JP2011184276A - Method for producing high density metal boride - Google Patents
Method for producing high density metal boride Download PDFInfo
- Publication number
- JP2011184276A JP2011184276A JP2010054394A JP2010054394A JP2011184276A JP 2011184276 A JP2011184276 A JP 2011184276A JP 2010054394 A JP2010054394 A JP 2010054394A JP 2010054394 A JP2010054394 A JP 2010054394A JP 2011184276 A JP2011184276 A JP 2011184276A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- titanium
- volume
- sintering
- titanium boride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Ceramic Products (AREA)
Abstract
Description
本発明は、高密度金属ホウ化物、特にホウ化チタン焼結体の製造方法に関する。 The present invention relates to a method for producing a high-density metal boride, particularly a titanium boride sintered body.
金属ホウ化物は、高硬度、高融点で、電気伝導性や熱伝導性が高いなど優れた特性を示すものが多い。その中でホウ化チタンTiB2は、特に高硬度で放電加工が可能であるため、地下埋没ケーブルの保護板などに用いられており、その物性に関して、例えば下記の非特許文献1には、三点曲げ強度(σb)400MPa、ビッカース硬度(Hv)22GPa、破壊靭性値(KIC)5.2MPa・m1/2であることが報告されている。 Many metal borides have excellent properties such as high hardness, high melting point, high electrical conductivity and high thermal conductivity. Among them, titanium boride TiB 2 is used as a protective plate for underground buried cables and the like because it can be processed by electrical discharge with particularly high hardness. It is reported that the point bending strength (σ b ) is 400 MPa, the Vickers hardness (H v ) is 22 GPa, and the fracture toughness value (K IC ) is 5.2 MPa · m 1/2 .
しかしながら、このホウ化チタンは、共有結合性の物質であるため非常に脆く、かつ、難焼結性という弱点があり、緻密な素材の作製が困難であるために、その応用展開が阻害され、改善すべき課題が残されているのが現状である。 However, since this titanium boride is a covalently bonded substance, it is very brittle and has a weak point that it is difficult to sinter, and it is difficult to produce a dense material. There are still issues to be improved.
本発明は、上記の改善すべき課題を解決し、緻密で高密度の金属ホウ化物、特に高密度ホウ化チタンを製造可能な方法を提供することを課題とする。
本発明者等は、種々検討を行なった結果、難焼結性のホウ化チタンTiB2粉末に、焼結助剤として酸化チタンTiO2粉末(ルチル)を所定量添加し、省エネルギーのパルス通電加圧焼結(Pulsed Electric-Current Pressure Sintering: PECPS)により、従来法よりも比較的低温で緻密化可能となり、優れた機械的強度を有する高密度のTiB2焼結体が製造できることを見い出して、本発明を完成した。そして、酸化チタン粉末の他に、さらに所定量の酸化マグネシウムMgO粉末を添加してパルス通電加圧焼結した場合には、機械的特性がより一層改善されることも見い出した。
This invention solves said subject which should be improved, and makes it a subject to provide the method which can manufacture a precise | minute and high-density metal boride, especially a high density titanium boride.
As a result of various studies, the present inventors have added a predetermined amount of titanium oxide TiO 2 powder (rutile) as a sintering aid to the hardly sinterable titanium boride TiB 2 powder, and applied energy-saving pulse energization. It has been found that pressure sintering (Pulsed Electric-Current Pressure Sintering: PECPS) enables densification at a relatively low temperature than conventional methods, and can produce a high-density TiB 2 sintered body having excellent mechanical strength. The present invention has been completed. It has also been found that when a predetermined amount of magnesium oxide MgO powder is added in addition to the titanium oxide powder and the pulsed current pressure sintering is performed, the mechanical properties are further improved.
前記課題を解決可能な本発明の高密度金属ホウ化物の製造方法は、
工程A:3〜10体積%の酸化チタン粉末が均一に混合されたホウ化チタン粉末を調製し、当該混合粉末を成形して成形体を製造する工程、及び
工程B:前記工程Aで得られた成形体をパルス通電加圧焼結することにより、相対密度90%以上のホウ化チタン焼結体を製造する工程
を含むことを特徴とする。
又、本発明は、上記の特徴を有した製造方法において、上記工程Bにおけるパルス通電加圧焼結が、10Pa以下の真空下で、焼結温度1600〜1900℃、保持時間3〜30分、加圧力10〜70MPa、昇温速度50〜150℃/分の条件にて行われることを特徴とするものでもある。
又、本発明の高密度金属ホウ化物の製造方法は、
工程A:3〜7体積%の酸化チタン粉末及び1〜4体積%の酸化マグネシウム粉末が均一に混合されたホウ化チタン粉末を調製し、当該混合粉末を成形して成形体を製造する工程、及び
工程B:前記工程Aで得られた成形体をパルス通電加圧焼結することにより、相対密度94%以上のホウ化チタン焼結体を製造する工程
とを含むことを特徴とするものでもある。
更に、本発明は、上記の特徴を有した製造方法において、上記工程Bにおけるパルス通電加圧焼結が、10Pa以下の真空下で、焼結温度1600〜1700℃、保持時間5〜20分、加圧力30〜50MPa、昇温速度50〜100℃/分の条件にて行われることを特徴とするものでもある。
The method for producing a high-density metal boride of the present invention capable of solving the above problems
Step A: A step of preparing a titanium boride powder in which 3 to 10% by volume of titanium oxide powder is uniformly mixed, and molding the mixed powder to produce a molded body, and Step B: obtained in Step A above It comprises a step of producing a titanium boride sintered body having a relative density of 90% or more by subjecting the formed body to pulse-current pressure sintering.
Moreover, in the manufacturing method having the above-described features, the present invention is characterized in that the pulsed current pressure sintering in the step B is performed under a vacuum of 10 Pa or less, a sintering temperature of 1600 to 1900 ° C., a holding time of 3 to 30 minutes, It is also characterized by being carried out under conditions of a pressing force of 10 to 70 MPa and a heating rate of 50 to 150 ° C./min.
In addition, the method for producing a high-density metal boride of the present invention includes
Step A: preparing titanium boride powder in which 3 to 7% by volume of titanium oxide powder and 1 to 4% by volume of magnesium oxide powder are uniformly mixed, and molding the mixed powder to produce a molded body, And Step B: including a step of producing a titanium boride sintered body having a relative density of 94% or more by subjecting the formed body obtained in Step A to pulse current compression sintering. is there.
Furthermore, the present invention relates to the production method having the above characteristics, in which the pulse current pressure sintering in the step B is performed under a vacuum of 10 Pa or less, a sintering temperature of 1600 to 1700 ° C., a holding time of 5 to 20 minutes, It is also characterized by being carried out under conditions of a pressing force of 30 to 50 MPa and a heating rate of 50 to 100 ° C./min.
本発明の製造方法を用いることによって、従来法よりも比較的低温(約200〜300℃低い温度)で高密度のホウ化チタン焼結体を製造することができ、このホウ化チタン焼結体は、従来法で得られる焼結体よりも機械的特性(三点曲げ強度、ビッカース硬度、破壊靭性値)が優れており、高融点、高硬度、化学的安定性、熱伝導性、電気伝導性が良好な材料として、地下埋設ケーブルの保護膜以外の新規な用途に利用可能である。 By using the production method of the present invention, a titanium boride sintered body having a high density can be produced at a relatively low temperature (a temperature lower by about 200 to 300 ° C.) than the conventional method. Is superior in mechanical properties (three-point bending strength, Vickers hardness, fracture toughness value) to the sintered body obtained by the conventional method, and has a high melting point, high hardness, chemical stability, thermal conductivity, electrical conductivity As a material with good properties, it can be used for new applications other than protective films for underground cables.
本発明の高密度金属ホウ化物の製造方法における各工程について以下に説明する。図1は、本発明の製造方法における好ましい一例の手順を示すフローチャートである。尚、図1には、ホウ化チタン粉末と酸化チタン粉末の他に、さらに機械的特性を改善するために焼結助剤として酸化マグネシウムが添加される場合が示されている。
まず、本発明の製法における工程Aでは、出発原料としてのホウ化チタン粉末に酸化チタン粉末を添加して、3〜10体積%、好ましくは3〜7体積%の酸化チタン粉末が均一に混合された混合粉末を調製し、この混合粉末を成形して成形体を製造する。この際、酸化チタン粉末の含有量が3体積%未満では焼結体の相対密度が90%以下となり、しかも、充分な機械的特性(曲げ強度、ビッカース硬度、破壊靭性値)が得られず、逆に、酸化チタン粉末の含有量が10体積%を超えると、焼結によって粒子が異常成長して粒子径が大きくなり、三点曲げ強度は低下しないが、ビッカース硬度と破壊靭性値が低下する。
Each process in the manufacturing method of the high-density metal boride of this invention is demonstrated below. FIG. 1 is a flowchart showing a procedure of a preferred example in the production method of the present invention. FIG. 1 shows a case where magnesium oxide is added as a sintering aid in addition to titanium boride powder and titanium oxide powder in order to further improve mechanical properties.
First, in Step A in the production method of the present invention, titanium oxide powder is added to titanium boride powder as a starting material, and 3 to 10% by volume, preferably 3 to 7% by volume of titanium oxide powder is uniformly mixed. A mixed powder is prepared and the mixed powder is molded to produce a molded body. At this time, if the content of titanium oxide powder is less than 3% by volume, the relative density of the sintered body is 90% or less, and sufficient mechanical properties (bending strength, Vickers hardness, fracture toughness value) cannot be obtained, Conversely, if the content of titanium oxide powder exceeds 10% by volume, the particles grow abnormally by sintering and the particle diameter increases, and the three-point bending strength does not decrease, but the Vickers hardness and fracture toughness value decrease. .
本発明では、焼結助剤として酸化マグネシウムを更に添加して機械的特性を改善する場合、3〜7体積%(好ましくは4〜6体積%)の酸化チタン粉末と、1〜4体積%(好ましくは2〜3.5体積%)の酸化マグネシウム粉末とが均一に混合されたホウ化チタン粉末を調製すれば良く、酸化マグネシウム粉末の含有量が1体積%未満の場合には、酸化チタンを5体積%含有しても94%を越える相対密度が得られず、逆に、酸化マグネシウム粉末の含有量が4体積%を超えると、曲げ強度が低下するので好ましくない。 In the present invention, when further adding magnesium oxide as a sintering aid to improve mechanical properties, 3 to 7% by volume (preferably 4 to 6% by volume) of titanium oxide powder and 1 to 4% by volume ( Titanium boride powder that is preferably mixed with magnesium oxide powder of preferably 2 to 3.5% by volume) may be prepared. When the content of magnesium oxide powder is less than 1% by volume, titanium oxide is added. Even if the content is 5% by volume, a relative density exceeding 94% cannot be obtained. Conversely, if the content of the magnesium oxide powder exceeds 4% by volume, the bending strength decreases, which is not preferable.
尚、本発明では、焼結性を改善するために、出発原料のホウ化チタン粉末を予め粉砕して、粒子径を1μm以下とすることが好ましく、この際の粉砕方法としては、他の物質による汚染(コンタミネーション)をできるだけ少なくするために、不活性ガス(例えばアルゴンガス)中でホウ化チタン粉末同士を互いに衝突させて粉砕を行う乾式ジェットミルが好ましい。酸化チタンと酸化マグネシウムについては、市販品をそのまま使用することができる。
又、本発明において、ホウ化チタン粉末と酸化チタン粉末とを混合(機械的特性を更に改善する場合には酸化マグネシウム粉末も同時に混合)する場合の混合方法は、均質な混合が達成できる方法であれば特に限定されるものではないが、遊星ボールミルにより酸化ジルコニウム製のポットとボールを用いてアルコール(例えばメタノール中)中で一定時間湿式混合を行うのが好ましい。上記混合により得られた混合物は乾燥を行った後、整粒し、金型成形等により所望の形状の成形体とする。この成形体は、ついで冷間静水圧プレス(CIP)処理することが好ましい。
In the present invention, in order to improve the sinterability, it is preferable to pulverize the starting titanium boride powder in advance so that the particle diameter is 1 μm or less. In order to reduce contamination by contamination as much as possible, a dry jet mill in which titanium boride powders collide with each other in an inert gas (for example, argon gas) and is pulverized is preferable. Commercially available products can be used as they are for titanium oxide and magnesium oxide.
In the present invention, the mixing method in the case of mixing titanium boride powder and titanium oxide powder (when further improving the mechanical properties, the magnesium oxide powder is also mixed) is a method that can achieve homogeneous mixing. Although there is no particular limitation as long as it is present, wet mixing is preferably performed in an alcohol (for example, in methanol) for a certain period of time using a zirconium oxide pot and balls by a planetary ball mill. The mixture obtained by the above mixing is dried and then sized, and formed into a desired shape by molding or the like. This molded body is then preferably subjected to cold isostatic pressing (CIP) treatment.
そして、次工程の工程Bにおいては、前記工程Aで得られた成形体を、図2に示されるような内部構造を有するパルス通電加圧焼結装置を用いてパルス通電加圧焼結する。
このパルス通電加圧焼結(PECPS)では、低電圧でパルス状直流大電流を投入して粒子間隔に火花放電現象を生じさせ、これにより瞬時に高エネルギーを発生させることができ、急激なジュール加熱により高速拡散が起きることで、短時間かつ、比較的低温で粒成長を抑制した緻密な焼結体(相対密度90%以上)が得られ、高強度、高靭性なセラミックスを作製することが可能となる。
本発明では、使用する原料粉末の粒子径や配合割合等に応じて、工程Bにおけるパルス通電加圧焼結の条件を適宜選択することができるが、ホウ化チタン粉末と酸化チタン粉末との混合粉末を使用する場合には、10Pa以下の真空下で、焼結温度1600〜1900℃、保持時間3〜30分、加圧力10〜70MPa、昇温速度50〜150℃/分の条件にて行うことが好ましく、特に好ましいパルス通電加圧焼結の条件は、10Pa以下の真空下、焼結温度1650℃、保持時間10分、加圧力30MPa、昇温速度100℃/分の条件である。この際、焼結温度が1600℃未満になると、低相対密度(約85%以下)となり、逆に1900℃を超えると焼結体中のTiB2粒子が異常粒成長し、機械的特性が低下するので好ましくない。また、保持時間については、3〜30分で充分緻密化するが、加圧力が10MPa未満では焼結密度が低くなり、逆に70MPaを超えると通電加圧焼結に使用する金型の強度に上限があり使用出来なくなる。一方、昇温速度が50℃/分未満になると長時間の熱処理となり製造コストが高くなる。
又、ホウ化チタン粉末と酸化チタン粉末と酸化マグネシウム粉末との混合粉末を使用する場合には、10Pa以下の真空下で、焼結温度1600〜1700℃、保持時間5〜20分、加圧力30〜50MPa、昇温速度50〜100℃/分の条件にて行うことが好ましく、この際、焼結温度が1700℃を超えると焼結体中のTiB2粒子が異常粒成長し、機械的特性が低下するので好ましくない。また、保持時間については、5〜20分で充分緻密化するが、加圧力が30MPa未満では焼結密度が低くなり、逆に50MPaを超えると通電加圧焼結に使用する金型の強度に上限があり使用出来なくなる。一方、昇温速度が50℃/分未満になると長時間の熱処理となり製造コストが高くなり、逆に100℃/分を超えると、焼結体内部の微細構造にムラが生じ、均質で大型の試料の作製が困難となるので好ましくない。
In step B, which is the next step, the compact obtained in step A is subjected to pulsed current pressure sintering using a pulsed current pressure sintering apparatus having an internal structure as shown in FIG.
In this pulse energization and pressure sintering (PECPS), a pulsed DC large current is applied at a low voltage to cause a spark discharge phenomenon between the particles, thereby generating high energy instantaneously. When high-speed diffusion occurs by heating, a dense sintered body (relative density of 90% or more) in which grain growth is suppressed at a relatively low temperature in a short time can be obtained, and high strength and high toughness ceramics can be produced. It becomes possible.
In the present invention, depending on the particle diameter, blending ratio, etc. of the raw material powder to be used, the conditions for pulse current pressure sintering in step B can be selected as appropriate, but the mixing of titanium boride powder and titanium oxide powder When using powder, it is performed under a vacuum of 10 Pa or less under conditions of a sintering temperature of 1600 to 1900 ° C., a holding time of 3 to 30 minutes, a pressing force of 10 to 70 MPa, and a heating rate of 50 to 150 ° C./min. It is preferable that the pulsed pressure sintering is particularly preferably performed under a vacuum of 10 Pa or less, a sintering temperature of 1650 ° C., a holding time of 10 minutes, a pressing force of 30 MPa, and a heating rate of 100 ° C./min. At this time, when the sintering temperature is less than 1600 ° C., the relative density becomes low (about 85% or less). Conversely, when the sintering temperature exceeds 1900 ° C., TiB 2 particles in the sintered body grow abnormally and the mechanical properties are lowered. This is not preferable. In addition, the holding time is sufficiently densified in 3 to 30 minutes, but if the applied pressure is less than 10 MPa, the sintering density is lowered, and conversely if it exceeds 70 MPa, the strength of the mold used for the current pressure sintering is increased. There is an upper limit and it cannot be used. On the other hand, when the rate of temperature increase is less than 50 ° C./min, the heat treatment takes a long time and the manufacturing cost increases.
When a mixed powder of titanium boride powder, titanium oxide powder and magnesium oxide powder is used, the sintering temperature is 1600 to 1700 ° C., the holding time is 5 to 20 minutes, and the applied pressure is 30 under a vacuum of 10 Pa or less. It is preferable to carry out under the conditions of -50 MPa and a temperature increase rate of 50-100 ° C./min. At this time, when the sintering temperature exceeds 1700 ° C., the TiB 2 particles in the sintered body grow abnormally, and the mechanical properties Is unfavorable because it decreases. In addition, the holding time is sufficiently densified in 5 to 20 minutes, but if the applied pressure is less than 30 MPa, the sintering density is lowered, and conversely if it exceeds 50 MPa, the strength of the mold used for the current pressure sintering is increased. There is an upper limit and it cannot be used. On the other hand, if the rate of temperature rise is less than 50 ° C./min, the heat treatment takes a long time and the manufacturing cost increases. Conversely, if it exceeds 100 ° C./min, the microstructure inside the sintered body becomes uneven, resulting in a homogeneous and large Since preparation of a sample becomes difficult, it is not preferable.
実施例1:本製法による高密度ホウ化チタンの製造例(酸化チタン添加の場合)
この焼結実験においては、原料粉末として、西山勝廣、粉体および粉末冶金、37 [4] 500-507 (1990)に記載されるメタロサーミックリダクション法で調製したホウ化チタン粉末(平均粒径Ps〜1.92μmφ)を、焼結性を改善するために乾式ジェットミルにて微粒化(Ps〜0.57μmφ)したものを使用した。平均結晶粒径は、インターセプト法(M.I. Mendelson; “Average Grain Size in Polycrystalline Ceramics”, J. Am. Ceram.Soc., 52 (1969) 443-446)により求めた。図3に、ジェットミルによる粉砕前と粉砕後のホウ化チタン粉末のXRDパターンとSEM写真を示す。この際、XRD測定には、リガク社製のRINT-2500を用い、焼結体破砕表面の微細構造は、電界放射型走査電子顕微鏡(FE-SEM、日本電子社製:JEOL7000)により観察した。
図3のXRDパターンから、このホウ化チタン粉末には微量の酸化チタンが不純物として存在していることがわかる。
Example 1: Example of production of high-density titanium boride by this production method (in the case of addition of titanium oxide)
In this sintering experiment, as a raw material powder, titanium boride powder (average particle size P) prepared by the metallothermic reduction method described in Katsumi Nishiyama, Powder and Powder Metallurgy, 37 [4] 500-507 (1990) the s ~1.92μm φ), it was used as atomized by a dry jet mill (P s ~0.57μm φ) in order to improve the sinterability. The average crystal grain size was determined by the intercept method (MI Mendelson; “Average Grain Size in Polycrystalline Ceramics”, J. Am. Ceram. Soc., 52 (1969) 443-446). FIG. 3 shows XRD patterns and SEM photographs of titanium boride powder before and after pulverization by a jet mill. At this time, RINT-2500 manufactured by Rigaku Corporation was used for the XRD measurement, and the fine structure of the fractured surface of the sintered body was observed with a field emission scanning electron microscope (FE-SEM, manufactured by JEOL Ltd .: JEOL7000).
From the XRD pattern of FIG. 3, it can be seen that a small amount of titanium oxide is present as an impurity in the titanium boride powder.
そして、酸化チタンを添加した場合の焼結実験を行う前に、予備実験として、酸化チタンが添加される前のホウ化チタンを用いた場合の、焼結体の破砕表面状態、及び、焼結温度とかさ密度の関係を調べた。かさ密度については、アルキメデス法により測定した。
図4には、30MPaの下で10分間、(a)1650℃、(b)1800℃、(c)1900℃で焼結を行った際に得られる焼結体の破砕表面のSEM写真が示されており、図5には、酸化チタンを添加しない場合の焼結温度とかさ密度の関係が示されている。図5のグラフから、酸化チタンを添加しない場合には、1900℃の高温で焼結しても91Mg・m−3程度のかさ密度にしかならないことがわかった。
そして、次に、上記の微粒化ホウ化チタン粉末に、焼結助材として0〜15体積%の酸化チタン(ルチル)粉末(Ps〜15nmφ)を添加し、遊星ボールミルにより酸化ジルコニウム製のポットとボール(1mmφ)を用いてメタノール中にて60分間湿式混合・解砕を行なった。大気中で乾燥して得られた混合粉末を整粒した後、金型成形(30MPa)し、ついで冷間静水圧(245MPa)プレス処理し、その後、市販のパルス通電加圧焼結装置を用いて、10Pa以下の真空下、焼結温度1650℃、保持時間10分、加圧力30MPa、昇温速度100℃/分の条件でパルス通電加圧焼結(SPSシンテックス(株)/SPS-510Aを使用)を行い、焼結体を得た。
And before conducting the sintering experiment in the case of adding titanium oxide, as a preliminary experiment, the crushed surface state of the sintered body and the sintering in the case of using titanium boride before the titanium oxide is added The relationship between temperature and bulk density was investigated. The bulk density was measured by the Archimedes method.
FIG. 4 shows an SEM photograph of the crushed surface of the sintered body obtained when sintering is performed at (a) 1650 ° C., (b) 1800 ° C., and (c) 1900 ° C. for 10 minutes under 30 MPa. FIG. 5 shows the relationship between the sintering temperature and the bulk density when no titanium oxide is added. From the graph of FIG. 5, it was found that when titanium oxide was not added, the bulk density was only about 91 Mg · m −3 even when sintered at a high temperature of 1900 ° C.
Then, 0 to 15% by volume of titanium oxide (rutile) powder (P s ˜15 nm φ ) is added to the above-mentioned atomized titanium boride powder as a sintering aid, and the product made of zirconium oxide by a planetary ball mill. Wet mixing and crushing were performed for 60 minutes in methanol using a pot and a ball (1 mmφ). After the mixed powder obtained by drying in the air is sized, it is die-molded (30 MPa), then pressed with cold isostatic pressure (245 MPa), and then using a commercially available pulsed electric current pressure sintering apparatus. Under pressure of 10 Pa or less, sintering temperature 1650 ° C., holding time 10 minutes, pressurizing pressure 30 MPa, heating rate 100 ° C./minute (PSS Shintex Co., Ltd./SPS-510A) The sintered body was obtained.
図6には、ソーキング時間と加熱温度の関係を示す曲線(a)、酸化チタン無添加のホウ化チタンモノリスの収縮曲線(b)、7体積%酸化チタン含有ホウ化チタン粉末を使用したセラミックの収縮曲線(c)が示されており、1000秒を超えた付近から曲線(c)の方が曲線(b)よりも下側に位置し、収縮性が良くなることがわかった。
図7には、上記焼結実験により得られた各焼結体((a)は酸化チタン添加なし、(b)は酸化チタン3体積%含有、(c)は酸化チタン5体積%含有、(d)は酸化チタン7体積%含有、(e)は酸化チタン10体積%含有、(f)は酸化チタン15体積%含有)のXRDパターンが示されており、このXRD解析では、ホウ化チタン相の回折ピークのみが確認され、添加された酸化チタンはいずれの場合にも焼結後には消失しており、これは恐らく、酸化チタンが還元され、チタンが溶けて流れ出たためであると考えられる。このような実験結果から、酸化チタンを添加しても不純物として残存せずに、ホウ化チタン焼結体が製造できることがわかった。
FIG. 6 shows a curve (a) showing the relationship between the soaking time and the heating temperature, a shrinkage curve (b) of a titanium boride monolith without addition of titanium oxide, and a ceramic using a titanium boride powder containing 7% by volume of titanium oxide. The shrinkage curve (c) is shown, and it was found that the curve (c) is located below the curve (b) from the vicinity of over 1000 seconds, and the shrinkage is improved.
In FIG. 7, each sintered body obtained by the above-described sintering experiment ((a) has no titanium oxide added, (b) contains 3% by volume of titanium oxide, (c) contains 5% by volume of titanium oxide, ( (d) contains 7% by volume of titanium oxide, (e) contains 10% by volume of titanium oxide, and (f) contains 15% by volume of titanium oxide). This XRD analysis shows that the titanium boride phase Only the diffraction peak was confirmed, and the added titanium oxide disappeared in each case after sintering. This is probably because the titanium oxide was reduced and the titanium melted and flowed out. From these experimental results, it was found that a titanium boride sintered body can be produced without adding it as an impurity even when titanium oxide is added.
図8(a)〜(f)には、x体積%(x=0,3,5,7,10,15)TiO2を含有したTiB2セラミック(1650℃/10分/30MPa)の破砕表面のSEM写真が示されており、このSEM写真から、(a)〜(d)はほぼ同じ粒子径であると考えられるが、(e)と(f)は、異常成長により粒子径が大きくなっていることがわかる。
図9の左側の図は、x体積%酸化チタンを含有したホウ化チタンセラミック(1650℃/10分/30MPa)における、酸化チタン含有量と相対密度(a)、かさ密度(b)の関係を示すグラフであり、このグラフから、酸化チタンの添加量が10体積%までは、かさ密度と相対密度の増加が見られ、3体積%以上の酸化チタン含有によって相対密度90%以上となることがわかった。一方、図9の右側の図は、x体積%酸化チタンを含有したホウ化チタンセラミック(1650℃/10分/30MPa)における、酸化チタン含有量と粒子径の関係を示すグラフであり、このグラフから、酸化チタンの含有量が7体積%を超えると急激に粒子径が大きくなることがわかった。
FIGS. 8A to 8F show a fracture surface of TiB 2 ceramic (1650 ° C./10 minutes / 30 MPa) containing x volume% (x = 0, 3, 5, 7, 10, 15) TiO 2. From this SEM photograph, it is considered that (a) to (d) have almost the same particle diameter, but (e) and (f) have larger particle diameters due to abnormal growth. You can see that
The diagram on the left side of FIG. 9 shows the relationship between titanium oxide content, relative density (a), and bulk density (b) in a titanium boride ceramic (1650 ° C./10 minutes / 30 MPa) containing x volume% titanium oxide. From this graph, when the addition amount of titanium oxide is up to 10% by volume, an increase in bulk density and relative density is observed, and the inclusion of 3% by volume or more of titanium oxide results in a relative density of 90% or more. all right. On the other hand, the diagram on the right side of FIG. 9 is a graph showing the relationship between the titanium oxide content and the particle diameter in a titanium boride ceramic (1650 ° C./10 minutes / 30 MPa) containing x volume% titanium oxide. From the results, it was found that the particle diameter suddenly increased when the content of titanium oxide exceeded 7% by volume.
図10には、x体積%酸化チタンを含有したホウ化チタンセラミック(1650℃/10分/30MPa)における、酸化チタン含有量と、(a)曲げ強度(σb)、(b)ビッカース硬度(HV)、(c)破砕強度(KIC)の関係を示すグラフが示されており、各焼結体から機械的特性測定用試験片(〜3×4×15 mm3)をダイヤモンドカッターで切り出し、4側面を鏡面研磨(ダイヤモンド砥粒:1〜3μmφ)した。機械的特性としてスパン8mm、クロスヘッドスピード0.5 mm/minで3点曲げ強度(σb)を測定し、荷重19.6 N、保持時間15 sでビッカース硬度(Hv)及びIF法(K. Niihara, R. Morena, D.P. H. Hasselman,“Evaluation of KIC of Brittle Solids by the Indentation Method with Low Crack-to-Indent Ratios”, J. Mater. Sci. Lett., 1 (1982) 13-16)により破壊靱性値(KIC)を評価した。
図10の結果から、曲げ強度と破壊靱性値については酸化チタンの含有量が5体積%の場合に最大値となり、ビッカース硬度については酸化チタンの含有量が7体積%の場合に最大値となり、総合して、酸化チタンの含有量が3〜10体積%、特に3〜7体積%の場合において高い機械的特性が示されることがわかった。
FIG. 10 shows the titanium oxide content, (a) bending strength (σ b ), and (b) Vickers hardness (titanium boride ceramic (1650 ° C./10 min / 30 MPa) containing x volume% titanium oxide. H V ), (c) A graph showing the relationship between crushing strength (K IC ) is shown, and a test piece for measuring mechanical properties (˜3 × 4 × 15 mm 3 ) from each sintered body with a diamond cutter. The four sides were cut and mirror-polished (diamond abrasive grains: 1 to 3 μmφ). The mechanical properties were measured at a three-point bending strength (σ b ) at a span of 8 mm, a crosshead speed of 0.5 mm / min, a load of 19.6 N, a holding time of 15 s, and a Vickers hardness (H v ) and IF method (K. Niihara, R. Morena, DPH Hasselman, “Evaluation of K IC of Brittle Solids by the Indentation Method with Low Crack-to-Indent Ratios”, J. Mater. Sci. Lett., 1 (1982) 13-16) (K IC ) was evaluated.
From the results of FIG. 10, the bending strength and fracture toughness values are maximum when the titanium oxide content is 5% by volume, and the Vickers hardness is maximum when the titanium oxide content is 7% by volume. Overall, it was found that high mechanical properties were exhibited when the content of titanium oxide was 3 to 10% by volume, particularly 3 to 7% by volume.
実施例2:本製法による高密度ホウ化チタンの製造例(酸化チタン+酸化マグネシウム添加の場合)
原料粉末として、前述の微粒化ホウ化チタン粉末(Ps〜0.57μmφ)を用い、これに、焼結助材として、市販の酸化マグネシウム粉末(Ps〜50nmφ)と、前述の酸化チタン(ルチル)粉末(Ps〜15nmφ)を添加し、それぞれの含有量が10体積%、4.75体積%となるようにし、実施例1と同様にして、メタノール中にて60分間湿式混合・解砕を行なった。乾燥して得られた混合粉末を整粒した後、金型成形し、ついで冷間静水圧(245MPa)プレス処理し、その後、パルス通電加圧焼結を行い、焼結体を得た。
このようにして得られた10体積%酸化マグネシウム/4.75体積%酸化チタン含有ホウ化チタン焼結体と、前記実施例1で得られた5体積%酸化チタン含有ホウ化チタン焼結体についての、ソーキング時間と加熱温度の関係を示す曲線(a)、5体積%酸化チタン含有ホウ化チタン焼結体の収縮曲線(b)、10体積%酸化マグネシウム/4.75体積%酸化チタン含有ホウ化チタン焼結体の収縮曲線(c)が図11に示されており、この図から、酸化チタンだけが添加されたホウ化チタン焼結体の収縮曲線(b)よりも、酸化マグネシウムと酸化チタンが添加されたホウ化チタン焼結体の収縮曲線(c)の方が下側に位置し、酸化マグネシウムの併含によって収縮性が良くなることがわかった。
Example 2: Example of production of high-density titanium boride by this production method (in the case of addition of titanium oxide + magnesium oxide)
As the raw material powder, the above-mentioned atomized titanium boride powder (P s ˜0.57 μm φ ) is used, and as the sintering aid, a commercially available magnesium oxide powder (P s ˜50 nm φ ) and the above titanium oxide are used. (Rutile) powder (P s ˜15 nm φ ) was added so that the respective contents were 10% by volume and 4.75% by volume, and in the same manner as in Example 1, wet mixing in methanol for 60 minutes.・ We disintegrated. After the mixed powder obtained by drying was sized, a mold was formed, followed by cold isostatic pressing (245 MPa), followed by pulsed current pressure sintering to obtain a sintered body.
About the 10% by volume magnesium oxide / 4.75% by volume titanium oxide-containing titanium boride sintered body thus obtained and the 5% by volume titanium oxide-containing titanium boride sintered body obtained in Example 1 above. Curve (a) showing the relationship between soaking time and heating temperature, shrinkage curve (b) of 5% by volume titanium oxide-containing titanium boride sintered body, 10% by volume magnesium oxide / 4.75% by volume titanium oxide-containing boron The shrinkage curve (c) of the titanium boride sintered body is shown in FIG. 11, and from this drawing, the magnesium oxide and the oxide are oxidized more than the shrinkage curve (b) of the titanium boride sintered body to which only titanium oxide is added. The shrinkage curve (c) of the titanium boride sintered body to which titanium was added was located on the lower side, and it was found that the shrinkage was improved by the inclusion of magnesium oxide.
図12には、10体積%MgO/90体積%(5TiO2‐95TiB2)、即ち、100%換算して10MgO‐4.5TiO2‐85.5TiB2(体積%)の組成において、焼結温度を800〜1650℃の間で変えた時、及び、1650℃にて保持時間を変化させた時のXRDパターンが示されており、1400℃以上の温度ではホウ化チタン相の回折ピークのみが確認され、酸化マグネシウムの回折ピークも、酸化チタンの回折ピークも観察されなかった。また、酸化チタンだけを添加した試料では確認されなかったが、酸化チタンと酸化マグネシウムとを添加した試料においては、酸化マグネシウムの添加量が増加するにつれて回折ピークが高角度側にシフトしていることが観察された。これは、酸化マグネシウムがホウ化チタンに固溶したことが原因と考えられる。
図13には、10MgO‐4.5TiO2‐85.5TiB2(体積%)の組成を有した混合粉末からの圧粉体(a)及び、各種焼結温度条件にて得られた焼結体(b)〜(h)の破砕表面のSEM写真が示されており、特に(f)〜(h)のSEM写真より、1650℃の温度での焼結時間が長くなるに従って、徐々に粒子径が大きくなることがわかる。
FIG. 12 shows a sintering temperature at a composition of 10 volume% MgO / 90 volume% (5 TiO 2 -95 TiB 2 ), that is, 10 MgO-4.5 TiO 2 -85.5 TiB 2 (volume%) in terms of 100%. The XRD pattern is shown when the temperature is changed between 800 and 1650 ° C. and when the holding time is changed at 1650 ° C., and only the diffraction peak of the titanium boride phase is confirmed at a temperature of 1400 ° C. or higher. Neither the diffraction peak of magnesium oxide nor the diffraction peak of titanium oxide was observed. Moreover, although it was not confirmed in the sample to which only titanium oxide was added, in the sample to which titanium oxide and magnesium oxide were added, the diffraction peak shifted to the high angle side as the amount of magnesium oxide added increased. Was observed. This is considered to be because magnesium oxide was dissolved in titanium boride.
FIG. 13 shows a green compact (a) from a mixed powder having a composition of 10 MgO-4.5 TiO 2 -85.5 TiB 2 (volume%), and a sintered body obtained under various sintering temperature conditions. SEM photographs of the fractured surfaces of (b) to (h) are shown, and in particular, as the sintering time at a temperature of 1650 ° C. becomes longer from the SEM photographs of (f) to (h), the particle diameter gradually increases. It turns out that becomes large.
次に、酸化チタンの含有量を5体積%に固定して一定とし(ホウ化チタン95体積%)、さらに追加して0〜20体積%の含有量になるようにして酸化マグネシウム粉末(Ps〜50nmφ)を添加し、60分間湿式混合を行なった後、乾燥して得られた混合粉体を一軸金型成形(50MPa)し、冷間静水圧プレス処理(245MPa)後、真空中、パルス通電加圧焼結(1650℃/10分/30MPa)を行なった。
図14には、上記実験により得られた各焼結体((a)は酸化マグネシウム添加なし、(b)は酸化マグネシウム1体積%含有、(c)は酸化マグネシウム3体積%含有、(d)は酸化マグネシウム5体積%含有、(e)は酸化マグネシウム10体積%含有、(f)は酸化マグネシウム15体積%含有、(g)は酸化マグネシウム20体積%含有)のXRDパターンが示されており、このXRD解析では、ホウ化チタン相の回折ピークのみが確認され、添加された酸化チタンと酸化マグネシウムはいずれの場合にも焼結後には消失していることが確認された。このような実験結果から、酸化チタンと酸化マグネシウムの両方を添加してもこれらが不純物として残存せず、ホウ化チタン焼結体が製造可能であることがわかった。
Next, the content of titanium oxide is fixed to 5% by volume to be constant (95% by volume of titanium boride), and further added to a content of 0 to 20% by volume of magnesium oxide powder (P s up to 50 nm phi) was added, after performing wet mixing for 60 minutes, the mixture powder obtained by drying and uniaxially molding (50 MPa), after cold isostatic pressing treatment (245 MPa), in a vacuum, Pulse current pressure sintering (1650 ° C./10 minutes / 30 MPa) was performed.
FIG. 14 shows each sintered body obtained by the above experiment ((a) without addition of magnesium oxide, (b) containing 1% by volume of magnesium oxide, (c) containing 3% by volume of magnesium oxide, (d) XRD pattern of 5% by volume of magnesium oxide, (e) containing 10% by volume of magnesium oxide, (f) containing 15% by volume of magnesium oxide, and (g) containing 20% by volume of magnesium oxide) is shown. In this XRD analysis, only the diffraction peak of the titanium boride phase was confirmed, and it was confirmed that the added titanium oxide and magnesium oxide disappeared after sintering in any case. From these experimental results, it was found that even when both titanium oxide and magnesium oxide were added, they did not remain as impurities, and a titanium boride sintered body could be produced.
図15の左右のグラフは、酸化マグネシウムの含有量を変化させた際の微細構造の変化に関するグラフであり、左側のグラフは、x体積%(x=0,1,3,5,10,15,20)酸化マグネシウムを含有した酸化チタン‐ホウ化チタンセラミック(1650℃/10分/30MPa)における、酸化マグネシウム含有量と相対密度(a)、かさ密度(b)の関係を示すグラフで、このグラフから、酸化マグネシウムの添加によって相対密度とかさ密度が高くなり、1体積%以上の酸化マグネシウム含有によって相対密度が94%以上になり、5体積%以上の酸化マグネシウム含有によって相対密度98%程度となることがわかった。一方、右側のグラフは、x体積%酸化マグネシウムを含有した酸化チタン‐ホウ化チタンセラミックにおける、酸化マグネシウム添加量と粒子径の関係を示すグラフであり、このグラフから、少量(1体積%)の酸化マグネシウムの含有量で粒子径が大きくなることがわかり、このことは、図16(a)〜(g)の、x体積%酸化マグネシウムが添加されたホウ化チタンセラミック(1650℃/10分/30MPa)の破砕表面のSEM写真にも示されている。又、酸化チタンだけを添加して得られた焼結体のSEM写真とを比較してみると、酸化チタンだけを添加して得られた焼結体よりも酸化マグネシウムをさらに添加して得られた焼結体の方が緻密化が進行していることが見いだされた。 The left and right graphs in FIG. 15 are graphs related to changes in the microstructure when the content of magnesium oxide is changed, and the left graphs are x volume% (x = 0, 1, 3, 5, 10, 15). 20) A graph showing the relationship between magnesium oxide content, relative density (a), and bulk density (b) in a titanium oxide-titanium boride ceramic (1650 ° C./10 min / 30 MPa) containing magnesium oxide. From the graph, the relative density and bulk density are increased by adding magnesium oxide, the relative density is 94% or more by containing 1% by volume or more of magnesium oxide, and the relative density is about 98% by containing 5% by volume or more of magnesium oxide. I found out that On the other hand, the graph on the right side is a graph showing the relationship between the amount of magnesium oxide added and the particle diameter in a titanium oxide-titanium boride ceramic containing x volume% magnesium oxide. From this graph, a small amount (1 volume%) of It can be seen that the particle size increases with the content of magnesium oxide, and this indicates that the titanium boride ceramic (1650 ° C./10 min / x) to which x volume% magnesium oxide is added, as shown in FIGS. It is also shown in the SEM photograph of the fractured surface of 30 MPa). In addition, when comparing the SEM photograph of the sintered body obtained by adding only titanium oxide, it can be obtained by adding more magnesium oxide than the sintered body obtained by adding only titanium oxide. It was found that the sintered body was more densified.
図17には、x体積%酸化マグネシウムを含有した酸化チタン‐ホウ化チタンセラミック(1650℃/10分/30MPa)における、酸化マグネシウム含有量と、(a)曲げ強度(σb)、(b)ビッカース硬度(HV)、(c)破砕強度(KIC)の関係を示すグラフが示されており、各物性は、実施例1記載の方法と同様にして測定した。
図17の結果から、ビッカース硬度と破壊靱性値については酸化マグネシウムを添加しても大きく変化しないが、曲げ強度については、酸化マグネシウムの含有量を多くしすぎると(含有量が5体積%以上になると)低下するので、酸化マグネシウムの最適含有量は1〜4体積%、好ましくは2〜3.5体積%であると考えられる。
尚、酸化チタンと酸化マグネシウムの併用による効果を確認するために、3体積%酸化マグネシウムだけを含有したホウ化チタン粉末を用いて、ホウ化チタンセラミック(1650℃/10分/30MPa)を製造したところ、嵩密度4.15g/cm3、相対密度92.3%ビッカース硬度25.4GPa、破壊靭性値6.33MPa・m1/2、三点曲げ強度σb 620MPaとなり、緻密で機械的特性に格別に優れた焼結体は得られなかった。
FIG. 17 shows the content of magnesium oxide in a titanium oxide-titanium boride ceramic (1650 ° C./10 min / 30 MPa) containing x volume% magnesium oxide, and (a) bending strength (σ b ), (b). A graph showing the relationship between Vickers hardness (H V ) and (c) crushing strength (K IC ) is shown, and each physical property was measured in the same manner as the method described in Example 1.
From the results shown in FIG. 17, the Vickers hardness and fracture toughness values do not change greatly even when magnesium oxide is added. However, regarding the bending strength, if the magnesium oxide content is excessively increased (the content is increased to 5% by volume or more). The optimum content of magnesium oxide is considered to be 1-4% by volume, preferably 2-3.5% by volume.
In order to confirm the effect of the combined use of titanium oxide and magnesium oxide, a titanium boride ceramic (1650 ° C./10 minutes / 30 MPa) was manufactured using titanium boride powder containing only 3% by volume of magnesium oxide. However, the bulk density was 4.15 g / cm 3 , the relative density was 92.3%, the Vickers hardness was 25.4 GPa, the fracture toughness value was 6.33 MPa · m 1/2 , and the three-point bending strength σ b 620 MPa. A particularly excellent sintered body was not obtained.
まとめ
前記実施例1の実験結果より、本発明の製造方法を実施した場合、従来法よりも比較的低温である1650℃で緻密化されたホウ化チタン焼結体を製造することができ(無添加の場合の相対密度〜86%が、酸化チタン添加によって〜96%にまで高くなる)、かつ、機械的特性(曲げ強度、ビッカース硬度、破壊靭性値)が改善されることが確認された。
又、上記実施例2の実験結果より、酸化チタン3〜7体積%と1〜4体積%の酸化マグネシウムとを含有したホウ化チタン粉末を用いて得られた成形体をパルス通電加圧焼結すると、さらに緻密で優れた機械的特性を有する焼結体が作製できることが確認された。
以下の表1に、真空中で1650℃/10分/30MPaの条件にて焼結されたホウ化チタンモノリス、5体積%酸化チタンホウ化チタンセラミックス、3体積%酸化マグネシウム‐4.85体積%酸化チタン‐92.2体積%ホウ化チタンセラミックスについての代表的な特性を示す。
Summary From the experimental results of Example 1, when the manufacturing method of the present invention is carried out, a titanium boride sintered body densified at 1650 ° C., which is a relatively lower temperature than the conventional method, can be manufactured (none It was confirmed that the relative density in the case of addition was increased to 86% by adding titanium oxide, and the mechanical properties (bending strength, Vickers hardness, fracture toughness value) were improved.
Further, from the experimental results of Example 2 above, a compact obtained by using titanium boride powder containing 3 to 7% by volume of titanium oxide and 1 to 4% by volume of magnesium oxide was subjected to pulse current compression sintering. As a result, it was confirmed that a sintered body having a higher density and excellent mechanical properties could be produced.
Table 1 below shows titanium boride monoliths sintered in vacuum at 1650 ° C./10 minutes / 30 MPa, 5 vol% titanium oxide titanium boride ceramics, 3 vol% magnesium oxide—4.85 vol% oxidation. Typical characteristics of titanium-92.2 vol% titanium boride ceramics are shown.
上記表1の物性値から、酸化チタンを添加して得られたホウ化チタンセラミックス、及び、酸化チタンと酸化マグネシウムを添加して得られたホウ化チタンセラミックスでは、相対密度、ビッカース硬度および破壊靭性値ともに向上していることがわかる。 From the physical property values shown in Table 1 above, the relative density, Vickers hardness and fracture toughness of the titanium boride ceramics obtained by adding titanium oxide and the titanium boride ceramics obtained by adding titanium oxide and magnesium oxide. It can be seen that both values have improved.
ホウ化チタンに、酸化チタンを所定量添加、又は、酸化チタンと酸化マグネシウムを所定量添加してパルス通電加圧焼結により焼結を行う本発明の製法により、ホウ化チタンを比較的低温で焼結させることができ、しかも、得られるホウ化チタン焼結体の機械的強度を向上させることができ、緻密な素材が作製できることで優れた特性をもつ金属ホウ化物材料の応用展開が可能となる。 Titanium boride can be added at a relatively low temperature by the manufacturing method of the present invention in which a predetermined amount of titanium oxide is added to titanium boride or a predetermined amount of titanium oxide and magnesium oxide is added and sintering is performed by pulsed current pressure sintering. It can be sintered, and the mechanical strength of the obtained titanium boride sintered body can be improved, and the application development of metal boride materials with excellent characteristics is possible by producing a dense material. Become.
Claims (4)
工程A:3〜10体積%の酸化チタン粉末が均一に混合されたホウ化チタン粉末を調製し、当該混合粉末を成形して成形体を製造する工程、及び
工程B:前記工程Aで得られた成形体をパルス通電加圧焼結することにより、相対密度90%以上のホウ化チタン焼結体を製造する工程
を含むことを特徴とする高密度金属ホウ化物の製造方法。 A method for producing a high density metal boride having a relative density of 90% or more,
Step A: A step of preparing a titanium boride powder in which 3 to 10% by volume of titanium oxide powder is uniformly mixed, and molding the mixed powder to produce a molded body, and Step B: obtained in Step A above A method for producing a high-density metal boride comprising a step of producing a titanium boride sintered body having a relative density of 90% or more by subjecting the formed body to pulse-current pressure sintering.
工程A:3〜7体積%の酸化チタン粉末及び1〜4体積%の酸化マグネシウム粉末が均一に混合されたホウ化チタン粉末を調製し、当該混合粉末を成形して成形体を製造する工程、及び
工程B:前記工程Aで得られた成形体をパルス通電加圧焼結することにより、相対密度94%以上のホウ化チタン焼結体を製造する工程
とを含むことを特徴とする高密度金属ホウ化物の製造方法。 A method for producing a high density metal boride having a relative density of 94% or more,
Step A: preparing titanium boride powder in which 3 to 7% by volume of titanium oxide powder and 1 to 4% by volume of magnesium oxide powder are uniformly mixed, and molding the mixed powder to produce a molded body, And a step B: a step of producing a titanium boride sintered body having a relative density of 94% or more by subjecting the formed body obtained in the step A to pulse-current pressurization and sintering. A method for producing a metal boride.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010054394A JP5408591B2 (en) | 2010-03-11 | 2010-03-11 | Method for producing high-density metal boride |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010054394A JP5408591B2 (en) | 2010-03-11 | 2010-03-11 | Method for producing high-density metal boride |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011184276A true JP2011184276A (en) | 2011-09-22 |
JP5408591B2 JP5408591B2 (en) | 2014-02-05 |
Family
ID=44791008
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010054394A Expired - Fee Related JP5408591B2 (en) | 2010-03-11 | 2010-03-11 | Method for producing high-density metal boride |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5408591B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11692242B2 (en) | 2019-11-04 | 2023-07-04 | King Fahd University Of Petroleum And Minerals | Method of producing biodegradable magnesium composite by spark plasma sintering |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01239068A (en) * | 1988-03-16 | 1989-09-25 | Onoda Cement Co Ltd | Sintered material of titanium boride base and production thereof |
JPH08310867A (en) * | 1995-05-15 | 1996-11-26 | Mitsubishi Materials Corp | Production of boride ceramic |
JP2008297188A (en) * | 2007-06-04 | 2008-12-11 | Doshisha | Method of manufacturing tungsten-addition zirconium boride |
-
2010
- 2010-03-11 JP JP2010054394A patent/JP5408591B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01239068A (en) * | 1988-03-16 | 1989-09-25 | Onoda Cement Co Ltd | Sintered material of titanium boride base and production thereof |
JPH08310867A (en) * | 1995-05-15 | 1996-11-26 | Mitsubishi Materials Corp | Production of boride ceramic |
JP2008297188A (en) * | 2007-06-04 | 2008-12-11 | Doshisha | Method of manufacturing tungsten-addition zirconium boride |
Non-Patent Citations (1)
Title |
---|
JPN6013033344; KUNAI B KOTHARI,NORMAN M WERELEY: 'RAPID CONSOLIDATION OF TIB2 VIA PLASMA PRESSURE COMPACTION' Am Soc. Mech Eng Aerosp. Div. vol.69, 2004, p.463-467 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11692242B2 (en) | 2019-11-04 | 2023-07-04 | King Fahd University Of Petroleum And Minerals | Method of producing biodegradable magnesium composite by spark plasma sintering |
Also Published As
Publication number | Publication date |
---|---|
JP5408591B2 (en) | 2014-02-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Jam et al. | TiC-based cermet prepared by high-energy ball-milling and reactive spark plasma sintering | |
JP6344844B2 (en) | Boron carbide / titanium boride composite ceramics and method for producing the same | |
JP5930317B2 (en) | Fabrication method of high strength toughness ZrO2-Al2O3 solid solution ceramics | |
Sun et al. | Alumina ceramics with uniform grains prepared from Al2O3 nanospheres | |
JP5550013B2 (en) | Magnetic nanocomposite and method for producing the same | |
Souto et al. | Effect of Y2O3 additive on conventional and microwave sintering of mullite | |
Li et al. | Injection molding of tungsten powder treated by jet mill with high powder loading: A solution for fabrication of dense tungsten component at relative low temperature | |
Chen et al. | Fabrication of YAG transparent ceramics by two-step sintering | |
JP6436905B2 (en) | Boron carbide ceramics and manufacturing method thereof | |
Cheng et al. | Development of translucent aluminum nitride (AIN) using microwave sintering process | |
JP5408591B2 (en) | Method for producing high-density metal boride | |
KR100936016B1 (en) | Method of fabricating a sputtering target of molybdenum having ultrafine crystalline and sputtering target of molybdenum prepared thereby | |
JP2011063487A (en) | Lanthanum boride sintered compact, target using sintered compact and method for producing sintered compact | |
JP2014055074A (en) | Ti3SiC2 PRESSURELESS-SINTERED COMPACT AND METHOD FOR PRODUCING THE SAME | |
WO2020133585A1 (en) | Hard transition metal boride material and preparation method therefor | |
Yin et al. | Microstructure evolution and densification kinetics of Al2O3/Ti (C, N) ceramic tool material by microwave sintering | |
JP5673946B2 (en) | Method for producing silicon nitride ceramics | |
JP7414300B2 (en) | Zirconium boride/boron carbide composite and its manufacturing method | |
Xu et al. | Preparation and characterization of MoSi2/WSi2 composites from MASHSed powder | |
Swiderska-Sroda et al. | SiC nano-ceramics sintered under high-pressure | |
JP2016147780A (en) | Conductive high strength and high hardness composite ceramic and method of making the same | |
Rosiński et al. | Nanocrystalline NiAl-TiC composites sintered by the pulse plasma method | |
Yi et al. | Spark plasma sintering of combustion-synthesized β-SiAlON powders | |
JP2008156142A (en) | Aluminum nitride sintered compact and method for manufacturing the same | |
Ke et al. | Synthesis of 30 vol% TiB2 Containing Fe–5Ti Matrix Composites with High Thermal Conductivity and Hardness |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130129 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130627 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130710 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130729 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131002 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131028 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |