Nothing Special   »   [go: up one dir, main page]

JP2011167631A - Osc material-containing catalyst for cleaning exhaust gas - Google Patents

Osc material-containing catalyst for cleaning exhaust gas Download PDF

Info

Publication number
JP2011167631A
JP2011167631A JP2010033637A JP2010033637A JP2011167631A JP 2011167631 A JP2011167631 A JP 2011167631A JP 2010033637 A JP2010033637 A JP 2010033637A JP 2010033637 A JP2010033637 A JP 2010033637A JP 2011167631 A JP2011167631 A JP 2011167631A
Authority
JP
Japan
Prior art keywords
slurry
catalyst
exhaust gas
osc material
honeycomb substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010033637A
Other languages
Japanese (ja)
Other versions
JP5531665B2 (en
Inventor
Ken Nobukawa
健 信川
Hisashi Kuno
央志 久野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010033637A priority Critical patent/JP5531665B2/en
Publication of JP2011167631A publication Critical patent/JP2011167631A/en
Application granted granted Critical
Publication of JP5531665B2 publication Critical patent/JP5531665B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst for cleaning exhaust gas further improved in the exhaust gas cleaning performance, among various exhaust gas cleaning catalysts proposed containing a ceria/zirconia (CeO<SB>2</SB>-ZrO<SB>2</SB>) composite oxide as the OSC material. <P>SOLUTION: The catalyst for cleaning exhaust gas has the OSC material disposed in a preceding stage and a rear stage of the catalyst. The absorbing/discharging speed of the OSC material disposed in the preceding stage is faster than that of the OSC material disposed in the rear stage. A ratio Ra/Rb of the particle size (Ra) of the OSC material disposed in the preceding stage and the particle size (Rb) of the OSC material disposed in the rear stage is less than 1.0. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、内燃機関等からの排ガスを浄化するための排ガス浄化用触媒において用いられるOSC材(酸素吸放出材)を含む排ガス浄化用触媒に関する。   The present invention relates to an exhaust gas purification catalyst including an OSC material (oxygen storage / release material) used in an exhaust gas purification catalyst for purifying exhaust gas from an internal combustion engine or the like.

従来、自動車の排ガス浄化用触媒としては、一酸化炭素(CO)及び炭化水素(HC)の酸化と窒素酸化物(NOx)の還元とを同時に行う三元触媒が用いられている。このような触媒としては、アルミナ(Al23)等の多孔質酸化物担体に、白金(Pt)、ロジウム(Rh)、パラジウム(Pd)等の貴金属を担持させたものが広く知られている。三元触媒の作用によってCO、HC及びNOxの3成分を同時かつ効率的に浄化するためには、自動車のエンジンに供給される空気/燃料比(空燃比A/F)を理論空燃比(ストイキ)近傍に制御することが重要である。 Conventionally, a three-way catalyst that simultaneously performs oxidation of carbon monoxide (CO) and hydrocarbon (HC) and reduction of nitrogen oxides (NO x ) has been used as an exhaust gas purification catalyst for automobiles. As such a catalyst, a catalyst in which a noble metal such as platinum (Pt), rhodium (Rh), palladium (Pd) is supported on a porous oxide carrier such as alumina (Al 2 O 3 ) is widely known. Yes. CO by the action of the three-way catalyst, for purifying simultaneously and efficiently three components of HC and NO x, the air / fuel ratio to be supplied to the vehicle engine (air-fuel ratio A / F) the stoichiometric air-fuel ratio ( It is important to control in the vicinity.

しかしながら、実際の空燃比は、自動車の走行条件等によってストイキを中心にリッチ(燃料過剰雰囲気)側又はリーン(燃料希薄雰囲気)側に変動するため、排ガスの雰囲気も同様にリッチ側又はリーン側に変動する。したがって、三元触媒のみでは必ずしも高い浄化性能を確保することができない。そこで、排ガス中の酸素濃度の変動を吸収して三元触媒の排ガス浄化能力を高めるために、排ガス中の酸素濃度が高いときには酸素を吸蔵し、排ガス中の酸素濃度が低いときには酸素を放出する、いわゆる酸素吸放出能を有する材料が排ガス浄化用触媒において用いられている。   However, since the actual air-fuel ratio fluctuates to the rich (excess fuel atmosphere) side or lean (fuel lean atmosphere) side with the stoichiometric centering on the driving conditions of the automobile, etc., the exhaust gas atmosphere is also on the rich side or lean side as well. fluctuate. Therefore, it is not always possible to ensure high purification performance with only a three-way catalyst. Therefore, in order to absorb the fluctuation of the oxygen concentration in the exhaust gas and enhance the exhaust gas purification ability of the three-way catalyst, oxygen is stored when the oxygen concentration in the exhaust gas is high, and oxygen is released when the oxygen concentration in the exhaust gas is low. In other words, a material having a so-called oxygen absorption / release capacity is used in an exhaust gas purifying catalyst.

このようなOSC材(酸素吸放出材)としては、例えば、セリア(CeO2)やセリア−ジルコニア(CeO2−ZrO2)複合酸化物など、セリア(CeO2)をベースとした材料が知られ、広く実用化されている。しかしながら、安定した排ガスの浄化を達成するために、さらに高い酸素吸放出能を有する酸素吸放出材が求められ、研究されている。 As such an OSC material (oxygen storage / release material), for example, a material based on ceria (CeO 2 ) such as ceria (CeO 2 ) or ceria-zirconia (CeO 2 —ZrO 2 ) composite oxide is known. Has been widely used. However, in order to achieve stable purification of exhaust gas, an oxygen storage / release material having a higher oxygen storage / release capacity is required and studied.

特許文献1(特開2009−019537号公報)の課題のひとつは、排ガスの空燃比A/Fの変動を効率よく吸収して、排ガス浄化率を高めることである。この課題を解決する手段として、「上流側触媒がOSC材粒子にRhを担持させてなるRh/OSCを含み、下流側触媒がOSC材に粒子にRhを担持させてなるRh/OSCを含む、排ガス浄化装置であって、上流側OSC粒子は、A/Fの変動に応じて酸素を吸放出する応答性が、下流側OSC粒子のそれよりも良いことを特徴とする、排ガス浄化装置」が開示されている。より具体的には、このOSC材がZrとCeを含有する複合酸化物よりなり、上流側OSC材のZrO/CeO質量比が、下流側OSC材のZrO/CeO質量比よりも大であることを特徴としている。特許文献1では、ZrO/CeO質量比に着目しているが、触媒粒子の粒径については全く記載されていない。 One of the problems of Patent Document 1 (Japanese Patent Laid-Open No. 2009-019537) is to efficiently absorb the fluctuation of the air-fuel ratio A / F of the exhaust gas and increase the exhaust gas purification rate. As means for solving this problem, “the upstream catalyst includes Rh / OSC in which Rh is supported on OSC material particles, and the downstream catalyst includes Rh / OSC in which Rh is supported on particles in OSC material, An exhaust gas purifying apparatus, characterized in that the upstream OSC particles have a better responsiveness to absorb and release oxygen in response to A / F fluctuations than that of the downstream OSC particles. It is disclosed. More specifically, the OSC material is made of a composite oxide containing Zr and Ce, ZrO 2 / CeO 2 weight ratio of the upstream OSC material than the ZrO 2 / CeO 2 weight ratio of the downstream OSC material It is characterized by being large. Patent Document 1 focuses on the ZrO 2 / CeO 2 mass ratio, but does not describe the particle size of the catalyst particles at all.

特許文献2(特開2008−68225号公報)の課題は、自動車の内燃機関から排出される排ガスを触媒に接触させ、炭化水素濃度が変動する場合でも窒素酸化物に対して優れた浄化能力を発揮する自動車用排ガス浄化装置に用いられる触媒系、それを用いた排ガス浄化装置、及び排ガス浄化方法を提供することである。この課題を解決する手段として、「無機構造担体に担持された第1の触媒と、これとは別の第2の触媒とを含む2以上の排ガス浄化触媒を用いてなる触媒系であって、第1の触媒は、排ガス流路中に配置したとき、上流側に位置する無機構造担体の部分に担持させ、一方、第2の触媒は、排ガス流路中に配置したとき、下流側に位置する無機構造担体の部分に担持させ、かつ、原料混合物をその融点以上の温度で加熱熔融した後、冷却して形成されるインゴットを粉砕して得られるセリウム−ジルコニウム系複合酸化物(A)を含有することを特徴とする、自動車用排ガス浄化装置に用いられる触媒系」を提示している。そのセリウム−ジルコニウム系複合酸化物(A)の平均粒径は、0.3〜2.0μm、特に0.5〜1.5μmとすることが好ましいとしている。つまり、溶融した後に粉砕したセリウム−ジルコニウム系複合酸化物の粒径がサブミクロンオーダーである。   The problem of Patent Document 2 (Japanese Patent Laid-Open No. 2008-68225) is that an exhaust gas discharged from an internal combustion engine of an automobile is brought into contact with a catalyst, and even when the hydrocarbon concentration fluctuates, an excellent purifying ability for nitrogen oxides is obtained. An object is to provide a catalyst system used in an exhaust gas purifying apparatus for automobiles, an exhaust gas purifying apparatus using the catalyst system, and an exhaust gas purifying method. As a means for solving this problem, “a catalyst system using two or more exhaust gas purification catalysts including a first catalyst supported on an inorganic structure carrier and a second catalyst different from the first catalyst, When the first catalyst is disposed in the exhaust gas passage, the first catalyst is carried on the portion of the inorganic structure carrier located on the upstream side, while the second catalyst is located on the downstream side when disposed in the exhaust gas passage. A cerium-zirconium based composite oxide (A) obtained by supporting an inorganic structure carrier to be supported and heating and melting the raw material mixture at a temperature equal to or higher than its melting point and then pulverizing the ingot formed by cooling. A catalyst system for use in an exhaust gas purification apparatus for automobiles, characterized in that it is contained. The average particle size of the cerium-zirconium-based composite oxide (A) is preferably 0.3 to 2.0 μm, particularly preferably 0.5 to 1.5 μm. That is, the particle size of the cerium-zirconium composite oxide crushed after being melted is in the submicron order.

特開2009−019537号公報JP 2009-019537 A 特開2008−68225号公報JP 2008-68225 A

上記のように、OSC材としてセリア−ジルコニア(CeO2−ZrO2)複合酸化物などを含む、様々な排ガス浄化触媒が提案されている。しかしながら、さらなる排ガス浄化性能の向上が排ガス浄化触媒に求められている。 As described above, various exhaust gas purification catalysts including ceria-zirconia (CeO 2 —ZrO 2 ) composite oxide as an OSC material have been proposed. However, further improvements in exhaust gas purification performance are required for exhaust gas purification catalysts.

そこで、本発明は、上記のような状況に鑑みて、さらに排ガス浄化性能の向上した排ガス浄化触媒を提供することを目的とする。   Accordingly, an object of the present invention is to provide an exhaust gas purification catalyst having further improved exhaust gas purification performance in view of the above situation.

本発明により、以下の(1)〜(2)が提供される。   The present invention provides the following (1) to (2).

(1)触媒前段と後段にOSC材を配置した排ガス浄化触媒であって、前記前段に配置したOSC材の酸素吸放出速度が前記後段に配置したOSC材の酸素吸放出速度よりも速いことと、前記前段に配置したOSC材の粒径(Ra)と前記後段に配置したOSC材の粒径(Rb)との比Ra/Rbが1.0未満であることを特徴とする、排ガス浄化触媒。   (1) An exhaust gas purification catalyst in which an OSC material is disposed in the upstream and downstream stages of the catalyst, wherein the oxygen absorption / release rate of the OSC material disposed in the upstream stage is faster than the oxygen absorption / release rate of the OSC material disposed in the downstream stage. An exhaust gas purifying catalyst, wherein the ratio Ra / Rb of the particle size (Ra) of the OSC material disposed in the preceding stage and the particle size (Rb) of the OSC material disposed in the subsequent stage is less than 1.0. .

(2)0nm<Ra<9.2nm、かつ、15nm<Rb<300nmであることを特徴とする、(1)に記載の排ガス浄化触媒。   (2) The exhaust gas purification catalyst according to (1), wherein 0 nm <Ra <9.2 nm and 15 nm <Rb <300 nm.

は本発明の触媒の概略構造を表す。Represents the schematic structure of the catalyst of the present invention. はRa/Rbに対するNOx浄化率のグラフであり、ここでRaは触媒前段のOSC材料の1次粒径(nm)、Rbは触媒後段のOSC材料の1次粒径(nm)である。Is a graph of the NOx purification rate with respect to Ra / Rb, where Ra is the primary particle size (nm) of the OSC material upstream of the catalyst, and Rb is the primary particle size (nm) of the OSC material downstream of the catalyst.

本発明の排ガス浄化触媒は、触媒前段と後段にOSC材を配置した排ガス浄化触媒であって、前記前段に配置したOSC材の酸素吸放出速度が前記後段に配置したOSC材の酸素吸放出速度よりも速いことと、前記前段に配置したOSC材の粒径(Ra)と前記後段に配置したOSC材の粒径(Rb)との比Ra/Rbが1.0未満であることを特徴とする。   The exhaust gas purifying catalyst of the present invention is an exhaust gas purifying catalyst in which an OSC material is disposed in the upstream and downstream stages of the catalyst, and the oxygen absorption / release speed of the OSC material disposed in the subsequent stage is the oxygen absorption / release speed of the OSC material disposed in the preceding stage. And the ratio Ra / Rb between the particle size (Ra) of the OSC material disposed in the preceding stage and the particle size (Rb) of the OSC material disposed in the subsequent stage is less than 1.0. To do.

本発明では、触媒前段と後段にOSC材を配置する。OSC材は、無機構造担体である一体構造型担体(例えばハニカム構造体)上に担持することができる。   In the present invention, the OSC material is disposed in the upstream and downstream of the catalyst. The OSC material can be supported on a monolithic structure type carrier (for example, a honeycomb structure) which is an inorganic structure carrier.

一体構造型担体の形状は、特に限定されるものではなく、公知の一体構造型担体の中から選択可能であるが、自動車用三元触媒の場合であればフロースルー型担体を用いる事が好ましい。   The shape of the monolithic structure type carrier is not particularly limited and can be selected from known monolithic structure type carriers. However, in the case of a three-way catalyst for automobiles, it is preferable to use a flow-through type carrier. .

このような一体構造型担体の材質としては金属、セラミックスがある。金属の場合はステンレス製のものが一般的であるが、その形状はハニカム状をしたものが一般的である。セラミックスの材質は、コージェライト、ムライト、アルミナ、マグネシア、スピネル、炭化ケイ素などがあるが、ハニカムを作製するための成形性が良く、耐熱性や機械的強度にも優れる点からコージェライト製であることが好ましい。   Examples of the material of such an integral structure type carrier include metals and ceramics. In the case of metal, stainless steel is generally used, but the shape is generally honeycomb. Ceramic materials include cordierite, mullite, alumina, magnesia, spinel, silicon carbide, etc., but they are made of cordierite because they have good moldability for manufacturing honeycombs and are excellent in heat resistance and mechanical strength. It is preferable.

本発明で用いるOSC材としては、酸素の吸蔵および放出能が大きいCeO粉末をベースとしたものを好ましく用いることができる。これまでにCeO−ZrO系など、CeO系粉末における酸素の吸蔵容量、放出特性の向上とそれを助触媒とした排気ガス浄化触媒について多くの研究が行われてきており、排気ガス処理効率を増大させることが明らかにされている。それらを本発明のOSC材として用いることができる。さらに、CeO−ZrO系OSC材に、随意的付加成分としてセリウム元素材料、ジルコニウム元素材料以外の材料を併せて用いる場合は、本発明により得られるOSC材の特性を損なわない範囲であれば、アルカリ、アルカリ土類、金属成分などを加える事ができる。より具体的には、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、ストロンチウム、バリウム、ランタン、イットリウム、アンチモン、ハフニウム、タンタル、レニウム、ビスマス、プラセオジム、ネオジウム、サマリウム、ガドリニウム、ホルミウム、ツリウム、イッテルビウム、ゲルマニウム、セレン、カドミウム、インジウム、スカンジウム、チタン、ニオブ、クロム、鉄、銀、ロジウム、白金などがあげられる。また、このような随意的付加成分は、セリウム元素材料、ジルコニウム元素材料中の不純物に由来して含まれていても良い。ただし、このような随意的付加成分が有害性の規制対象である場合は、その量を低減するか、除去する事が望ましい事は言うまでも無い。 As the OSC material used in the present invention, a material based on CeO 2 powder having a large oxygen storage and release ability can be preferably used. So far, many studies have been conducted on the improvement of oxygen storage capacity and release characteristics in CeO 2 -based powders such as CeO 2 -ZrO 2 and exhaust gas purification catalysts using the same as an auxiliary catalyst. It has been shown to increase efficiency. They can be used as the OSC material of the present invention. Further, when a material other than a cerium element material and a zirconium element material is used as an optional additional component in the CeO 2 —ZrO 2 -based OSC material, it is within a range that does not impair the characteristics of the OSC material obtained by the present invention. Alkali, alkaline earth, metal components, etc. can be added. More specifically, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, lanthanum, yttrium, antimony, hafnium, tantalum, rhenium, bismuth, praseodymium, neodymium, samarium, gadolinium, holmium, thulium, ytterbium, germanium, Examples include selenium, cadmium, indium, scandium, titanium, niobium, chromium, iron, silver, rhodium, and platinum. Further, such an optional additional component may be contained from impurities in the cerium element material and the zirconium element material. However, it is needless to say that when such an optional additional component is subject to harmful regulation, it is desirable to reduce or eliminate the amount.

上記セリウム原料、ジルコニウム原料、および随意的付加成分は、所定の割合で混合し熔融装置に装入される。次に、原料混合物を装置内で熔融するが、熔融方法については、原料混合物の少なくとも一種が熔融する方法であれば特に限定されず、アーク式、高周波熱プラズマ式等が例示される。中でも一般的な電融法、すなわちアーク式電気炉を用いた熔融方法を好ましく利用することができる。熔融終了後、電気炉に炭素蓋をして、20〜30時間徐冷し固溶体を得る。熔融物の冷却方法は、特に限定されないが、通常、熔融装置から取り出して、大気中で100℃以下、好ましくは50℃以下となるように放冷する。これにより、セリウム原料とジルコニウム原料が均一になったセリウム−ジルコニウム系複合酸化物の固溶体を得ることが出来る。   The cerium raw material, zirconium raw material, and optional additional components are mixed at a predetermined ratio and charged into a melting apparatus. Next, the raw material mixture is melted in the apparatus. The melting method is not particularly limited as long as at least one of the raw material mixtures is melted, and examples thereof include an arc type and a high frequency thermal plasma type. Among them, a general electromelting method, that is, a melting method using an arc electric furnace can be preferably used. After the end of melting, the electric furnace is covered with carbon and slowly cooled for 20 to 30 hours to obtain a solid solution. The method for cooling the melt is not particularly limited, but it is usually taken out from the melting apparatus and allowed to cool in the atmosphere to 100 ° C. or lower, preferably 50 ° C. or lower. As a result, a solid solution of a cerium-zirconium composite oxide in which the cerium raw material and the zirconium raw material are uniform can be obtained.

次いで、固溶体は粉砕される。固溶体の粉砕については、特に限定されないが、インゴットは、ジョークラッシャーまたはロールクラッシャー等の粉砕機で粗粉砕することができる。上記方法で得られた粗粉末を、さらに微粉砕することができる。微粉砕については、特に限定されないが、遊星ミル、ボールミルまたはジェットミル等の粉砕機で5〜30分間、微粉砕することができる。この微粉砕により、セリウム−ジルコニウム系複合酸化物の平均粒径をナノメートルオーダーとすることが好ましい。微粉砕されることで複合酸化物の表面積が大きくなり、酸素吸放出速度の速いOSC材を得ることができる。   The solid solution is then pulverized. The pulverization of the solid solution is not particularly limited, but the ingot can be roughly pulverized by a pulverizer such as a jaw crusher or a roll crusher. The coarse powder obtained by the above method can be further finely pulverized. Although it does not specifically limit about fine pulverization, It can pulverize for 5 to 30 minutes with grinders, such as a planetary mill, a ball mill, or a jet mill. It is preferable that the average particle size of the cerium-zirconium-based composite oxide be set to the nanometer order by this fine pulverization. By finely pulverizing, the surface area of the composite oxide is increased, and an OSC material having a high oxygen absorption / release rate can be obtained.

このようにして作製されたOSC材は、多孔質無機酸化物とともに、触媒活性金属を担持して、使用することができる。これにより、触媒活性金属を熱や雰囲気に対して安定な状態に保ち、かつ触媒活性金属の活性も高めることができる。   The OSC material thus produced can be used by supporting a catalytically active metal together with a porous inorganic oxide. Thereby, the catalytically active metal can be kept in a stable state with respect to heat and atmosphere, and the activity of the catalytically active metal can be increased.

触媒活性金属としては、排気ガスの浄化に対して活性を有するものであれば制限されないが、白金、パラジウム、ロジウムから選ばれる一種以上の触媒活性金属を含有することが望ましい。この他、遷移金属、希土類金属などを含有することができる。   The catalytically active metal is not limited as long as it has activity for purification of exhaust gas, but it is desirable to contain one or more catalytically active metals selected from platinum, palladium, and rhodium. In addition, transition metals, rare earth metals and the like can be contained.

耐熱性無機酸化物、すなわち触媒活性金属が担持される母材としては、耐熱性が高く、比表面積の大きな多孔質の無機材料が好ましく、γ−アルミナ、θ−アルミナなどの活性アルミナ、ジルコニア、セリウム−ジルコニウム複合酸化物、セリア、酸化チタン、シリカ、各種ゼオライトなどを用いることができる。このような多孔質無機母材には、ランタン、セリウム、バリウム、プラセオジム、ストロンチウム等の希土類や、アルカリ土類金属を添加し、耐熱性を更に向上させたものを用いてもよい。   As a base material on which a heat-resistant inorganic oxide, that is, a catalytically active metal is supported, a porous inorganic material having high heat resistance and a large specific surface area is preferable, active alumina such as γ-alumina and θ-alumina, zirconia, Cerium-zirconium composite oxide, ceria, titanium oxide, silica, various zeolites, and the like can be used. As such a porous inorganic base material, a material further improved in heat resistance by adding a rare earth such as lanthanum, cerium, barium, praseodymium, strontium or an alkaline earth metal may be used.

OSC材、触媒活性金属、および耐熱性無機酸化物を、水径溶媒とともに混合してスラリーとしてから、一体構造型担体へコートして、乾燥、焼成することにより、本発明の排ガス浄化触媒を得ることができる。   An OSC material, a catalytically active metal, and a heat-resistant inorganic oxide are mixed with a water-size solvent to form a slurry, which is then coated on a monolithic structure type carrier, dried and fired to obtain the exhaust gas purification catalyst of the present invention. be able to.

本発明では、前段に配置したOSC材の粒径(Ra)と後段に配置したOSC材の粒径(Rb)が異なっている。ここで、粒径とは1次粒子径のことである。1次粒子径は、XRDなどの分光法やSEMなどの観察によって判別される。   In the present invention, the particle size (Ra) of the OSC material disposed in the previous stage is different from the particle size (Rb) of the OSC material disposed in the subsequent stage. Here, the particle size is the primary particle size. The primary particle size is determined by spectroscopic methods such as XRD and observations such as SEM.

前段に配置したOSC材の粒径(Ra)と前記後段に配置したOSC材の粒径(Rb)との比Ra/Rbが1.0未満である。すなわち、前段に配置したOSC材の粒径(Ra)が、後段に配置したOSC材の粒径(Rb)よりも小さい。比表面積については、前段に配置したOSC材の比表面積が、後段に配置したOSC材の比表面積よりも大きい。比表面積が大きいと、その活性面積も大きく、すなわち酸素吸放出速度も速い。前段に配置したOSC材の速い酸素吸放出速度により、触媒に導入される急激な排ガスのA/F変化にすばやく追随し、触媒内部のストイキ状態を保持し、高いNOx浄化活性を得ることができる。   The ratio Ra / Rb between the particle size (Ra) of the OSC material arranged in the preceding stage and the particle size (Rb) of the OSC material arranged in the latter stage is less than 1.0. That is, the particle size (Ra) of the OSC material arranged in the former stage is smaller than the particle size (Rb) of the OSC material arranged in the latter stage. About the specific surface area, the specific surface area of the OSC material arrange | positioned in the front | former stage is larger than the specific surface area of the OSC material arrange | positioned in the back | latter stage. When the specific surface area is large, the active area is also large, that is, the oxygen absorption / release rate is also fast. The rapid oxygen absorption / release rate of the OSC material arranged in the previous stage can quickly follow the A / F change of the exhaust gas introduced into the catalyst, maintain the stoichiometric state inside the catalyst, and obtain high NOx purification activity. .

逆に、後段に配置したOSC材の比表面積は、前段に配置したOSC材の比表面積よりも小さい。比表面積が小さいと、その活性面積も小さく、すなわち酸素吸放出速度も(前段と比較すると)遅くなる。後段の酸素吸放出速度は前段の酸素吸放出速度よりも遅いので、後段のOSC材は前段のOSC材よりも長時間酸素吸放出することができる。これにより、触媒に導入される緩やかなA/F変化にも対応し、高いNOx浄化活性を得ることができる。   On the contrary, the specific surface area of the OSC material arranged in the latter stage is smaller than the specific surface area of the OSC material arranged in the former stage. When the specific surface area is small, the active area is also small, that is, the oxygen absorption / release rate is also slow (compared to the previous stage). Since the latter oxygen absorption / release rate is slower than the former oxygen absorption / release rate, the latter OSC material can absorb and release oxygen for a longer time than the former OSC material. Thereby, it is possible to cope with a gradual A / F change introduced into the catalyst and to obtain a high NOx purification activity.

前段に配置したOSC材の粒径(Ra)が0nm<Ra<9.2nmであり、且つ後段に配置したOSC材の粒径(Rb)が、15nm<Rb<300nmである場合に、それ以外の粒径に比べて顕著に高いNOx浄化活性が得られることが、本発明者によって確認された。
Raが9.2nm以上では、前段に配置したOSC材としては酸素を吸放出する応答性が遅くなりすぎ、急激なA/F変化時(加速時など)に、A/F変動を吸収できずエミッションが悪化する。
Rbが15nm以下では、後段に配置したOSC材としては酸素の吸放出反応が速くなりすぎ、リッチまたはリーンが続く入ガス条件下で長時間A/F変化を吸収し続けることが出来ずエミッションが悪化する。またリッチ時には短時間に多くの酸素が放出されるため、貴金属の還元を阻害しエミッションが悪化する。
Rbが300nm以上では、後段に配置したOSC材としては、OSC材内部層の酸素拡散が律速となり、粒子コア部分の酸素吸放出能を十分に使用できない。したがって、十分なOSC能を得られずエミッションが悪化する。より好ましくはRb<250nmであり、さらに好ましくはRb<200nmである。
When the particle size (Ra) of the OSC material arranged in the former stage is 0 nm <Ra <9.2 nm and the particle size (Rb) of the OSC material arranged in the latter stage is 15 nm <Rb <300 nm, otherwise It has been confirmed by the present inventor that NOx purification activity that is significantly higher than the particle size of is obtained.
When Ra is 9.2 nm or more, the OSC material arranged in the previous stage is too slow to absorb and release oxygen, and cannot absorb A / F fluctuations when sudden A / F changes (acceleration, etc.). Emissions get worse.
When the Rb is 15 nm or less, the OSC material disposed in the latter stage has an oxygen absorption / release reaction that is too fast, and the A / F change cannot be absorbed for a long time under the ingress condition where the gas is rich or lean. Getting worse. In addition, when rich, a large amount of oxygen is released in a short time, so that the reduction of noble metals is inhibited and the emission deteriorates.
When Rb is 300 nm or more, as the OSC material disposed in the latter stage, the oxygen diffusion in the OSC material inner layer becomes rate-determining, and the oxygen absorption / release capacity of the particle core portion cannot be sufficiently used. Therefore, sufficient OSC capability cannot be obtained and the emission deteriorates. More preferably, Rb <250 nm, and still more preferably Rb <200 nm.

前段のOSC材、および後段のOSC材は、それぞれが、一次粒子径Rcが、Ra<Rc<Rbの関係が成り立つOSC材を含んでもよい。一次粒子径RcであるOSC材は、一次粒子径Raおよび/またはRbであるOSC材に対して、1:1の割合まで含有してもよい。   Each of the front-stage OSC material and the rear-stage OSC material may include an OSC material in which the primary particle diameter Rc satisfies the relationship Ra <Rc <Rb. The OSC material having the primary particle diameter Rc may be contained up to a ratio of 1: 1 with respect to the OSC material having the primary particle diameter Ra and / or Rb.

本発明では、前段および後段のOSC材コートの上層として、さらに触媒層がコートされていてもよい。自動車用三元触媒用としては、その上層を実質的にPt、Pdを含まずRhを含む触媒層により被覆することが好ましい。
一体構造型触媒をこのように構成することが好ましい理由としては以下のように考えられる。すなわち、Pt、PdとRhが同一組成中に存在すると、Pd、PtとRhが反応して貴金属同士のシンタリングを生じ、Pt、Pdの触媒活性が弱くなってしまうことがあるとともに、触媒の排気ガス浄化能自体も低下していくことが知られている。また、Pdには排気ガス中の鉛や硫黄による被毒の問題があり、Pdが構造触媒表層に存在すると触媒活性が減退することが知られている。この問題に対しては貴金属量を多くすることによっても対策可能であるが、触媒コストが高くなる問題があることから、Pt、PdとRhとを同一組成に存在させることは好ましくない場合がある(特開平11−169712の段落0011、特開2005−021793の段落0005参照)。
また、Rhは上層に配置されることにより、特に一体構造型触媒の表層に配置することでNOxの浄化活性が早期に活性化される。このような理由から、排気ガスに近い上層にはRhを配置し、その下層にPt、PdとOSC材とを配置した一体構造型触媒であることが好ましい。
上層の触媒の各成分は、担体のハニカム構造体単位体積あたり、OSC材が0〜100g/L、触媒活性金属が0.01〜1.0g/L、耐熱性無機酸化物が10〜100g/Lである事が好ましい。
In the present invention, a catalyst layer may be further coated as an upper layer of the former and latter OSC material coats. For a three-way catalyst for automobiles, it is preferable to coat the upper layer with a catalyst layer substantially free of Pt and Pd and containing Rh.
The reason why it is preferable to configure the monolithic catalyst in this way is considered as follows. That is, when Pt, Pd, and Rh are present in the same composition, Pd, Pt, and Rh react to cause sintering between noble metals, and the catalytic activity of Pt and Pd may be weakened. It is known that the exhaust gas purifying ability itself also decreases. Further, Pd has a problem of poisoning due to lead or sulfur in the exhaust gas, and it is known that the catalytic activity decreases when Pd is present on the surface of the structural catalyst. Although it is possible to take measures against this problem by increasing the amount of noble metal, it is not preferable that Pt, Pd and Rh exist in the same composition because there is a problem that the catalyst cost increases. (See paragraphs 0011 of JP-A-11-169712 and paragraph 0005 of JP-A-2005-021793).
Further, when Rh is disposed in the upper layer, NOx purification activity is activated at an early stage, particularly by disposing it in the surface layer of the monolithic catalyst. For this reason, it is preferable that the catalyst is an integral structure type catalyst in which Rh is disposed in the upper layer close to the exhaust gas and Pt, Pd, and OSC material are disposed in the lower layer.
Each component of the catalyst of the upper layer is 0 to 100 g / L for the OSC material, 0.01 to 1.0 g / L for the catalytically active metal, and 10 to 100 g / L for the heat-resistant inorganic oxide per unit volume of the honeycomb structure of the carrier. L is preferred.

以下、実施例によって本発明をより詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these Examples.

1.実施例および比較例の触媒の作製
実施例1〜5、および比較例1〜5の触媒は、概ね次のとおりに作製した。セリアジルコニア固溶体(CZ−1)〜(CZ−5)を用意した。次に、それらのセリアジルコニア固溶体から、コート用スラリー(1)〜(7)を調整した。次に、スラリーをハニカム基材にコートした。以下、詳細に説明する。
1. Production of Catalysts of Examples and Comparative Examples The catalysts of Examples 1 to 5 and Comparative Examples 1 to 5 were produced generally as follows. Ceria zirconia solid solutions (CZ-1) to (CZ-5) were prepared. Next, coating slurries (1) to (7) were prepared from these ceria zirconia solid solutions. Next, the honeycomb substrate was coated with the slurry. Details will be described below.

ジルコニア固溶体(CZ−1)〜(CZ−5)の用意
(CZ−1):1次粒子径=15nm、組成CeO/ZrO/La/Y =60/30/5/5wt%
(CZ−2):1次粒子径=9.2nm、組成CeO/ZrO/La/Y=60/30/5/5wt%、(CZ−1)を微粉砕したもの
(CZ−3):1次粒子径=157nm、組成CeO/ZrO=58/42wt%
(CZ−4):1次粒子径=22nm、組成CeO/ZrO=58/42wt%、( CZ−3)を微粉砕したもの
(CZ−5):1次粒子径=5.7nm、組成CeO/ZrO/La/Y=30/60/5/5wt%
Preparation of zirconia solid solutions (CZ-1) to (CZ-5) (CZ-1): primary particle size = 15 nm, composition CeO 2 / ZrO 2 / La 2 O 3 / Y 2 O 3 = 60/30/5 / 5wt%
(CZ-2): primary particle size = 9.2 nm, composition CeO 2 / ZrO 2 / La 2 O 3 / Y 2 O 3 = 60/30/5/5 wt%, (CZ-1) was finely pulverized Material (CZ-3): primary particle size = 157 nm, composition CeO 2 / ZrO 2 = 58/42 wt%
(CZ-4): primary particle size = 22 nm, composition CeO 2 / ZrO 2 = 58/42 wt%, finely pulverized (CZ-3) (CZ-5): primary particle size = 5.7 nm, composition CeO 2 / ZrO 2 / La 2 O 3 / Y 2 O 3 = 30/60/5 / 5wt%

セリアジルコニア固溶体(CZ−1)〜(CZ−5)から、コート用スラリー(1)〜(7)の調製   Preparation of slurry for coating (1) to (7) from ceria zirconia solid solution (CZ-1) to (CZ-5)

スラリー(1)
セリアジルコニア固溶体(CZ−1)とアルミナ(サソール社製(La 4wt%、Al 96wt%))を1:1の質量比で混合し、その後、8%硝酸パラジウム水溶液を含浸担持後(含浸条件 1時間、80℃)、乾燥、焼成(焼成条件 1時間、500℃)してPd担持粉末を得た。このPd担持粉末とアルミナバインダー(サソール社製 DISPAL)を20:1の質量比で混合し、蒸留水200mlを加えて、コート用スラリー(1)を調製した。
Slurry (1)
Ceria zirconia solid solution (CZ-1) and alumina (manufactured by Sasol (La 2 O 3 4 wt%, Al 2 O 3 96 wt%)) were mixed at a mass ratio of 1: 1, and then impregnated with 8% palladium nitrate aqueous solution. After supporting (impregnation condition 1 hour, 80 ° C.), drying and firing (firing condition 1 hour, 500 ° C.), a Pd-supported powder was obtained. This Pd-supported powder and alumina binder (DISAL manufactured by Sasol) were mixed at a mass ratio of 20: 1, and 200 ml of distilled water was added to prepare a coating slurry (1).

スラリー(2)
セリアジルコニア固溶体(CZ−2)とアルミナ(サソール社製(La 4wt%、Al 96wt%))を1:1の質量比で混合し、その後、8%硝酸パラジウム水溶液を含浸担持後(含浸条件 1時間、80℃)、乾燥、焼成(焼成条件 1時間、500℃)してPd担持粉末を得た。このPd担持粉末とアルミナバインダー(サソール社製 DISPAL)を20:1の質量比で混合し、蒸留水200mlを加えて、コート用スラリー(2)を調製した。
Slurry (2)
Ceria zirconia solid solution (CZ-2) and alumina (Sasol (La 2 O 3 4 wt%, Al 2 O 3 96 wt%)) were mixed at a mass ratio of 1: 1, and then impregnated with 8% palladium nitrate aqueous solution. After supporting (impregnation condition 1 hour, 80 ° C.), drying and firing (firing condition 1 hour, 500 ° C.), a Pd-supported powder was obtained. This Pd-supported powder and alumina binder (DISAL manufactured by Sasol) were mixed at a mass ratio of 20: 1, and 200 ml of distilled water was added to prepare a coating slurry (2).

スラリー(3)
市販のZrO粉末(第一稀元素化学工業社製、ZrO 80wt%、Y 8wt%、Nd 12%)に2.8%硝酸Rh水溶液を含浸担持後(含浸条件 1時間、80℃)、乾燥、焼成(焼成条件 1時間、500℃)してRh担持粉末を得た。このRh担持粉末とアルミナバインダー(サソール社製 DISPAL)を20:1の質量比で混合し、蒸留水200mlを加えて、コート用スラリー(3)を調製した。
Slurry (3)
After impregnating and supporting 2.8% aqueous Rh nitrate solution on a commercially available ZrO 2 powder (manufactured by Daiichi Rare Element Chemical Co., Ltd., ZrO 2 80 wt%, Y 2 O 3 8 wt%, Nd 2 O 3 12%) (impregnation condition 1 Time, 80 ° C.), drying and firing (firing conditions 1 hour, 500 ° C.) to obtain Rh-supported powder. The Rh-supported powder and alumina binder (DISAL manufactured by Sasol) were mixed at a mass ratio of 20: 1, and 200 ml of distilled water was added to prepare a coating slurry (3).

スラリー(4)
セリアジルコニア固溶体(CZ−4)とアルミナ(サソール社製(La 4wt%、Al 96wt%))を1:1の質量比で混合し、その後、8%硝酸パラジウム水溶液を含浸担持後(含浸条件 1時間、80℃)、乾燥、焼成(焼成条件 1時間、500℃)してPd担持粉末を得た。このPd担持粉末とアルミナバインダー(サソール社製 DISPAL)を20:1の質量比で混合し、蒸留水200mlを加えて、コート用スラリー(4)を調製した。
Slurry (4)
Ceria zirconia solid solution (CZ-4) and alumina (Sasol (La 2 O 3 4 wt%, Al 2 O 3 96 wt%)) were mixed at a mass ratio of 1: 1, and then impregnated with 8% palladium nitrate aqueous solution. After supporting (impregnation condition 1 hour, 80 ° C.), drying and firing (firing condition 1 hour, 500 ° C.), a Pd-supported powder was obtained. This Pd-supported powder and alumina binder (DISAL manufactured by Sasol) were mixed at a mass ratio of 20: 1, and 200 ml of distilled water was added to prepare a coating slurry (4).

スラリー(5)
セリアジルコニア固溶体(CZ−3)とアルミナ(サソール社製(La 4wt%、Al 96wt%))を1:1の質量比で混合し、その後、8%硝酸パラジウム水溶液を含浸担持後(含浸条件 1時間、80℃)、乾燥、焼成(焼成条件 1時間、500℃)してPd担持粉末を得た。このPd担持粉末とアルミナバインダー(サソール社製 DISPAL)を20:1の質量比で混合し、蒸留水200mlを加えて、コート用スラリー(5)を調製した。
Slurry (5)
Ceria zirconia solid solution (CZ-3) and alumina (manufactured by Sasol (La 2 O 3 4 wt%, Al 2 O 3 96 wt%)) were mixed at a mass ratio of 1: 1, and then impregnated with 8% palladium nitrate aqueous solution. After supporting (impregnation condition 1 hour, 80 ° C.), drying and firing (firing condition 1 hour, 500 ° C.), a Pd-supported powder was obtained. This Pd-supported powder and alumina binder (DISAL manufactured by Sasol) were mixed at a mass ratio of 20: 1, and 200 ml of distilled water was added to prepare a slurry for coating (5).

スラリー(6)
セリアジルコニア固溶体(CZ−5)とアルミナ(サソール社製(La 4wt%、Al 96wt%))を1:1の質量比で混合し、その後、8%硝酸パラジウム水溶液を含浸担持後(含浸条件 1時間、80℃)、乾燥、焼成(焼成条件 1時間、500℃)してPd担持粉末を得た。このPd担持粉末とアルミナバインダー(サソール社製 DISPAL)を20:1の質量比で混合し、蒸留水200mlを加えて、コート用スラリー(6)を調製した。
Slurry (6)
Ceria zirconia solid solution (CZ-5) and alumina (Sasol (La 2 O 3 4 wt%, Al 2 O 3 96 wt%)) were mixed at a mass ratio of 1: 1, and then impregnated with 8% palladium nitrate aqueous solution. After supporting (impregnation condition 1 hour, 80 ° C.), drying and firing (firing condition 1 hour, 500 ° C.), a Pd-supported powder was obtained. This Pd-supported powder and alumina binder (DISAL manufactured by Sasol) were mixed at a mass ratio of 20: 1, and 200 ml of distilled water was added to prepare slurry for coating (6).

スラリー(7)
セリアジルコニア固溶体(CZ−1)、(CZ−2)およびアルミナ(サソール社製(La 4wt%、Al 96wt%))を1:1:2の質量比で混合し、その後、8%硝酸パラジウム水溶液を含浸担持後(含浸条件 1時間、80℃)、乾燥、焼成(焼成条件 1時間、500℃)してPd担持粉末を得た。このPd担持粉末とアルミナバインダー(サソール社製 DISPAL)を20:1の質量比で混合し、蒸留水200mlを加えて、コート用スラリー(7)を調製した。
Slurry (7)
Ceria zirconia solid solution (CZ-1), (CZ-2) and alumina (Sasol (La 2 O 3 4 wt%, Al 2 O 3 96 wt%)) were mixed at a mass ratio of 1: 1: 2, and then Then, after impregnating and supporting an 8% aqueous palladium nitrate solution (impregnation condition 1 hour, 80 ° C.), drying and firing (firing condition 1 hour, 500 ° C.), a Pd-supported powder was obtained. This Pd-supported powder and an alumina binder (DISPAL manufactured by Sasol) were mixed at a mass ratio of 20: 1, and 200 ml of distilled water was added to prepare a coating slurry (7).

スラリー(8)
セリアジルコニア固溶体(CZ−1)、(CZ−4)およびアルミナ(サソール社製(La 4wt%、Al 96wt%))を1:1:2の質量比で混合し、その後、8%硝酸パラジウム水溶液を含浸担持後(含浸条件 1時間、80℃)、乾燥、焼成(焼成条件 1時間、500℃)してPd担持粉末を得た。このPd担持粉末とアルミナバインダー(サソール社製 DISPAL)を20:1の質量比で混合し、蒸留水200mlを加えて、コート用スラリー(8)を調製した。
Slurry (8)
Ceria zirconia solid solution (CZ-1), (CZ-4) and alumina (Sasol (La 2 O 3 4 wt%, Al 2 O 3 96 wt%)) were mixed at a mass ratio of 1: 1: 2, and then Then, after impregnating and supporting an 8% aqueous palladium nitrate solution (impregnation condition 1 hour, 80 ° C.), drying and firing (firing condition 1 hour, 500 ° C.), a Pd-supported powder was obtained. This Pd-supported powder and alumina binder (DISAL manufactured by Sasol) were mixed at a mass ratio of 20: 1, and 200 ml of distilled water was added to prepare a coating slurry (8).

コート用スラリー(1)〜(8)から、実施例および比較例の触媒の作製   Preparation of catalysts of Examples and Comparative Examples from coating slurries (1) to (8)

実施例1の触媒作製
ハニカム基材(600セル、壁厚3mm、内径103mm×長さ105mm)の上方開口部から、スラリー(2)を投入し、ハニカム基材の下方開口部を吸引することでハニカム基材内部の長手方向中央部までをコートした。このとき、ハニカム基材内部の長手方向中央部までが、スラリー(2)でコートされるように、スラリー投入量および、固形分量・吸引条件を調整した。次に、このハニカム基材を乾燥(250℃、6時間、大気中(電気炉))し、焼成(500℃、1時間、大気中)した。
次に、ハニカム基材を長手方向に上下反転させ、スラリー(2)が投入されていない側の開口部を上方とし、そこから、スラリー(1)を投入し、ハニカム基材の下方開口部を吸引することでハニカム基材内部の長手方向中央部までをコートした。このとき、ハニカム基材内部の長手方向中央部までが、スラリー(1)でコートされるように、スラリー投入量および、固形分量・吸引条件を調整した。次に、このハニカム基材を乾燥(250℃、6時間、大気中)し、焼成(500℃、1時間、大気中)した。
次に、スラリー(2)および(1)によるコートの上に、スラリー(3)をコートし、乾燥、焼成した。全コート量は焼成後の質量が200g/Lとなるように調整した。スラリー(2)のコート量は75g/L、スラリー(1)のコート量は75g/L、およびスラリー(3)のコート量は50g/Lとなるように調製した。また、PdおよびRhの担持量はそれぞれ、0.6[g/L]、0.1[g/L]となるように調整した。
Catalyst preparation of Example 1 Slurry (2) is introduced from an upper opening of a honeycomb substrate (600 cells, wall thickness 3 mm, inner diameter 103 mm × length 105 mm), and the lower opening of the honeycomb substrate is sucked. The coating was applied up to the center in the longitudinal direction inside the honeycomb substrate. At this time, the slurry input amount, the solid content amount, and the suction conditions were adjusted so that the center of the honeycomb base material in the longitudinal direction was coated with the slurry (2). Next, the honeycomb substrate was dried (250 ° C., 6 hours, in the air (electric furnace)) and fired (500 ° C., 1 hour, in the air).
Next, the honeycomb substrate is turned upside down in the longitudinal direction, the opening on the side where the slurry (2) is not charged is set upward, and the slurry (1) is charged from there, and the lower opening of the honeycomb substrate is formed. By suctioning, the honeycomb substrate was coated up to the center in the longitudinal direction. At this time, the slurry input amount, the solid content amount, and the suction conditions were adjusted so that the center of the honeycomb base material in the longitudinal direction was coated with the slurry (1). Next, this honeycomb substrate was dried (250 ° C., 6 hours in air) and fired (500 ° C., 1 hour in air).
Next, slurry (3) was coated on the slurry (2) and (1), dried and fired. The total coating amount was adjusted so that the mass after firing was 200 g / L. The coating amount of the slurry (2) was 75 g / L, the coating amount of the slurry (1) was 75 g / L, and the coating amount of the slurry (3) was 50 g / L. The supported amounts of Pd and Rh were adjusted to 0.6 [g / L] and 0.1 [g / L], respectively.

実施例2の触媒作製
ハニカム基材(600セル、壁厚3mm、内径103mm×長さ105mm)の上方開口部から、スラリー(2)を投入し、ハニカム基材の下方開口部を吸引することでハニカム基材内部の長手方向中央部までをコートした。このとき、ハニカム基材内部の長手方向中央部までが、スラリー(2)でコートされるように、スラリー投入量および、固形分量・吸引条件を調整した。次に、このハニカム基材を乾燥(250℃、6時間、大気中)し、焼成(500℃、1時間、大気中)した。
次に、ハニカム基材を長手方向に上下反転させ、スラリー(2)が投入されていない側の開口部を上方とし、そこから、スラリー(4)を投入し、ハニカム基材の下方開口部を吸引することでハニカム基材内部の長手方向中央部までをコートした。このとき、ハニカム基材内部の長手方向中央部までが、スラリー(4)でコートされるように、スラリー投入量および、固形分量・吸引条件を調整した。次に、このハニカム基材を乾燥(250℃、6時間、大気中)し、焼成(500℃、1時間、大気中)した。
次に、スラリー(2)および(4)によるコートの上に、スラリー(3)をコートし、乾燥、焼成した。全コート量は焼成後の質量が200g/Lとなるように調整した。スラリー(2)のコート量は75g/L、スラリー(4)のコート量は75g/L、およびスラリー(3)のコート量は50g/Lとなるように調製した。また、PdおよびRhの担持量はそれぞれ、0.6[g/L]、0.1[g/L]となるように調整した。
Catalyst preparation of Example 2 The slurry (2) was introduced from the upper opening of the honeycomb substrate (600 cells, wall thickness 3 mm, inner diameter 103 mm × length 105 mm), and the lower opening of the honeycomb substrate was sucked. The coating was applied up to the center in the longitudinal direction inside the honeycomb substrate. At this time, the slurry input amount, the solid content amount, and the suction conditions were adjusted so that the center of the honeycomb base material in the longitudinal direction was coated with the slurry (2). Next, this honeycomb substrate was dried (250 ° C., 6 hours in air) and fired (500 ° C., 1 hour in air).
Next, the honeycomb substrate is turned upside down in the longitudinal direction, the opening on the side where the slurry (2) is not charged is set upward, and the slurry (4) is charged from there, and the lower opening of the honeycomb substrate is formed. By suctioning, the honeycomb substrate was coated up to the center in the longitudinal direction. At this time, the slurry input amount, the solid content amount, and the suction conditions were adjusted so that the center of the honeycomb base material in the longitudinal direction was coated with the slurry (4). Next, this honeycomb substrate was dried (250 ° C., 6 hours in air) and fired (500 ° C., 1 hour in air).
Next, the slurry (3) was coated on the coats of the slurries (2) and (4), dried and fired. The total coating amount was adjusted so that the mass after firing was 200 g / L. The coating amount of the slurry (2) was 75 g / L, the coating amount of the slurry (4) was 75 g / L, and the coating amount of the slurry (3) was 50 g / L. The supported amounts of Pd and Rh were adjusted to 0.6 [g / L] and 0.1 [g / L], respectively.

実施例3の触媒作製
ハニカム基材(600セル、壁厚3mm、内径103mm×長さ105mm)の上方開口部から、スラリー(2)を投入し、ハニカム基材の下方開口部を吸引することでハニカム基材内部の長手方向中央部までをコートした。このとき、ハニカム基材内部の長手方向中央部までが、スラリー(2)でコートされるように、スラリー投入量および、固形分量・吸引条件を調整した。次に、このハニカム基材を乾燥(250℃、6時間、大気中)し、焼成(500℃、1時間、大気中)した。
次に、ハニカム基材を長手方向に上下反転させ、スラリー(2)が投入されていない側の開口部を上方とし、そこから、スラリー(5)を投入し、ハニカム基材の下方開口部を吸引することでハニカム基材内部の長手方向中央部までをコートした。このとき、ハニカム基材内部の長手方向中央部までが、スラリー(5)でコートされるように、スラリー投入量および、固形分量・吸引条件を調整した。次に、このハニカム基材を乾燥(250℃、6時間、大気中)し、焼成(500℃、1時間、大気中)した。
次に、スラリー(2)および(5)によるコートの上に、スラリー(3)をコートし、乾燥、焼成した。全コート量は焼成後の質量が200g/Lとなるように調整した。スラリー(2)のコート量は75g/L、スラリー(5)のコート量は75g/L、およびスラリー(3)のコート量は50g/Lとなるように調製した。また、PdおよびRhの担持量はそれぞれ、0.6[g/L]、0.1[g/L]となるように調整した。
Catalyst preparation of Example 3 Slurry (2) is introduced from the upper opening of the honeycomb substrate (600 cells, wall thickness 3 mm, inner diameter 103 mm × length 105 mm), and the lower opening of the honeycomb substrate is sucked. The coating was applied up to the center in the longitudinal direction inside the honeycomb substrate. At this time, the slurry input amount, the solid content amount, and the suction conditions were adjusted so that the center of the honeycomb base material in the longitudinal direction was coated with the slurry (2). Next, this honeycomb substrate was dried (250 ° C., 6 hours in air) and fired (500 ° C., 1 hour in air).
Next, the honeycomb substrate is turned upside down in the longitudinal direction, the opening on the side where the slurry (2) is not charged is set upward, and the slurry (5) is charged from there, and the lower opening of the honeycomb substrate is formed. By suctioning, the honeycomb substrate was coated up to the center in the longitudinal direction. At this time, the slurry input amount, the solid content amount, and the suction conditions were adjusted so that the center of the honeycomb base material in the longitudinal direction was coated with the slurry (5). Next, this honeycomb substrate was dried (250 ° C., 6 hours in air) and fired (500 ° C., 1 hour in air).
Next, the slurry (3) was coated on the coats of the slurries (2) and (5), dried and fired. The total coating amount was adjusted so that the mass after firing was 200 g / L. The coating amount of the slurry (2) was 75 g / L, the coating amount of the slurry (5) was 75 g / L, and the coating amount of the slurry (3) was 50 g / L. The supported amounts of Pd and Rh were adjusted to 0.6 [g / L] and 0.1 [g / L], respectively.

実施例4の触媒作製
ハニカム基材(600セル、壁厚3mm、内径103mm×長さ105mm)の上方開口部から、スラリー(6)を投入し、ハニカム基材の下方開口部を吸引することでハニカム基材内部の長手方向中央部までをコートした。このとき、ハニカム基材内部の長手方向中央部までが、スラリー(6)でコートされるように、スラリー投入量および、固形分量・吸引条件を調整した。次に、このハニカム基材を乾燥(250℃、6時間、大気中)し、焼成(500℃、1時間、大気中)した。
次に、ハニカム基材を長手方向に上下反転させ、スラリー(6)が投入されていない側の開口部を上方とし、そこから、スラリー(4)を投入し、ハニカム基材の下方開口部を吸引することでハニカム基材内部の長手方向中央部までをコートした。このとき、ハニカム基材内部の長手方向中央部までが、スラリー(4)でコートされるように、スラリー投入量および、固形分量・吸引条件を調整した。次に、このハニカム基材を乾燥(250℃、6時間、大気中)し、焼成(500℃、1時間、大気中)した。
次に、スラリー(6)および(4)によるコートの上に、スラリー(3)をコートし、乾燥、焼成した。全コート量は焼成後の質量が200g/Lとなるように調整した。スラリー(6)のコート量は75g/L、スラリー(4)のコート量は75g/L、およびスラリー(3)のコート量は50g/Lとなるように調製した。また、PdおよびRhの担持量はそれぞれ、0.6[g/L]、0.1[g/L]となるように調整した。
Catalyst preparation of Example 4 Slurry (6) is introduced from the upper opening of the honeycomb substrate (600 cells, wall thickness 3 mm, inner diameter 103 mm × length 105 mm), and the lower opening of the honeycomb substrate is sucked. The coating was applied up to the center in the longitudinal direction inside the honeycomb substrate. At this time, the amount of slurry charged, the solid content, and the suction conditions were adjusted so that the center of the honeycomb base material in the longitudinal direction was coated with the slurry (6). Next, this honeycomb substrate was dried (250 ° C., 6 hours in air) and fired (500 ° C., 1 hour in air).
Next, the honeycomb substrate is turned upside down in the longitudinal direction, the opening on the side where the slurry (6) is not charged is set upward, and the slurry (4) is charged from there, and the lower opening of the honeycomb substrate is formed. By suctioning, the honeycomb substrate was coated up to the center in the longitudinal direction. At this time, the slurry input amount, the solid content amount, and the suction conditions were adjusted so that the center of the honeycomb base material in the longitudinal direction was coated with the slurry (4). Next, this honeycomb substrate was dried (250 ° C., 6 hours in air) and fired (500 ° C., 1 hour in air).
Next, the slurry (3) was coated on the coats of the slurries (6) and (4), dried and fired. The total coating amount was adjusted so that the mass after firing was 200 g / L. The coating amount of the slurry (6) was 75 g / L, the coating amount of the slurry (4) was 75 g / L, and the coating amount of the slurry (3) was 50 g / L. The supported amounts of Pd and Rh were adjusted to 0.6 [g / L] and 0.1 [g / L], respectively.

実施例5の触媒作製
ハニカム基材(600セル、壁厚3mm、内径103mm×長さ105mm)の上方開口部から、スラリー(7)を投入し、ハニカム基材の下方開口部を吸引することでハニカム基材内部の長手方向中央部までをコートした。このとき、ハニカム基材内部の長手方向中央部までが、スラリー(7)でコートされるように、スラリー投入量および、固形分量・吸引条件を調整した。次に、このハニカム基材を乾燥(250℃、6時間、大気中)し、焼成(500℃、1時間、大気中)した。
次に、ハニカム基材を長手方向に上下反転させ、スラリー(7)が投入されていない側の開口部を上方とし、そこから、スラリー(8)を投入し、ハニカム基材の下方開口部を吸引することでハニカム基材内部の長手方向中央部までをコートした。このとき、ハニカム基材内部の長手方向中央部までが、スラリー(8)でコートされるように、スラリー投入量および、固形分量・吸引条件を調整した。次に、このハニカム基材を乾燥(250℃、6時間、大気中)し、焼成(500℃、1時間、大気中)した。
次に、スラリー(7)および(8)によるコートの上に、スラリー(3)をコートし、乾燥、焼成した。全コート量は焼成後の質量が200g/Lとなるように調整した。スラリー(7)のコート量は75g/L、スラリー(8)のコート量は75g/L、およびスラリー(3)のコート量は50g/Lとなるように調製した。また、PdおよびRhの担持量はそれぞれ、0.6[g/L]、0.1[g/L]となるように調整した。
Preparation of catalyst of Example 5 The slurry (7) was introduced from the upper opening of the honeycomb substrate (600 cells, wall thickness 3 mm, inner diameter 103 mm × length 105 mm), and the lower opening of the honeycomb substrate was sucked. The coating was applied up to the center in the longitudinal direction inside the honeycomb substrate. At this time, the slurry input amount, the solid content amount, and the suction conditions were adjusted so that the center of the honeycomb base material in the longitudinal direction was coated with the slurry (7). Next, this honeycomb substrate was dried (250 ° C., 6 hours in air) and fired (500 ° C., 1 hour in air).
Next, the honeycomb substrate is turned upside down in the longitudinal direction, the opening on the side where the slurry (7) is not charged is set upward, and the slurry (8) is charged from there, and the lower opening of the honeycomb substrate is formed. By suctioning, the honeycomb substrate was coated up to the center in the longitudinal direction. At this time, the slurry input amount, the solid content amount, and the suction conditions were adjusted so that the center of the honeycomb base material in the longitudinal direction was coated with the slurry (8). Next, this honeycomb substrate was dried (250 ° C., 6 hours in air) and fired (500 ° C., 1 hour in air).
Next, slurry (3) was coated on the slurry (7) and (8), dried and fired. The total coating amount was adjusted so that the mass after firing was 200 g / L. The coating amount of the slurry (7) was 75 g / L, the coating amount of the slurry (8) was 75 g / L, and the coating amount of the slurry (3) was 50 g / L. The supported amounts of Pd and Rh were adjusted to 0.6 [g / L] and 0.1 [g / L], respectively.

比較例1の触媒作製
ハニカム基材(600セル、壁厚3mm、内径103mm×長さ105mm)の上方開口部から、スラリー(2)を投入し、ハニカム基材の下方開口部を吸引することでハニカム基材内部の長手方向中央部までをコートした。このとき、ハニカム基材内部の長手方向中央部までが、スラリー(2)でコートされるように、スラリー投入量および、固形分量・吸引条件を調整した。次に、このハニカム基材を乾燥(250℃、6時間、大気中)し、焼成(500℃、1時間、大気中)した。
次に、ハニカム基材を長手方向に上下反転させ、スラリー(2)が投入されていない側の開口部を上方とし、そこから、スラリー(2)を投入し、ハニカム基材の下方開口部を吸引することでハニカム基材内部の長手方向中央部までをコートした。このとき、ハニカム基材内部の長手方向中央部までが、スラリー(2)でコートされるように、スラリー投入量および、固形分量・吸引条件を調整した。次に、このハニカム基材を乾燥(250℃、6時間、大気中)し、焼成(500℃、1時間、大気中)した。
次に、スラリー(2)および(2)によるコートの上に、スラリー(3)をコートし、乾燥、焼成した。全コート量は焼成後の質量が200g/Lとなるように調整した。スラリー(2)のコート量は75g/L、スラリー(2)のコート量は75g/L、およびスラリー(3)のコート量は50g/Lとなるように調製した。また、PdおよびRhの担持量はそれぞれ、0.6[g/L]、0.1[g/L]となるように調整した。
Catalyst preparation of Comparative Example 1 The slurry (2) was introduced from the upper opening of the honeycomb substrate (600 cells, wall thickness 3 mm, inner diameter 103 mm × length 105 mm), and the lower opening of the honeycomb substrate was sucked. The coating was applied up to the center in the longitudinal direction inside the honeycomb substrate. At this time, the slurry input amount, the solid content amount, and the suction conditions were adjusted so that the center of the honeycomb base material in the longitudinal direction was coated with the slurry (2). Next, this honeycomb substrate was dried (250 ° C., 6 hours in air) and fired (500 ° C., 1 hour in air).
Next, the honeycomb substrate is turned upside down in the longitudinal direction, the opening on the side where the slurry (2) is not charged is set upward, and the slurry (2) is charged from there, and the lower opening of the honeycomb substrate is formed. By suctioning, the honeycomb substrate was coated up to the center in the longitudinal direction. At this time, the slurry input amount, the solid content amount, and the suction conditions were adjusted so that the center of the honeycomb base material in the longitudinal direction was coated with the slurry (2). Next, this honeycomb substrate was dried (250 ° C., 6 hours in air) and fired (500 ° C., 1 hour in air).
Next, slurry (3) was coated on the slurry (2) and (2), dried and fired. The total coating amount was adjusted so that the mass after firing was 200 g / L. The coating amount of the slurry (2) was 75 g / L, the coating amount of the slurry (2) was 75 g / L, and the coating amount of the slurry (3) was 50 g / L. The supported amounts of Pd and Rh were adjusted to 0.6 [g / L] and 0.1 [g / L], respectively.

比較例2の触媒作製
ハニカム基材(600セル、壁厚3mm、内径103mm×長さ105mm)の上方開口部から、スラリー(2)を投入し、ハニカム基材の下方開口部を吸引することでハニカム基材内部の長手方向中央部までをコートした。このとき、ハニカム基材内部の長手方向中央部までが、スラリー(2)でコートされるように、スラリー投入量および、固形分量・吸引条件を調整した。次に、このハニカム基材を乾燥(250℃、6時間、大気中)し、焼成(500℃、1時間、大気中)した。
次に、ハニカム基材を長手方向に上下反転させ、スラリー(2)が投入されていない側の開口部を上方とし、そこから、スラリー(6)を投入し、ハニカム基材の下方開口部を吸引することでハニカム基材内部の長手方向中央部までをコートした。このとき、ハニカム基材内部の長手方向中央部までが、スラリー(6)でコートされるように、スラリー投入量および、固形分量・吸引条件を調整した。次に、このハニカム基材を乾燥(250℃、6時間、大気中)し、焼成(500℃、1時間、大気中)した。
次に、スラリー(2)および(6)によるコートの上に、スラリー(3)をコートし、乾燥、焼成した。全コート量は焼成後の質量が200g/Lとなるように調整した。スラリー(2)のコート量は75g/L、スラリー(6)のコート量は75g/L、およびスラリー(3)のコート量は50g/Lとなるように調製した。また、PdおよびRhの担持量はそれぞれ、0.6[g/L]、0.1[g/L]となるように調整した。
Catalyst preparation of Comparative Example 2 The slurry (2) was introduced from the upper opening of the honeycomb substrate (600 cells, wall thickness 3 mm, inner diameter 103 mm × length 105 mm), and the lower opening of the honeycomb substrate was sucked. The coating was applied up to the center in the longitudinal direction inside the honeycomb substrate. At this time, the slurry input amount, the solid content amount, and the suction conditions were adjusted so that the center of the honeycomb base material in the longitudinal direction was coated with the slurry (2). Next, this honeycomb substrate was dried (250 ° C., 6 hours in air) and fired (500 ° C., 1 hour in air).
Next, the honeycomb substrate is turned upside down in the longitudinal direction, the opening on the side where the slurry (2) is not charged is set upward, and the slurry (6) is charged from there, and the lower opening of the honeycomb substrate is formed. By suctioning, the honeycomb substrate was coated up to the center in the longitudinal direction. At this time, the amount of slurry charged, the solid content, and the suction conditions were adjusted so that the center of the honeycomb base material in the longitudinal direction was coated with the slurry (6). Next, this honeycomb substrate was dried (250 ° C., 6 hours in air) and fired (500 ° C., 1 hour in air).
Next, the slurry (3) was coated on the coats of the slurries (2) and (6), dried and fired. The total coating amount was adjusted so that the mass after firing was 200 g / L. The coating amount of the slurry (2) was 75 g / L, the coating amount of the slurry (6) was 75 g / L, and the coating amount of the slurry (3) was 50 g / L. The supported amounts of Pd and Rh were adjusted to 0.6 [g / L] and 0.1 [g / L], respectively.

比較例3の触媒作製
ハニカム基材(600セル、壁厚3mm、内径103mm×長さ105mm)の上方開口部から、スラリー(4)を投入し、ハニカム基材の下方開口部を吸引することでハニカム基材内部の長手方向中央部までをコートした。このとき、ハニカム基材内部の長手方向中央部までが、スラリー(4)でコートされるように、スラリー投入量および、固形分量・吸引条件を調整した。次に、このハニカム基材を乾燥(250℃、6時間、大気中)し、焼成(500℃、1時間、大気中)した。
次に、ハニカム基材を長手方向に上下反転させ、スラリー(4)が投入されていない側の開口部を上方とし、そこから、スラリー(6)を投入し、ハニカム基材の下方開口部を吸引することでハニカム基材内部の長手方向中央部までをコートした。このとき、ハニカム基材内部の長手方向中央部までが、スラリー(6)でコートされるように、スラリー投入量および、固形分量・吸引条件を調整した。次に、このハニカム基材を乾燥(250℃、6時間、大気中)し、焼成(500℃、1時間、大気中)した。
次に、スラリー(4)および(6)によるコートの上に、スラリー(3)をコートし、乾燥、焼成した。全コート量は焼成後の質量が200g/Lとなるように調整した。スラリー(4)のコート量は75g/L、スラリー(6)のコート量は75g/L、およびスラリー(3)のコート量は50g/Lとなるように調製した。また、PdおよびRhの担持量はそれぞれ、0.6[g/L]、0.1[g/L]となるように調整した。
Catalyst preparation of Comparative Example 3 The slurry (4) was introduced from the upper opening of the honeycomb substrate (600 cells, wall thickness 3 mm, inner diameter 103 mm × length 105 mm), and the lower opening of the honeycomb substrate was sucked. The coating was applied up to the center in the longitudinal direction inside the honeycomb substrate. At this time, the slurry input amount, the solid content amount, and the suction conditions were adjusted so that the center of the honeycomb base material in the longitudinal direction was coated with the slurry (4). Next, this honeycomb substrate was dried (250 ° C., 6 hours in air) and fired (500 ° C., 1 hour in air).
Next, the honeycomb substrate is turned upside down in the longitudinal direction, the opening on the side where the slurry (4) is not charged is set upward, and the slurry (6) is charged from there, and the lower opening of the honeycomb substrate is formed. By suctioning, the honeycomb substrate was coated up to the center in the longitudinal direction. At this time, the amount of slurry charged, the solid content, and the suction conditions were adjusted so that the center of the honeycomb base material in the longitudinal direction was coated with the slurry (6). Next, this honeycomb substrate was dried (250 ° C., 6 hours in air) and fired (500 ° C., 1 hour in air).
Next, slurry (3) was coated on the slurry (4) and (6), dried and fired. The total coating amount was adjusted so that the mass after firing was 200 g / L. The coating amount of the slurry (4) was 75 g / L, the coating amount of the slurry (6) was 75 g / L, and the coating amount of the slurry (3) was 50 g / L. The supported amounts of Pd and Rh were adjusted to 0.6 [g / L] and 0.1 [g / L], respectively.

比較例4の触媒作製
ハニカム基材(600セル、壁厚3mm、内径103mm×長さ105mm)の上方開口部から、スラリー(4)を投入し、ハニカム基材の下方開口部を吸引することでハニカム基材内部の長手方向中央部までをコートした。このとき、ハニカム基材内部の長手方向中央部までが、スラリー(4)でコートされるように、スラリー投入量および、固形分量・吸引条件を調整した。次に、このハニカム基材を乾燥(250℃、6時間、大気中)し、焼成(500℃、1時間、大気中)した。
次に、ハニカム基材を長手方向に上下反転させ、スラリー(4)が投入されていない側の開口部を上方とし、そこから、スラリー(2)を投入し、ハニカム基材の下方開口部を吸引することでハニカム基材内部の長手方向中央部までをコートした。このとき、ハニカム基材内部の長手方向中央部までが、スラリー(2)でコートされるように、スラリー投入量および、固形分量・吸引条件を調整した。次に、このハニカム基材を乾燥(250℃、6時間、大気中)し、焼成(500℃、1時間、大気中)した。
次に、スラリー(4)および(2)によるコートの上に、スラリー(3)をコートし、乾燥、焼成した。全コート量は焼成後の質量が200g/Lとなるように調整した。スラリー(4)のコート量は75g/L、スラリー(2)のコート量は75g/L、およびスラリー(3)のコート量は50g/Lとなるように調製した。また、PdおよびRhの担持量はそれぞれ、0.6[g/L]、0.1[g/L]となるように調整した。
Catalyst preparation of Comparative Example 4 The slurry (4) was introduced from the upper opening of the honeycomb substrate (600 cells, wall thickness 3 mm, inner diameter 103 mm × length 105 mm), and the lower opening of the honeycomb substrate was sucked. The coating was applied up to the center in the longitudinal direction inside the honeycomb substrate. At this time, the slurry input amount, the solid content amount, and the suction conditions were adjusted so that the center of the honeycomb base material in the longitudinal direction was coated with the slurry (4). Next, this honeycomb substrate was dried (250 ° C., 6 hours in air) and fired (500 ° C., 1 hour in air).
Next, the honeycomb substrate is turned upside down in the longitudinal direction, the opening on the side where the slurry (4) is not charged is set upward, and the slurry (2) is charged from there, and the lower opening of the honeycomb substrate is set. By suctioning, the honeycomb substrate was coated up to the center in the longitudinal direction. At this time, the slurry input amount, the solid content amount, and the suction conditions were adjusted so that the center of the honeycomb base material in the longitudinal direction was coated with the slurry (2). Next, this honeycomb substrate was dried (250 ° C., 6 hours in air) and fired (500 ° C., 1 hour in air).
Next, the slurry (3) was coated on the coating of the slurry (4) and (2), dried and fired. The total coating amount was adjusted so that the mass after firing was 200 g / L. The coating amount of the slurry (4) was 75 g / L, the coating amount of the slurry (2) was 75 g / L, and the coating amount of the slurry (3) was 50 g / L. The supported amounts of Pd and Rh were adjusted to 0.6 [g / L] and 0.1 [g / L], respectively.

比較例5の触媒作製
ハニカム基材(600セル、壁厚3mm、内径103mm×長さ105mm)の上方開口部から、スラリー(4)を投入し、ハニカム基材の下方開口部を吸引することでハニカム基材内部の長手方向中央部までをコートした。このとき、ハニカム基材内部の長手方向中央部までが、スラリー(4)でコートされるように、スラリー投入量および、固形分量・吸引条件を調整した。次に、このハニカム基材を乾燥(250℃、6時間、大気中)し、焼成(500℃、1時間、大気中)した。
次に、ハニカム基材を長手方向に上下反転させ、スラリー(4)が投入されていない側の開口部を上方とし、そこから、スラリー(4)を投入し、ハニカム基材の下方開口部を吸引することでハニカム基材内部の長手方向中央部までをコートした。このとき、ハニカム基材内部の長手方向中央部までが、スラリー(4)でコートされるように、スラリー投入量および、固形分量・吸引条件を調整した。次に、このハニカム基材を乾燥(250℃、6時間、大気中)し、焼成(500℃、1時間、大気中)した。
次に、スラリー(4)および(4)によるコートの上に、スラリー(3)をコートし、乾燥、焼成した。全コート量は焼成後の質量が200g/Lとなるように調整した。スラリー(4)のコート量は75g/L、スラリー(4)のコート量は75g/L、およびスラリー(3)のコート量は50g/Lとなるように調製した。また、PdおよびRhの担持量はそれぞれ、0.6[g/L]、0.1[g/L]となるように調整した。
Catalyst preparation of Comparative Example 5 The slurry (4) was introduced from the upper opening of the honeycomb substrate (600 cells, wall thickness 3 mm, inner diameter 103 mm × length 105 mm), and the lower opening of the honeycomb substrate was sucked. The coating was applied up to the center in the longitudinal direction inside the honeycomb substrate. At this time, the slurry input amount, the solid content amount, and the suction conditions were adjusted so that the center of the honeycomb base material in the longitudinal direction was coated with the slurry (4). Next, this honeycomb substrate was dried (250 ° C., 6 hours in air) and fired (500 ° C., 1 hour in air).
Next, the honeycomb substrate is turned upside down in the longitudinal direction, and the opening on the side where the slurry (4) is not charged is set to the upper side. Then, the slurry (4) is charged from there, and the lower opening of the honeycomb substrate is set. By suctioning, the honeycomb substrate was coated up to the center in the longitudinal direction. At this time, the slurry input amount, the solid content amount, and the suction conditions were adjusted so that the center of the honeycomb base material in the longitudinal direction was coated with the slurry (4). Next, this honeycomb substrate was dried (250 ° C., 6 hours in air) and fired (500 ° C., 1 hour in air).
Next, the slurry (3) was coated on the coats of the slurries (4) and (4), dried and fired. The total coating amount was adjusted so that the mass after firing was 200 g / L. The coating amount of the slurry (4) was 75 g / L, the coating amount of the slurry (4) was 75 g / L, and the coating amount of the slurry (3) was 50 g / L. The supported amounts of Pd and Rh were adjusted to 0.6 [g / L] and 0.1 [g / L], respectively.

2.触媒耐久試験
1.で作製した実施例および比較例の触媒を、一定の走行後にも触媒活性を維持しているかを確認するために、実際のエンジンおよびその排ガスを用いて加速劣化試験(耐久試験)を行った。以下、詳細に説明する。
2. Catalyst durability test In order to confirm whether or not the catalyst activity of the example and comparative example produced in Example 1 was maintained after a certain amount of running, an accelerated deterioration test (endurance test) was performed using an actual engine and its exhaust gas. Details will be described below.

1.で作製した実施例および比較例のハニカム触媒に、セラミックマット(厚さ12mm)を巻いた。次に、ハニカム触媒を排気管にキャニングした。次に、ハニカムの中央に熱電対を挿入した。次に、排気管をエンジンに接続した。次に、エンジン回転数/トルク等を調整して、ハニカム中の熱電対の温度が950±20℃になるようにした。このとき、排ガスの空燃比A/Fは14と15を1Hzで振動させる条件にて、50時間(耐久試験時間)継続した。   1. Ceramic mats (thickness: 12 mm) were wound around the honeycomb catalysts of Examples and Comparative Examples manufactured in the above. Next, the honeycomb catalyst was canned in the exhaust pipe. Next, a thermocouple was inserted in the center of the honeycomb. Next, the exhaust pipe was connected to the engine. Next, the engine speed / torque etc. were adjusted so that the temperature of the thermocouple in the honeycomb was 950 ± 20 ° C. At this time, the air-fuel ratio A / F of the exhaust gas continued for 50 hours (endurance test time) under the condition of vibrating 14 and 15 at 1 Hz.

3.触媒評価方法
2.で耐久試験を施した実施例および比較例のハニカム触媒を排気管にキャニングした。次に、排気管をエンジンに接続した。なお、前記耐久試験と本触媒評価では、同一の取り付けフランジを使用した。触媒入口の手前10mmの位置の配管内排ガス温度が600℃になるように、エンジン回転数/トルクを調整した。排ガスの空燃比A/Fが14.6になるように調整後、排ガス空燃比A/Fを14.2〜15.0の範囲で一定時間ずつ(1秒)インターバル1秒で変化させた。このときの、触媒入口および出口の排ガス中NOx量から、この触媒によるNOx浄化率を求めた。
NOx浄化率(%)=(触媒入口NOx量−触媒出口NOx量)/触媒入口NOx量×100
3. 1. Catalyst evaluation method The honeycomb catalysts of the examples and comparative examples that were subjected to the durability test were canned in the exhaust pipe. Next, the exhaust pipe was connected to the engine. The same mounting flange was used in the durability test and the catalyst evaluation. The engine speed / torque was adjusted so that the exhaust gas temperature in the pipe 10 mm before the catalyst inlet was 600 ° C. After adjusting the exhaust gas air-fuel ratio A / F to be 14.6, the exhaust gas air-fuel ratio A / F was changed within a range of 14.2 to 15.0 at regular intervals (1 second) at intervals of 1 second. The NOx purification rate by this catalyst was calculated | required from the NOx amount in exhaust gas of a catalyst inlet_port | entrance and an exit at this time.
NOx purification rate (%) = (catalyst inlet NOx amount−catalyst outlet NOx amount) / catalyst inlet NOx amount × 100

4.触媒評価結果
2.触媒耐久試験を施した実施例および比較例の触媒を用いて、3.触媒評価方法により求めたNOx浄化率を表4に示す。表4には、Ra:触媒前段のOSC材料の1次粒径(nm)、Rb:触媒後段のOSC材料の1次粒径(nm)、およびRa/Rbも掲載した。また、図1に、Ra/Rbに対するNOx浄化率のグラフを示した。図1に示されるとおり、本発明の範囲であるRa/Rb<1.0の範囲で、NOx浄化率が顕著に向上している。
4). 1. Catalyst evaluation results 2. Using the catalysts of Examples and Comparative Examples subjected to the catalyst durability test, Table 4 shows the NOx purification rate obtained by the catalyst evaluation method. Table 4 also lists Ra: primary particle size (nm) of the OSC material before the catalyst, Rb: primary particle size (nm) of the OSC material after the catalyst, and Ra / Rb. FIG. 1 shows a graph of the NOx purification rate with respect to Ra / Rb. As shown in FIG. 1, the NOx purification rate is remarkably improved in the range of Ra / Rb <1.0, which is the range of the present invention.

Figure 2011167631
Figure 2011167631

Claims (2)

触媒前段と後段にOSC材を配置した排ガス浄化触媒であって、前記前段に配置したOSC材の酸素吸放出速度が前記後段に配置したOSC材の酸素吸放出速度よりも速いことと、前記前段に配置したOSC材の粒径(Ra)と前記後段に配置したOSC材の粒径(Rb)との比Ra/Rbが1.0未満であることを特徴とする、排ガス浄化触媒。   An exhaust gas purification catalyst in which an OSC material is disposed in the upstream and downstream stages of the catalyst, wherein the oxygen absorption / release rate of the OSC material disposed in the upstream stage is faster than the oxygen absorption / release rate of the OSC material disposed in the downstream stage, An exhaust gas purifying catalyst, wherein a ratio Ra / Rb between a particle size (Ra) of the OSC material arranged in the above and a particle size (Rb) of the OSC material arranged in the latter stage is less than 1.0. 0nm<Ra<9.2nm、かつ、15nm<Rb<300nmであることを特徴とする、請求項1に記載の排ガス浄化触媒。   2. The exhaust gas purification catalyst according to claim 1, wherein 0 nm <Ra <9.2 nm and 15 nm <Rb <300 nm.
JP2010033637A 2010-02-18 2010-02-18 Exhaust gas purification catalyst containing OSC material Expired - Fee Related JP5531665B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010033637A JP5531665B2 (en) 2010-02-18 2010-02-18 Exhaust gas purification catalyst containing OSC material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010033637A JP5531665B2 (en) 2010-02-18 2010-02-18 Exhaust gas purification catalyst containing OSC material

Publications (2)

Publication Number Publication Date
JP2011167631A true JP2011167631A (en) 2011-09-01
JP5531665B2 JP5531665B2 (en) 2014-06-25

Family

ID=44682312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010033637A Expired - Fee Related JP5531665B2 (en) 2010-02-18 2010-02-18 Exhaust gas purification catalyst containing OSC material

Country Status (1)

Country Link
JP (1) JP5531665B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012110859A (en) * 2010-11-26 2012-06-14 Toyota Motor Corp Exhaust gas purifying catalyst and method of manufacturing the same
WO2013094220A2 (en) 2011-12-22 2013-06-27 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification apparatus
JP2014097459A (en) * 2012-11-14 2014-05-29 Cataler Corp Catalyst for purifying exhaust gases
US8835349B2 (en) 2010-10-22 2014-09-16 Toyota Jidosha Kabushiki Kaisha Exhaust purifying catalyst

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09108570A (en) * 1995-10-19 1997-04-28 Toyota Motor Corp Oxidation catalyst for cleaning exhaust gas and preparation thereof
JPH09225266A (en) * 1996-02-28 1997-09-02 Toyota Motor Corp Waste gas purifying device
JP2005185887A (en) * 2003-12-24 2005-07-14 Toyota Motor Corp Exhaust gas purification catalyst and production method therefor
JP2006231108A (en) * 2005-02-22 2006-09-07 Toyota Motor Corp Apparatus for cleaning exhaust gas
JP2008100202A (en) * 2006-10-20 2008-05-01 Cataler Corp Exhaust gas purifying catalyst

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09108570A (en) * 1995-10-19 1997-04-28 Toyota Motor Corp Oxidation catalyst for cleaning exhaust gas and preparation thereof
JPH09225266A (en) * 1996-02-28 1997-09-02 Toyota Motor Corp Waste gas purifying device
JP2005185887A (en) * 2003-12-24 2005-07-14 Toyota Motor Corp Exhaust gas purification catalyst and production method therefor
JP2006231108A (en) * 2005-02-22 2006-09-07 Toyota Motor Corp Apparatus for cleaning exhaust gas
JP2008100202A (en) * 2006-10-20 2008-05-01 Cataler Corp Exhaust gas purifying catalyst

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8835349B2 (en) 2010-10-22 2014-09-16 Toyota Jidosha Kabushiki Kaisha Exhaust purifying catalyst
JP2012110859A (en) * 2010-11-26 2012-06-14 Toyota Motor Corp Exhaust gas purifying catalyst and method of manufacturing the same
WO2013094220A2 (en) 2011-12-22 2013-06-27 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification apparatus
JP2013130146A (en) * 2011-12-22 2013-07-04 Toyota Motor Corp Exhaust emission control device
US9388757B2 (en) 2011-12-22 2016-07-12 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification apparatus
JP2014097459A (en) * 2012-11-14 2014-05-29 Cataler Corp Catalyst for purifying exhaust gases

Also Published As

Publication number Publication date
JP5531665B2 (en) 2014-06-25

Similar Documents

Publication Publication Date Title
JP4977467B2 (en) Cerium-zirconium composite oxide, method for producing the same, oxygen storage / release material using the same, exhaust gas purification catalyst, and exhaust gas purification method
JP4787704B2 (en) Catalyst system used in automobile exhaust gas purification device, exhaust gas purification device using the same, and exhaust gas purification method
JP5202336B2 (en) Catalyst system used in automobile exhaust gas purification device, exhaust gas purification device using the same, and exhaust gas purification method
JP5538237B2 (en) Exhaust gas purification catalyst, exhaust gas purification device using the same, and exhaust gas purification method
JP6016916B2 (en) Diesel particulate filter and exhaust gas purification device
WO2010103870A1 (en) Exhaust gas purifying catalyst, exhaust gas purifying apparatus using same, and method for purifying exhaust gas
EP3733266B1 (en) Catalyst article, method and use
WO2012105454A1 (en) Catalyst for cleaning exhaust gas
EP2921226B1 (en) Catalyst carrier for exhaust gas and exhaust gas-cleaning catalyst
WO2016092863A1 (en) Exhaust gas purifying catalyst
JP2007083224A (en) Diesel particulate filter
CN105517705A (en) Exhaust gas purification catalyst
JP6906624B2 (en) Oxygen absorption and release materials, catalysts, exhaust gas purification systems, and exhaust gas treatment methods
JP5580722B2 (en) Exhaust gas purification catalyst and process for producing the same
JP5531665B2 (en) Exhaust gas purification catalyst containing OSC material
JP6504096B2 (en) Exhaust gas purification catalyst
CN102470350A (en) Particulate combustion catalyst
JP5120360B2 (en) Oxygen storage / release material and exhaust gas purifying catalyst provided with the same
JP2007054713A (en) Diesel particulate filter
CN110785232A (en) Exhaust gas purifying catalyst and exhaust gas purifying method using same
JP2009112951A (en) Particulate filter
JP2015112553A (en) Exhaust gas purification catalyst
CN118871200A (en) Exhaust gas purifying catalyst
JP2024104200A (en) Catalyst for exhaust gas purification and exhaust gas purification device using the same
CN118660748A (en) Exhaust gas purifying catalyst device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140407

R151 Written notification of patent or utility model registration

Ref document number: 5531665

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees