JP2011173891A - モノヌクレオシドまたはモノヌクレオチドから誘導される構造を有する化合物、核酸、標識物質、核酸検出方法およびキット - Google Patents
モノヌクレオシドまたはモノヌクレオチドから誘導される構造を有する化合物、核酸、標識物質、核酸検出方法およびキット Download PDFInfo
- Publication number
- JP2011173891A JP2011173891A JP2011071214A JP2011071214A JP2011173891A JP 2011173891 A JP2011173891 A JP 2011173891A JP 2011071214 A JP2011071214 A JP 2011071214A JP 2011071214 A JP2011071214 A JP 2011071214A JP 2011173891 A JP2011173891 A JP 2011173891A
- Authority
- JP
- Japan
- Prior art keywords
- nucleic acid
- group
- fluorescence
- labeling substance
- dna
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 0 *C(*(*=C)c1c(*)c(*)c(*)c(*)c1*)=Cc1c(c(*)c(*)c(*)c2*)c2*(*)c(*)c1* Chemical compound *C(*(*=C)c1c(*)c(*)c(*)c(*)c1*)=Cc1c(c(*)c(*)c(*)c2*)c2*(*)c(*)c1* 0.000 description 6
- UJZUOWZCXKXKPM-FNORWQNLSA-N CC(C/C(/C)=C/C)(N)OC Chemical compound CC(C/C(/C)=C/C)(N)OC UJZUOWZCXKXKPM-FNORWQNLSA-N 0.000 description 1
- HNAIMDSFBDPYMB-UHFFFAOYSA-M CCCC(CC)(N)P([O-])(O)=O Chemical compound CCCC(CC)(N)P([O-])(O)=O HNAIMDSFBDPYMB-UHFFFAOYSA-M 0.000 description 1
- YYZRBWBCHFLOQL-UHFFFAOYSA-N CNC[IH]C[O](I)I Chemical compound CNC[IH]C[O](I)I YYZRBWBCHFLOQL-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H21/00—Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
- C07H21/04—Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with deoxyribosyl as saccharide radical
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H19/00—Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
- C07H19/02—Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
- C07H19/04—Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
- C07H19/06—Pyrimidine radicals
- C07H19/073—Pyrimidine radicals with 2-deoxyribosyl as the saccharide radical
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
- C12Q1/6816—Hybridisation assays characterised by the detection means
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/55—Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Genetics & Genomics (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Microbiology (AREA)
- Physics & Mathematics (AREA)
- Immunology (AREA)
- Analytical Chemistry (AREA)
- Plant Pathology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Saccharide Compounds (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
【解決手段】核酸塩基に、標識化合物と反応しうる、ペプチド構造もしくはペプトイド構造を有するスペーサーを有するヌクレオシド化合物及びそのホスホロアミダイト誘導体。該ホスホロアミダイト誘導体はホスホロアミダイト法により核酸に導入され、次に標識化合物との反応で標識された核酸が合成される。該標識された核酸は、核酸の二重らせん構造を効果的に検出可能な標識物質として用いることができる。該標識物質は、核酸の検出感度等に優れているので、研究用、臨床用、診断用、試験管内遺伝子検出、生体内遺伝子検出等、幅広い用途に使用可能である。
【選択図】なし
Description
Bは、天然核酸塩基(アデニン、グアニン、シトシン、チミンまたはウラシル)骨格または人工核酸塩基骨格を有する原子団であり、
Eは、
(i)デオキシリボース骨格、リボース骨格、もしくはそれらのいずれかから誘導される構造を有する原子団、または
(ii)ペプチド構造もしくはペプトイド構造を有する原子団であり、
Z11およびZ12は、それぞれ、水素原子、保護基、または蛍光性を示す原子団であり、同一でも異なっていてもよく、
Qは、
Eが前記(i)の原子団である場合はOであり、
Eが前記(ii)の原子団である場合はNHであり、
Xは、
Eが前記(i)の原子団である場合は、水素原子、酸で脱保護することが可能な水酸基の保護基、リン酸基(モノホスフェート基)、二リン酸基(ジホスフェート基)、または三リン酸基(トリホスフェート基)であり、
Eが前記(ii)の原子団である場合は、水素原子またはアミノ基の保護基であり、
Yは、
Eが前記(i)の原子団である場合は、水素原子、水酸基の保護基、またはホスホロアミダイト基であり、
Eが前記(ii)の原子団である場合は、水素原子または保護基であり、
L1、L2およびL3は、それぞれ、リンカー(架橋原子または原子団)であり、主鎖長(主鎖原子数)は任意であり、主鎖中に、C、N、O、S、PおよびSiを、それぞれ含んでいても含んでいなくても良く、主鎖中に、単結合、二重結合、三重結合、アミド結合、エステル結合、ジスルフィド結合、イミノ基、エーテル結合、チオエーテル結合およびチオエステル結合を、それぞれ含んでいても含んでいなくても良く、L1、L2およびL3は、互いに同一でも異なっていても良く、
Dは、CR、N、P、P=O、BもしくはSiRであり、Rは、水素原子、アルキル基または任意の置換基であり、
bは、単結合、二重結合もしくは三重結合であるか、
または、前記式(1)中、L1およびL2は前記リンカーであり、L3、Dおよびbは存在せず、L1およびL2がBに直接結合していてもよく、
前記式(1b)中、Tは、
Eが前記(i)の原子団である場合は、リン酸架橋(PO4 −)であり、1以上の酸素原子(O)が硫黄原子(S)で置換されていても良く、
Eが前記(ii)の原子団である場合は、NHである。
B、E、Z11、Z12、L1、L2、L3、Dおよびbは、それぞれ、前記式(1)
、(1b)または(1c)と同じ構造であり、
ただし、
式(16)、(17)および(18)中、Eは、前記式(1)、(1b)または(1c)における前記(i)の原子団であり、リン酸架橋中の少なくとも一つのO原子がS原子で置換されていても良く、
式(16b)、(17b)および(18b)中、Eは、前記式(1)、(1b)または(1c)における前記(ii)の原子団であり、
式(17)および(17b)中、各Bは、同一でも異なっていても良く、各Eは、同一でも異なっていても良い。
(i)一つの分子内の二つの平面化学構造が同一平面内ではなく、ある一定の角度をもって存在するが、その分子が核酸にインターカレーションまたはグルーヴバインディング(溝結合)するときには二つの平面化学構造が同一平面内に並ぶように配置することによって蛍光発光が生じる標識物質であるか、
(ii)2つ以上の色素分子が並行に集合するために生じるエキシトン効果によって蛍光発光を示さないが、それらの分子が核酸にインターカレーションまたはグルーヴバインディング(溝結合)するときには、前記集合状態が解けることにより蛍光発光が生じる2つ以上の色素分子群からなる標識物質であるか、または、
(iii)2つ以上の色素分子が並行に集合するために生じるエキシトン効果によって蛍光発光を示さないが、それらの分子が核酸にインターカレーションまたはグルーヴバインディング(溝結合)するときには、前記集合状態が解けることにより蛍光発光が生じる2つ以上の色素分子の化学構造を同一分子内に有することを特徴的化学構造とする複合体標識物質である。
(I)標識モノヌクレオチドまたは標識オリゴヌクレオチドである本発明の標識物質を基質として核酸合成を行い、前記蛍光性を示す原子団または色素分子構造がインターカレーションまたはグルーヴバインディングされた二重鎖核酸を合成する工程と、
前記二重鎖核酸合成工程の前後における蛍光強度をそれぞれ測定する工程と、
前記二重鎖核酸合成工程の前後における蛍光強度を比較することにより核酸合成を検出する工程とを含む、核酸検出方法、
(II)一重鎖核酸である本発明の標識物質を第一の核酸とし、前記第一の核酸と相補的な配列またはそれに類似の配列を有する第二の核酸とをハイブリダイゼーションさせて核酸合成を行い、前記蛍光性を示す原子団または色素分子構造がインターカレーションまたはグルーヴバインディングされた二重鎖核酸を合成する工程と、
前記二重鎖核酸合成工程の前後における蛍光強度をそれぞれ測定する工程と、
前記二重鎖核酸合成工程の前後における蛍光強度を比較することにより、前記第一の核酸と前記第二の核酸とのハイブリダイゼーションを検出する工程とを含む、核酸検出方法、
(III)一重鎖核酸である本発明の標識物質を第一の核酸とし、前記第一の核酸と相補的な配列またはそれに類似の配列を有する第二の核酸とをハイブリダイゼーションさせて核酸合成を行い、前記蛍光性を示す原子団または色素分子構造がインターカレーションまたはグルーヴバインディングされた二重鎖核酸を合成する工程と、
前記二重鎖核酸合成工程の前後における蛍光強度をそれぞれ測定する工程と、
前記二重鎖核酸合成工程の前後における蛍光強度を比較することにより、前記第一の核酸と前記第二の核酸とのハイブリダイゼーションを検出する工程とを含む、核酸検出方法、
または、
(IV)前記第一の核酸、前記第二の核酸の配列、もしくはそれらの配列に相補的な配列、または、それらの配列に相補的な配列に類似の配列を有し、かつ、本発明の標識物質または複合体標識物質で標識されたまたは標識されていない第三の核酸を用いることにより、三重鎖核酸または核酸類似体の形成を検出することを特徴とする、核酸検出方法、
である。
本発明の化合物および核酸は、前記化学式で表される以外は、特に制限されない。前述の通り、その用途も特に制限されないが、例えば、前記本発明の標識物質、またはその合成原料もしくは合成中間体として用いることができる。本発明の化合物、核酸および標識物質について、より詳しくは、例えば以下の通りである。
Eは、例えば、DNA、修飾DNA、RNA、修飾DNA、LNA、またはPNA(ペプチド核酸)の主鎖構造を有する原子団であることが好ましい。
Aは、水素原子、水酸基、アルキル基、または電子吸引基であり、
MおよびJは、それぞれ、CH2、NH、OまたはSであり、同一でも異なっていても良く、
B、XおよびYは、それぞれ、前記式(1)、(1b)または(1c)と同じであり、
前記式(2)、(3)、(2b)および(3b)において、リン酸架橋中のO原子は、1つ以上がS原子で置換されていてもよい。
Aにおいて、例えば、前記アルキル基がメトキシ基であり、前記電子吸引基がハロゲンであることが好ましい。
L1、L2およびL3の主鎖長(主鎖原子数)が、それぞれ2以上の整数であることが好ましい。L1、L2およびL3の主鎖長(主鎖原子数)は、上限は特に制限されないが、例えば100以下であり、より好ましくは30以下であり、特に好ましくは10以下である。
l、mおよびnは任意であり、同一でも異なっていても良く、
B、E、Z11、Z12、X、YおよびTは、前記式(1)および(1b)と同じである。
前記式(5)、(6)、(6b)および(6c)中、
l、mおよびnが、それぞれ、2以上の整数であることが好ましい。l、mおよびnの上限は特に制限されないが、例えば100以下であり、より好ましくは30以下であり、特に好ましくは10以下である。
X1およびX2は、それぞれSまたはOであり、同一でも異なっていても良く、
nは、0または正の整数であり、
R1〜R10、R13〜R21は、それぞれ独立に、水素原子、ハロゲン原子、低級アルキル基、低級アルコキシ基、ニトロ基、またはアミノ基であり、
R11およびR12のうち、一方は、前記式(1)、(1b)または(1c)中のL1もしくはL2、前記式(5)、(6)、(6b)または(6c)中のNHに結合する連結基であり、他方は、水素原子または低級アルキル基であり、
R15は、式(7)、(8)または(9)中に複数存在する場合は、同一でも異なっていても良く、
R16は、式(7)、(8)または(9)中に複数存在する場合は、同一でも異なっていても良く、
Z11中のX1、X2およびR1〜R21と、Z12中のX1、X2およびR1〜R21とは、互いに同一でも異なっていてもよい。
R1〜R21において、前記低級アルキル基が、炭素数1〜6の直鎖または分枝アルキル基であり、前記低級アルコキシ基が、炭素数1〜6の直鎖または分枝アルコキシ基であることがさらに好ましい。
R11およびR12において、前記連結基が、炭素数2以上のポリメチレンカルボニル基であり、カルボニル基部分で前記式(1)、(1b)または(1c)中のL1もしくはL2、前記式(5)、(6)、(6b)または(6c)中のNHに結合することがさらに好ましい。前記ポリメチレンカルボニル基の炭素数は、その上限は特に制限されないが、例えば100以下、好ましくは50以下、より好ましくは30以下、特に好ましくは10以下である。
E、Z11、Z12、Q、XおよびYは、前記式(1)と同じである。
例えば、Bが、Py、Py der.、Pu、またはPu der.で表される構造であることが好ましい。
ただし、
前記Pyとは、下記式(11)で表記される6員環のうち、1位にEと結合する共有結合手を有し、5位にリンカー部と結合する共有結合手を有する原子団であり、
前記Py der.とは、前記Pyの6員環の全原子の少なくとも一つがN、C、SまたはO原子で置換された原子団であり、前記N、C、SまたはO原子は、適宜、電荷、水素原子または置換基を有していても良く、
前記Puとは、下記式(12)で表記される縮合環のうち、9位にEと結合する共有結合手を有し、8位にリンカー部と結合する共有結合手を有する原子団であり、
前記Pu der.とは、前記Puの5員環の全原子の少なくとも一つがN、C、SまたはO原子で置換された原子団であり、前記N、C、SまたはO原子は、適宜、電荷、水素原子または置換基を有していても良い。
−P(OR22)N(R23)(R24) (15)
式(15)中、R22はリン酸基の保護基であり、R23およびR24はアルキル基、またはアリール基である。
前記式(15)において、R15がシアノエチル基であり、R16およびR17において、前記アルキル基がイソプロピル基であり、前記アリール基がフェニル基であることがより好ましい。
式(22)中、Aは水素原子または水酸基を示す。Z11及びZ12は各々独立に、蛍光性を示す原子団、水素原子、又はアミノ基の保護基を示し、チアゾールオレンジ誘導体、又はオキサゾールイエロー誘導体の残基が特に好ましい。Xは、水素原子、酸で脱保護できる水酸基の保護基、あるいはモノホスフェート基、ジホスフェート基又はトリホスフェート基を示す。Yは水素原子、水酸基の保護基、又はホスホロアミダイト基である。
B、E、Z11、Z12、L1、L2、L3、Dおよびbは、それぞれ、前記式(1)、(1b)または(1c)に示す構造であり、
ただし、
式(16)、(17)および(18)中、Eは、前記式(1)、(1b)または(1c)における前記(i)の原子団であり、リン酸架橋中の少なくとも一つのO原子がS原子で置換されていても良く、
式(16b)、(17b)および(18b)中、Eは、前記式(1)、(1b)または(1c)における前記(ii)の原子団であり、
式(17)および(17b)中、各Bは、同一でも異なっていても良く、各Eは、同一でも異なっていても良い。
前記式(16)、(17)、(16b)、(17b)、(18)および(18b)中、
Z11およびZ12は、それぞれ、蛍光性を示す原子団であり、同一でも異なっていて
もよい。
(i)一つの分子内の二つの平面化学構造が同一平面内ではなく、ある一定の角度をもって存在するが、その分子が核酸にインターカレーションまたはグルーヴバインディング(溝結合)するときには二つの平面化学構造が同一平面内に並ぶように配置することによって蛍光発光が生じる標識物質であるか、
(ii)2つ以上の色素分子が並行に集合するために生じるエキシトン効果によって蛍光発光を示さないが、それらの分子が核酸にインターカレーションまたはグルーヴバインディング(溝結合)するときには、前記集合状態が解けることにより蛍光発光が生じる2つ以上の色素分子群からなる標識物質であるか、または、
(iii)2つ以上の色素分子が並行に集合するために生じるエキシトン効果によって蛍光発光を示さないが、それらの分子が核酸にインターカレーションまたはグルーヴバインディング(溝結合)するときには、前記集合状態が解けることにより蛍光発光が生じる2つ以上の色素分子の化学構造を同一分子内に有することを特徴的化学構造とする複合体標識物質である。
前記(ii)または(iii)の場合において、前記色素分子が、前記(i)記載の分子であることが好ましい。また、前記(iii)の場合において、標識されるべき核酸に結合しているリンカー分子に、枝分かれした構造をとるように更なるリンカー分子を介して、または、更なるリンカー分子を介さず直接的に、2つ以上の色素分子が、結合した構造を有することが好ましい。
標識モノヌクレオチド、標識オリゴヌクレオチド、標識核酸または標識核酸類似体であ
る標識物質であって、
前記(i)〜(iii)のいずれかに記載の標識物質、または、Z11およびZ12が蛍光性を示す原子団である前記本発明の化合物、その互変異性体若しくは立体異性体、若しくはそれらの塩、または、Z11およびZ12が蛍光性を示す原子団である前記本発明の核酸、その互変異性体若しくは立体異性体、若しくはそれらの塩で標識された標識物質である。
標識モノヌクレオチド、標識オリゴヌクレオチド、標識核酸または標識核酸類似体である標識物質であって、
モノヌクレオチド、オリゴヌクレオチド、核酸または核酸類似体中の一つまたはそれ以上の塩基分子または主鎖構成分子に結合しているリンカー分子を介して、前記(i)〜(iii)のいずれかに記載の標識物質、または、Z11およびZ12が蛍光性を示す原子団である前記本発明の化合物、その互変異性体若しくは立体異性体、若しくはそれらの塩、または、Z11およびZ12が蛍光性を示す原子団である前記本発明の核酸、その互変異性体若しくは立体異性体、若しくはそれらの塩で標識された標識物質である。
標識モノヌクレオチド、標識オリゴヌクレオチド、標識核酸または標識核酸類似体である標識物質であって、
モノヌクレオチド、オリゴヌクレオチド、核酸または核酸類似体中の一つまたはそれ以上の塩基分子のピリミジン核5位の炭素原子またはプリン核8位の炭素原子に結合している
リンカー分子を介して、前記(i)〜(iii)のいずれかに記載の標識物質、または、Z11およびZ12が蛍光性を示す原子団である前記本発明の化合物、その互変異性体若しくは立体異性体、若しくはそれらの塩、または、Z11およびZ12が蛍光性を示す原子団である前記本発明の核酸、その互変異性体若しくは立体異性体、若しくはそれらの塩で標識された標識物質である。
本発明の化合物および核酸の製造方法は、特に制限されず、公知の合成方法(製造方法)を適宜用いることができる。一例として、前記式(21)で表される化合物の場合は、下記式(26)で示される化合物のカルボキシル基を活性化した後、トリス(2−アミノエチル)アミンを反応させる工程;アミノ基を保護する工程:及び上記で得られた化合物中に存在する水酸基を保護基で保護する反応と、得られた化合物中に存在する水酸基にリン酸又はホスホロアミダイト基を付加する反応とを行う工程を含む製造方法により製造してもよい。
本発明の核酸の検出方法は、前述の通り、
(I)標識モノヌクレオチドまたは標識オリゴヌクレオチドである本発明の標識物質を基質として核酸合成を行い、前記蛍光性を示す原子団または色素分子構造がインターカレーションまたはグルーヴバインディングされた二重鎖核酸を合成する工程と、
前記二重鎖核酸合成工程の前後における蛍光強度をそれぞれ測定する工程と、
前記二重鎖核酸合成工程の前後における蛍光強度を比較することにより核酸合成を検出する工程とを含む、核酸検出方法、
(II)一重鎖核酸である本発明の標識物質を第一の核酸とし、前記第一の核酸と相補的な配列またはそれに類似の配列を有する第二の核酸とをハイブリダイゼーションさせて核酸合成を行い、前記蛍光性を示す原子団または色素分子構造がインターカレーションまたはグルーヴバインディングされた二重鎖核酸を合成する工程と、
前記二重鎖核酸合成工程の前後における蛍光強度をそれぞれ測定する工程と、
前記二重鎖核酸合成工程の前後における蛍光強度を比較することにより、前記第一の核酸と前記第二の核酸とのハイブリダイゼーションを検出する工程とを含む、核酸検出方法、
(III)一重鎖核酸である本発明の標識物質を第一の核酸とし、前記第一の核酸と相補的な配列またはそれに類似の配列を有する第二の核酸とをハイブリダイゼーションさせて核酸合成を行い、前記蛍光性を示す原子団または色素分子構造がインターカレーションまたはグルーヴバインディングされた二重鎖核酸を合成する工程と、
前記二重鎖核酸合成工程の前後における蛍光強度をそれぞれ測定する工程と、
前記二重鎖核酸合成工程の前後における蛍光強度を比較することにより、前記第一の核酸と前記第二の核酸とのハイブリダイゼーションを検出する工程とを含む、核酸検出方法、
または、
(IV)前記第一の核酸、前記第二の核酸の配列、もしくはそれらの配列に相補的な配列、または、それらの配列に相補的な配列に類似の配列を有し、かつ、本発明の標識物質または複合体標識物質で標識されたまたは標識されていない第三の核酸を用いることにより、三重鎖核酸または核酸類似体の形成を検出することを特徴とする、核酸検出方法、
である。好ましくは、(a)前記第一の核酸中の1分子の塩基上に2分子以上の色素分子が1個のリンカーを介して結合しているか、(b)前記第一の核酸中の1分子の塩基上に2分子以上の色素分子が2個以上のリンカーを介して結合しているか、あるいは(c)前記第一の核酸中の隣接する2分子の塩基上に2分子以上の色素分子が1個以上のリンカーを介して結合している。
(2)本発明のプローブは、PCRプローブとして使用できる。DNA増幅反応中での増幅曲線の検出(リアルタイムPCR)、TaqManプローブに代わるローコストな手法として応用できる。プライマーの標識、もしくは内部標識プローブとして使用することができる。
(3)本発明のプローブは、DNAチップにおける捕捉プローブもしくは標識プローブとして使用することができる。ハイスループットで試薬不要なシステムであり、標識過程・洗浄過程が不要である。人為的に生じる誤差を大きく回避できる。ガラスやそれに代わる固相担体素材(金、ITO、銅などの基板、ダイヤモンドやプラスチックなど多検体を貼り付けることが可能な素材)においての同時多項目(ハイスループット)な解析が可能である。
(4)本発明のプローブは、ビーズ、ファイバー、又はヒドロゲルへ固定化できる。半液体・半固体での環境下で遺伝子を検出することができる。液体のような測定環境を有しながら、固体のように持ち運ぶことが可能である。
(5)本発明のプローブは、ブロッティング(サザンブロット、ノーザンブロット、ドットブロットなど)用のプローブとして使用できる。目的の遺伝子断片だけを発光させて検出することができる。本発明の方法によれば、ハイブリダイゼーション操作の後、洗浄が不要である。
(6)本発明のプローブは、細胞内核酸の検出・追跡のためのプローブとして使用することができる。これにより、細胞内のDNA/RNAの時空間的解析が可能になる。蛍光顕微鏡やセルソーターを使用することができる。DNAの標識、RNAへの転写・スプライシングの追跡、RNAiの機能解析などに応用できる。本発明の方法では、洗浄の必要が無いので、生細胞の機能追跡に適している。
(7)本発明のプローブは、蛍光in situハイブリダイゼーション(FISH)のプローブとして使用することができる。本発明の方法により、組織の染色などを行うことができる。本発明の方法では、洗浄の必要が無いので、人為的に生じる誤差が小さい。すなわち、本発明のプローブは、標的生体分子を認識しないときは蛍光を発しない蛍光色素として働くため、これを用いれば、煩雑な洗浄工程を必要としないバイオイメージングが確立できる。そのことは、高信頼性、低労力でリアルタイムな蛍光観測につながる。
(1)色素を1種類しか用いない場合、合成が容易である。
(2)本発明のDNAプローブ(標識物質)の末端がフリーである場合、PCRプローブとして使いやすい。
(3)ヘアピン構造など特殊な高次構造を形成する必要がないので、ステム配列など配列認識に関与しない配列を必要としない(無駄な配列が無く、配列の拘束もない)。
(4)プローブの複数の箇所(望む場所)に蛍光色素を導入できる。
(5)色素構造を1分子中に2つ以上含む場合、色素間の位置関係が拘束されているので、S/N比(ハイブリダイゼーション前後の蛍光強度比)が大きい。
試薬、溶媒は一般に市販されているものを使用した。ビオチンのN-ヒドロキシスクシンイミジルエステルはPIERCE社のものを使用した。化合物精製用のシリカゲルはWakoゲルC-200(和光純薬)を使用した。1H、13C、および31PNMRスペクトルは、JEOL(日本電子株式会社)のJNM-α400(商品名)により測定した。カップリング定数(J値)は、ヘルツ(Hz)で表している。ケミカルシフトは、ppmで表し、内部標準には、ジメチルスルホキシド(δ=2.48 in 1HNMR, δ=39.5 in 13CNMR)及びメタノール(δ=3.30 in 1HNMR, δ=49.0 in 13CNMR)を用いた。31PNMR測定には、外部標準としてH3PO4(δ=0.00)を用いた。ESIマススペクトルは、Bruker社のBruker Daltonics APEC-II(商品名)を用いて測定した。DNA自動合成機はApplied Biosystems社の392 DNA/RNA synthesizer(商品名)を使用した。逆相HPLCは、ギルソン社の装置Gilson Chromatograph, Model 305(商品名)とケムコ社のCHEMCOBOND 5-ODS-H分取用カラム(商品名、10×150mm)を用いて分離を行い、UV検出器Model 118(商品名)により、波長260nmで検出した。DNAの質量は、MALDI-TOF MSにより測定した。MALDI-TOF MSは、Appplied Byosystems社のPerseptive Voyager Elite(商品名)を用い、加速電圧21kV、ネガティブモードで測定し、マトリクスとしては2',3',4'-トリヒドロキシアセトフェノンを用い、T8([M.H]. 2370.61)およびT17([M.H]. 5108.37)を内部標準として用いた。UVおよび蛍光スペクトルは、株式会社島津製作所のShimadzu UV-2550(商品名)分光光度計と、RF-5300PC(商品名)蛍光分光光度計をそれぞれ用いて測定した。蛍光寿命は、株式会社堀場製作所の小型高性能蛍光寿命測定機器HORIBA JOBIN YVON FluoroCube(商品名)に、NanoLED-05A(商品名)を装備して測定した。二本鎖核酸の融点(Tm)の測定は、100mM塩化ナトリウムを含む50mMリン酸ナトリウム緩衝液(pH=7.0)中において、最終二本鎖濃度2.5μMで行った。試料の吸光度は、波長260nmで測定し、10℃から90℃の範囲において、0.5℃/minの速度で加熱しながら追跡した。これにより観測された特性から、最初に変化が生じた温度を融点Tmとした。
ΦF(S)/ΦF(R)=[A(S)/A(R)]×[(Abs)(R)/(Abs)(S)]×[n(S) 2/n(R) 2] (1)
上記式(1)中、ΦF(S)は、試料(Sample)の蛍光量子収率であり、ΦF(R)は、対照物質(Reference)の蛍光量子収率である。A(S)は、試料の蛍光スペクトル面積であり、A(R)は、対照物質の蛍光スペクトル面積である。(Abs)(S)は、励起波長における試料溶液の光学密度であり、(Abs)(R)は、励起波長における対照物質溶液の光学密度である。n(S)は、試料溶液の屈折率であり、n(R)は、対照物質溶液の屈折率であり、n(S)=1.333およびn(R)=1.383として計算した。
下記スキーム1にしたがって、2つの活性アミノ基がそれぞれトリフルオロアセチル基で保護された化合物102および103を合成(製造)し、さらに、ホスホロアミダイト104を合成した。
出発原料の(E)-5-(2-カルボキシビニル)-2'-デオキシウリジン((E)-5-(2-carboxyvinyl)-2'-deoxyuridine、化合物101)は、Tetrahedron 1987, 43, 20, 4601-4607に従って合成した。すなわち、まず、430mgの酢酸パラジウム(II)(FW224.51)と1.05gのトリフェニルホスフィン(FW262.29)に71mLの1,4-ジオキサンを加え、さらに7.1mLのトリエチルアミン(FW101.19, d=0.726)を加え、70℃で加熱撹拌した。反応溶液が赤褐色から黒褐色に変化したら14.2gの2'-デオキシ-5-ヨードウリジン(FW354.10)と7.0mLのアクリル酸メチル(FW86.09,d=0.956)を1,4-ジオキサンに懸濁させたものを加え、125℃で1時間加熱還流させた。その後、熱いうちにろ過し、メタノールで残さを洗浄し、ろ液を回収した。そのろ液から溶媒を減圧留去した後、シリカゲルカラムで生成物を精製した(5-10% メタノール/ジクロロメタン)。集めたフラクションの溶媒を減圧留去し、残った白色固体を減圧下で乾燥した。その乾燥固体に約100mLの超純水を加え、3.21gの水酸化ナトリウム(FW40.00)を加え、25℃で終夜撹拌した。その後、濃塩酸を加えて溶液を酸性にし、生じた沈殿をろ過、超純水で洗浄し、減圧下で乾燥した。これにより、目的化合物(化合物101)8.10g(収率68%)を白色粉末として得た。なお、前記白色粉末が目的化合物101であることは、1HNMR測定値が文献値と一致することから確認した。また、13CNMR測定値を以下に記す。
13CNMR(DMSO-d6):δ168.1, 161.8, 149.3, 143.5, 137.5, 117.8, 108.4, 87.6, 84.8, 69.7, 60.8, 40.1.
-ビニル)-2'-デオキシウリジン(化合物102):
1HNMR(CD3OD):δ8.35(s,1H), 7.22(d, J=15.6Hz, 1H), 7.04(d, J=15.6Hz, 1H), 6.26(t, J=6.6Hz, 1H), 4.44-4.41(m, 1H), 3.96-3.94(m, 1H), 3.84(dd, J=12.2, 2.9Hz, 1H), 3.76(dd, J=12.2, 3.4Hz, 1H), 3.37-3.30(m, 6H), 2.72-2.66(m, 6H), 2.38-2.23(m, 2H).13CNMR(CD3OD):δ169.3, 163.7, 159.1(q,J=36.4Hz), 151.2, 143.8, 134.3, 122.0, 117.5(q,J=286Hz), 110.9, 89.1, 87.0, 71.9, 62.5, 54.4, 53.9, 41.7, 38.9, 38.7. HRMS(ESI) calcd for C22H29F6N6O8 ([M+H]+) 619.1951, found 619.1943.
化合物102の5'-水酸基をDMTr基で保護し、化合物103を得た。すなわち、まず、618mgの化合物102(分子量618.48)と373mgの4,4'-ジメトキシトリチルクロリド(分子量338.83)を撹拌子の入ったナスフラスコに入れ、10mLのピリジンを加えて、25°で16時間撹拌した。少量の水を加え、溶媒を留去し、シリカゲルカラムで精製した(2-4% MeOH, 1% Et3N/CH2Cl2)。目的化合物103を含むフラクションの溶媒を留去し、735.2mg(79.8%)の目的物質(化合物103)を得た。以下に、化合物103の機器分析値を示す。また、図3に、1HNMRスペクトル図を示す。
1HNMR(CD3OD):δ7.91(s, 1H), 7.39-7.11(m, 9H), 7.02(d, J=15.6Hz, 1H), 6.93(d, J=15.6Hz, 1H), 6.80-6.78(m, 4H), 6.17(t, J=6.6Hz, 1H), 4.38-4.35(m, 1H), 4.06-4.04(m, 1H), 3.68(s, 6H), 3.32-3.22(m, 8H), 2.66-2.55(m, 6H), 2.40(ddd, J=13.7, 5.9, 2.9Hz, 1H), 2.33-2.26(m, 1H).13CNMR(CD3OD):δ168.9, 163.7, 160.1, 159.1(q, J=36.9Hz), 151.0, 146.1, 143.0, 137.0, 136.9, 134.1, 131.24, 131.16, 129.2, 128.9, 128.0, 122.5, 117.5(q, J=286.7Hz), 114.2, 110.9, 88.1, 87.9, 87.6, 72.6, 65.0, 55.7, 54.2, 53.9, 41.7, 38.9, 38.6. HRMS(ESI) calcd for C43H47F6N6O10([M+H]+) 921.3258, found 921.3265.
188mg(0.20mmol)の化合物103(分子量920.85)をCH3CNと共沸させ、28.6mg(0.40mmol)の1H-テトラゾール(分子量70.05)を加え、真空ポンプで一晩吸引乾燥した。5.1mLのCH3CNを加えて試薬を溶解後、撹拌し、194μL(0.60mmol)の2-シアノエチル-N,N,N',N'-テトライソプロピルホスホロアミダイト(分子量301.41, d=0.949)を一気に加え25℃で2時間撹拌した。50mLの酢酸エチルと50mLの飽和重曹水を混合したものを加え、分液し、有機層を飽和食塩水で洗浄後、硫酸マグネシウムで乾燥した。硫酸マグネシウムをろ過により除去した後、溶媒を留去した。この分液による粗生成物をCH3CN共沸後、収率100%で生成物(化合物104)を得たと仮定して0.1MのCH3CN溶液とし、DNA合成に使用した。なお、化合物104が得られていることは、前記粗生成物の31PNMR(CDCl3)とHRMS(ESI)から確認した。これらの値を以下に示す。
31PNMR(CDCl3) δ 149.686, 149.430; HRMS (ESI) calcd for C52H64F6N8O11P([M+H]+) 1121.4336, found 1121.4342.
TTTTTT[105]TTTTTT, calcd for C138H187N30O90P12 ([M + H]+) 4077.8, found 4076.9;
TGAAGGGCTT[105]TGAACTCTG, calcd for C205H265N77O122P19 ([M+H]+) 6348.2, found 6348.7;
GCCTCCT[105]CAGCAAATCC[105]ACCGGCGTG, calcd for C285H376N108O169P27 ([M+H]+) 8855.0, found 8854.8;
CCTCCCAAG[105]GCTGGGAT[105]AAAGGCGTG, calcd for C289H376N116O168P27 ([M+H]+) 8999.1, found 9002.2.
まず、N-メチルキノリニウムヨージド(化合物111)を、前記文献の記載に従って合成した。具体的には、無水ジオキサン42mL中に、キノリン2.4mLとヨウ化メチル4mLを加え、150℃で1時間撹拌した後、ろ過によって沈殿物を集め、エーテル及び石油エーテルで洗浄、乾燥し、N-メチルキノリニウムヨージド(化合物111)を得た。
8mLの2-メチルベンゾチアゾール(FW149.21, d=1.173)と9.4gの5-ブロモ吉草酸(5-ブロモペンタン酸)(FW181.03)を110℃で16時間撹拌した。粗生成物を室温に冷却し、生じた固体をメタノール20mLに懸濁させ、さらにエーテル40mLを加えた。生じた沈殿をろ過し、ジオキサンで2-メチルベンゾチアゾールの匂いがなくなるまで洗浄し、エーテルでさらに洗浄し、減圧下で乾燥して9.8gの白色粉末を得た。この白色粉末の1HNMRを測定したところ、2位がアルキル化された目的物3-(4-カルボキシブチル)-2-メチルベンゾチアゾリウム ブロミド(化合物112)と、2位がアルキル化されていない3-(4-カルボキシブチル)-ベンゾチアゾリウム ブロミドとの混合物であった。プロトンのピーク比は、アルキル化されていないもの:アルキル化されたもの=10:3であった。この粗生成物を、そのまま次の反応に用いた。
上記(2)で得られた、3-(4-カルボキシブチル)-2-メチルベンゾチアゾリウム ブロミド(化合物112)を含む粗生成物2.18gと、700mgのN-メチルキノリニウムヨージド(化合物111)(FW271.10)を、3.6mLのトリエチルアミン(FW101.19, d=0.726)存在下、10mLの塩化メチレン中、25℃で2時間撹拌した。その後、エーテル50mLを加え、生じた沈殿を濾取し、エーテルで洗浄し、減圧下で乾燥した。その沈殿を超純水50mLに懸濁させ、濾取し、超純水で洗浄し、減圧下で乾燥した。さらに前記沈殿をアセトニトリル50mLに懸濁させ、濾取し、アセトニトリルで洗浄し、減圧下で乾燥させて307.5mgの赤色粉末を得た(収率25.3%)。この赤色粉末が目的物(化合物107)であることは、1HNMRスペクトルを文献値と対比して確認した。
4, 45.6, 42.0, 35.5, 26.2, 22.3; HRMS (ESI) calcd for C23H23N2O2S ([M
.Br]+) 391.1480, found 391.1475.
(3-カルボキシプロピル)ベンゾ[d]チアゾール-2(3H)-イリデン)メチル)-1-メチルキノリ
ニウムブロミドを、前記3-(4-カルボキシプロピル)-2-メチルベンゾチアゾリウム ブロ
ミドと2-メチルベンゾチアゾリウム ブロミドの混合物から上記化合物107と同様の方
法で合成したところ、収率43%で得られた。以下に、機器分析値を示す。
1HNMR (DMSO-d6) δ 8.85 (d, J=8.3Hz, 1H), 8.59 (d, J=7.3Hz, 1H), 8.02.7.93 (m, 3H), 7.78.7.70 (m, 2H), 7.61.7.57 (m, 1H), 7.42.7.38 (m, 1H), 7.31 (d, J=6.8Hz, 1H), 7.04 (s, 1H), 4.47 (t, J=8.1Hz, 2H), 4.13 (s, 3H), 2.52.2.48 (m, 2H), 1.99.1.92 (m, 2H); 13CNMR (DMSO-d6, 60℃) δ 174.3, 158.9, 148.6, 144.5, 139.5, 137.7, 132.7, 127.9, 126.7, 125.6, 124.1, 124.0, 123.7, 122.5, 117.5, 112.5, 107.6, 87.7, 45.6, 42.0, 31.6, 22.4; HRMS (ESI) calcd for C22H21N2O2S ([M.Br]+) 377.1324, found 377.1316.
1HNMR(DMSO-d6) δ 8.70 (d, J=8.3Hz, 1H), 8.61(d, J=6.8Hz, 1H), 8.05.8.00(m, 3H), 7.80.7.73(m, 2H), 7.60.7.56(m, 1H), 7.41.7.35(m, 2H), 6.89(s, 1H), 4.59(t, J=7.3Hz, 2H), 4.16(s, 3H), 2.19(t, J=7.3Hz, 1H), 1.82.1.75(m, 2H), 1.62.1.43(m, 4H); 13CNMR (DMSO-d6, 60℃) δ 174.5, 159.0, 148.6, 144.7, 139.7, 137.8, 132.9, 127.9, 126.9, 125.2, 124.2, 123.8, 123.6, 122.6, 117.8, 112.6, 107.7, 87.4, 45.6, 42.1, 36.0, 26.3, 25.9, 24.9; HRMS(ESI) calcd for C24H25N2O2S ([M.Br]+) 405.1637, found 405.1632.
1HNMR(DMSO-d6) δ 8.72(d, J=8.3Hz, 1H), 8.62(d, J=6.8Hz, 1H), 8.07.8.01(m, 3H), 7.81.7.75(m, 2H), 7.62.7.58(m, 1H), 7.42.7.38(m, 2H), 6.92(s, 1H), 4.61(t, J=7.3Hz, 2H), 4.17(s, 3H), 2.18(t, J=7.3Hz, 1H), 1.82.1.75(m, 2H), 1.51.1.32(m, 6H); 13CNMR(DMSO-d6, 60℃) δ 174.0, 159.1, 148.6, 144.7, 139.8, 137.8, 132.9, 127.9, 126.8, 125.0, 124.2, 123.8, 123.6, 122.6, 118.0, 112.7, 107.8, 87.4, 45.5, 42.1, 33.4, 27.9, 26.4, 25.5, 24.1; HRMS(ESI) calcd for C25H27N2O2S ([M.Br]+) 419.1793, found419.1788.
9.4mg(20μmol)の1-メチル-4-[{3-(4-カルボキシブチル)-2(3H)-ベンゾチアゾリリデン}メチル]キノリニウム ブロミド(化合物107)(FW471.41)、4.6mg(40μmol)のN-ヒドロキシコハク酸イミド(化合物108)(FW115.09)、および7.6mg(40μmol)のEDC(1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩)(FW191.70)を、1mLのDMF中において25℃で16時間撹拌し、色素(化合物107)のカルボキシ基が活性化されたN-ヒドロキシスクシンイミジルエステル(化合物109)を得た。この反応生成物は、精製せず、反応溶液(色素20mM)をそのままオリゴマーDNA(オリゴヌクレオチド)105との反応に使用した。
二つの活性アミノ基を有するDNAオリゴマー(オリゴヌクレオチド)105は、前記実施例4と同様に、DNA自動合成機により通常の方法で合成した。化合物105の配列は、実施例4と同じく5'-d(CGCAATXTAACGC)-3'(Xは前記化合物104)を用いた。次に、このDNAオリゴマー(オリゴヌクレオチド)105を、N-ヒドロキシスクシンイミジルエステル(化合物109)と反応させ、チアゾールオレンジから誘導される構造を1分子中に2箇所有するDNAオリゴマー(オリゴヌクレオチド)110を合成した。すなわち、まず、30μLの5'-d(CGCAATXTAACGC)-3'(化合物105、ストランド濃度320μM)と10μLのNa2CO3/NaHCO3 buffer(1M, pH9.0)と60μLのH2Oを混合し、N-ヒドロキシスクシンイミジルエステル(化合物109)のDMF溶液(20mM)100μLを加え、よく混合した。25℃で16時間静置した後、800μLのH2Oを加え、0.45μmのフィルターに通し、逆相HPLCで約14.5分に現れたピークを精製した(CHEMCOBOND 5-ODS-H 10×150mm、3mL/min、5-30% CH3CN/50mM TEAAバッファー(20分)、260nmで検出)。図7に、逆相HPLCのチャートを示す。矢印のピークで表されるフラクションを分取・精製した。このHPLC精製で得られた生成物をMALDI TOFマスのネガティブモードにより測定したところ、4848.8にピークが見られ、DNAオリゴマー(オリゴヌクレオチド)110であることが確認された。図8に、DNAオリゴマー(オリゴヌクレオチド)110のMALDI TOF MASSスペクトルを示す。同図中、矢印は、前記精製した生成物由来のマスピーク(4848.8)である。このピーク値は、正電荷を2つ有するDNAオリゴマー(オリゴヌクレオチド)110の分子M(C180H220N56O78P12S2)から3つのプロトンが抜けた[M2+-3H+]-の計算値4848.8と一致した。また、左右のピークは、標準物質として加えたDNAのT8量体とT18量体由来のピークである。
実施例6で精製したDNAオリゴマー(オリゴヌクレオチド)110(色素が2分子ついたDNA)を脱塩し、凍結乾燥した後、水溶液とし、UV吸収により濃度決定した(XはTと近似)。その後、ストランド濃度2.5μM、リン酸バッファー50mM(pH7.0)、そしてNaCl 100mMの条件で、蛍光プローブ(DNAオリゴマー110)が一本鎖状態のとき、DNA-DNA二重らせんのとき、そしてDNA-RNA二重らせんのそれぞれについてUV測定を行った。図9に、これら3つのサンプルのスペクトルを示す。同図中、点線は蛍光プローブ一本鎖状態のスペクトルを示し、太線はDNA-DNA二重らせんのスペクトルを示し、細線はDNA-RNA二重らせんのスペクトルを示す。図示の通り、二重らせん形成することにより500nm付近のUV吸収の極大波長が移動した。なお、図9および他の全てのUV吸収スペクトル図において、横軸は波長(nm)を示し、縦軸は吸光度を示す。
下記化学式113で表される化合物(DNAオリゴマー)を、リンカー長nを種々変化させて合成した。合成は、原料の5-ブロモ吉草酸(5-ブロモペンタン酸)を、リンカー長に合わせて炭素数(鎖長)を変えた化合物とする以外は前記実施例1〜4および6と同様に行った。本実施例においては、下記化合物113の配列は、5'-d(CGCAATXTAACGC)-3'(Xは、色素導入部分)とした。さらに、それぞれを、実施例7と同様に蛍光プローブとして使用し、蛍光測定により性能を評価した。その結果、以下に示すリンカーの長さの範囲内であれば、プローブ一本鎖に比べて約10倍近くまたはそれ以上の蛍光増大が、標的核酸とのハイブリダイゼーションによって得られることが確認された。また、プローブと標的核酸によって得られる二本鎖は、天然配列の二本鎖より高い熱的安定性を示した。
5'-d(CGCAATTTAACGC)-3'/5'-r(GCGUUAAAUUGCG)-3' Tm(℃) 46
測定条件:プローブ(化合物113)2.5μM、リン酸バッファー 50mM(pH7.0)、NaCl 100mM、相補鎖 2.5μM
蛍光の極大波長は488nm(1.5nm幅)の光で励起した場合の値。
量子収率は9,10-ジフェニルアントラセンを参照物質として計算した。
下記化学式114で表される、1分子中に色素構造1個のみを含む化合物(DNAオリゴマー)を、リンカー長nを種々変化させて合成した。合成は、原料の5-ブロモ吉草酸(5-ブロモペンタン酸)を、リンカー長に合わせて炭素数(鎖長)を変えた化合物とすることと、化合物102合成においてトリス(2-アミノエチル)アミンに代えてビス(2-アミノエチル)メチルアミンを用いること以外は前記実施例1〜4および6と同様に行った。n=3、4、5、6の化合物を、それぞれ同様にして合成することができた。
1.19g(4.0mmol)の(E)-5-(2-カルボキシビニル)-2'-デオキシウリジン 101(分子量298.25)と921mg(8.0mmol)のN-ヒドロキシスクシンイミド(分子量115.09)と1.53g(8.0mmol)の1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド(分子量191.70)を撹拌子の入ったナスフラスコに入れ、1.0mLのDMFを加えて、25℃で8時間撹拌した。約1mLの酢酸を加え、250mLの塩化メチレンと250mLの超純水を加え、激しく撹拌した。生じた沈殿をろ過し、水で洗浄し、減圧下で終夜乾燥した。得られた白色残渣を100mLのアセトニトリルに懸濁させ、激しく撹拌した。そこに2.34g(20mmol)のN-メチル-2,2'-ジアミノジエチルアミン(分子量146.23, d=0.976)を一気に加え、25℃でさらに10分間撹拌した。その後、4.8mL(40mmol)のトリフルオロ酢酸エチル(分子量142.08, d=1.194)、5.6mL(40mmol)のトリエチルアミン(分子量101.19, d=0.726)および50mLのエタノールを加え、25℃で16時間撹拌した。得られた混合物から溶媒を減圧留去し、シリカゲルカラムで精製した(10-20% MeOH/CH2Cl2)。目的物を含むフラクションから溶媒を減圧留去し、少量のアセトンに溶解させ、エーテルを加えると白色沈殿を生じた。ろ過、エーテルで洗浄後、減圧下で乾燥し、750mg(76%)の目的物質(化合物102’)を白色粉末として得た。以下に、機器分析値を示す。
1HNMR(CD3OD) δ 8.29(s, 1H), 7.17(d, J=15.6Hz, 1H), 6.97(d, J=15.6Hz, 1H), 6.21(t, J=6.3Hz, 1H), 4.40.4.36(m, 1H), 3.92.3.90(m, 1H), 3.80(dd, J=11.7, 2.9Hz, 1H), 3.72(dd, J=11.7, 3.4Hz, 1H), 3.37.3.25(m, 5H), 2.60.2.53(m, 5H), 2.33.2.19(m, 5H); 13CNMR(CD3OD) δ 169.2, 158.7 (q, J=36.4Hz), 151.2, 143.7, 143.6, 134.1, 122.2, 117.5 (q, J=286.2Hz), 111.0, 89.2, 87.0, 72.1, 62.6, 57.4, 56.7, 42.4, 41.8, 38.5, 38.3; HRMS(ESI) calcd for C19H27F3N5O7 ([M+H]+) 494.1863, found 494.1854.
まず、296mg(0.60mmol)の化合物102’(分子量494.19)と224mg(0.66mmol)の4,4'-ジメトキシトリチルクロリド(分子量338.83)を撹拌子の入ったナスフラスコに入れ、4mLのピリジンを加えて、25℃で2時間撹拌した。1mLの水を加え、溶媒を減圧留去し、シリカゲルカラムで精製した(1.5% MeOHおよび1% Et3N/CH2Cl2)。目的とする102’のトリチル化物(104’の中間体)を含むフラクションを濃縮し、残渣に飽和炭酸水素ナトリウム水溶液を加えた。その混合物を酢酸エチルで抽出し、飽和食塩水で洗浄し、減圧下で乾燥して、白色泡状のトリチル化物(366mg, 77%)を得た。
31PNMR(CDCl3) δ 149.686, 149.393; HRMS(ESI) calcd for C49H61F3N7O10P([M+H]+) 996.4248, found 996.4243.
CGCAAT[105’]TAACGC, calcd for C133H174N51O76P12([M+H]+) 4074.8, found 4072.0; CGCAAT[105’][105’]AACGC, calcd for C140H187N54O77P12([M+H]+) 4230.0, found 4228.9.
CGCAAT[114](4)TAACGC, calcd for C156H194N53O77P12S(M+) 4447.3, found 4445.6; CGCAAT[114](4)[114](4)AACGC, calcd for C186H228N58O79P12S2([M.H]+) 4976.0, found 4976.9.
蛍光の極大波長は488nm(1.5nm幅)の光で励起した場合の値である。
量子収率は9,10-ジフェニルアントラセンを参照物質として計算した。
色素として、前記化合物107に代えて下記化学式115で表される化合物を用いる以外は実施例9と同様にして、1分子中に色素構造1個のみを含む化合物(DNAオリゴマー)を合成した。合成は、リンカー長nを1〜4まで種々変化させて行った。配列は、前記化合物105と同じく5'-d(CGCAATXTAACGC)-3'(Xは色素導入部分)とした。
実施例8(色素2個)および実施例9(色素1個)のDNAオリゴマー(オリゴヌクレオチド)について、一本鎖の場合と二本鎖DNAの場合とで、それぞれ蛍光寿命を測定した。測定対照のDNAオリゴマーは、下記配列中Xの箇所に色素導入ヌクレオチドが入っている。
5'-d(CGCAATXTAACGC)-3' (配列番号1)
5'-d(GCGTTAAATTGCG)-3' (配列番号2)
リン酸バッファー50mM(pH7.0)
NaCl 100mM
455nm(prompt)600nm(decay)で測定した。
色素として、前記化合物107に代えて下記化学式115’で表される化合物を用いる以外は実施例8と同様にして、下記化学式117で表されるDNAオリゴマーを合成した。n=3、4、5、6の化合物を、それぞれ同様にして合成することができた。さらに、実施例8と同様にして蛍光プローブとして使用し、蛍光測定により性能を評価した。下記表4に、その結果を示す。表4に示すとおり、化合物117は、実施例8のDNAオリゴマー(化合物113)とは吸収帯が異なるが、同様に良好なエキシトン効果を示した。このことは、本発明において、吸収帯が異なる蛍光プローブを用いてマルチカラーでの検出が可能であることを示す。
下記配列で表されるDNAオリゴマー(化合物118)を合成した。Xは、実施例9と同様の色素構造を有するヌクレオチド(下記式:化学式118とする)である。下記配列が示すとおり、このDNAオリゴマーは、色素導入ヌクレオチドが2つ連続して配列されている。色素の導入およびDNAオリゴマーの合成は、前記各実施例と同様の手法により行った。
5'-d(TTTTTTXXTTTTT)-3' (配列番号3)
プローブ2.5μM(ストランド濃度)
リン酸バッファー50mM(pH7.0)
NaCl 100mM
相補鎖2.5μM(ストランド濃度)
前記化学式113または114で表される化合物(DNAオリゴマー)すなわち下記表5に示す各ODNを、リンカー長nおよび核酸配列を種々変化させて合成した。なお、「ODN」とは、前述の通り、オリゴDNA(DNAオリゴマー)を意味する。合成は、原料の5-ブロモ吉草酸(5-ブロモペンタン酸)を、リンカー長に合わせて炭素数(鎖長)を変えた化合物とすることと、オリゴDNA合成において配列を適宜変更すること以外は、前記実施例1〜4、6、8、9または12と同様に行った。なお、ODN1は、実施例8で合成したオリゴDNA(DNAオリゴマー)と同じであり、ODN4およびODN5は、実施例9で合成したオリゴDNA(DNAオリゴマー)と同じである。合成において、チアゾールオレンジのN-ヒドロキシスクシンイミジルエステル(化合物109)は、活性アミノ基の50当量またはそれ以上用いた。合成後、逆相HPLCにおける展開時間は、必要に応じ、20〜30分間またはそれ以上とした。なお、以下において、例えば、[113](n)または[114](n)は、その位置に、化学式113または114で表されるヌクレオチドが挿入されていることを示す。nはリンカー長である。また、下記表5において、ODN1'は、ODN1に相補的なDNA鎖を示す。同様に、ODN2'はODN2に相補的なDNA鎖を示し、ODN3'は、ODN3に相補的なDNA鎖を示す。
ODN1(n=5), CGCAAT[113](5)TAACGC, calcd for C182H221N56O78P12S2 ([M.H]+) 4876.8, found 4875.6;
ODN1(n=6), CGCAAT[113](6)TAACGC, calcd for C184H225N56O78P12S2 (([M.H]+) 4904.9, found 4903.6;
ODN2, TTTTTT[113](4)TTTTTT, calcd for C184H227N34O92P12S2 ([M.H]+) 4822.8, found 4821.4;
ODN3, TGAAGGGCTT[113](4)TGAACTCTG, calcd for C251H305N81O124P19S2 ([M.H]+) 7093.2, found 7092.3;
ODN(anti4.5S), GCCTCCT[113](4)CAGCAAATCC[113](4)ACCGGCGTG, calcd for C377H456N116O173P27S4 ([M.3H]+) 10344.9, found 10342.7;
ODN(antiB1),CCTCCCAAG[113](4)GCTGGGAT[113](4)AAAGGCGTG, calcd for C381H456N124O172P27S4 ([M.3H]+) 10489.0, found 10489.8.
b488nmで励起
cλmaxで励起(λmaxが2つあるときは、長波長側のλmaxで励起)
d二本鎖状態と一本鎖状態とのλemにおける蛍光強度比
図18(a)は、ODN1(n=4)(2.5μM)の測定結果を示す。励起スペクトルは、ssにおいては波長534nmの発光強度を測定し、dsにおいては波長528nmの発光強度を測定した。発光スペクトルは、ssにおいては波長519nmで励起し、dsにおいては波長514nmで励起して測定した。
図18(b)は、ODN2の測定結果を示す。ストランド濃度は、左側のグラフにおいては2.5μMであり、右側のグラフにおいては1μMである。励起スペクトルは、ssにおいては波長534nmの発光強度を測定し、dsにおいては波長537nmの発光強度を測定した。発光スペクトルは、ssにおいては波長517nmで励起し、dsにおいては波長519nmで励起して測定した。
図18(c)は、ODN3の測定結果を示す。ストランド濃度は2.5μMである。励起スペクトルは、ssにおいては波長535nmの発光強度を測定し、dsにおいては波長530nmの発光強度を測定した。発光スペクトルは、ssにおいては波長518nmで励起し、dsにおいては波長516nmで励起して測定した。
図19(a)は、ODN1(n=3)(2.5μM)の測定結果を示す。励起スペクトルは、ssにおいては波長537nmの発光強度を測定し、dsにおいては波長529nmの発光強度を測定した。発光スペクトルは、ssにおいては波長521nmで励起し、dsにおいては波長511nmで励起して測定した。
図19(b)は、ODN1(n=5)(2.5μM)の測定結果を示す。励起スペクトルは、ssにおいては波長538nmの発光強度を測定し、dsにおいては波長529nmの発光強度を測定した。発光スペクトルは、ssにおいては波長520nmで励起し、dsにおいては波長512nmで励起して測定した。
図19(c)は、ODN1(n=6)の測定結果を示す。ストランド濃度は2.5μMである。励起スペクトルは、ssにおいては波長536nmの発光強度を測定し、dsにおいては波長528nmの発光強度を測定した。発光スペクトルは、ssにおいては波長523nmで励起し、dsにおいては波長514nmで励起して測定した。
前記ODN1(n=4)の吸収スペクトルを、種々の温度および濃度で測定し、温度および濃度が吸収帯に及ぼす影響を確認した。図20の吸収スペクトル図に、その結果を示す。同図(a)および(b)において、横軸は波長であり、縦軸は吸光度である。各測定は、100mM塩化ナトリウムを含む50mMリン酸ナトリウム緩衝液(pH=7.0)中のODN1(n=4)を試料として行った。
図20(a)は、溶液温度を変化させた際の吸収スペクトル変化を示す。ODN濃度は2.5μMである。スペクトルは、10℃から90℃まで10℃間隔で測定した。
図20(b)は、溶液濃度を変化させた際の吸収スペクトル変化を示す。測定温度は25℃である。ODN濃度は、0.5, 0.75, 1.0, 1.2, 1.5, 2.0, 2.5, 3.0, 4.0,および5.0μMである。
また、挿入図は、波長479nmにおける吸光度の対数(縦軸)と、波長509nmにおける吸光度の対数(横軸)との関係を示すグラフである。
ODN1(n=4)/ODN1'のCDスペクトルを測定した。ストランド濃度は2.5μMとし、100mM塩化ナトリウムを含む50mMリン酸ナトリウム緩衝液(pH=7.0)中、25℃で測定した。図21のCDスペクトル図に、その測定結果を示す。同図において、横軸は波長(nm)であり、縦軸は角度θである。図示の通り、ODN1(n=4)/ODN1'二本鎖は、450〜550nmにおいて、分裂型のコットン効果(split-Cotton effect)を示した。すなわち、測定されたCD対は、チアゾールオレンジ色素がDNA二本鎖にインターカレーションする際の典型的なパターンを示した。すなわち、ODN1(n=4)の色素部分が、形成された二本鎖DNAにインターカレーションし、二色性会合体(H会合体)の形成が強力に妨げられたと考えられる。このCD測定の結果は、前記Tm測定結果とあわせ、ODN1(n=4)における色素部分が二本鎖DNAに結合する際に、2つの色素部分がともに主溝にインターカレーションし、熱的に安定な二本鎖構造を形成することを示唆する。ただし、この理論的考察は、本発明を限定するものではない。形成される二本鎖構造が熱的に安定であることは、本発明のプローブ(核酸)が、相補的配列の検出に効果的に使用可能であることを示す。
前記ODN5(CGCAAT[114](4)[114](4)AACGC)について、二本鎖状態と一本鎖状態の吸収スペクトル、励起スペクトルおよび発光スペクトルを測定した。下記表7および図22に、その結果を示す。
b488nmで励起
cλmaxで励起(λmaxが2つあるときは、長波長側のλmaxで励起)
d二本鎖状態と一本鎖状態とのλemにおける蛍光強度比
ODN1(n=4)を相補的なODN1'とハイブリダイゼーションさせたときの蛍光を、肉眼で測定した。図23に、その測定結果を示す。同図左のセルは、ODN1(n=4)一本鎖を含むセルであり、同図右のセルは、ODN1(n=4)/ODN1'二本鎖を含むセルであり、それぞれ、150Wハロゲンランプ照射後の状態を示す。各セル中のストランド濃度はそれぞれ2.5μMであり、リン酸バッファー(リン酸ナトリウム緩衝液)50mM(pH7.0)およびNaCl 100mMを含む。図示の通り、150Wハロゲンランプ照射後は、ODN1(n=4)一本鎖を含む図左のセルはほとんど蛍光発光しなかったが、ODN1(n=4)/ODN1'二本鎖を含む図右のセルは、きわめて明確に淡緑色の蛍光を示した。また、相補的DNA鎖ODN1'を対応する相補的RNA鎖に代えても同様の結果が得られた。さらに、ODN2とODN2’においても同様の結果が得られた。さらに、ODN2とODN2’の場合において、ODN2’を対応する相補的RNA(A13量体)に変えても同様の結果が得られた。なお、これらの場合のストランド濃度は5μMであった。また、その他、前記表6の全てのODNについて同様の結果が得られた。このように、本実施例のODNによれば、ハイブリダイゼーションに依存して蛍光強度が明確に変化するため、ハイブリダイゼーション可能な標的配列の裸眼による判定が容易であった。このことは、これらODNが、可視的な遺伝子分析に有用であることを示す。
色素として、前記化合物107に代えて下記化学式119で表される化合物を用いる以外は実施例8と同様にして、下記化学式120で表されるDNAオリゴマーを合成した。
キュベット中で、前記ODN2(配列5'-d(TTTTTT[113](4)TTTTTT)-3')と、それに対応する相補的RNA鎖(RNA A13mer)との二本鎖ODNを形成させ、蛍光発光スペクトルを測定した。さらに、そこにRNase Hを添加し、スペクトルの変化を観察した。図25に、その結果を示す。同図において、横軸は時間であり、縦軸は蛍光強度である。図中、黒線は、途中でRNase Hを添加した前記二本鎖ODNのスペクトル変化を示し、灰色の線は、対照、すなわちRNase Hを添加しなかった前記二本鎖ODNのスペクトル変化を示す。測定は、37℃で攪拌しながら、前記蛍光分光器を用いて行った。図示の通り、RNase Hを添加すると、前記ODN2とハイブリダイゼーションしているRNAが消化され、前記ODN2が一本鎖に戻ることにより、蛍光強度が次第に減少した。このことからも、本発明のプローブ(核酸)が、蛍光による相補的RNA検出に有用であることが確認された。
前記ODN1(n=4)(配列5'-d(CGCAAT[113](4)TAACGC)-3')に対し、相補的DNA鎖であるODN1'(配列5'-d(GCGTTAAATTGCG)-3')の濃度比を変化させて蛍光発光強度の変化を観測した。測定条件としては、ODN1(n=4)のストランド濃度を1.0μMで固定し、リン酸バッファー 50mM(pH7.0)、NaCl 100mM、励起波長488nm(1.5nm幅)とした。相補鎖ODN1'の濃度は、0、0.2、0.4、0.6、0.8、1.0、1.5、2.0または3.0μMの各濃度でそれぞれ測定した。図26に、その測定結果を示す。同図において、横軸は、ODN1(n=4)に対するODN1'の当量数を示す。縦軸は、蛍光のλmax(529nm)における蛍光発光強度(相対値)を示す。図示の通り、蛍光発光強度は、ODN1'の当量数が1以下では、前記当量数に対し、きわめて高い精度で正比例関係を示したが、前記当量数が1を超えると変化しなかった。このことは、ODN1(n=4)が、ODN1'と正確に1:1の物質量比(分子数比)でハイブリダイゼーションしたことを示す。
今回合成した新規なプローブ(核酸)の、ハイブリダイゼーションによる蛍光特性変化を見るために、前記ODN(antiB1)およびODN(anti4.5S)を用いてドットブロッティングによるDNA解析を行った。標的DNA配列は、B1 RNA配列を含む短鎖DNAフラグメントを用いた。この配列は、げっ歯類ゲノムにおける短分散型核内反復配列の一つである。また、前記短鎖DNAフラグメントは、4.5S RNA配列を含む。この配列は、げっ歯類細胞から単離した低分子核内RNAの一つであり、B1ファミリーと広範な相同性を有する。本実施例では、ブロッティングプローブとしてODN(antiB1)およびODN(anti4.5S)を調製し、これらに2個の[113](4)ヌクレオチドを組み込むことにより、高感度および高蛍光強度を持たせた。なお、ODN(antiB1)およびODN(anti4.5S)の構造は、前記実施例13の表5に記載の通りである。
(1)下記の4.5S RNA配列およびその相補的DNAを含むDNA二本鎖。
5'-d(GCCGGTAGTGGTGGCGCACGCCGGTAGGATTTGCTGAAGGAGGCAGAGGCAGGAGGATCACGAGTTCGAGGCCAGCCTGGGCTACACATTTTTTT)-3' (配列番号11)
(2)下記のB1 RNA配列およびその相補的DNAを含むDNA二本鎖。
5'-d(GCCGGGCATGGTGGCGCACGCCTTTAATCCCAGCACTTGGGAGGCAGAGGCAGGCGGATTTCTGAGTTCGAGGCCAGCCTGGTCTACAGAGTGAG)-3' (配列番号12)
図27(a)は、ナイロン膜上に異なる配列のDNAブロットした状態を示す模式図である。
上段の4つのスポットは、4.5S RNA配列含有DNAを示し、下段の4つのスポットは、B1 RNA含有DNAを示す。
図27(b)は、ODN(anti4.5S)含有溶液にインキュベートした後の蛍光発光を示す図である。
図27(c)は、ODN(antiB1)含有溶液にインキュベートした後の蛍光発光を示す図である。
実施例8におけるリンカー長n=4の色素を含むポリTプローブ(前記ODN2)を、微小ガラス管を用いたマイクロインジェクション法により細胞に導入し、水銀ランプと冷却CCDカメラおよび蛍光フィルターセット(YFP用)を備えた倒立型顕微鏡により蛍光発光を測定した。図28〜30に、その結果を示す。図28は、微分干渉測定のときの写真であり、図29は、蛍光観察時の写真であり、図30は、図28と図29との重ね合わせである。図示の通り、本発明の蛍光プローブ(標識物質)は、細胞内に発現したmRNAのポリA末端配列に結合し発光した。すなわち、本発明の蛍光プローブ(標識物質)は、試験管内遺伝子検出だけでなく、生体内遺伝子検出にも効果的である。
前記ODN2(配列5'-d(TTTTTT[113](4)TTTTTT)-3')に、さらに、一般的な蛍光色素であるCy5を定法により結合させ、さらにそれを前記の方法で細胞に導入した。ここでCy5は前記ODN2を合成する過程において、DNA自動合成機により前記ODN2の5'末端に追加することで結合させた(配列5'-Cy5-d(TTTTTT[113](4)TTTTTT)-3')。蛍光発光はレーザー走査型共焦点顕微鏡により測定した。図31に、その結果を示す。図31Aは、633nmにより励起し650nm以上の蛍光を取得しており、Cy5由来の蛍光を示す。図31Bは、488nmにより励起し505‐550nmの蛍光を取得しており、2つのチアゾールオレンジ部分に由来する蛍光を示す。図示の通り、ODN2は、細胞内に発現したmRNAのポリA末端配列に結合し発光した。これにより、細胞内mRNAの分布を追跡可能であった。本発明の化合物または核酸は、このように、複数種類の色素(蛍光性を示す原子団)を導入してもよい。このようにすれば、例えば、各色素の蛍光のλmaxが異なることにより、マルチカラーによる検出も可能である。
前記ODN2(配列5'-d(TTTTTT[113](4)TTTTTT)-3')を前記の方法で細胞核に注入し、直後(0秒後)から約4分半後まで、蛍光発光を前記レーザー走査型共焦点顕微鏡により追跡した(励起488nm、蛍光取得505-550nm)。図32に、その結果を示す。同図は、11の図に分かれており、左から右へ、および上段から下段へと向かって、ODN2注入後の経過を示す。各図における経過時間(ODN2注入後)は、下記表8の通りである。図示の通り、プローブODN2は、注入直後は細胞核に集中していたが、ハイブリダイズしたmRNA(ポリA)とともに、次第に細胞全体に分散したことが確認された。本発明によれば、このようにしてmRNAを追跡することも可能である。
前記ODN2において、[113](4)の両側のTをそれぞれ24個に増やしたODNを合成した。これをODN7とする。合成は、ODN2の合成方法と同様にして行った。また、ODN7の配列は、5'-d(TTTTTTTTTTTTTTTTTTTTTTTT[113](4)TTTTTTTTTTTTTTTTTTTTTTTT)-3')である(配列番号13)。これを、実施例22と同様の方法で細胞核に注入し、蛍光強度を測定した。図33に、一定時間経過後の蛍光写真を示す。ODN7は、注入直後は細胞核に集中していたが、実施例22と同様、ハイブリダイズしたmRNA(ポリA)とともに、次第に細胞全体に分散し、やがて、図33のように、細胞核周辺に分散した状態となった。
実施例11、16等で述べた通り、本発明の蛍光プローブは、吸収波長、発光波長等を変化させることで、マルチカラーによる相補鎖検出が可能である。このマルチカラーによる検出は、例えば、前記化合物113、117および120のように、色素(蛍光性を示す原子団)部分の構造を変化させることにより達成可能である。本実施例では、さらに多種類の蛍光プローブを合成(製造)し、マルチカラーによる相補鎖検出を行った。
Claims (39)
- モノヌクレオシドまたはモノヌクレオチドから誘導される構造を有する化合物であって、
前記構造が下記式(1)、(1b)または(1c)で表される化合物、その互変異性体若しくは立体異性体、またはそれらの塩。
前記式(1)、(1b)および(1c)中、
Bは、天然核酸塩基(アデニン、グアニン、シトシン、チミンまたはウラシル)骨格または人工核酸塩基骨格を有する原子団であり、
Eは、
(i)デオキシリボース骨格、リボース骨格、もしくはそれらのいずれかから誘導される構造を有する原子団、または
(ii)ペプチド構造もしくはペプトイド構造を有する原子団であり、
Z11およびZ12は、それぞれ、水素原子、保護基、または蛍光性を示す原子団であり、同一でも異なっていてもよく、
Qは、
Eが前記(i)の原子団である場合はOであり、
Eが前記(ii)の原子団である場合はNHであり、
Xは、
Eが前記(i)の原子団である場合は、水素原子、酸で脱保護することが可能な水酸基の保護基、リン酸基(モノホスフェート基)、二リン酸基(ジホスフェート基)、または三リン酸基(トリホスフェート基)であり、
Eが前記(ii)の原子団である場合は、水素原子またはアミノ基の保護基であり、
Yは、
Eが前記(i)の原子団である場合は、水素原子、水酸基の保護基、またはホスホロアミダイト基であり、
Eが前記(ii)の原子団である場合は、水素原子または保護基であり、
L1、L2およびL3は、それぞれ、リンカー(架橋原子または原子団)であり、主鎖長(主鎖原子数)は任意であり、主鎖中に、C、N、O、S、PおよびSiを、それぞれ含んでいても含んでいなくても良く、主鎖中に、単結合、二重結合、三重結合、アミド結合、エステル結合、ジスルフィド結合、イミノ基、エーテル結合、チオエーテル結合およびチオエステル結合を、それぞれ含んでいても含んでいなくても良く、L1、L2およびL3は、互いに同一でも異なっていても良く、
Dは、CR、N、P、P=O、BもしくはSiRであり、Rは、水素原子、アルキル基または任意の置換基であり、
bは、単結合、二重結合もしくは三重結合であるか、
または、前記式(1)中、L1およびL2は前記リンカーであり、L3、Dおよびbは存在せず、L1およびL2がBに直接結合していてもよく、
前記式(1b)中、Tは、
Eが前記(i)の原子団である場合は、リン酸架橋(PO4 −)であり、1以上の酸素原子(O)が硫黄原子(S)で置換されていても良く、
Eが前記(ii)の原子団である場合は、NHである。 - 前記式(1)、(1b)および(1c)中、
Eが、DNA、修飾DNA、RNA、修飾DNA、LNA、またはPNA(ペプチド核酸)の主鎖構造を有する原子団である、請求項1記載の化合物、その互変異性体若しくは立体異性体、またはそれらの塩。 - 前記式(1)および(1c)中、
Aは、水素原子、水酸基、アルキル基、または電子吸引基であり、
MおよびJは、それぞれ、CH2、NH、OまたはSであり、同一でも異なっていても良く、
B、XおよびYは、それぞれ、前記式(1)、(1b)または(1c)と同じであり、
前記式(2)、(3)、(2b)および(3b)において、リン酸架橋中のO原子は、
1つ以上がS原子で置換されていてもよい。 - 前記式(2)および(2b)中、
Aにおいて、前記アルキル基がメトキシ基であり、前記電子吸引基がハロゲンである請求項3記載の化合物、その互変異性体若しくは立体異性体、またはそれらの塩。 - 前記式(1)、(1b)または(1c)中、
L1、L2およびL3の主鎖長(主鎖原子数)が、それぞれ2以上の整数である請求項1記載の化合物、その互変異性体若しくは立体異性体、またはそれらの塩。 - 下記式(5)、(6)、(6b)または(6c)で表される請求項1記載の化合物、その互変異性体若しくは立体異性体、またはそれらの塩。
l、mおよびnは任意であり、同一でも異なっていても良く、
B、E、Z11、Z12、X、YおよびTは、前記式(1)、(1b)または(1c)
と同じである。 - l、mおよびnが、それぞれ、2以上の整数である請求項6記載の化合物、その互変異性体若しくは立体異性体、またはそれらの塩。
- Z11およびZ12が、エキシトン効果を示す原子団である請求項1記載の化合物、その互変異性体若しくは立体異性体、またはそれらの塩。
- Z11およびZ12が、それぞれ独立に、チアゾールオレンジ、オキサゾールイエロー、シアニン、ヘミシアニン、その他のシアニン色素、メチルレッド、アゾ色素またはそれらの誘導体から誘導される基である請求項1記載の化合物、その互変異性体若しくは立体異性体、またはそれらの塩。
- Z11およびZ12が、それぞれ独立に、下記式(7)から(9)のいずれかで表される原子団である請求項1記載の化合物、その互変異性体若しくは立体異性体、またはそれらの塩。
X1およびX2は、それぞれSまたはOであり、同一でも異なっていても良く、
nは、0または正の整数であり、
R1〜R10、R13〜R21は、それぞれ独立に、水素原子、ハロゲン原子、低級ア
ルキル基、低級アルコキシ基、ニトロ基、またはアミノ基であり、
R11およびR12のうち、一方は、前記式(1)、(1b)または(1c)中のL1もしくはL2、前記式(5)、(6)、(6b)または(6c)中のNHに結合する連結基であり、他方は、水素原子または低級アルキル基であり、
R15は、式(7)、(8)または(9)中に複数存在する場合は、同一でも異なっていても良く、
R16は、式(7)、(8)または(9)中に複数存在する場合は、同一でも異なっていても良く、
Z11中のX1、X2およびR1〜R21と、Z12中のX1、X2およびR1〜R21とは、互いに同一でも異なっていてもよい。 - 式(7)〜(9)中、
R1〜R21において、前記低級アルキル基が、炭素数1〜6の直鎖または分枝アルキル基であり、前記低級アルコキシ基が、炭素数1〜6の直鎖または分枝アルコキシ基である、請求項10記載の化合物、その互変異性体若しくは立体異性体、またはそれらの塩。 - 式(7)〜(9)中、
R11およびR12において、前記連結基が、炭素数2以上のポリメチレンカルボニル基であり、カルボニル基部分で前記式(1)、(1b)または(1c)中のL1もしくはL2、前記式(5)、(6)、(6b)または(6c)中のNHに結合する、請求項10記載の化合物、その互変異性体若しくは立体異性体、またはそれらの塩。 - 下記式(10)で表される構造を有する請求項1記載の化合物、その互変異性体若しくは立体異性体、またはそれらの塩。
E、Z11、Z12、Q、XおよびYは、前記式(1)と同じである。 - 前記式(1)、(1b)および(1c)中、
Bが、Py、Py der.、Pu、またはPu der.で表される構造である請求項1記載の化合物、その互変異性体若しくは立体異性体、またはそれらの塩。
ただし、
前記Pyとは、下記式(11)で表記される6員環のうち、1位にEと結合する共有結合手を有し、5位にリンカー部と結合する共有結合手を有する原子団であり、
前記Py der.とは、前記Pyの6員環の全原子の少なくとも一つがN、C、SまたはO原子で置換された原子団であり、前記N、C、SまたはO原子は、適宜、電荷、水素原子または置換基を有していても良く、
前記Puとは、下記式(12)で表記される縮合環のうち、9位にEと結合する共有結合手を有し、8位にリンカー部と結合する共有結合手を有する原子団であり、
前記Pu der.とは、前記Puの5員環の全原子の少なくとも一つがN、C、SまたはO原子で置換された原子団であり、前記N、C、SまたはO原子は、適宜、電荷、水素原子または置換基を有していても良い。
- 下記式(13)または(14)で表される請求項14記載の化合物、その互変異性体若しくは立体異性体、またはそれらの塩。
- 前記ホスホロアミダイト基が、下記式(15)で表される請求項1記載の化合物、その互変異性体若しくは立体異性体、またはそれらの塩。
−P(OR22)N(R23)(R24) (15)
式(15)中、R22はリン酸基の保護基であり、R23およびR24はアルキル基、またはアリール基である。 - 前記式(15)において、R15がシアノエチル基であり、R16およびR17において、前記アルキル基がイソプロピル基であり、前記アリール基がフェニル基である、請求項16記載の化合物、その互変異性体若しくは立体異性体、またはそれらの塩。
- 下記式(16)、(16b)、(17)、(17b)、(18)または(18b)で表される構造を少なくとも一つ含む核酸、その互変異性体若しくは立体異性体、またはそれらの塩。
B、E、Z11、Z12、L1、L2、L3、Dおよびbは、それぞれ、請求項1に示す構造であり、
ただし、
式(16)、(17)および(18)中、Eは、請求項1における前記(i)の原子団であり、リン酸架橋中の少なくとも一つのO原子がS原子で置換されていても良く、
式(16b)、(17b)および(18b)中、Eは、請求項1における前記(ii)の原子団であり、
式(17)および(17b)中、各Bは、同一でも異なっていても良く、各Eは、同一でも異なっていても良い。 - 前記式(16)、(17)、(16b)、(17b)、(18)および(18b)中、
Z11およびZ12は、それぞれ、蛍光性を示す原子団であり、同一でも異なっていてもよい、請求項18記載の核酸、その互変異性体若しくは立体異性体、またはそれらの塩。 - 一つの分子内の二つの平面化学構造が同一平面内ではなく、ある一定の角度をもって存在するが、その分子が核酸にインターカレーションまたはグルーヴバインディング(溝結合)するときには二つの平面化学構造が同一平面内に並ぶように配置することによって蛍光発光が生じる標識物質。
- 2つ以上の色素分子が並行に集合するために生じるエキシトン効果によって蛍光発光を示さないが、それらの分子が核酸にインターカレーションまたはグルーヴバインディング(溝結合)するときには、前記集合状態が解けることにより蛍光発光が生じる2つ以上の色素分子群からなる標識物質。
- 前記色素分子が、請求項20記載の分子である請求項21記載の標識物質。
- 2つ以上の色素分子が並行に集合するために生じるエキシトン効果によって蛍光発光を示さないが、それらの分子が核酸にインターカレーションまたはグルーヴバインディング(溝結合)するときには、前記集合状態が解けることにより蛍光発光が生じる2つ以上の色素分子の化学構造を同一分子内に有することを特徴的化学構造とする複合体標識物質。
- 標識されるべき核酸に結合しているリンカー分子に、枝分かれした構造をとるように更なるリンカー分子を介して、または、更なるリンカー分子を介さず直接的に、2つ以上の色素分子が、結合した構造を有する請求項23記載の複合体標識物質。
- 前記色素分子が、請求項20記載の分子である請求項23記載の標識物質。
- 請求項20記載の標識物質であり、前記標識物質が、Z11およびZ12が蛍光性を示す原子団である請求項1記載の化合物、その互変異性体若しくは立体異性体、若しくはそれらの塩、または請求項18記載の核酸、その互変異性体若しくは立体異性体、若しくはそれらの塩である標識物質。
- 標識モノヌクレオチド、標識オリゴヌクレオチド、標識核酸または標識核酸類似体である標識物質であって、
請求項20記載の標識物質、または、Z11およびZ12が蛍光性を示す原子団である請求項1記載の化合物、その互変異性体若しくは立体異性体、若しくはそれらの塩、または、Z11およびZ12が蛍光性を示す原子団である請求項18記載の核酸、その互変異性体若しくは立体異性体、若しくはそれらの塩で標識された標識物質。 - 標識モノヌクレオチド、標識オリゴヌクレオチド、標識核酸または標識核酸類似体である標識物質であって、
モノヌクレオチド、オリゴヌクレオチド、核酸または核酸類似体中の一つまたはそれ以上の塩基分子または主鎖構成分子に結合しているリンカー分子を介して、請求項20記載の標識物質、または、Z11およびZ12が蛍光性を示す原子団である請求項1記載の化合物、その互変異性体若しくは立体異性体、若しくはそれらの塩、または、Z11およびZ12が蛍光性を示す原子団である請求項18記載の核酸、その互変異性体若しくは立体異性体、若しくはそれらの塩で標識された標識物質。 - 標識モノヌクレオチド、標識オリゴヌクレオチド、標識核酸または標識核酸類似体である標識物質であって、
モノヌクレオチド、オリゴヌクレオチド、核酸または核酸類似体中の一つまたはそれ以上の塩基分子のピリミジン核5位の炭素原子またはプリン核8位の炭素原子に結合しているリンカー分子を介して、請求項20記載の標識物質、または、Z11およびZ12が蛍光性を示す原子団である請求項1記載の化合物、その互変異性体若しくは立体異性体、若しくはそれらの塩、または、Z11およびZ12が蛍光性を示す原子団である請求項18記載の核酸、その互変異性体若しくは立体異性体、若しくはそれらの塩で標識された標識物質。 - 標識モノヌクレオチドまたは標識オリゴヌクレオチドである請求項26から29のいずれか一項に記載の標識物質を基質として核酸合成を行い、前記蛍光性を示す原子団または色素分子構造がインターカレーションまたはグルーヴバインディングされた二重鎖核酸を合成する工程と、
前記二重鎖核酸合成工程の前後における蛍光強度をそれぞれ測定する工程と、
前記二重鎖核酸合成工程の前後における蛍光強度を比較することにより核酸合成を検出
する工程とを含む、核酸検出方法。 - 前記核酸合成を、酵素的手法により行う請求項30記載の核酸検出方法。
- 一重鎖核酸である請求項27から29のいずれか一項に記載の標識物質を第一の核酸とし、前記第一の核酸と相補的な配列またはそれに類似の配列を有する第二の核酸とをハイブリダイゼーションさせて核酸合成を行い、前記蛍光性を示す原子団または色素分子構造がインターカレーションまたはグルーヴバインディングされた二重鎖核酸を合成する工程と、
前記二重鎖核酸合成工程の前後における蛍光強度をそれぞれ測定する工程と、
前記二重鎖核酸合成工程の前後における蛍光強度を比較することにより、前記第一の核酸と前記第二の核酸とのハイブリダイゼーションを検出する工程とを含む、核酸検出方法。 - 請求項32記載の前記第一の核酸、前記第二の核酸の配列、もしくはそれらの配列に相補的な配列、または、それらの配列に相補的な配列に類似の配列を有し、かつ、請求項20に記載の標識物質または複合体標識物質で標識されたまたは標識されていない第三の核酸を用いることにより、三重鎖核酸または核酸類似体の形成を検出することを特徴とする、核酸検出方法。
- Z11およびZ12が蛍光性を示す原子団である請求項1記載の化合物、その互変異性体若しくは立体異性体、若しくはそれらの塩、または、Z11およびZ12が蛍光性を示す原子団である請求項18記載の核酸、その互変異性体若しくは立体異性体、若しくはそれらの塩の構造を一部に持つ標識核酸を用いて、二重鎖または三重鎖核酸を検出する請求項30記載の方法。
- Z11およびZ12が蛍光性を示す原子団である請求項1記載の化合物、その互変異性体若しくは立体異性体、若しくはそれらの塩、または、Z11およびZ12が蛍光性を示す原子団である請求項18記載の核酸、その互変異性体若しくは立体異性体、若しくはそれらの塩の構造を一部に持つ標識核酸を用いて、二重鎖または三重鎖核酸を検出する請求項32記載の方法。
- 核酸合成手段と、標識物質と、蛍光強度測定手段とを含み、前記標識物質が、請求項20から29のいずれか一項に記載の標識物質であるキット。
- 請求項30記載の方法に用いる請求項35記載のキット。
- 請求項32記載の方法に用いる請求項35記載のキット。
- 研究用、臨床用または診断用キットである請求項35記載のキット。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011071214A JP2011173891A (ja) | 2007-03-09 | 2011-03-28 | モノヌクレオシドまたはモノヌクレオチドから誘導される構造を有する化合物、核酸、標識物質、核酸検出方法およびキット |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007059921 | 2007-03-09 | ||
JP2007059921 | 2007-03-09 | ||
JP2007246253 | 2007-09-21 | ||
JP2007246253 | 2007-09-21 | ||
JP2007335352 | 2007-12-26 | ||
JP2007335352 | 2007-12-26 | ||
JP2011071214A JP2011173891A (ja) | 2007-03-09 | 2011-03-28 | モノヌクレオシドまたはモノヌクレオチドから誘導される構造を有する化合物、核酸、標識物質、核酸検出方法およびキット |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009504009A Division JP4761086B2 (ja) | 2007-03-09 | 2008-03-06 | 核酸、標識物質、核酸検出方法およびキット |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011173891A true JP2011173891A (ja) | 2011-09-08 |
Family
ID=39759427
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009504009A Active JP4761086B2 (ja) | 2007-03-09 | 2008-03-06 | 核酸、標識物質、核酸検出方法およびキット |
JP2011071214A Pending JP2011173891A (ja) | 2007-03-09 | 2011-03-28 | モノヌクレオシドまたはモノヌクレオチドから誘導される構造を有する化合物、核酸、標識物質、核酸検出方法およびキット |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009504009A Active JP4761086B2 (ja) | 2007-03-09 | 2008-03-06 | 核酸、標識物質、核酸検出方法およびキット |
Country Status (6)
Country | Link |
---|---|
US (1) | US8383792B2 (ja) |
EP (1) | EP2130835B1 (ja) |
JP (2) | JP4761086B2 (ja) |
KR (1) | KR101551985B1 (ja) |
ES (1) | ES2385268T3 (ja) |
WO (1) | WO2008111485A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014530208A (ja) * | 2011-09-28 | 2014-11-17 | エフ ホフマン−ラ ロッシュ アクチェン ゲゼルシャフト | アゾメディエーター |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2385268T3 (es) * | 2007-03-09 | 2012-07-20 | Riken | Compuesto que tiene una estructura derivada de mononucleósido o mononucleótido, ácido nucleico, sustancia marcadora y método y kit para la detección de ácido nucleico |
CA2622649C (en) * | 2007-03-09 | 2018-04-24 | Riken | Nucleic acid amplification method using primer exhibiting exciton effect |
EP2371951A4 (en) | 2008-11-27 | 2012-07-18 | Riken | NOVEL MUTS PROTEIN AND METHOD OF USING SAME FOR DETERMINING MUTATIONS |
RU2452944C1 (ru) * | 2010-10-05 | 2012-06-10 | Государственное образовательное учреждение высшего профессионального образования "Самарский государственный университет" | Способ оценки подлинности лекарственного растительного сырья и устройство для его осуществления |
EP2660246A4 (en) * | 2010-12-28 | 2014-09-10 | Riken | COMPOUND, NUCLEIC ACID, METHOD FOR THE PRODUCTION OF NUCLEIC ACID AND KIT FOR THE PRODUCTION OF NUCLEIC ACID |
CN103097531B (zh) | 2011-06-29 | 2016-11-23 | 达纳福股份有限公司 | 生物样本的预处理方法、rna的检测方法及预处理试剂盒 |
EP3401407B1 (en) | 2012-07-16 | 2020-04-22 | Kabushiki Kaisha Dnaform | Nucleic acid probe, method for designing nucleic acid probe, and method for detecting target sequence |
EP2891714B1 (en) | 2012-08-30 | 2018-07-11 | Kabushiki Kaisha Dnaform | Method for analyzing target nucleic acid, kit, and analyzer |
US10294261B2 (en) | 2012-09-04 | 2019-05-21 | Kabushiki Kaisha Dnaform | Compound, nucleic acid, labeling substance, and detection method |
ES2773547T3 (es) * | 2013-08-08 | 2020-07-13 | Scripps Research Inst | Un procedimiento de marcaje enzimático específico de sitio de ácidos nucleicos in vitro mediante la incorporación de nucleótidos no naturales |
JP6661171B2 (ja) * | 2014-03-31 | 2020-03-11 | 国立研究開発法人理化学研究所 | 蛍光性標識一本鎖核酸及びその用途 |
GB201410693D0 (en) | 2014-06-16 | 2014-07-30 | Univ Southampton | Splicing modulation |
CN107109411B (zh) | 2014-10-03 | 2022-07-01 | 冷泉港实验室 | 核基因输出的定向增加 |
JPWO2017038682A1 (ja) | 2015-08-28 | 2018-06-14 | 国立研究開発法人理化学研究所 | 鋳型核酸の分析方法、標的物質の分析方法、鋳型核酸または標的物質の分析用キット、および鋳型核酸または標的物質の分析用装置 |
KR20220105174A (ko) | 2015-10-09 | 2022-07-26 | 유니버시티 오브 사우스앰톤 | 유전자 발현의 조절 및 탈조절된 단백질 발현의 스크리닝 |
WO2017106377A1 (en) | 2015-12-14 | 2017-06-22 | Cold Spring Harbor Laboratory | Antisense oligomers for treatment of autosomal dominant mental retardation-5 and dravet syndrome |
US11096956B2 (en) | 2015-12-14 | 2021-08-24 | Stoke Therapeutics, Inc. | Antisense oligomers and uses thereof |
US20190160466A1 (en) | 2016-08-03 | 2019-05-30 | Kabushiki Kaisha Dnaform | Analysis cell, analysis device, analysis apparatus, and analysis system |
JP6448695B2 (ja) | 2017-03-21 | 2019-01-09 | 株式会社東芝 | Rna増幅方法、rna検出方法及びアッセイキット |
CA3069321A1 (en) | 2017-07-11 | 2019-01-17 | Synthorx, Inc. | Incorporation of unnatural nucleotides and methods thereof |
JP7055691B2 (ja) | 2017-07-11 | 2022-04-18 | 株式会社東芝 | 短鎖核酸伸長用プライマーセット、アッセイキット、短鎖核酸伸長方法、増幅方法及び検出方法 |
TW202248207A (zh) | 2017-08-03 | 2022-12-16 | 美商欣爍克斯公司 | 用於增生及感染性疾病治療之細胞激素結合物 |
FI3673080T3 (fi) | 2017-08-25 | 2023-11-23 | Stoke Therapeutics Inc | Antisense-oligomeerejä häiriötilojen ja sairauksien hoitoon |
MX2020011695A (es) | 2018-05-04 | 2021-02-26 | Stoke Therapeutics Inc | Métodos y composiciones para el tratamiento de la enfermedad por almacenamiento de éster de colesterilo. |
BR112020026073A2 (pt) * | 2018-06-21 | 2021-03-23 | F. Hoffmann-La Roche Ag | método para fornecer um par de ligação, composição líquida, uso de uma composição e kit para realizar um imunoensaio heterogêneo |
CN113660946A (zh) | 2019-02-06 | 2021-11-16 | 新索思股份有限公司 | Il-2缀合物及其使用方法 |
MX2022014151A (es) | 2020-05-11 | 2022-11-30 | Stoke Therapeutics Inc | Oligomeros antisentido de opa1 para tratamiento de afecciones y enfermedades. |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0527433A1 (en) * | 1991-08-13 | 1993-02-17 | Bayer Corporation | Novel fluorescent label |
JPH06271599A (ja) * | 1993-01-29 | 1994-09-27 | Bayer Ag | スルホクマリン−含有ヌクレオチド及び核酸検出法におけるそれらの利用 |
WO2004074503A2 (en) * | 2003-02-21 | 2004-09-02 | Hoser Mark J | Nucleic acid sequencing methods, kits and reagents |
WO2006097320A2 (de) * | 2005-03-17 | 2006-09-21 | Genovoxx Gmbh | Makromolekulare nukleotidverbindungen und methoden zu deren anwendung |
US20070048773A1 (en) * | 2005-07-29 | 2007-03-01 | Applera Corporation | Detection of polyphosphate using fluorescently labeled polyphosphate acceptor substrates |
JP4761086B2 (ja) * | 2007-03-09 | 2011-08-31 | 独立行政法人理化学研究所 | 核酸、標識物質、核酸検出方法およびキット |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5986086A (en) | 1997-06-20 | 1999-11-16 | Amersham Pharmacia Biotech Inc. | Non-sulfonated cyanine dyes for labeling nucleosides and nucleotides |
JPH11127862A (ja) | 1997-10-31 | 1999-05-18 | Canon Inc | 標的核酸の検出方法 |
JP4265134B2 (ja) | 2001-01-11 | 2009-05-20 | 東ソー株式会社 | 新規蛍光色素及び核酸の測定方法 |
US6743588B2 (en) * | 2001-01-11 | 2004-06-01 | Tosoh Corporation | Fluorescent dye and method of measuring nucleic acid |
US20030165865A1 (en) | 2001-01-29 | 2003-09-04 | Hinkel Christopher A. | Methods of analysis of nucleic acids |
US20030082584A1 (en) | 2001-06-29 | 2003-05-01 | Liang Shi | Enzymatic ligation-based identification of transcript expression |
JP2003344290A (ja) | 2002-05-27 | 2003-12-03 | Aisin Cosmos R & D Co Ltd | 温度調節付蛍光検出装置 |
JP2004081057A (ja) | 2002-08-26 | 2004-03-18 | Kansai Tlo Kk | 蛍光rnaプローブ |
EP2415878A1 (en) * | 2003-12-25 | 2012-02-08 | Riken | Method of amplifying nucleic acid and method of detecting mutated nucleic acid using the same |
JP4920201B2 (ja) | 2005-05-19 | 2012-04-18 | 日鉄環境エンジニアリング株式会社 | 核酸中の特定塩基を測定する方法 |
CA2622649C (en) * | 2007-03-09 | 2018-04-24 | Riken | Nucleic acid amplification method using primer exhibiting exciton effect |
-
2008
- 2008-03-06 ES ES08721474T patent/ES2385268T3/es active Active
- 2008-03-06 WO PCT/JP2008/054054 patent/WO2008111485A1/ja active Application Filing
- 2008-03-06 KR KR1020097019542A patent/KR101551985B1/ko active IP Right Grant
- 2008-03-06 US US12/530,574 patent/US8383792B2/en active Active
- 2008-03-06 EP EP08721474A patent/EP2130835B1/en active Active
- 2008-03-06 JP JP2009504009A patent/JP4761086B2/ja active Active
-
2011
- 2011-03-28 JP JP2011071214A patent/JP2011173891A/ja active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0527433A1 (en) * | 1991-08-13 | 1993-02-17 | Bayer Corporation | Novel fluorescent label |
JPH06271599A (ja) * | 1993-01-29 | 1994-09-27 | Bayer Ag | スルホクマリン−含有ヌクレオチド及び核酸検出法におけるそれらの利用 |
WO2004074503A2 (en) * | 2003-02-21 | 2004-09-02 | Hoser Mark J | Nucleic acid sequencing methods, kits and reagents |
WO2006097320A2 (de) * | 2005-03-17 | 2006-09-21 | Genovoxx Gmbh | Makromolekulare nukleotidverbindungen und methoden zu deren anwendung |
US20070048773A1 (en) * | 2005-07-29 | 2007-03-01 | Applera Corporation | Detection of polyphosphate using fluorescently labeled polyphosphate acceptor substrates |
JP4761086B2 (ja) * | 2007-03-09 | 2011-08-31 | 独立行政法人理化学研究所 | 核酸、標識物質、核酸検出方法およびキット |
Non-Patent Citations (4)
Title |
---|
JPN6010063171; 田井中 一貴 等: '新規極性応答型塩基識別蛍光プローブの開発' 光化学討論会講演要旨集 Vol.2006, 2006, p.560 * |
JPN6010063172; 小舘 知史 等: 'ピレン系DNA蛍光プローブ分子の二重蛍光メカニズムに関する新しい解釈' 光化学討論会講演要旨集 Vol.2006, 2006, p.385 * |
JPN7010003571; TELSER,J. et al: 'Synthesis and characterization of DNA oligomers and duplexes containing covalently attached molecula' Journal of the American Chemical Society Vol.111, No.18, 1989, p.6966-76 * |
JPN7010003572; MITSUI, T. et al: 'Characterization of fluorescent, unnatural base pairs' TETRAHEDRON vol.63, no.17, 200702, p.3528-3537 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014530208A (ja) * | 2011-09-28 | 2014-11-17 | エフ ホフマン−ラ ロッシュ アクチェン ゲゼルシャフト | アゾメディエーター |
Also Published As
Publication number | Publication date |
---|---|
KR20090117814A (ko) | 2009-11-12 |
US20100092971A1 (en) | 2010-04-15 |
EP2130835A1 (en) | 2009-12-09 |
JPWO2008111485A1 (ja) | 2010-06-24 |
EP2130835B1 (en) | 2012-05-23 |
WO2008111485A1 (ja) | 2008-09-18 |
US8383792B2 (en) | 2013-02-26 |
EP2130835A4 (en) | 2010-06-16 |
KR101551985B1 (ko) | 2015-09-09 |
ES2385268T3 (es) | 2012-07-20 |
JP4761086B2 (ja) | 2011-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4761086B2 (ja) | 核酸、標識物質、核酸検出方法およびキット | |
CA2622649C (en) | Nucleic acid amplification method using primer exhibiting exciton effect | |
JP4370385B2 (ja) | プライマー、プライマーセット、それを用いた核酸増幅方法および変異検出方法 | |
JP5618436B2 (ja) | 核酸プローブ、核酸プローブの設計方法、およびターゲット配列の検出方法 | |
EP2891714B1 (en) | Method for analyzing target nucleic acid, kit, and analyzer | |
JP5975524B2 (ja) | 化合物、核酸、核酸の製造方法および核酸を製造するためのキット | |
CN101631796A (zh) | 具有由单核苷或单核苷酸衍生的结构的化合物、核酸、标记物以及核酸检测方法和试剂盒 | |
JP6661171B2 (ja) | 蛍光性標識一本鎖核酸及びその用途 | |
JP2015104329A (ja) | 核酸プライマー又は核酸プローブの設計方法、およびターゲット配列の検出方法 | |
JP2007031388A (ja) | ヌクレオチド誘導体及びその利用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130522 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130722 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130927 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131126 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20140203 |