positive electrode shaft core portion 12 made of aluminum or aluminum alloy as in the case of the positive electrode plate 40 and copper or copper alloy as in the case of the negative electrode plate 30. The negative electrode shaft core portion 11 is joined via an insulating material 13. The positive electrode shaft core portion 12 has a positive electrode core portion 12a and a positive electrode current collector plate 12b, and the negative electrode shaft core portion 11 has a negative electrode core portion 11a and a negative electrode current collector plate 11b.

正極巻芯部12aの一端部に正極集電板12bがT字状に接続され、他端部に厚さ方向の「あいじゃくり継ぎ」の継ぎ手を形成する継ぎ手部12Jが形成されている。負極巻芯部11aの一端部に負極集電板11bがT字状に接続され、他端部に厚さ方向の「あいじゃくり継ぎ」の継ぎ手を形成する継ぎ手部11Jが形成されている。正極軸芯部12と負極軸芯部11とは、継ぎ手部12J、11Jにおいて、両面に粘着材料を塗布した絶縁材(絶縁体)13にて接着されている。絶縁材13は、例えば、耐熱性の高いPPS樹脂を使用し、粘着材料にアクリル樹脂を使用した。
このように軸芯10は、正極軸芯部12と負極軸芯部11との絶縁を確保した3層構造の平板状に形成されている。
A positive electrode current collector plate 12b is connected in a T-shape to one end of the positive electrode core 12a, and a joint portion 12J is formed on the other end to form a joint in the thickness direction. A negative electrode current collector plate 11b is connected in a T shape at one end of the negative electrode core portion 11a, and a joint portion 11J is formed at the other end portion to form a joint in the thickness direction. The positive electrode shaft core portion 12 and the negative electrode shaft core portion 11 are bonded to each other at the joint portions 12J and 11J by an insulating material (insulator) 13 in which an adhesive material is applied to both surfaces. As the insulating material 13, for example, a PPS resin having high heat resistance is used, and an acrylic resin is used as an adhesive material.
As described above, the shaft core 10 is formed in a three-layer flat plate shape in which insulation between the positive electrode shaft core portion 12 and the negative electrode shaft core portion 11 is ensured.

すなわち、負極巻芯部11aと正極巻芯部12aは、扁平形電池外装容器の幅広側面PWに平行に配置された平板である。また、負極集電板11bと正極集電板12bは、巻芯部11a,12aと直交して配置され、扁平形電池外装容器の幅狭側面PNに平行に配置された平板である。   That is, the negative electrode core part 11a and the positive electrode core part 12a are flat plates arranged in parallel to the wide side surface PW of the flat battery outer casing. Moreover, the negative electrode current collector plate 11b and the positive electrode current collector plate 12b are flat plates that are arranged orthogonal to the winding core portions 11a and 12a and are arranged in parallel to the narrow side surface PN of the flat battery outer casing.

捲回電極群20の一側長辺に沿って延在する正極集電部50aは、正極軸芯部12の正極巻芯部12aに超音波溶接にて接続され、捲回電極群20の他側長辺に沿って延在する負極集電部50bは、負極軸芯部11の負極巻芯部11aに超音波溶接にて接続される。これによって、正極軸芯部12と正極集電部50a、負極軸芯部11と負極集電部50bとは、それぞれ電気的、熱伝導的に接続されている。   The positive electrode current collector 50 a extending along one long side of the wound electrode group 20 is connected to the positive electrode core part 12 a of the positive electrode shaft core part 12 by ultrasonic welding. The negative electrode current collector 50b extending along the side long side is connected to the negative electrode core part 11a of the negative electrode shaft core part 11 by ultrasonic welding. Thus, the positive electrode shaft core portion 12 and the positive electrode current collector portion 50a, and the negative electrode shaft core portion 11 and the negative electrode current collector portion 50b are electrically and thermally conductively connected, respectively.

正負極集電板12b、11bを形成したことによって、正極接続部材74と正極集電板12b、および負極接続部材72と負極集電板11bは充分な接触面積で溶接でき、良好な溶接品質を確保することができる。   By forming the positive and negative current collector plates 12b and 11b, the positive electrode connecting member 74 and the positive electrode current collector plate 12b, and the negative electrode connecting member 72 and the negative electrode current collector plate 11b can be welded with a sufficient contact area, and good welding quality can be obtained. Can be secured.

軸芯10の幅Wは、捲回電極群20の両端部の集電部50aと50bで正負極板40、30に接続する必要性から、捲回電極群20の幅以上である。また、正負極巻芯部12a,11aの最小幅W12min,W11minは集電部50a,50bの幅よりも大きい。   The width W of the shaft core 10 is equal to or greater than the width of the wound electrode group 20 because it is necessary to connect to the positive and negative electrode plates 40 and 30 at the current collectors 50 a and 50 b at both ends of the wound electrode group 20. Further, the minimum widths W12min and W11min of the positive and negative electrode winding core parts 12a and 11a are larger than the widths of the current collecting parts 50a and 50b.

なお、正極軸芯部12と負極軸芯部11は絶縁材13によって絶縁されているから、正極外部端子73、負極外部端子71は、軸芯10の絶縁材13によって互いに絶縁される。   Since the positive electrode shaft core portion 12 and the negative electrode shaft core portion 11 are insulated by the insulating material 13, the positive electrode external terminal 73 and the negative electrode external terminal 71 are insulated from each other by the insulating material 13 of the shaft core 10.

[作用効果]
以上説明した第1の実施形態のリチウムイオン二次電池20の作用効果を説明する。
(1)捲回電極群20の捲回中心には、正極接続部材74と同一材質の金属製軸芯12と、負極接続部材72と同一材質の金属製軸芯11とを絶縁材13で接続しつつ一体化した一つの軸芯10が配置され、正負極軸芯部12,11が正極および負極の接続部材74,72に接合されている。このような構造により、捲回電極群20内部の熱は、正極集電部50aに接続されている正極軸芯部12と、負極集電部50bに接続されている負極軸芯部11から、各々接続部材74、72を通り、電池蓋75の両端部上方に突出して設置されている各極の外部端子73、71から放熱される。
[Function and effect]
The effects of the lithium ion secondary battery 20 of the first embodiment described above will be described.
(1) At the winding center of the wound electrode group 20, the metal shaft core 12 made of the same material as the positive electrode connection member 74 and the metal shaft core 11 made of the same material as the negative electrode connection member 72 are connected by the insulating material 13. However, a single shaft core 10 is disposed, and the positive and negative shaft core portions 12 and 11 are joined to the positive and negative connection members 74 and 72. With such a structure, the heat inside the wound electrode group 20 is generated from the positive electrode shaft core portion 12 connected to the positive electrode current collector portion 50a and the negative electrode shaft core portion 11 connected to the negative electrode current collector portion 50b. The heat is radiated from the external terminals 73 and 71 of the respective poles that pass through the connection members 74 and 72 and protrude above the both ends of the battery lid 75.

したがって、軸芯10から外部端子73,71にいたる経路の熱抵抗を小さくできる。その結果、例えば、過充電等の電池異常時に非水電解液と活物質との化学反応に伴う発熱で発生した熱を軸芯10から接続部材74、72を介して熱伝導して放熱しやすくなり、電池内部温度の上昇を抑制できる。   Therefore, the thermal resistance of the path from the shaft core 10 to the external terminals 73 and 71 can be reduced. As a result, for example, heat generated due to heat generated by a chemical reaction between the non-aqueous electrolyte and the active material at the time of battery abnormality such as overcharge is easily conducted from the shaft core 10 through the connecting members 74 and 72 to be radiated. Thus, an increase in the battery internal temperature can be suppressed.

また、捲回電極群全体の温度分布の偏りが低減されるので、多孔質セパレータのシャットダウンがほぼ一様に進行し電池異常時の安全性を確保することができる。   In addition, since the bias of the temperature distribution of the entire wound electrode group is reduced, the shutdown of the porous separator proceeds almost uniformly, and the safety when the battery is abnormal can be ensured.

(2)正極軸芯部12と正極集電部50a、負極軸芯部11と負極集電部50bとが、それぞれ独立して電気的、熱伝導的に接続されているので、正負極板30、40で発生した熱は速やかに軸芯10から外部端子73,71に伝熱されて放熱されるので、温度分布の均一化が促進される。 (2) Since the positive electrode shaft core portion 12 and the positive electrode current collector portion 50a, and the negative electrode shaft core portion 11 and the negative electrode current collector portion 50b are independently and electrically connected to each other, the positive and negative electrode plates 30 , 40 is quickly transferred from the shaft core 10 to the external terminals 73 and 71 to be dissipated, so that uniform temperature distribution is promoted.

[比較評価]
上述の効果を確認するために、電池の電池容器78の側面部に熱電対を取り付け、外気温度を25℃に保ち、10時間率での電流値(10CA)で充放電を5回繰り返した後、側面部温度が外気温度と同じ25℃になるまでの時間を測定した。
[Comparison evaluation]
In order to confirm the above-mentioned effect, after attaching a thermocouple to the side surface portion of the battery case 78 of the battery, keeping the outside air temperature at 25 ° C., and repeating charging / discharging 5 times at a current value (10 CA) at a 10 hour rate The time until the side surface temperature became 25 ° C., the same as the outside air temperature, was measured.

また、比較のために、第1実施形態の軸芯10と同一形状、寸法の軸芯(比較例1)を絶縁剤13と同一の素材のみによって一体形成した。この比較例1の軸芯は電極集電部50a,50bと接合せず、電極集電部50a,50bは直接、接続部材74、72に接合した。
このような比較例1の軸芯を備えた比較扁平形リチウムイオン二次電池について、第1実施形態と同様の試験を行った。
For comparison, the shaft core (Comparative Example 1) having the same shape and size as the shaft core 10 of the first embodiment is integrally formed only by the same material as the insulating agent 13. The shaft core of Comparative Example 1 was not joined to the electrode current collectors 50a and 50b, and the electrode current collectors 50a and 50b were directly joined to the connecting members 74 and 72.
A test similar to that of the first embodiment was performed on a comparative flat lithium ion secondary battery including the axial core of Comparative Example 1 as described above.

その結果、第1実施形態の電池の側面温度は、比較例1の扁平形リチウムイオン二次電池の側面温度に比較して39%早い時間で、25℃に到達した。この結果により、第1実施形態のリチウムイオン二次電池の放熱性が改善されたことが証明された。   As a result, the side surface temperature of the battery of the first embodiment reached 25 ° C. in 39% earlier than the side surface temperature of the flat lithium ion secondary battery of Comparative Example 1. From this result, it was proved that the heat dissipation of the lithium ion secondary battery of the first embodiment was improved.

[第2実施形態]
次に、本発明を扁平形リチウムイオン二次電池に適用した第2実施形態を、図7を参照して説明する。なお、図中第1実施形態と同一もしくは相当部分には同一符号を付し、説明を省略する。
[Second Embodiment]
Next, a second embodiment in which the present invention is applied to a flat lithium ion secondary battery will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the part which is the same as that of 1st Embodiment in a figure, or an equivalent, and description is abbreviate | omitted.

軸芯10は、総幅および長さにおいて第1実施形態と同一とした。図7に示すように、正極軸芯部12、負極軸芯部11は共にT字形状に形成され、正極軸芯部12と負極軸芯部11との間に、正極軸芯部12、負極軸芯部11にモールド加工により一体化された絶縁板14が形成されている。   The shaft core 10 is the same as that of the first embodiment in terms of the total width and length. As shown in FIG. 7, both the positive electrode shaft core portion 12 and the negative electrode shaft core portion 11 are formed in a T shape, and the positive electrode shaft core portion 12 and the negative electrode shaft core portion 11 are interposed between the positive electrode shaft core portion 12 and the negative electrode shaft core portion 11. An insulating plate 14 integrated with the shaft core portion 11 by molding is formed.

正極軸芯部12と負極軸芯部11とは、絶縁板14によって相互に絶縁され、また両者は絶縁板14の長さだけ離間しているので、極めて高い絶縁性が確保されている。第2実施形態は、このように軸芯10が変更された以外は、第1実施形態の扁平形リチウムイオン二次電池と同様に構成される。   Since the positive electrode shaft core portion 12 and the negative electrode shaft core portion 11 are insulated from each other by the insulating plate 14 and both are separated by the length of the insulating plate 14, extremely high insulation is ensured. The second embodiment is configured in the same manner as the flat lithium ion secondary battery of the first embodiment except that the shaft core 10 is changed in this way.

本実施形態の効果を確認するために、第1実施形態と同様の試験を行った。
また、比較のために、第2実施形態の軸芯10と同一形状、寸法の比較例2の軸芯を絶縁板14と同一の素材のみによって一体形成した。この比較例2の軸芯は電極集電部50a,50bと接合せず、電極集電部50a,50bは直接、接続部材74、72を接合した。
In order to confirm the effect of this embodiment, the same test as that of the first embodiment was performed.
For comparison, the shaft core of Comparative Example 2 having the same shape and dimensions as those of the shaft core 10 of the second embodiment is integrally formed only from the same material as the insulating plate 14. The shaft core of Comparative Example 2 was not joined to the electrode current collectors 50a and 50b, and the electrode current collectors 50a and 50b were joined to the connection members 74 and 72 directly.

このような比較例2の軸芯を備えた扁平形リチウムイオン二次電池について、第2実施形態と同様の試験を行った。その結果、第2実施形態の電池の側面温度は、比較例2の扁平形リチウムイオン二次電池の側面温度に比較して2%早い時間で、25℃に到達した。この結果により、第2実施形態の放熱性は比較例2の軸芯を用いた電池とほぼ同程度であったといえる。この原因は、軸芯の金属部分が短いため、比較対象の電池と比べ放熱効果に大きな差が生まれなかったからと考えられる。   A test similar to that of the second embodiment was performed on the flat lithium ion secondary battery including the shaft core of Comparative Example 2 as described above. As a result, the side temperature of the battery of the second embodiment reached 25 ° C. in 2% earlier than the side temperature of the flat lithium ion secondary battery of Comparative Example 2. From this result, it can be said that the heat dissipation of the second embodiment was almost the same as that of the battery using the shaft core of Comparative Example 2. This is probably because the metal part of the shaft core is short, so that a large difference in heat dissipation effect was not produced compared to the battery to be compared.

[第3実施形態]
次に、本発明を扁平形リチウムイオン二次電池に適用した第3実施形態を、図8を参照して説明する。なお、図中第1実施形態と同一もしくは相当部分には同一符号を付し、説明を省略する。
[Third Embodiment]
Next, a third embodiment in which the present invention is applied to a flat lithium ion secondary battery will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the part which is the same as that of 1st Embodiment in a figure, or an equivalent, and description is abbreviate | omitted.

第3実施形態は、第2実施形態同様、モールド加工により間に絶縁板14を介在させて正極軸芯部12と負極軸芯部11とを接続したものである。絶縁板14の幅W14は、第2実施形態の絶縁材14より短くし、正極軸芯部12、負極軸芯部11の幅W12,W11と略同一長さとした。すなわち、正極軸芯部12および負極軸芯部11の幅W12,W11は、第2実施形態の幅W12,W11よりも長い。その他の構成は第2実施形態と同様である。   In the third embodiment, as in the second embodiment, the positive electrode core portion 12 and the negative electrode core portion 11 are connected by interposing an insulating plate 14 by molding. The width W14 of the insulating plate 14 is shorter than that of the insulating material 14 of the second embodiment, and is approximately the same length as the widths W12 and W11 of the positive electrode shaft core portion 12 and the negative electrode shaft core portion 11. That is, the widths W12 and W11 of the positive electrode shaft core portion 12 and the negative electrode shaft core portion 11 are longer than the widths W12 and W11 of the second embodiment. Other configurations are the same as those of the second embodiment.

本実施形態の効果を確認するために、第1実施形態と同様の試験を行った。
また、比較のために、第3実施形態の軸芯10と同一形状、寸法の比較例3の軸芯を絶縁板14と同一の素材のみによって一体形成した。この比較例3の軸芯は電極集電部50a、50bと接合せず、電極集電部50a,50bは直接、接続部材74、72を接合した。
In order to confirm the effect of this embodiment, the same test as that of the first embodiment was performed.
For comparison, the shaft core of Comparative Example 3 having the same shape and size as the shaft core 10 of the third embodiment is integrally formed only by the same material as the insulating plate 14. The shaft core of Comparative Example 3 was not joined to the electrode current collectors 50a and 50b, and the electrode current collectors 50a and 50b were joined to the connection members 74 and 72 directly.

このような比較例3の軸芯を備えた扁平形リチウムイオン二次電池について、第3実施形態と同様の試験を行った。その結果、第3実施形態の電池の側面温度は、比較例3の扁平形リチウムイオン二次電池の側面温度に比較して17%早い時間で、25℃に到達した。   A test similar to that of the third embodiment was performed on the flat lithium ion secondary battery including the shaft core of Comparative Example 3 as described above. As a result, the side surface temperature of the battery of the third embodiment reached 25 ° C. in a time 17% faster than the side surface temperature of the flat lithium ion secondary battery of Comparative Example 3.

この結果により、第3実施形態の放熱性は改善されたといえる。ただし、捲回電極群20の中心部まで軸芯10の金属部が存在する第1実施形態に比較し、ある程度の範囲に絶縁板14が存在するため、第1実施形態よりも放熱効果が劣る。   From this result, it can be said that the heat dissipation of the third embodiment is improved. However, compared to the first embodiment in which the metal portion of the shaft core 10 exists up to the center of the wound electrode group 20, the insulating plate 14 is present in a certain range, so that the heat dissipation effect is inferior to the first embodiment. .

[第4実施形態]
次に、本発明を扁平形リチウムイオン二次電池に適用した第4実施形態を、図9を参照して説明する。なお、図中第1実施形態と同一もしくは相当部分には同一符号を付し、説明を省略する。
[Fourth Embodiment]
Next, a fourth embodiment in which the present invention is applied to a flat lithium ion secondary battery will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the part which is the same as that of 1st Embodiment in a figure, or an equivalent, and description is abbreviate | omitted.

第4実施形態は、第1実施形態の厚さ方向「あいじゃくり継ぎ」の継ぎ手部11J、12Jに代えて、幅方向の「あいじゃくり継ぎ」の継ぎ手部11J、12Jを採用している。
その他の構成は第1実施形態と同様である。
The fourth embodiment employs joint portions 11J and 12J of “aijakuri joint” in the width direction instead of the joint portions 11J and 12J of “aijakuri joint” in the thickness direction of the first embodiment. .
Other configurations are the same as those of the first embodiment.

本実施形態の効果を確認するために、第1実施形態と同様の試験を行った。
また、比較のために、第4実施形態の軸芯10と同一形状、寸法の比較例4の軸芯を絶縁材13と同一の素材のみによって一体形成した。この比較例4の軸芯は電極集電部50a,50bと接合せず、電極集電部50a、50bは直接、接続部材74、72を接合した。
In order to confirm the effect of this embodiment, the same test as that of the first embodiment was performed.
For comparison, the shaft core of Comparative Example 4 having the same shape and dimensions as the shaft core 10 of the fourth embodiment is integrally formed only by the same material as the insulating material 13. The shaft core of Comparative Example 4 was not joined to the electrode current collectors 50a and 50b, and the electrode current collectors 50a and 50b were joined to the connection members 74 and 72 directly.

このような比較例4の軸芯を備えた扁平形リチウムイオン二次電池について、第4実施形態と同様の試験を行った。その結果、第4実施形態の電池の側面温度は、比較扁平形リチウムイオン二次電池の側面温度に比較して36%早い時間で、25℃に到達した。
この結果により第4実施形態の放熱性は改善されたといえる。
A test similar to that of the fourth embodiment was performed on the flat lithium ion secondary battery including the shaft core of Comparative Example 4 as described above. As a result, the side surface temperature of the battery of the fourth embodiment reached 25 ° C. in 36% earlier than the side surface temperature of the comparative flat lithium ion secondary battery.
From this result, it can be said that the heat dissipation of the fourth embodiment is improved.

[第5実施形態]
次に、本発明を扁平形リチウムイオン二次電池に適用した第5実施形態を、図10〜図12を参照して説明する。なお、図中第1実施形態と同一もしくは相当部分には同一符号を付し、説明を省略する。
[Fifth Embodiment]
Next, a fifth embodiment in which the present invention is applied to a flat lithium ion secondary battery will be described with reference to FIGS. In addition, the same code | symbol is attached | subjected to the part which is the same as that of 1st Embodiment in a figure, or an equivalent, and description is abbreviate | omitted.

図10〜図12に示すように、第5実施形態は、一体的な平板状の軸芯10Aを備える。軸芯10Aは、軸芯本体部10aと、軸芯本体部10aの両端部に設けられ、電池容器78の内面に接する接触板10b、10cとを一体に成形して形成されている。軸芯10Aはアルミニウム等の金属によって形成され、セパレータによって正負極板40、30の集電部50a,50bと絶縁されている。軸芯10Aは、正負極板40、30に接続されず、熱伝導体としてのみ機能する。   As shown in FIGS. 10 to 12, the fifth embodiment includes an integral flat plate-shaped shaft core 10 </ b> A. The shaft core 10 </ b> A is formed by integrally molding the shaft core body 10 a and contact plates 10 b and 10 c that are provided at both ends of the shaft core body 10 a and are in contact with the inner surface of the battery container 78. The shaft core 10A is made of a metal such as aluminum, and is insulated from the current collectors 50a and 50b of the positive and negative electrode plates 40 and 30 by a separator. The shaft core 10A is not connected to the positive and negative electrode plates 40 and 30 and functions only as a heat conductor.

図10および図11において、正負極接続部材74A,72Aのそれぞれは、第1実施形態の正負極接続部材74,72のそれぞれと異なった形状とされている。すなわち、正負極接続部材74A,72Aのそれぞれは、上部平板部74a,72aと、上部平板部74a,72aから下方に二股に延在する下部二股部74b、72bとを備えている。下部二股部74b、72bは、捲回電極群20の正負集電部50a、50bにそれぞれ超音波溶接にて接合されている。   10 and 11, each of the positive and negative electrode connecting members 74A and 72A has a different shape from each of the positive and negative electrode connecting members 74 and 72 of the first embodiment. That is, each of the positive and negative electrode connecting members 74A and 72A includes upper flat plate portions 74a and 72a and lower bifurcated portions 74b and 72b extending downwardly from the upper flat plate portions 74a and 72a. The lower bifurcated portions 74b and 72b are joined to the positive and negative current collecting portions 50a and 50b of the wound electrode group 20 by ultrasonic welding, respectively.

軸芯10Aの接触板10a,10bは、電池容器78の内面に突っ張るようにして直接接触されている。これによって、捲回電極群20内部で発生した熱は、軸芯10Aを経由して、直ちに電池容器78に伝達される。これによって高い放熱性能が得られる。また、捲回電極群20の容器内部での振動抑制効果も期待できる。   The contact plates 10a and 10b of the shaft core 10A are in direct contact with each other so as to stretch on the inner surface of the battery case 78. Thereby, the heat generated inside the wound electrode group 20 is immediately transmitted to the battery container 78 via the shaft core 10A. Thereby, high heat dissipation performance is obtained. Moreover, the vibration suppression effect inside the container of the wound electrode group 20 can also be expected.

[第6実施形態]
図13は、本発明を円筒形リチウムイオン二次電池に適用した場合の軸芯110を示す図である。
[Sixth Embodiment]
FIG. 13 is a diagram showing an axis 110 when the present invention is applied to a cylindrical lithium ion secondary battery.

円筒型リチウムイオン二次電池は、一端に開口部が設けられた有底円筒形容器の内部に捲回電極群を収納し、容器内部に電解液を注入した後、開口部を封口体によって塞いで構成される。捲回電極群は、図13に示す軸芯110の周りに、正極板と負極板とをセパレータで絶縁しつつ捲回して構成される。
円筒形リチウムイオン二次電池の内部構造は周知であり、詳細な説明、図示は省略する。
In a cylindrical lithium ion secondary battery, a wound electrode group is housed in a bottomed cylindrical container having an opening at one end, an electrolyte is injected into the container, and then the opening is closed by a sealing body. Consists of. The wound electrode group is configured by winding a positive electrode plate and a negative electrode plate around a shaft core 110 shown in FIG.
The internal structure of the cylindrical lithium ion secondary battery is well known, and detailed description and illustration are omitted.

図13に示す軸芯110は、アルミニウム製の正極パイプ112と、銅製の負極パイプ111とを有する。正極パイプ112と負極パイプ111は「あいじゃくり継ぎ」の継ぎ手112J、111Jを有し、継ぎ手部112J、111Jは第1実施形態同様、絶縁材(絶縁体)113によって接着されて「あいじゃくり継ぎ」で接合されている。   A shaft core 110 shown in FIG. 13 has an aluminum positive electrode pipe 12 and a copper negative electrode pipe 111. The positive electrode pipe 112 and the negative electrode pipe 111 have “joint joints” 112J and 111J, and the joint parts 112J and 111J are bonded together by an insulating material (insulator) 113 as in the first embodiment. It is joined by "joint".

正極パイプ112には、正極板の正極合剤が塗布していない正極集電部が溶接され、負極パイプ111には、負極板の負極合剤が塗布していない負極集電部が溶接される。正極パイプ112は正極集電部に電気的、熱伝導的に接続され、負極パイプ111は負極集電部に電気的、熱伝導的に接続される。   The positive electrode 112 is welded with a positive electrode current collector not coated with the positive electrode mixture of the positive electrode plate, and the negative electrode 111 is welded with a negative electrode current collector uncoated with the negative electrode mixture of the negative electrode plate. . The positive electrode pipe 112 is electrically and thermally conductively connected to the positive electrode current collector, and the negative electrode pipe 111 is electrically and thermally conductively connected to the negative electrode current collector.

軸芯110は円筒形電池容器の軸方向に延在し、正極パイプ112は正極外部端子に電気的、熱伝導的に接続され、負極パイプ111は負極外部端子に電気的、熱伝導的に接続され、捲回電極群の熱を外部に放熱する。正極パイプ112の上端には正極集電部品が嵌合され、正極集電部品が正極リードにより正極外部端子となる上蓋に接続される。銅パイプ111の下端には負極集電部品が嵌合され、負極集電部品が負極リードにより負極外部端子となる容器底面に接続される。   The axial core 110 extends in the axial direction of the cylindrical battery case, the positive pipe 112 is electrically and thermally conductively connected to the positive external terminal, and the negative pipe 111 is electrically and thermally conductively connected to the negative external terminal. The heat of the wound electrode group is radiated to the outside. A positive electrode current collector component is fitted to the upper end of the positive electrode pipe 112, and the positive electrode current collector component is connected to an upper lid serving as a positive electrode external terminal by a positive electrode lead. A negative electrode current collector component is fitted to the lower end of the copper pipe 111, and the negative electrode current collector component is connected to the bottom of the container serving as a negative electrode external terminal by a negative electrode lead.

第6の実施形態の円筒形リチウムイオン二次電池も第1実施形態と同様の効果を奏する。また、本実施形態の軸芯110は容易に作製でき、コストも安価であり、所望の特性も得られた。ロッド上にしてもよい。
[第7実施形態]
The cylindrical lithium ion secondary battery of the sixth embodiment also has the same effect as that of the first embodiment. Further, the shaft core 110 of the present embodiment can be easily manufactured, the cost is low, and desired characteristics are obtained. It may be on the rod.
[Seventh Embodiment]

図14は、本発明を円筒形リチウムイオン二次電池に適用した場合の軸芯210を示す図で94ある。   FIG. 14 is a diagram 94 showing the shaft core 210 when the present invention is applied to a cylindrical lithium ion secondary battery.

第7実施形態は、第6実施形態における「あいじゃくり継ぎ」に代えて、第3実施形態と同様に、モールド加工により、正極ロッド212と負極ロッド211が絶縁ロッド214により接続されている。絶縁ロッド214は、正極ロッド212と負極ロッド211との間にモールド加工により一体化されている。正極ロッド212、負極ロッド211の長さは略等しく、絶縁ロッド214は正極ロッド212、負極ロッド211の長さの半分程度である。   In the seventh embodiment, the positive electrode rod 212 and the negative electrode rod 211 are connected to each other by the insulating rod 214 by molding as in the third embodiment, instead of the “joint joint” in the sixth embodiment. The insulating rod 214 is integrated between the positive electrode rod 212 and the negative electrode rod 211 by molding. The lengths of the positive electrode rod 212 and the negative electrode rod 211 are substantially equal, and the insulating rod 214 is about half the length of the positive electrode rod 212 and the negative electrode rod 211.

正極ロッド212と負極ロッド211とは、絶縁ロッド(絶縁体)214によって相互に絶縁され、また両者は絶縁ロッド214の長さだけ離間しているので、高い絶縁性が確保されている。本実施形態は、このように軸芯210が変更された以外は、第6実施形態の円筒形リチウムイオン二次電池と同様に構成される。   The positive electrode rod 212 and the negative electrode rod 211 are insulated from each other by an insulating rod (insulator) 214, and are separated from each other by the length of the insulating rod 214, so that high insulation is ensured. The present embodiment is configured in the same manner as the cylindrical lithium ion secondary battery of the sixth embodiment, except that the shaft core 210 is changed in this way.

第7の実施形態の円筒形リチウムイオン二次電池も第1実施形態と同様の効果を奏する。また、本実施形態の軸芯110は容易に作製でき、コストも安価であり、所望の特性も得られた。
(変形例)
The cylindrical lithium ion secondary battery of the seventh embodiment also has the same effect as that of the first embodiment. Further, the shaft core 110 of the present embodiment can be easily manufactured, the cost is low, and desired characteristics are obtained.
(Modification)

(1)以上説明した第1〜第7の実施形態では、正極板40、負極板30における合剤層31、41の結着材としてPVDFを用いたが、ポリテトラフルオロエチレン(PTFE)、ポリエチレン、ポリスチレン、ポリブタジエン、ブチルゴム、ニトリルゴム、スチレン/ブタジエンゴム、多硫化ゴム、ニトロセルロース、シアノエチルセルロース、各種ラテックス、アクリロニトリル、フッ化ビニル、フッ化ビニリデン、フッ化プロピレン、フッ化クロロプレン、アクリル系樹脂などの重合体およびこれらの混合体などを用いることができる。 (1) In the first to seventh embodiments described above, PVDF is used as a binder for the mixture layers 31 and 41 in the positive electrode plate 40 and the negative electrode plate 30, but polytetrafluoroethylene (PTFE) and polyethylene are used. , Polystyrene, polybutadiene, butyl rubber, nitrile rubber, styrene / butadiene rubber, polysulfide rubber, nitrocellulose, cyanoethyl cellulose, various latexes, acrylonitrile, vinyl fluoride, vinylidene fluoride, propylene fluoride, chloroprene fluoride, acrylic resins, etc. These polymers and mixtures thereof can be used.

(2)以上説明した第1〜第7の実施形態では、量論組成のマンガン酸リチウム(LiMn)を正極活物質として例示したが、スピネル結晶構造を有する他のマンガン酸リチウム(例えば、Li1+xMn−xO)やマンガン酸リチウムの一部を金属元素で置換又はドープしたリチウムマンガン複合酸化物(例えば、Li1+xMyMn−x−yO,MはCo、Ni、Fe、Cu、Al、Cr、Mg、Zn、V、Ga、B、Fの少なくとも1種)や層状結晶構造を有すコバルト酸リチウムやチタン酸リチウムやこれらの一部を金属元素で置換またはドープしたリチウム-金属複合酸化物を用いるようにしてもよい。 (2) In the first to seventh embodiments described above, lithium manganate having a stoichiometric composition (LiMn 2 O 4 ) is exemplified as the positive electrode active material, but other lithium manganate having a spinel crystal structure (for example, , Li1 + xMn 2 -xO 4) or lithium manganese composite oxide part of the lithium manganate was replaced or doped with a metal element (e.g., Li1 + xMyMn 2 -x-yO 4, M is Co, Ni, Fe, Cu, Al, Lithium-metal composite oxidation in which at least one of Cr, Mg, Zn, V, Ga, B, and F), lithium cobaltate or lithium titanate having a layered crystal structure, or a part thereof is substituted or doped with a metal element You may make it use a thing.

(3)以上説明した第1〜第7の実施形態では、軸芯の絶縁材13、113や絶縁板14,214は、例えば、耐熱性の高いPPS樹脂を使用し、粘着材料にアクリル樹脂を使用したが、絶縁性を保てかつ粘着強度が高いものであればこれに限らない。 (3) In the first to seventh embodiments described above, for example, the shaft insulating materials 13 and 113 and the insulating plates 14 and 214 are made of, for example, PPS resin having high heat resistance, and acrylic resin is used as the adhesive material. Although it used, it is not restricted to this as long as it can maintain insulation and has high adhesive strength.

(4)以上説明した第1〜第7の実施形態では、軸芯にアルミミウムと銅を使用した例を示したが、これに限定されるものではなく、例えばアルミニウム合金や銅合金・ニッケル等、各極の電池電位によって腐食されること無く、導電性を持つものであれば特に限定されない。 (4) In the first to seventh embodiments described above, an example in which aluminum and copper are used for the shaft core has been shown. However, the present invention is not limited to this example. For example, an aluminum alloy, a copper alloy / nickel, etc. There is no particular limitation as long as it has conductivity without being corroded by the battery potential of each electrode.

(5)以上説明した第1〜第7の実施形態では、軸芯10にセパレータ60のみを1周以上、先行して捲回することにより、正極軸芯部12と負極集電部50b、負極軸芯部11と正極集電部50aとの間の絶縁を確保したが、セパレータ60とは別の絶縁性セパレータを軸芯10に捲回しても良い。 (5) In the first to seventh embodiments described above, only the separator 60 is wound around the shaft core 10 one or more times in advance, whereby the positive electrode shaft core portion 12, the negative electrode current collector 50 b, and the negative electrode Although insulation between the shaft core portion 11 and the positive electrode current collector 50a is secured, an insulating separator different from the separator 60 may be wound around the shaft core 10.

(6)以上説明した第1〜第7の実施形態では、正負極板40、30の集電部50a,50bと、軸芯10の正極軸芯部12、負極軸芯部11とを超音波溶接により接合したが、抵抗溶接やその他の接合方法により、電気的・熱伝導的に接合できれば、特に限定はしない。正負接続部材74,72と軸芯集電板112b、11bとをねじなどで機械的に締結してもよい。 (6) In the first to seventh embodiments described above, the current collecting portions 50a and 50b of the positive and negative electrode plates 40 and 30, the positive electrode core portion 12 and the negative electrode core portion 11 of the shaft core 10 are ultrasonicated. Although it joined by welding, if it can join electrically and thermally conductive by resistance welding and other joining methods, it will not specifically limit. The positive and negative connection members 74 and 72 and the axial collector plates 112b and 11b may be mechanically fastened with screws or the like.

(7)以上説明した第1〜第5の実施形態では、電解質としてLiPFを使用した例を示したが、これに限定されるものではなく、例えば、LiClO、LiAsF、LiBF、LiB(C、CHSOLi、CFSOLiなどやこれらの混合物を用いることができる。また、本実施形態では、非水電解液の溶媒にECとDMCとの混合溶媒を用いた例を示したが、プロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、1,2−ジメトキシエタン、1,2−ジエトキシエタン、γ―ブチルラクトン、テトラヒドロフラン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、プロピオニトリル、プロピオニトリルなど少なくとも1種以上の混合溶媒を用いるようにしてもよく、また混合配合比についても限定されるものではない。 In the first to fifth embodiments (7) above description, an example using LiPF 6 as an electrolyte, it is not limited thereto, for example, LiClO 4, LiAsF 6, LiBF 4, LiB (C 6 H 5 ) 4 , CH 3 SO 3 Li, CF 3 SOLi, or a mixture thereof can be used. Moreover, in this embodiment, although the example which used the mixed solvent of EC and DMC was shown as the solvent of nonaqueous electrolyte solution, propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, 1, 2- dimethoxyethane, , 2-diethoxyethane, γ-butyllactone, tetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, diethyl ether, sulfolane, methylsulfolane, acetonitrile, propionitrile, propionitrile, etc. A mixed solvent of seeds or more may be used, and the mixing ratio is not limited.

(8)第5実施形態では、軸芯10を金属により一体形成したが、第1〜第4実施形態同様、中央において絶縁、分離した2個の金属部材により構成してもよい。この場合、電池容器の電位と同一電位の軸芯部のみ容器と電気的、熱伝導的に接続し、他の電位の軸芯部は電気的、熱伝導的に絶縁する必要がある。 (8) Although the shaft core 10 is integrally formed of metal in the fifth embodiment, it may be constituted by two metal members that are insulated and separated in the center as in the first to fourth embodiments. In this case, only the shaft core portion having the same potential as the potential of the battery container needs to be electrically and thermally conductively connected to the container, and the shaft core portions of other potentials need to be electrically and thermally conductively insulated.

(9)第6、第7実施形態では、本発明の特徴である軸芯に図13、図14の形状を採用したが、正極の電位に耐えうる金属と負極の電位に耐えうる金属とを絶縁材料にて絶縁した構造を有すればこれに限定されるものではない。 (9) In the sixth and seventh embodiments, the shape shown in FIGS. 13 and 14 is adopted for the shaft core, which is a feature of the present invention. However, a metal that can withstand the potential of the positive electrode and a metal that can withstand the potential of the negative electrode. If it has the structure insulated with the insulating material, it will not be limited to this.

(10)第1〜第5の実施形態では、軸芯10の正極軸芯部12と外部正極73とを正極接続部材74により電気的、熱伝導的に接続し、軸芯10の負極軸芯部11と外部負極71とを負極接続部材72により電気的、熱伝導的に接続するようにしたが、この接続構造は実施形態の形状、構造に限定されない。 (10) In the first to fifth embodiments, the positive electrode shaft core portion 12 of the shaft core 10 and the external positive electrode 73 are electrically and thermally conductively connected by the positive electrode connecting member 74, and the negative electrode shaft core of the shaft core 10 is connected. Although the part 11 and the external negative electrode 71 are electrically and thermally conductively connected by the negative electrode connecting member 72, this connection structure is not limited to the shape and structure of the embodiment.

10,10A、110,210:軸芯
11,110,210:負極軸芯部
11a:負極巻芯部
11b:負極集電板
12,112,212:正極軸芯部
12a:負極巻芯部
12b:負極集電板
13:絶縁材
14:絶縁板
20:捲回電極群
30:負極板
31:負極合剤層
40:正極板
41;正極合剤層
50:電極箔
50a,50b:集電部
60:セパレータ
70:電池
71:外部負極端子
72:負極接続板
73:外部正極端子
74:正極接続板
75:蓋
78:電池容器
10, 10A, 110, 210: shaft cores 11, 110, 210: negative electrode shaft core portion 11a: negative electrode core portion 11b: negative electrode current collector plate 12, 112, 212: positive electrode shaft core portion 12a: negative electrode core portion 12b: Negative electrode collector plate 13: Insulating material 14: Insulating plate 20: Winding electrode group 30: Negative electrode plate 31: Negative electrode mixture layer 40: Positive electrode plate 41; Positive electrode mixture layer 50: Electrode foils 50a, 50b: Current collector 60 : Separator 70: Battery 71: External negative electrode terminal 72: Negative electrode connection plate 73: External positive electrode terminal 74: Positive electrode connection plate 75: Lid 78: Battery container

Claims (12)

電極層が形成されるとともに、前記電極層が形成されない集電部が幅方向の一側にそれぞれ配置された正極板と負極板とをセパレータを介して前記集電部が互いに逆になるように捲回した捲回電極群と、
前記捲回電極群を収納し、負極外部端子および正極外部端子を有する電池外装容器と、
前記捲回電極群の中心部に延在し、前記負極板の前記集電部(負極集電部)に接続された負極軸芯部、前記正極板の集電部(正極集電部)に接続された正極軸芯部、および、前記負極軸芯部および前記正極軸芯部を電気的に絶縁する絶縁体を有する軸芯とを備え、
前記負極集電部は前記負極軸芯部を経由して前記負極外部端子に接続され、前記正極集電部は前記正極軸芯部を経由して前記正極外部端子に接続されていることを特徴とするリチウムイオン二次電池。
An electrode layer is formed, and a current collecting part in which the electrode layer is not formed is arranged so that the current collecting part is opposite to each other through a separator with a positive electrode plate and a negative electrode plate arranged on one side in the width direction. A wound electrode group wound;
A battery outer case containing the wound electrode group and having a negative electrode external terminal and a positive electrode external terminal;
Extending to the center of the wound electrode group and connected to the current collector (negative current collector) of the negative electrode plate, the current collector (positive current collector) of the positive plate A positive electrode shaft core portion connected, and a shaft core having an insulator that electrically insulates the negative electrode shaft core portion and the positive electrode shaft core portion,
The negative current collector is connected to the negative external terminal via the negative axial core, and the positive current collector is connected to the positive external terminal via the positive axial core. Lithium ion secondary battery.
請求項1に記載のリチウムイオン二次電池において、
前記電池外装容器は扁平角形であることを特徴とするリチウムイオン二次電池。
The lithium ion secondary battery according to claim 1,
The lithium battery is characterized in that the battery case is a flat rectangular shape.
請求項2に記載のリチウムイオン二次電池において、
前記捲回電極群は、前記軸芯が前記電池外装容器の幅広方向に延在するように電池外装容器内に収容され、
前記負極軸芯部は、前記外部負極端子に接続されている負極接続部材に接続され、前記正極軸芯部は、前記正極外部端子に接続されている正極接続部材に接続されていることを特徴とするリチウムイオン二次電池。
The lithium ion secondary battery according to claim 2,
The wound electrode group is accommodated in the battery outer container so that the axial core extends in the width direction of the battery outer container,
The negative electrode shaft core part is connected to a negative electrode connection member connected to the external negative electrode terminal, and the positive electrode shaft core part is connected to a positive electrode connection member connected to the positive electrode external terminal. Lithium ion secondary battery.
請求項3に記載のリチウムイオン二次電池において、
前記負極軸芯部は、前記負極集電部および前記負極接続部材に電気的、熱伝導的に接続され、
前記正極軸芯部は、前記正極集電部および前記正極接続部材に電気的、熱伝導的に接続されていることを特徴とするリチウムイオン二次電池。
The lithium ion secondary battery according to claim 3,
The negative electrode shaft core portion is electrically and thermally conductively connected to the negative electrode current collector and the negative electrode connection member,
The lithium ion secondary battery, wherein the positive electrode shaft core portion is electrically and thermally conductively connected to the positive electrode current collector and the positive electrode connecting member.
請求項4に記載のリチウムイオン二次電池において、
前記捲回電極群は前記軸芯を構成する前記負極軸芯部および前記正極軸芯部に捲回され、
前記負極軸芯部は、捲回された電極群の前記負極集電部が接続される巻芯部(負極巻芯部)と、前記巻芯部の端部に設けられ前記負極接続部材と接続される集電板(軸芯負極集電板)とを備え、
前記正極軸芯部は、捲回された電極群の前記正極集電部が接続される巻芯部(正極巻芯部)と、前記巻芯部の端部に設けられ前記正極接続部材と接続される集電板(軸芯正極集電板)とを備えていることを特徴とするリチウムイオン二次電池。
The lithium ion secondary battery according to claim 4,
The wound electrode group is wound around the negative electrode core part and the positive electrode core part constituting the shaft core,
The negative electrode shaft core part is connected to the winding core part (negative electrode winding core part) to which the negative electrode current collector part of the wound electrode group is connected and to the negative electrode connecting member provided at an end of the winding core part. Current collector plate (shaft core negative electrode current collector plate),
The positive electrode shaft core portion is connected to the winding core portion (positive electrode core portion) to which the positive electrode current collector portion of the wound electrode group is connected and to the positive electrode connecting member provided at an end of the winding core portion. A lithium ion secondary battery comprising a current collector plate (axial positive electrode current collector plate).
請求項5に記載のリチウムイオン二次電池において、
前記負極巻芯部と前記正極巻芯部は、扁平形電池外装容器の幅広側面に平行に配置された平板であり、前記軸芯負極集電板と前記軸芯正極集電板は、前記巻芯部と直交して配置され、扁平形電池外装容器の幅狭側面に平行に配置された平板であることを特徴とするリチウムイオン二次電池。
The lithium ion secondary battery according to claim 5,
The negative electrode core part and the positive electrode core part are flat plates arranged in parallel to the wide side surface of the flat battery outer casing, and the axial negative electrode current collector plate and the axial positive electrode current collector plate A lithium ion secondary battery, characterized in that the lithium ion secondary battery is a flat plate arranged orthogonal to the core and parallel to the narrow side surface of the flat battery case.
請求項6に記載のリチウムイオン二次電池において、
前記負極巻芯部は前記負極板の負極集電部に、前記軸芯負極集電板は前記負極接続部材にそれぞれ超音波溶接され、
前記正極巻芯部は前記正極板の正極集電部に、前記軸芯正極集電板は前記正極接続部材にそれぞれ超音波溶接されていることを特徴とするリチウムイオン二次電池。
The lithium ion secondary battery according to claim 6,
The negative electrode core portion is ultrasonically welded to the negative electrode current collector portion of the negative electrode plate, and the axial core negative electrode current collector plate is ultrasonically welded to the negative electrode connection member, respectively.
The lithium ion secondary battery, wherein the positive electrode core is ultrasonically welded to the positive electrode current collector of the positive electrode plate, and the axial core positive electrode current collector is ultrasonically welded to the positive electrode connecting member.
請求項1乃至請求項7のいずれか1項に記載のリチウムイオン二次電池において、
前記絶縁体は、前記負極軸芯部と前記正極軸芯部との間に所定長さに渡って設けられ、
前記負極軸芯部と前記正極軸芯部の幅は、前記正負極板の前記正負極集電部のそれぞれの幅以上であることを特徴とするリチウムイオン二次電池。
The lithium ion secondary battery according to any one of claims 1 to 7,
The insulator is provided over a predetermined length between the negative electrode core part and the positive electrode core part,
A width of the negative electrode shaft core portion and the positive electrode shaft core portion is equal to or greater than a width of each of the positive and negative electrode current collecting portions of the positive and negative electrode plates.
請求項1乃至請求項8のいずれか1項に記載のリチウムイオン二次電池において、
前記軸芯の外表面には、少なくとも一周以上のセパレータが捲回され、前記負極板の電極層および前記正極板の電極層を前記軸芯と絶縁したことを特徴とするリチウムイオン二次電池。
The lithium ion secondary battery according to any one of claims 1 to 8,
A lithium ion secondary battery, wherein a separator having at least one turn is wound on an outer surface of the shaft core, and the electrode layer of the negative electrode plate and the electrode layer of the positive electrode plate are insulated from the shaft core.
請求項1に記載のリチウムイオン二次電池において、
前記電池外装容器は円筒形であることを特徴とするリチウムイオン二次電池。
The lithium ion secondary battery according to claim 1,
The lithium ion secondary battery, wherein the battery outer case is cylindrical.
電極層が形成されるとともに、前記電極層が形成されない集電部が幅方向の一側にそれぞれ配置された正極板と負極板とをセパレータを介して前記集電部が互いに逆になるように捲回した捲回電極群と、
前記捲回電極群を収納し、負極外部端子および正極外部端子を有する電池外装容器と、
前記捲回電極群の中心部に延在し、前記負極板および正極板の電極層とは絶縁されつつ前記電池外装容器に接続されている金属製の軸芯とを有することを特徴とするリチウムイオン二次電池。
An electrode layer is formed, and a current collecting part in which the electrode layer is not formed is arranged so that the current collecting part is opposite to each other through a separator with a positive electrode plate and a negative electrode plate arranged on one side in the width direction. A wound electrode group wound;
A battery outer case containing the wound electrode group and having a negative electrode external terminal and a positive electrode external terminal;
Lithium having a metal shaft core extending to the center of the wound electrode group and being connected to the battery outer casing while being insulated from the electrode layers of the negative electrode plate and the positive electrode plate Ion secondary battery.
請求項11に記載のリチウムイオン二次電池において、
前記電池外装容器は扁平角形であり、前記軸芯の両端は、前記電池外装容器の対向幅狭側面間に突っ張るように設けられていることを特徴とするリチウムイオン二次電池。
The lithium ion secondary battery according to claim 11,
The battery outer container is a flat rectangular shape, and both ends of the shaft core are provided so as to be stretched between the opposing narrow side surfaces of the battery outer container.
JP2010056396A 2010-03-12 2010-03-12 Lithium ion secondary battery Expired - Fee Related JP5334894B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010056396A JP5334894B2 (en) 2010-03-12 2010-03-12 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010056396A JP5334894B2 (en) 2010-03-12 2010-03-12 Lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2011192476A true JP2011192476A (en) 2011-09-29
JP5334894B2 JP5334894B2 (en) 2013-11-06

Family

ID=44797176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010056396A Expired - Fee Related JP5334894B2 (en) 2010-03-12 2010-03-12 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP5334894B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012138337A (en) * 2010-12-10 2012-07-19 Gs Yuasa Corp Storage element
WO2013046349A1 (en) * 2011-09-28 2013-04-04 日立ビークルエナジー株式会社 Prismatic cell
JP2015043337A (en) * 2014-10-30 2015-03-05 三洋電機株式会社 Square secondary battery
JP2015162387A (en) * 2014-02-27 2015-09-07 株式会社Gsユアサ Power storage element
JP2016192403A (en) * 2010-12-20 2016-11-10 株式会社Gsユアサ Power storage element having collector and vehicle having power storage element
JP2019067587A (en) * 2017-09-29 2019-04-25 株式会社Gsユアサ Power storage element
JP2020021573A (en) * 2018-07-30 2020-02-06 株式会社Gsユアサ Power storage element
WO2021014704A1 (en) * 2019-07-22 2021-01-28 パナソニック株式会社 Rectangular secondary battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130323557A1 (en) * 2011-03-22 2013-12-05 Toshiyuki Ariga Secondary battery and method for manufacturing same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0955213A (en) * 1995-06-08 1997-02-25 Sony Corp Battery device
JP2000231913A (en) * 1999-02-10 2000-08-22 Toyota Central Res & Dev Lab Inc Cylindrical battery
JP2006040772A (en) * 2004-07-29 2006-02-09 Shin Kobe Electric Mach Co Ltd Lithium ion battery
JP2008123695A (en) * 2006-11-08 2008-05-29 Ntt Facilities Inc Battery
JP2010055887A (en) * 2008-08-27 2010-03-11 Toyota Motor Corp Secondary battery
JP2011086483A (en) * 2009-10-15 2011-04-28 Honda Motor Co Ltd Laminated secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0955213A (en) * 1995-06-08 1997-02-25 Sony Corp Battery device
JP2000231913A (en) * 1999-02-10 2000-08-22 Toyota Central Res & Dev Lab Inc Cylindrical battery
JP2006040772A (en) * 2004-07-29 2006-02-09 Shin Kobe Electric Mach Co Ltd Lithium ion battery
JP2008123695A (en) * 2006-11-08 2008-05-29 Ntt Facilities Inc Battery
JP2010055887A (en) * 2008-08-27 2010-03-11 Toyota Motor Corp Secondary battery
JP2011086483A (en) * 2009-10-15 2011-04-28 Honda Motor Co Ltd Laminated secondary battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012138337A (en) * 2010-12-10 2012-07-19 Gs Yuasa Corp Storage element
JP2016192403A (en) * 2010-12-20 2016-11-10 株式会社Gsユアサ Power storage element having collector and vehicle having power storage element
WO2013046349A1 (en) * 2011-09-28 2013-04-04 日立ビークルエナジー株式会社 Prismatic cell
JPWO2013046349A1 (en) * 2011-09-28 2015-03-26 日立オートモティブシステムズ株式会社 Square battery
JP2015162387A (en) * 2014-02-27 2015-09-07 株式会社Gsユアサ Power storage element
JP2015043337A (en) * 2014-10-30 2015-03-05 三洋電機株式会社 Square secondary battery
JP2019067587A (en) * 2017-09-29 2019-04-25 株式会社Gsユアサ Power storage element
JP7039913B2 (en) 2017-09-29 2022-03-23 株式会社Gsユアサ Power storage element
JP2020021573A (en) * 2018-07-30 2020-02-06 株式会社Gsユアサ Power storage element
WO2021014704A1 (en) * 2019-07-22 2021-01-28 パナソニック株式会社 Rectangular secondary battery
CN114026723A (en) * 2019-07-22 2022-02-08 松下电器产业株式会社 Square secondary battery

Also Published As

Publication number Publication date
JP5334894B2 (en) 2013-11-06

Similar Documents

Publication Publication Date Title
JP5334894B2 (en) Lithium ion secondary battery
JP4470124B2 (en) battery
WO2009150791A1 (en) Battery
JP6198844B2 (en) Assembled battery
JP5525551B2 (en) Square battery
JP2011216403A (en) Square-shape lithium ion secondary battery
US9362588B2 (en) Lithium-ion secondary battery and manufacturing method for same
JP2001143762A (en) Cylindrical lithium ion battery
JP6173729B2 (en) Battery manufacturing method
JP2011096539A (en) Lithium secondary battery
JP5779562B2 (en) Square battery
JP2004006264A (en) Lithium secondary battery
WO2012004886A1 (en) Secondary battery and method for manufacturing flat wound electrode group
JPWO2019123619A1 (en) Storage module and battery pack
WO2020084707A1 (en) Battery and battery pack
JP6403644B2 (en) Secondary battery
JP5232751B2 (en) Lithium ion secondary battery
US20130323557A1 (en) Secondary battery and method for manufacturing same
JP2013251119A (en) Square secondary battery
JP2009266706A (en) Lithium-ion secondary battery
JP6697687B2 (en) Non-aqueous electrolyte secondary battery
JP6978500B2 (en) Secondary battery
JP2009295554A (en) Battery
JP2018056022A (en) Method of manufacturing secondary battery and electrode
JP2010205545A (en) Lithium ion battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130321

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130730

R150 Certificate of patent or registration of utility model

Ref document number: 5334894

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees