Nothing Special   »   [go: up one dir, main page]

JP2011163446A - Vibration control device - Google Patents

Vibration control device Download PDF

Info

Publication number
JP2011163446A
JP2011163446A JP2010026770A JP2010026770A JP2011163446A JP 2011163446 A JP2011163446 A JP 2011163446A JP 2010026770 A JP2010026770 A JP 2010026770A JP 2010026770 A JP2010026770 A JP 2010026770A JP 2011163446 A JP2011163446 A JP 2011163446A
Authority
JP
Japan
Prior art keywords
vibration
liquid chamber
passage
chamber
restriction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010026770A
Other languages
Japanese (ja)
Other versions
JP5436252B2 (en
Inventor
Motohiro Yanagida
基宏 柳田
Satoru Ueki
哲 植木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2010026770A priority Critical patent/JP5436252B2/en
Priority to PCT/JP2011/051301 priority patent/WO2011099357A1/en
Priority to EP11742104.0A priority patent/EP2535615B1/en
Priority to CN201180018236.2A priority patent/CN102834643B/en
Priority to IN6724DEN2012 priority patent/IN2012DN06724A/en
Priority to US13/577,396 priority patent/US9074654B2/en
Publication of JP2011163446A publication Critical patent/JP2011163446A/en
Application granted granted Critical
Publication of JP5436252B2 publication Critical patent/JP5436252B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Combined Devices Of Dampers And Springs (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To surely damp and absorb a plurality of types of vibrations differed in frequency band by switching the resonance frequency of a limiting passage according to the frequency of an input vibration. <P>SOLUTION: The vibration control device includes an elastic body which mutually connects a cylindrical first attachment member to a second attachment member; and a partition member 8 which divides a liquid chamber inside the first attachment member sealed with a liquid into a main liquid chamber on one side and a sub-liquid chamber on the other side. The partition member 8 includes limiting passages 70, 71 which allow the main liquid chamber to communicate with the sub-liquid chamber, and cause a liquid column resonance upon input of a vibration to damp and absorb the vibration; a switching means 72 which switches the resonance frequency of the limiting passages 70, 71; a connecting path 74 which connects the main liquid chamber to the sub-liquid chamber; a hydraulic pressure inlet path 47 which communicates with the connecting path 74, and introduces the hydraulic pressure within the connecting path 74 into the switching means 72 to operate the switching means 72; and a thin film body 73 which is disposed inside the connecting path 74 to interrupt the communication between the main liquid chamber and the sub-liquid chamber through the connecting path 74. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、例えば自動車や産業機械等に適用され、エンジン等の振動発生部の振動を吸収および減衰する液体封入型の防振装置に関するものである。   The present invention relates to a liquid-filled vibration isolator that is applied to, for example, automobiles, industrial machines, and the like and absorbs and attenuates vibrations of a vibration generating unit such as an engine.

従来より、この種の防振装置として、例えば下記特許文献1に示されるような、振動発生部および振動受部のうちのいずれか一方に連結される筒状の第1取付け部材、および他方に連結される第2取付け部材と、第1取付け部材および第2取付け部材を弾性的に連結する弾性体と、液体が封入された第1取付け部材内の液室を、弾性体を壁面の一部とする一方側の主液室と他方側の副液室とに区画する仕切り部材と、を備える構成が知られている。この防振装置では、仕切り部材に、主液室と副液室とを連通するとともに液体が流通することで液柱共振を生じさせ、かつ共振周波数が互いに異なる複数の制限通路と、液体が流通する制限通路を切り替える切替え手段と、が設けられている。
ところで、この種の防振装置には、例えば、周波数が高いアイドル振動、および周波数が低いシェイク振動が入力される。これらの周波数帯が互いに異なる複数種の振動を確実に減衰吸収するためには、入力された振動の周波数に応じた共振周波数の制限通路内で液柱共振が生じるように、液体が流通する制限通路を、入力された振動の周波数に応じて高精度に切り替えることが望まれている。
ここで、シェイク振動の振幅は、アイドル振動の振幅よりも大きいことから、シェイク振動の入力時には、主液室内で大きな液圧変動(液圧振幅)が生じることとなる。そこで、前記従来の防振装置では、切替え手段が、主液室内の液圧変動に応じて、液体が流通する制限通路を切り替える構成とされている。これにより、アイドル振動よりも周波数が低いシェイク振動の入力時に、液体が流通する制限通路を切り替えることができる。
Conventionally, as this type of vibration isolator, for example, as shown in Patent Document 1 below, a cylindrical first mounting member connected to either one of a vibration generating unit and a vibration receiving unit, and the other is used. A second mounting member to be connected; an elastic body that elastically connects the first mounting member and the second mounting member; a liquid chamber in the first mounting member in which a liquid is sealed; And a partition member that is divided into a main liquid chamber on one side and a sub liquid chamber on the other side. In this vibration isolator, the partition member is connected to the main liquid chamber and the sub liquid chamber and the liquid flows to cause liquid column resonance, and a plurality of restriction passages having different resonance frequencies and the liquid flow And switching means for switching the restriction passage to be provided.
By the way, for example, idle vibration having a high frequency and shake vibration having a low frequency are input to this type of vibration isolator. In order to reliably attenuate and absorb multiple types of vibrations with different frequency bands, there is a restriction that the liquid circulates so that liquid column resonance occurs in the restriction passage of the resonance frequency corresponding to the input vibration frequency. It is desired to switch the passage with high accuracy in accordance with the input vibration frequency.
Here, since the amplitude of the shake vibration is larger than the amplitude of the idle vibration, a large fluid pressure fluctuation (fluid pressure amplitude) occurs in the main fluid chamber when the shake vibration is input. Therefore, in the conventional vibration isolator, the switching means is configured to switch the restriction passage through which the liquid flows in accordance with the fluid pressure fluctuation in the main fluid chamber. Thereby, the restriction | limiting channel | path which a liquid distribute | circulates can be switched at the time of the input of the shake vibration whose frequency is lower than an idle vibration.

特開2004−3615号公報Japanese Patent Laid-Open No. 2004-3615

しかしながら、前記従来の防振装置では、シェイク振動であっても、振幅が比較的小さい場合には、主液室内での液圧が、切替え手段を作動させる程度まで大きく変動しないことがあり、液体が流通する制限通路を切り替え難いおそれがあった。   However, in the conventional vibration isolator, even in the case of shake vibration, when the amplitude is relatively small, the liquid pressure in the main liquid chamber may not fluctuate greatly to the extent that the switching means is operated. There is a risk that it is difficult to switch the restricted passage through which the circulates.

本発明は、前述した事情に鑑みてなされたものであって、その目的は、入力された振動の周波数に応じて制限通路の共振周波数を切り替え、周波数帯が互いに異なる複数種の振動を確実に減衰吸収することができる防振装置を提供することである。   The present invention has been made in view of the above-described circumstances, and the object thereof is to switch the resonance frequency of the restriction passage according to the frequency of the input vibration, and to reliably prevent a plurality of types of vibrations having different frequency bands. An object of the present invention is to provide a vibration isolator capable of absorbing and absorbing.

前記課題を解決するために、本発明は以下の手段を提案している。
本発明に係る防振装置は、振動発生部および振動受部のうちのいずれか一方に連結される筒状の第1取付け部材、および他方に連結される第2取付け部材と、前記第1取付け部材および前記第2取付け部材を弾性的に連結する弾性体と、液体が封入された前記第1取付け部材内の液室を、前記弾性体を壁面の一部とする一方側の主液室と他方側の副液室とに区画する仕切り部材と、を備えた液体封入型の防振装置であって、前記仕切り部材は、主液室と副液室とを連通し振動の入力に対して液柱共振を生じさせ振動を減衰吸収する制限通路と、該制限通路の共振周波数を切り替える切替え手段と、主液室と副液室とを接続する接続路と、前記接続路に連通し、該接続路内の液圧を切替え手段に導入して該切替え手段を作動させる液圧導入路と、前記接続路内に配設され該接続路を通した主液室と副液室との連通を遮断する薄膜体と、を備えていることを特徴とする。
In order to solve the above problems, the present invention proposes the following means.
The vibration isolator according to the present invention includes a cylindrical first mounting member connected to one of a vibration generating unit and a vibration receiving unit, a second mounting member connected to the other, and the first mounting. An elastic body that elastically connects the member and the second mounting member; a liquid chamber in the first mounting member in which a liquid is sealed; a main liquid chamber on one side having the elastic body as a part of a wall surface; A liquid-sealed vibration isolator having a partition member that divides into a secondary liquid chamber on the other side, wherein the partition member communicates the main liquid chamber and the secondary liquid chamber with respect to an input of vibration. A restriction passage that generates liquid column resonance and attenuates and absorbs vibration; a switching unit that switches a resonance frequency of the restriction passage; a connection path that connects the main liquid chamber and the sub liquid chamber; A hydraulic pressure introducing path for introducing the hydraulic pressure in the connecting path into the switching means and operating the switching means; Characterized in that it and a thin film body to block the communication between the main liquid chamber and the auxiliary liquid chamber is disposed in the connecting passage through the connection path.

この発明によれば、薄膜体が、接続路を通した主液室と副液室との連通を遮断しているので、この防振装置に入力された振動により薄膜体が弾性変形して接続路内で液柱共振が生じると、この接続路内の液圧が大きく変動することになる。すなわち、防振装置に入力された振動の周波数に応じて接続路内の液圧が変動し、この液圧が液圧導入路を通して切替え手段に導入されて切替え手段が作動することで、前記制限通路の共振周波数が切り替えられることになる。
したがって、防振装置に入力された振動の周波数に応じて前記制限通路の共振周波数が切り替えられるので、周波数帯が互いに異なる複数種の振動を確実に減衰吸収することができる。
According to this invention, since the thin film body blocks communication between the main liquid chamber and the sub liquid chamber through the connection path, the thin film body is elastically deformed by the vibration input to the vibration isolator and connected. When liquid column resonance occurs in the path, the liquid pressure in the connection path greatly fluctuates. That is, the hydraulic pressure in the connection path fluctuates according to the frequency of vibration input to the vibration isolator, and the hydraulic pressure is introduced into the switching means through the hydraulic pressure introduction path, and the switching means is operated, so that the restriction The resonance frequency of the passage is switched.
Accordingly, since the resonance frequency of the restriction passage is switched according to the vibration frequency input to the vibration isolator, a plurality of types of vibrations having different frequency bands can be reliably attenuated and absorbed.

また、前記制限通路は、共振周波数を互いに異ならせて複数備えられ、前記切替え手段は、前記液圧導入路から導入された前記接続路内の液圧に応じて、液体が流通する制限通路を切り替えても良い。   In addition, a plurality of the restriction passages are provided with different resonance frequencies, and the switching means includes a restriction passage through which liquid flows in accordance with the fluid pressure in the connection passage introduced from the fluid pressure introduction passage. You may switch.

この場合、切替え手段が、液圧導入路から導入された接続路内の液圧に応じて、液体が流通する制限通路を切り替えるので、制限通路の流路長や流路断面積などを変化させることなく、振動の入力に対して液柱共振を生じさせ振動を減衰吸収する制限通路の共振周波数を切り替えることができる。   In this case, since the switching means switches the restriction passage through which the liquid flows according to the fluid pressure in the connection passage introduced from the fluid pressure introduction passage, the passage length of the restriction passage, the passage sectional area, and the like are changed. The resonance frequency of the restriction passage that causes liquid column resonance with respect to vibration input and attenuates and absorbs vibration can be switched.

また、前記切替え手段は、複数の前記制限通路のうち、流通抵抗が最も小さい第1制限通路を通した主液室と副液室との連通、遮断を切り替えても良い。   Further, the switching means may switch communication and blocking between the main liquid chamber and the sub liquid chamber through the first restriction passage having the smallest flow resistance among the plurality of restriction passages.

この場合、第1制限通路を通した主液室と副液室との連通が遮断されているときには、液体が他の制限通路を流通する。
ここで、第1制限通路は、複数の制限通路のなかで最も流通抵抗が小さいので、第1制限通路を通した主液室と副液室との連通の遮断が解除されたときには、液体が、この第1制限通路を通して主液室と副液室との間で積極的に流通する。
以上より、切替え手段が、第1制限通路による主液室と副液室との連通の遮断の解除をするだけで、液体が流通する制限通路を前記他の制限通路から第1制限通路に切り替えることができる。
In this case, when the communication between the main liquid chamber and the sub liquid chamber through the first restriction passage is blocked, the liquid flows through the other restriction passage.
Here, since the first restriction passage has the smallest flow resistance among the plurality of restriction passages, when the blocking of the communication between the main liquid chamber and the sub liquid chamber through the first restriction passage is released, the liquid is Then, it actively circulates between the main liquid chamber and the sub liquid chamber through the first restriction passage.
As described above, the switching means switches the restriction passage through which the liquid flows from the other restriction passage to the first restriction passage only by releasing the blocking of the communication between the main liquid chamber and the sub liquid chamber by the first restriction passage. be able to.

また、前記複数の制限通路は、前記第1制限通路と、共振周波数が、入力時に前記第1制限通路内で液柱共振を生じさせる第1振動よりも周波数が低い第2振動の周波数とされた第2制限通路と、を備え、前記薄膜体は、前記第1振動の入力時に前記接続路内で液柱共振を生じさせるように弾性変形する構成とされていても良い。
さらに、前記第1振動は、アイドル振動であり、前記第2振動は、シェイク振動であっても良い。
The plurality of restriction passages have a resonance frequency that is lower than that of the first restriction passage and a first vibration that causes a liquid column resonance in the first restriction passage when input. The thin film body may be configured to be elastically deformed to cause liquid column resonance in the connection path when the first vibration is input.
Furthermore, the first vibration may be an idle vibration, and the second vibration may be a shake vibration.

この場合、この防振装置に、振動が入力されていない無入力状態からシェイク振動(第2振動)が入力されると、薄膜体は弾性変形するものの接続路内の液圧変動は小さいため、第1制限通路を通した主液室と副液室との連通の遮断が維持される。したがって液体が、第2制限通路を通して主液室と副液室との間を流通し、この第2制限通路内で液柱共振が生じてシェイク振動が減衰吸収される。
また、この防振装置にアイドル振動(第1振動)が入力されると、薄膜体が弾性変形して接続路内で液柱共振が生じ、接続路内の液圧が大きく変動する。このときの液圧が液圧導入路から導入されることによって、切替え手段が、第1制限通路を通した主液室と副液室との連通の遮断を解除する。これにより、液体の流通する制限通路が、第2制限通路から流通抵抗が小さい第1制限通路に切り替えられ、液体が、第1制限通路を通して主液室と副液室との間を流通し、この第1制限通路内で液柱共振が生じてアイドル振動が減衰吸収される。
その後、この防振装置にアイドル振動の入力がなくなり、かわりにシェイク振動が入力されると、接続路内の液圧変動が小さくなり、切替え手段が、第1制限通路を通した主液室と副液室との連通を遮断する。これにより、液体の流通する制限通路が、第1制限通路から第2制限通路に切り替えられ、液体が、第2制限通路を通して主液室と副液室との間を流通し、この第2制限通路内で液柱共振が生じてシェイク振動が減衰吸収される。
In this case, when the shake vibration (second vibration) is input from the no-input state where no vibration is input to the vibration isolator, the thin film body is elastically deformed, but the hydraulic pressure fluctuation in the connection path is small. The disconnection of the communication between the main liquid chamber and the sub liquid chamber through the first restriction passage is maintained. Accordingly, the liquid flows between the main liquid chamber and the sub liquid chamber through the second restriction passage, and liquid column resonance occurs in the second restriction passage, so that the shake vibration is attenuated and absorbed.
Further, when idle vibration (first vibration) is input to the vibration isolator, the thin film body is elastically deformed to cause liquid column resonance in the connection path, and the liquid pressure in the connection path varies greatly. When the hydraulic pressure at this time is introduced from the hydraulic pressure introduction path, the switching unit cancels the disconnection of the communication between the main liquid chamber and the sub liquid chamber through the first restriction passage. Thereby, the restriction passage through which the liquid flows is switched from the second restriction passage to the first restriction passage having a small flow resistance, and the liquid flows between the main liquid chamber and the sub liquid chamber through the first restriction passage, Liquid column resonance occurs in the first restriction passage, and idle vibration is attenuated and absorbed.
After that, when no vibration is input to the vibration isolator and a vibration is input instead, a fluctuation in the hydraulic pressure in the connection path is reduced, and the switching means is connected to the main liquid chamber through the first restriction passage. Block communication with the secondary liquid chamber. As a result, the restriction passage through which the liquid flows is switched from the first restriction passage to the second restriction passage, and the liquid flows between the main liquid chamber and the sub liquid chamber through the second restriction passage. Liquid column resonance occurs in the passage, and the shake vibration is attenuated and absorbed.

また、前記仕切り部材には、副液室に連通するシリンダ室と、前記第1制限通路の一部を構成するとともに前記シリンダ室と主液室とを連通する通路開口部と、が形成され、前記切替え手段は、前記シリンダ室内に配設されたピストン部材を備え、該ピストン部材は、前記シリンダ室内を、前記第1制限通路の一部を構成するとともに副液室に連通する通路空間と、前記第1制限通路から隔離されるとともに前記接続路に前記液圧導入路を通して連通する加圧空間と、に区画する区画部と、該区画部よりも前記通路空間と前記加圧空間との拡縮方向に沿った通路空間側に配設されるとともに貫通開口が形成され、内部が前記第1制限通路の一部を構成する摺動筒部と、を備え、かつ前記シリンダ室内に前記拡縮方向に沿って摺動可能に配設され、前記摺動筒部において、前記貫通開口よりも前記拡縮方向に沿った通路空間側に位置する部分は、前記通路開口部を閉塞していても良い。   Further, the partition member is formed with a cylinder chamber that communicates with the sub liquid chamber, and a passage opening that constitutes a part of the first restriction passage and communicates the cylinder chamber and the main liquid chamber, The switching means includes a piston member disposed in the cylinder chamber, and the piston member forms a part of the first restriction passage and communicates with the auxiliary liquid chamber in the cylinder chamber; A pressurizing space that is isolated from the first restricting passage and communicates with the connection passage through the hydraulic pressure introduction passage; a partitioning portion; and expansion and contraction of the passage space and the pressurizing space rather than the partitioning portion A sliding cylinder portion that is disposed on the side of the passage space along the direction and that has a through opening formed therein, and that forms a part of the first restriction passage, and that extends in the expansion / contraction direction in the cylinder chamber. Slidable along , In the sliding tube portion, a portion located in the passage space side along the scaling direction than the through opening may be closed to the passage opening.

この場合、接続路内の液圧が高められると、高められた液圧が液圧導入路を通して加圧空間に伝達され、ピストン部材が、加圧空間の内容積を拡大するように、前記拡縮方向に沿った通路空間側に向けて摺動する。すると、摺動筒部によって閉塞されていた通路開口部が、貫通開口を通して開放され、この通路開口部と通路空間とが、貫通開口および摺動筒部内を通して連通することとなり、第1制限通路を通した主液室と副液室との連通の遮断が解除される。   In this case, when the hydraulic pressure in the connection path is increased, the increased hydraulic pressure is transmitted to the pressurizing space through the hydraulic pressure introducing path, and the expansion / contraction is performed so that the piston member expands the internal volume of the pressurizing space. It slides toward the passage space side along the direction. Then, the passage opening portion closed by the sliding cylinder portion is opened through the through opening, and this passage opening portion and the passage space communicate with each other through the inside of the through opening and the sliding cylinder portion. The disconnection of the communication between the main liquid chamber and the sub liquid chamber is released.

また、前記ピストン部材は、該ピストン部材において前記貫通開口よりも前記拡縮方向に沿った加圧空間側に位置する部分が、前記通路開口部を閉塞するまで、前記拡縮方向に沿った通路空間側に摺動可能に前記シリンダ室内に配設されていても良い。   Further, the piston member has a passage space side along the expansion / contraction direction until a portion of the piston member located on the pressure space side along the expansion / contraction direction with respect to the through-opening closes the passage opening. It may be slidably disposed in the cylinder chamber.

この場合、この防振装置にアイドル振動が入力され、摺動筒部の貫通開口と仕切り部材の通路開口部とが連通した後、入力振動の周波数がさらに高くなり、第1制限通路内および接続路内での反共振が発生しても、この防振装置の動ばね定数が上昇し振動の減衰吸収性能が悪化するのを抑えることができる。
すなわち、接続路内で反共振が生ずるとこの接続路内の液圧が高められ、ピストン部材が、シリンダ室内を摺動して仕切り部材の通路開口部を閉塞する。これにより、第1制限通路を通した主液室と副液室との連通が遮断され、液体が第2制限通路を流通することとなり、この防振装置の動ばね定数の上昇を抑えることができる。
In this case, idle vibration is input to the vibration isolator, and after the through opening of the sliding cylinder portion and the passage opening of the partition member communicate with each other, the frequency of the input vibration is further increased, and the first restriction passage and the connection are connected. Even if anti-resonance occurs in the road, it is possible to prevent the dynamic spring constant of the vibration isolator from increasing and the vibration absorption performance from deteriorating.
That is, when anti-resonance occurs in the connection path, the hydraulic pressure in the connection path is increased, and the piston member slides in the cylinder chamber and closes the passage opening of the partition member. As a result, the communication between the main liquid chamber and the sub liquid chamber through the first restricting passage is blocked, and the liquid flows through the second restricting passage, thereby suppressing an increase in the dynamic spring constant of the vibration isolator. it can.

本発明に係る防振装置によれば、入力された振動の周波数に応じて制限通路の共振周波数を切り替え、周波数帯が互いに異なる複数種の振動を確実に減衰吸収することができる。   According to the vibration isolator of the present invention, the resonance frequency of the restriction passage is switched according to the frequency of the input vibration, and a plurality of types of vibrations having different frequency bands can be reliably attenuated and absorbed.

本発明の一実施形態に係る防振装置を示す縦断面図である。It is a longitudinal cross-sectional view which shows the vibration isolator which concerns on one Embodiment of this invention. 図1に示す防振装置を構成する仕切り部材の分解斜視図である。It is a disassembled perspective view of the partition member which comprises the vibration isolator shown in FIG. 図2に示す仕切り部材を構成する仕切り部材本体の斜視図である。It is a perspective view of the partition member main body which comprises the partition member shown in FIG. 図2に示す仕切り部材の縦断面図である。It is a longitudinal cross-sectional view of the partition member shown in FIG. 図1に示す防振装置を模式的に示す模式図である。It is a schematic diagram which shows typically the vibration isolator shown in FIG. 図2に示す仕切り部材の縦断面図である。It is a longitudinal cross-sectional view of the partition member shown in FIG. 図1に示す防振装置を模式的に示す模式図である。It is a schematic diagram which shows typically the vibration isolator shown in FIG. 図2に示す仕切り部材の縦断面図である。It is a longitudinal cross-sectional view of the partition member shown in FIG. 図1に示す防振装置を模式的に示す模式図である。It is a schematic diagram which shows typically the vibration isolator shown in FIG.

以下、図面を参照し、本発明の一実施形態に係る防振装置を説明する。
図1に示すように、防振装置1は、振動発生部および振動受部のうちのいずれか一方に連結される筒状の第1取付け部材2、および他方に連結される第2取付け部材3と、第1取付け部材2および第2取付け部材3を弾性的に連結する弾性体4と、液体Lが封入された第1取付け部材2内の液室5を、弾性体4を壁面の一部とする一方側の主液室6と他方側の副液室7とに区画する仕切り部材8と、を備えている。
この防振装置1が例えば自動車に装着された場合、第2取付け部材3が振動発生部としてのエンジンに連結される一方、第1取付け部材2が振動受部としての車体に連結されることにより、エンジンの振動が車体に伝達するのを抑えられるようになっている。
Hereinafter, a vibration isolator according to an embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the vibration isolator 1 includes a cylindrical first mounting member 2 connected to one of a vibration generating unit and a vibration receiving unit, and a second mounting member 3 connected to the other. The elastic body 4 elastically connecting the first mounting member 2 and the second mounting member 3, the liquid chamber 5 in the first mounting member 2 in which the liquid L is sealed, and the elastic body 4 as a part of the wall surface. A partition member 8 that is divided into a main liquid chamber 6 on one side and a sub liquid chamber 7 on the other side.
When the vibration isolator 1 is mounted on an automobile, for example, the second mounting member 3 is connected to an engine as a vibration generating unit, while the first mounting member 2 is connected to a vehicle body as a vibration receiving unit. The engine vibration can be suppressed from being transmitted to the vehicle body.

なお、第1取付け部材2は円筒状に形成されるとともに、第2取付け部材3、弾性体4および仕切り部材8は、それぞれ平面視円形状に形成され、これらの第1取付け部材2、第2取付け部材3、弾性体4および仕切り部材8は、いずれも中心軸線が共通軸上に位置された状態で配設されている。以下、この共通軸を中心軸線Oといい、この中心軸線O方向に沿って仕切り部材8に対する主液室6側を一方側といい、副液室7側を他方側といい、この中心軸線Oに直交する方向を径方向といい、この中心軸線Oに周回する方向を周方向という。   The first mounting member 2 is formed in a cylindrical shape, and the second mounting member 3, the elastic body 4, and the partition member 8 are each formed in a circular shape in plan view. The attachment member 3, the elastic body 4, and the partition member 8 are all disposed in a state where the central axis is located on the common axis. Hereinafter, this common axis is referred to as a central axis O, the main liquid chamber 6 side with respect to the partition member 8 along the central axis O direction is referred to as one side, and the sub liquid chamber 7 side is referred to as the other side. A direction perpendicular to the radial direction is referred to as a radial direction, and a direction around the central axis O is referred to as a circumferential direction.

第1取付け部材2は、一方側に位置する一方側筒部10と、他方側に位置する他方側筒部11と、が互いにボルト12で固定された構成となっている。
他方側筒部11は、内周面が全面にわたって被覆膜13で被覆された周壁部14と、該周壁部14の一端部に径方向の外側に向けて突設された内環部15と、他端部の内周面に内環部15の外周面が連結された外環部16と、を備えている。
The first mounting member 2 has a configuration in which one side cylinder portion 10 located on one side and the other side cylinder portion 11 located on the other side are fixed to each other with bolts 12.
The other side cylinder part 11 includes a peripheral wall part 14 whose inner peripheral surface is entirely covered with a coating film 13, and an inner ring part 15 projecting radially outward from one end of the peripheral wall part 14. And an outer ring portion 16 in which the outer peripheral surface of the inner ring portion 15 is connected to the inner peripheral surface of the other end portion.

他方側筒部11の周壁部14の他端開口部(第1取付け部材の他方側の開口部)は、副液室7の壁面の一部を構成するダイヤフラム17により閉塞されている。ダイヤフラム17は、平面視円形状に形成されるとともに前記中心軸線Oと同軸に配設されている。ダイヤフラム17の外周縁部は、全周にわたって前記周壁部14の他端部の内周面に加硫接着されている。なお図示の例では、ダイヤフラム17および被覆膜13は、例えばゴム材料や合成樹脂材料などの弾性体材料で一体に形成されている。   The other end opening (the opening on the other side of the first mounting member) of the peripheral wall portion 14 of the other side cylinder portion 11 is closed by a diaphragm 17 constituting a part of the wall surface of the sub liquid chamber 7. The diaphragm 17 is formed in a circular shape in plan view and is disposed coaxially with the central axis O. The outer peripheral edge portion of the diaphragm 17 is vulcanized and bonded to the inner peripheral surface of the other end portion of the peripheral wall portion 14 over the entire periphery. In the illustrated example, the diaphragm 17 and the covering film 13 are integrally formed of an elastic material such as a rubber material or a synthetic resin material.

一方側筒部10は、他方側筒部11の外環部16が固定された周壁部18と、周壁部18の一端部に径方向の外側に向けて突設されたフランジ部19と、を備えている。
周壁部18は、その内径が他方側筒部11の周壁部14の内径と同等となっているとともに、その外径が他方側筒部11の外環部16の外径と同等となっている。
The one-side cylindrical portion 10 includes a peripheral wall portion 18 to which the outer ring portion 16 of the other-side cylindrical portion 11 is fixed, and a flange portion 19 that protrudes radially outward from one end portion of the peripheral wall portion 18. I have.
The peripheral wall portion 18 has an inner diameter that is equivalent to the inner diameter of the peripheral wall portion 14 of the other side cylinder portion 11, and an outer diameter that is equivalent to the outer diameter of the outer ring portion 16 of the other side cylinder portion 11. .

第2取付け部材3は、一方側から他方側に向かうに従い漸次縮径する逆円錐台形状のアンカー部20と、アンカー部20に一方側に向けて突設された連結板部21と、を備えている。
弾性体4は、第1取付け部材2の一端側の開口部を閉塞しており、例えばゴム材料や合成樹脂材料などの弾性体材料で形成されている。弾性体4の他端部は、第1取付け部材2の一方側筒部10の周壁部18における内周面に加硫接着されているとともに、弾性体4の一端部は、第2取付け部材3のアンカー部20の外周面に加硫接着されている。なお図示の例では、弾性体4の他端面は、径方向の外側から中央部に向かうに従い漸次、一方側に向けて窪んでいる。
The second mounting member 3 includes an inverted frustoconical anchor portion 20 that gradually decreases in diameter from one side to the other side, and a connecting plate portion 21 that projects from the anchor portion 20 toward the one side. ing.
The elastic body 4 closes the opening on one end side of the first mounting member 2 and is formed of an elastic body material such as a rubber material or a synthetic resin material, for example. The other end portion of the elastic body 4 is vulcanized and bonded to the inner peripheral surface of the peripheral wall portion 18 of the one-side cylindrical portion 10 of the first attachment member 2, and one end portion of the elastic body 4 is attached to the second attachment member 3. The anchor portion 20 is vulcanized and bonded to the outer peripheral surface. In the illustrated example, the other end surface of the elastic body 4 is gradually depressed toward one side from the radially outer side toward the central portion.

液室5は、第1取付け部材2の内部のうち、ダイヤフラム17と弾性体4との間に位置する部分とされ、この液室5内に、例えばエチレングリコール、水、シリコーンオイル等の液体Lが充填されるとともに、仕切り部材8が配設されている。
仕切り部材8は、円柱状の仕切り部材本体30と、仕切り部材本体30に一方側から組み付けられた円盤状の押さえプレート31と、これらの仕切り部材本体30と押さえプレート31との間に挟み込まれ弾性体材料(例えばゴム材料など)で形成されたメンブランプレート32と、を備えている。
The liquid chamber 5 is a portion located between the diaphragm 17 and the elastic body 4 in the inside of the first mounting member 2. In the liquid chamber 5, for example, a liquid L such as ethylene glycol, water, silicone oil, or the like. And a partition member 8 is disposed.
The partition member 8 is sandwiched between the columnar partition member main body 30, the disk-shaped presser plate 31 assembled to the partition member main body 30 from one side, and the partition member main body 30 and the presser plate 31 to be elastic. And a membrane plate 32 formed of a body material (for example, a rubber material).

なお図示の例では、仕切り部材本体30、押さえプレート31およびメンブランプレート32は、いずれも前記中心軸線Oと同軸に配設されている。また仕切り部材8には、一方側に向けて開口するねじ孔が形成されると共に、押さえプレート31およびメンブランプレート32には、前記中心軸線O方向に貫通する挿通孔が各別に形成されており、押さえプレート31およびメンブランプレート32は、前記挿通孔に一方側から差し込まれ前記ねじ孔に螺着された固定ボルト35により、仕切り部材本体30に組み付けられている。   In the illustrated example, all of the partition member main body 30, the pressing plate 31, and the membrane plate 32 are arranged coaxially with the central axis O. Further, the partition member 8 is formed with a screw hole that opens toward one side, and the holding plate 31 and the membrane plate 32 are formed with insertion holes penetrating in the direction of the central axis O, respectively. The holding plate 31 and the membrane plate 32 are assembled to the partition member main body 30 by a fixing bolt 35 that is inserted into the insertion hole from one side and screwed into the screw hole.

図2に示すように、仕切り部材本体30の一端面には、メンブランプレート32の外周縁部に他方側に向けて延設された嵌合筒部66が嵌合される環状溝67が形成されている。また、図1に示すように、仕切り部材本体30の一端部の外周面には、外径が押さえプレート31の外径と同等のフランジ部36が突設されている。押さえプレート31の外周縁部およびフランジ部36は、第1取付け部材2における一方側筒部10の周壁部18と他方側筒部11の内環部15との間に挟みこまれている。なお、仕切り部材本体30およびフランジ部36は、例えば金属材料(例えば、アルミニウム等)や合成樹脂材料などで一体に形成されている。   As shown in FIG. 2, an annular groove 67 is formed on one end surface of the partition member main body 30 so that a fitting tube portion 66 extending toward the other side is fitted to the outer peripheral edge of the membrane plate 32. ing. Further, as shown in FIG. 1, a flange portion 36 having an outer diameter equal to the outer diameter of the pressing plate 31 protrudes from the outer peripheral surface of one end portion of the partition member main body 30. The outer peripheral edge portion of the pressing plate 31 and the flange portion 36 are sandwiched between the peripheral wall portion 18 of the one-side tube portion 10 and the inner ring portion 15 of the other-side tube portion 11 in the first mounting member 2. In addition, the partition member main body 30 and the flange part 36 are integrally formed, for example with metal materials (for example, aluminum etc.), a synthetic resin material, etc.

ここで図2に示すように、仕切り部材8は、主液室6と副液室7とを連通し振動の入力に対して液柱共振を生じさせ振動を減衰吸収する制限通路70、71と、該制限通路70、71の共振周波数を切り替える切替え手段72と、主液室6と副液室7とを接続する接続路74と、接続路74の主液室6側の端部を構成する薄膜体室41に連通し、該接続路74内の液圧を切替え手段72に導入して該切替え手段72を作動させる液圧導入路47と、薄膜体室41において液圧導入路47よりも主液室6側に配設され、接続路74を通した主液室6と副液室7との連通を遮断する薄膜体73と、を備えている。   Here, as shown in FIG. 2, the partition member 8 communicates with the main liquid chamber 6 and the sub liquid chamber 7 to generate liquid column resonance with respect to the vibration input, and to limit passages 70 and 71 for damping and absorbing the vibration. The switching means 72 for switching the resonance frequencies of the restriction passages 70 and 71, the connection path 74 that connects the main liquid chamber 6 and the sub liquid chamber 7, and the end of the connection path 74 on the main liquid chamber 6 side are configured. A fluid pressure introduction path 47 that communicates with the thin film body chamber 41 and introduces the hydraulic pressure in the connection path 74 to the switching means 72 to operate the switching means 72, and the fluid pressure introduction path 47 in the thin film body chamber 41. A thin film body 73 disposed on the main liquid chamber 6 side and blocking communication between the main liquid chamber 6 and the sub liquid chamber 7 through the connection path 74 is provided.

本実施形態では、制限通路70、71は、共振周波数を互いに異ならせて複数備えられており、制限通路70、71として、共振周波数がアイドル振動(第1振動)(例えば、周波数が18Hz〜30Hz、振幅が±0.5mm以下)の周波数とされたアイドルオリフィス(第1制限通路)70と、共振周波数が、アイドル振動よりも周波数が低いシェイク振動(第2振動)(例えば、周波数が14Hz以下、振幅が±0.5mmより大きい)の周波数とされたシェイクオリフィス(第2制限通路)71と、を備えている。図示の例では、アイドルオリフィス70の一部分は、シェイクオリフィス71の一部分を兼ねている。   In the present embodiment, a plurality of limiting passages 70 and 71 are provided with different resonance frequencies, and the limiting passages 70 and 71 have a resonance frequency of idle vibration (first vibration) (for example, a frequency of 18 Hz to 30 Hz). , An idle orifice (first restriction passage) 70 having an amplitude of ± 0.5 mm or less, and a shake vibration (second vibration) whose resonance frequency is lower than that of idle vibration (for example, the frequency is 14 Hz or less) And a shake orifice (second restriction passage) 71 having a frequency of amplitude larger than ± 0.5 mm. In the illustrated example, a part of the idle orifice 70 also serves as a part of the shake orifice 71.

ここで、仕切り部材本体30には、制限通路70、71および接続路74の一部をそれぞれ構成する溝37、38、39、室40、41、42、および孔43が形成されている。すなわち、仕切り部材本体30の外周面には、被覆膜13で径方向の外側から閉塞された第1周溝37、第2周溝38、第3周溝39が、前記中心軸線O方向に間隔をあけて、一方側から他方側にこの順に形成されている。また仕切り部材本体30において、これらの3つの周溝37、38、39よりも径方向の内側で、かつ一端面に形成された前記嵌合溝67よりも径方向の内側に位置する部分には、前記中心軸線O方向に延びるとともに一方側に向けて開口するシリンダ室40、前記薄膜体室41、およびオリフィス室42と、前記中心軸線O方向に延びる貫通孔43と、がこの順で周方向に形成され、互いに周方向に隣接している。   Here, the partition member main body 30 is formed with grooves 37, 38, 39, chambers 40, 41, 42, and holes 43 that constitute part of the restriction passages 70, 71 and the connection path 74, respectively. That is, the first circumferential groove 37, the second circumferential groove 38, and the third circumferential groove 39 that are closed from the outside in the radial direction by the coating film 13 are formed on the outer circumferential surface of the partition member body 30 in the direction of the central axis O. They are formed in this order from one side to the other side at intervals. Further, in the partition member body 30, a portion located on the inner side in the radial direction than these three circumferential grooves 37, 38, 39 and on the inner side in the radial direction than the fitting groove 67 formed on one end surface is provided. The cylinder chamber 40 extending in the direction of the central axis O and opening toward one side, the thin film body chamber 41, the orifice chamber 42, and the through hole 43 extending in the direction of the central axis O in this order are circumferential directions. And are adjacent to each other in the circumferential direction.

図1に示すように、オリフィス室42は、押さえプレート31およびメンブランプレート32それぞれにおいて、このオリフィス室42に前記中心軸線O方向で対応する位置に形成された第1オリフィス開口部61、および第2オリフィス開口部64を通して主液室6に連通している。
またこのオリフィス室42は、前記中心軸線O方向で第3周溝39と同等の深さで形成されており、このオリフィス室42を画成する側壁面に形成され径方向の外側に向けて開口する第1連通開口53を通して第2周溝38および第3周溝39とそれぞれ連通している。
As shown in FIG. 1, the orifice chamber 42 includes a first orifice opening 61 formed in a position corresponding to the orifice chamber 42 in the direction of the central axis O, and a second in each of the holding plate 31 and the membrane plate 32. It communicates with the main liquid chamber 6 through the orifice opening 64.
The orifice chamber 42 is formed with a depth equivalent to that of the third circumferential groove 39 in the direction of the central axis O. The orifice chamber 42 is formed on a side wall surface defining the orifice chamber 42 and opens outward in the radial direction. The second circumferential groove 38 and the third circumferential groove 39 communicate with each other through the first communication opening 53.

図2および図3に示すように、第2周溝38は、仕切り部材8の外周面に全周にわたって形成されている。図2に示すように、第2周溝38は、この第2周溝38を画成する底壁面のうち、シリンダ室40の径方向の外側に位置する部分に形成され径方向の内側に向けて開口する第2連通開口50を通してシリンダ室40に連通している。   As shown in FIGS. 2 and 3, the second circumferential groove 38 is formed on the outer circumferential surface of the partition member 8 over the entire circumference. As shown in FIG. 2, the second circumferential groove 38 is formed in a portion of the bottom wall surface defining the second circumferential groove 38 that is located on the radially outer side of the cylinder chamber 40, and faces the radially inner side. It communicates with the cylinder chamber 40 through the second communication opening 50 that opens.

シリンダ室40は、平面視円形状に形成されており、メンブランプレート32において、このシリンダ室40に前記中心軸線O方向で対応する位置には、シリンダ開口部63が形成されている。また図4に示すように、仕切り部材本体30においてシリンダ室40が形成された周方向部分の他端面には、他方側に向けて張り出す張出部44が備えられており、シリンダ室40は、この張出部44内に至るまで深く形成されている。   The cylinder chamber 40 is formed in a circular shape in plan view, and a cylinder opening 63 is formed in the membrane plate 32 at a position corresponding to the cylinder chamber 40 in the direction of the central axis O. As shown in FIG. 4, the other end surface of the circumferential portion where the cylinder chamber 40 is formed in the partition member main body 30 is provided with an overhanging portion 44 projecting toward the other side. Further, it is formed deeply into the overhanging portion 44.

シリンダ室40を画成する底壁面の中央部には、一方側に向けて延びる軸部45が設けられている。またこの底壁面には、平面視で軸部45の周囲を囲うように間隔をあけて複数配置されるとともに他方側に向けて開口する連通孔46が形成されており、シリンダ室40は、この連通孔46を通して副液室7に連通している。   A shaft portion 45 extending toward one side is provided at the center of the bottom wall surface that defines the cylinder chamber 40. The bottom wall surface is formed with a plurality of communication holes 46 which are arranged at intervals so as to surround the periphery of the shaft portion 45 in plan view and open toward the other side. It communicates with the auxiliary liquid chamber 7 through the communication hole 46.

図3に示すように、第3周溝39は、仕切り部材本体30の外周面において、オリフィス室42の径方向の外側に位置する部分から貫通孔43の径方向の外側に位置する部分にまで、この外周面を約1周周回するように延びている。そして第3周溝39は、この第3周溝39において貫通孔43の径方向の外側に位置する一の周端部を画成する壁面のうち、他方側に位置する側壁面に形成され他方側に向けて開口する第1連通切欠51を通して副液室7に連通している。なお図示の例では、第1連通切欠51は、前記一の周端部において、他方側に位置する側壁面から底壁面にわたって形成されており、第3周溝39は、第1連通切欠51を通して貫通孔43に連通している。   As shown in FIG. 3, the third circumferential groove 39 extends from a portion located on the outer side in the radial direction of the orifice chamber 42 to a portion located on the outer side in the radial direction of the through hole 43 on the outer peripheral surface of the partition member body 30. The outer peripheral surface extends so as to go about one round. The third circumferential groove 39 is formed on the side wall surface located on the other side of the wall surfaces defining one circumferential end portion located on the radially outer side of the through hole 43 in the third circumferential groove 39. It communicates with the auxiliary liquid chamber 7 through a first communication cutout 51 that opens toward the side. In the illustrated example, the first communication cutout 51 is formed from the side wall surface located on the other side to the bottom wall surface at the one peripheral end, and the third circumferential groove 39 passes through the first communication cutout 51. It communicates with the through hole 43.

ここで、図2から図4に示すように、仕切り部材8において、アイドルオリフィス70は、主液室6側から副液室7側に向けて、第1オリフィス開口部61、第2オリフィス開口部64、オリフィス室42、第1連通開口53、第2周溝38、第2連通開口50、シリンダ室40のうちの後述する通路空間95、および連通孔46の順で構成される。アイドルオリフィス70の流路長および流路断面積は、アイドルオリフィス70の共振周波数がアイドル振動の周波数となるように予め設定(チューニング)されている。また図示の例では、アイドルオリフィス70を構成する構成要素(液室、開口、周溝)のうち、第2周溝38の流路断面積が最も小さくなっている。   Here, as shown in FIGS. 2 to 4, in the partition member 8, the idle orifice 70 has a first orifice opening 61 and a second orifice opening from the main liquid chamber 6 side to the sub liquid chamber 7 side. 64, the orifice chamber 42, the first communication opening 53, the second circumferential groove 38, the second communication opening 50, a passage space 95 to be described later in the cylinder chamber 40, and the communication hole 46. The channel length and the channel cross-sectional area of the idle orifice 70 are set (tuned) in advance so that the resonance frequency of the idle orifice 70 becomes the frequency of idle vibration. In the illustrated example, the flow passage cross-sectional area of the second circumferential groove 38 is the smallest among the components (liquid chamber, opening, circumferential groove) constituting the idle orifice 70.

また図2および図3に示すように、シェイクオリフィス71は、主液室6側から副液室7側に向けて、第1オリフィス開口部61、第2オリフィス開口部64、オリフィス室42、第1連通開口53、第3周溝39、および第1連通切欠51の順で構成されている。シェイクオリフィス71の流路長および流路断面積は、シェイクオリフィス71の共振周波数がシェイク振動の周波数となるように予め設定(チューニング)される。また図示の例では、シェイクオリフィス71を構成する構成要素(液室、開口、周溝、切欠き)のうち、第3周溝39の流路断面積が最も小さくなっている。   Further, as shown in FIGS. 2 and 3, the shake orifice 71 has a first orifice opening 61, a second orifice opening 64, an orifice chamber 42, a first orifice, from the main liquid chamber 6 side to the sub liquid chamber 7 side. The first communication opening 53, the third circumferential groove 39, and the first communication cutout 51 are configured in this order. The channel length and the channel cross-sectional area of the shake orifice 71 are preset (tuned) so that the resonance frequency of the shake orifice 71 becomes the frequency of the shake vibration. In the illustrated example, among the constituent elements (liquid chamber, opening, circumferential groove, notch) constituting the shake orifice 71, the flow passage cross-sectional area of the third circumferential groove 39 is the smallest.

なお図3に示すように、第2周溝38と第3周溝39とは、両周溝38、39を仕切る溝仕切壁部52aに形成された第2連通切欠52を通して連通されている。第2連通切欠52は、溝仕切壁部52aのうち、オリフィス室42の径方向の外側に位置する部分に形成されている。   As shown in FIG. 3, the second circumferential groove 38 and the third circumferential groove 39 communicate with each other through a second communication notch 52 formed in a groove partition wall portion 52 a that partitions both circumferential grooves 38, 39. The 2nd communication notch 52 is formed in the part located in the radial direction outer side of the orifice chamber 42 among the groove partition walls 52a.

図2に示すように、薄膜体室41は、押さえプレート31において、この薄膜体室41に前記中心軸線O方向で対応する位置に形成された膜開口部60を通して主液室6に連通している。また図4に示すように、この薄膜体室41は、前記中心軸線O方向で第1周溝37と同等の深さで形成されており、この薄膜体室41を画成する側壁面に形成され径方向の外側に向けて開口する第3連通開口48を通して第1周溝37に連通している。   As shown in FIG. 2, the thin film body chamber 41 communicates with the main liquid chamber 6 through a film opening 60 formed at a position corresponding to the thin film body chamber 41 in the direction of the central axis O in the pressing plate 31. Yes. As shown in FIG. 4, the thin film body chamber 41 is formed at the same depth as the first circumferential groove 37 in the direction of the central axis O, and is formed on the side wall surface defining the thin film body chamber 41. The first circumferential groove 37 communicates through a third communication opening 48 that opens outward in the radial direction.

図3に示すように、第1周溝37は、仕切り部材本体30の外周面において、薄膜体室41の径方向の外側に位置する部分から貫通孔43の径方向の外側に位置する部分にまで延びている。図示の例では、第1周溝37は、仕切り部材本体30の外周面に沿って薄膜体室41と貫通孔43とを結ぶ円弧のうちの優弧に沿って延びており、仕切り部材本体30の外周面においてオリフィス室42の径方向の外側に位置する部分を回避している。
また第1周溝37は、この第1周溝37において貫通孔43の径方向の外側に位置する周端部を画成する底壁面に形成され径方向の内側に向けて開口する第4連通開口49を通して貫通孔43に連通している。
As shown in FIG. 3, the first circumferential groove 37 is formed on the outer circumferential surface of the partition member main body 30 from a portion located on the radially outer side of the thin film body chamber 41 to a portion located on the radially outer side of the through hole 43. It extends to. In the illustrated example, the first circumferential groove 37 extends along the dominant arc of the arcs connecting the thin film body chamber 41 and the through hole 43 along the outer peripheral surface of the partition member main body 30, and the partition member main body 30. A portion of the outer peripheral surface located outside the orifice chamber 42 in the radial direction is avoided.
Further, the first circumferential groove 37 is formed in a bottom wall surface defining a circumferential end portion located on the radially outer side of the through hole 43 in the first circumferential groove 37 and is open to the radially inner side. The opening 49 communicates with the through hole 43.

ここで、図2および図3に示すように、接続路74は、主液室6側から副液室7側に向けて、膜開口部60、薄膜体室41、第3連通開口48、第1周溝37、第4連通開口49、および貫通孔43の順で構成されている。なお図示の例では、接続路74を構成する構成要素(液室、開口、周溝、孔)のうち、第1周溝37の流路断面積が最も小さくなっている。   Here, as shown in FIGS. 2 and 3, the connection path 74 has a film opening 60, a thin film body chamber 41, a third communication opening 48, a first connection from the main liquid chamber 6 side to the sub liquid chamber 7 side. The first circumferential groove 37, the fourth communication opening 49, and the through hole 43 are configured in this order. In the illustrated example, among the components (liquid chamber, opening, circumferential groove, hole) constituting the connection path 74, the flow passage cross-sectional area of the first circumferential groove 37 is the smallest.

なお図2に示すように、メンブランプレート32において、貫通孔43に前記中心軸線O方向で対応する位置には、アイドル振動よりも周波数が高い高周波数振動(例えば、周波数が100Hz以上)を減衰吸収する構成とされた高周波メンブラン65が形成されている。この高周波メンブラン65は、押さえプレート31に形成された高周波開口部62を通して主液室6に面する緩衝膜となっている。   As shown in FIG. 2, in the membrane plate 32, high-frequency vibration (for example, the frequency is 100 Hz or more) higher in frequency than idle vibration is attenuated and absorbed at a position corresponding to the through hole 43 in the direction of the central axis O. A high-frequency membrane 65 configured as described above is formed. The high-frequency membrane 65 is a buffer film that faces the main liquid chamber 6 through a high-frequency opening 62 formed in the holding plate 31.

液圧導入路47は、薄膜体室41を画成する側壁面にシリンダ室40に向けて開口し薄膜体室41とシリンダ室40とを連通しており、図示の例では、一方側に向けて開口する切り欠き部となっている。
薄膜体73は、メンブランプレート32において薄膜体室41に前記中心軸線O方向で対応する位置に形成されている。この薄膜体73は、例えば、接続路74の流路長、流路断面積および薄膜体73の弾性率などが、予め設定(チューニング)されることで、アイドル振動の入力時に接続路74内で液柱共振を生じさせるように弾性変形する構成となっている。
The fluid pressure introduction path 47 opens toward the cylinder chamber 40 on the side wall surface defining the thin film body chamber 41, and communicates the thin film body chamber 41 and the cylinder chamber 40. In the illustrated example, the fluid pressure introduction path 47 is directed toward one side. It is a notch that opens.
The thin film body 73 is formed in the membrane plate 32 at a position corresponding to the thin film body chamber 41 in the direction of the central axis O. For example, the thin film body 73 has a channel length, a channel cross-sectional area, an elastic modulus of the thin film body 73, and the like set (tuned) in advance in the connection path 74 when an idle vibration is input. It is configured to elastically deform so as to cause liquid column resonance.

図4に示すように、切替え手段72は、液圧導入路47から導入された接続路74内の液圧に応じて、液体Lが流通する制限通路70、71を切り替えるようになっている。この切替え手段72は、複数の制限通路70、71のうち、流通抵抗が最も小さいアイドルオリフィス70を通した主液室6と副液室7との連通、遮断を切り替える。
本実施形態では、切替え手段72は、アイドルオリフィス70を通した主液室6と副液室7との連通を遮断しており、接続路74内の液圧が高められたときに、アイドルオリフィス70を通した主液室6と副液室7との連通の遮断を解除する。また、切替え手段72は、接続路74内で高められた液圧が低下するときに、アイドルオリフィス70を通した主液室6と副液室7との連通を遮断する。
As shown in FIG. 4, the switching means 72 switches the restriction passages 70 and 71 through which the liquid L flows in accordance with the fluid pressure in the connection passage 74 introduced from the fluid pressure introduction passage 47. The switching means 72 switches communication and blocking between the main liquid chamber 6 and the sub liquid chamber 7 through the idle orifice 70 having the smallest flow resistance among the plurality of restriction passages 70, 71.
In the present embodiment, the switching means 72 blocks the communication between the main liquid chamber 6 and the sub liquid chamber 7 through the idle orifice 70, and when the hydraulic pressure in the connection path 74 is increased, the idle orifice The disconnection of the communication between the main liquid chamber 6 and the auxiliary liquid chamber 7 through 70 is released. Further, the switching means 72 blocks the communication between the main liquid chamber 6 and the sub liquid chamber 7 through the idle orifice 70 when the liquid pressure increased in the connection path 74 decreases.

切替え手段72は、シリンダ室40内に配設されている。この切替え手段72は、シリンダ室40の一端部内に嵌合された有底筒状の固定部材80と、固定部材80に対して他方側から一方側への液体Lの流入を規制する弁部材81と、シリンダ室40内に前記中心軸線O方向(通路空間と加圧空間との拡縮方向)に摺動可能に配設されたピストン部材82と、このピストン部材82とシリンダ室40を画成する底壁面との間に介装されたコイルスプリング83と、を備えている。
なお、弁部材81およびピストン部材82は平面視円形状に形成されており、これらの固定部材80、弁部材81、ピストン部材82およびコイルスプリング83は、前記軸部45と同軸に配設されている。
The switching means 72 is disposed in the cylinder chamber 40. The switching means 72 includes a bottomed cylindrical fixing member 80 fitted in one end of the cylinder chamber 40, and a valve member 81 that regulates the inflow of the liquid L from the other side to the one side with respect to the fixing member 80. A piston member 82 slidably disposed in the cylinder chamber 40 in the direction of the central axis O (direction of expansion and contraction between the passage space and the pressurizing space), and the piston member 82 and the cylinder chamber 40 are defined. And a coil spring 83 interposed between the bottom wall surface.
The valve member 81 and the piston member 82 are formed in a circular shape in plan view, and the fixing member 80, the valve member 81, the piston member 82, and the coil spring 83 are disposed coaxially with the shaft portion 45. Yes.

固定部材80の周壁部84には、液圧導入路47に連通する連絡窓85が形成されている。また図示の例では、固定部材80の周壁部84において、連絡窓85よりも他方側に位置する部分には、例えばゴム材料などの弾性体材料で形成され該周壁部84の外周面とシリンダ室40を画成する側壁面との間を液密に封止する外嵌リング87が外嵌されている。
固定部材80の底壁部88には、その中央部に配置された嵌合孔89と、この嵌合孔89を周囲から囲うように複数配置された弁座開口90と、が形成されている。
A communication window 85 communicating with the hydraulic pressure introduction passage 47 is formed in the peripheral wall portion 84 of the fixing member 80. Further, in the illustrated example, a portion of the peripheral wall portion 84 of the fixing member 80 located on the other side of the connecting window 85 is formed of an elastic material such as a rubber material, and the outer peripheral surface of the peripheral wall portion 84 and the cylinder chamber. An outer fitting ring 87 that seals liquid-tightly between the side wall surfaces defining 40 is fitted.
The bottom wall portion 88 of the fixing member 80 is formed with a fitting hole 89 arranged at the center thereof and a plurality of valve seat openings 90 arranged so as to surround the fitting hole 89 from the periphery. .

弁部材81は、固定部材80の底壁部88に他方側から圧接し弁座開口90を閉塞する円盤状の弁本体91と、弁本体91の中央部に一方側に向けて突設されるとともに前記嵌合孔89内に嵌合された一方側突起92と、弁本体91の中央部に他方側に向けて突設されるとともに端面が前記軸部45の端面に当接した他方側突起93と、を備えている。これらの弁本体91、一方側突起92および他方側突起93は、例えばゴム材料や合成樹脂材料などの弾性体材料で一体に形成されている。
他方側突起93の外径は、軸部45の外径と同等とされ、これらの他方側突起93および軸部45は、前記中心軸線O方向に延びるとともに軸部45と同軸に配設された嵌合筒94内に嵌合されている。
The valve member 81 is provided in a disc-like shape with a disc-shaped valve body 91 that presses against the bottom wall portion 88 of the fixing member 80 from the other side and closes the valve seat opening 90, and protrudes toward the one side at the center of the valve body 91. And one side projection 92 fitted into the fitting hole 89, and the other side projection which protrudes toward the other side at the center portion of the valve body 91 and whose end surface is in contact with the end surface of the shaft portion 45. 93. The valve body 91, the one-side protrusion 92, and the other-side protrusion 93 are integrally formed of an elastic material such as a rubber material or a synthetic resin material.
The outer diameter of the other side projection 93 is equal to the outer diameter of the shaft portion 45, and the other side projection 93 and the shaft portion 45 extend in the direction of the central axis O and are arranged coaxially with the shaft portion 45. It is fitted in the fitting cylinder 94.

ピストン部材82は、シリンダ室40内を、副液室7に連通孔46を通して連通しアイドルオリフィス70の一部を構成する他方側(拡縮方向に沿った通路空間側)の通路空間95と、接続路74に液圧導入路47を通して連通する一方側(拡縮方向に沿った加圧空間側)の加圧空間96と、に区画する区画環部(区画部)97と、該区画環部97の外周縁部に他方側に向けて延設され内部がアイドルオリフィス70の一部を構成する摺動筒部98と、区画環部97の内周縁部から他方側に向けて延在するガイド筒部99と、を備えている。   The piston member 82 is connected to the passage space 95 on the other side (passage space side along the expansion / contraction direction) that communicates with the sub liquid chamber 7 through the communication hole 46 in the cylinder chamber 40 and forms a part of the idle orifice 70. A partition ring part (partition part) 97 partitioned into a pressure space 96 on one side (pressure space side along the expansion / contraction direction) communicating with the path 74 through the fluid pressure introduction path 47, and the partition ring part 97 A sliding cylinder 98 extending toward the other side at the outer peripheral edge and the inside forming a part of the idle orifice 70, and a guide cylinder extending from the inner peripheral edge of the partition ring 97 toward the other side 99.

区画環部97内およびガイド筒部99内には、嵌合筒94が嵌合されており、区画環部97およびガイド筒部99それぞれの内周面は、嵌合筒94の外周面に摺接している。
摺動筒部98において一方側に位置する一方側部分には、摺動筒部98の周方向に間隔をあけて複数の貫通開口100が形成されている。貫通開口100の前記中心軸線O方向に沿った大きさは、アイドルオリフィス70の一部を構成するとともに、シリンダ室40と主液室6とを連通する前記第2連通開口(通路開口部)50の前記中心軸線O方向に沿った大きさよりも大きくなっている。
また摺動筒部98において、前記一方側部分よりも他方側に位置する他方側部分は、第2連通開口50をシリンダ室40の内側から閉塞している。
A fitting tube 94 is fitted in the partition ring portion 97 and the guide tube portion 99, and the inner peripheral surfaces of the partition ring portion 97 and the guide tube portion 99 slide on the outer peripheral surface of the fit tube 94. It touches.
A plurality of through-openings 100 are formed in one side portion of the sliding cylinder portion 98 located on one side at intervals in the circumferential direction of the sliding cylinder portion 98. The size of the through opening 100 along the direction of the central axis O constitutes a part of the idle orifice 70 and the second communication opening (passage opening) 50 that communicates the cylinder chamber 40 and the main liquid chamber 6. Is larger than the size along the direction of the central axis O.
In the sliding cylinder portion 98, the other side portion located on the other side of the one side portion closes the second communication opening 50 from the inside of the cylinder chamber 40.

コイルスプリング83の内部にはガイド筒部99が挿通されている。このコイルスプリング83は、区画環部97が弁本体91に当接するようにピストン部材82を一方側に付勢しており、その付勢力は、アイドル振動の入力時における加圧空間96内の液圧に平衡する力よりも小さくなっている。
また図示の例では、シリンダ室40の他端部内には、ピストン部材82の他方側の終端位置で摺動筒部98の他端縁に当接するストッパリング101が嵌合されている。ストッパリング101は、例えばゴム材料や合成樹脂材料などの弾性体材料で形成されている。
A guide tube portion 99 is inserted into the coil spring 83. The coil spring 83 urges the piston member 82 to one side so that the partition ring portion 97 abuts on the valve body 91, and the urging force is applied to the liquid in the pressurizing space 96 when the idle vibration is input. It is smaller than the force that balances the pressure.
In the illustrated example, a stopper ring 101 that contacts the other end edge of the sliding cylinder portion 98 at the other end position of the piston member 82 is fitted in the other end portion of the cylinder chamber 40. The stopper ring 101 is made of an elastic material such as a rubber material or a synthetic resin material.

次に、以上のように構成された防振装置1の作用について説明する。なお、以下に示す図5、図7および図9は、防振装置1の主液室6、副液室7、アイドルオリフィス70、シェイクオリフィス71、接続路74および切替え手段72の関係を模式的に示した図である。   Next, the operation of the vibration isolator 1 configured as described above will be described. 5, FIG. 7, and FIG. 9 shown below schematically show the relationship among the main liquid chamber 6, the sub liquid chamber 7, the idle orifice 70, the shake orifice 71, the connection path 74, and the switching means 72 of the vibration isolator 1. It is the figure shown in.

まず、図4および図5に示すように、この防振装置1に、振動が入力されていない無入力状態からシェイク振動が入力された場合について説明する。
本実施形態では、薄膜体73が、アイドル振動の入力時に接続路74内で液柱共振を生じさせるように弾性変形する構成とされているので、この場合、薄膜体73は弾性変形するものの接続路74内で液柱共振が生じず、接続路74内での液圧変動が小さいため、アイドルオリフィス70を通した主液室6と副液室7との連通の遮断が維持される。したがって液体Lが、シェイクオリフィス71を通して主液室6と副液室7との間を流通し、このシェイクオリフィス71内で液柱共振が生じてシェイク振動が減衰吸収される。
First, as shown in FIGS. 4 and 5, a case will be described in which shake vibration is input to the vibration isolator 1 from a non-input state in which no vibration is input.
In this embodiment, since the thin film body 73 is elastically deformed so as to cause liquid column resonance in the connection path 74 when an idle vibration is input, in this case, the thin film body 73 is connected to the elastic deformation. Since liquid column resonance does not occur in the channel 74 and the fluid pressure fluctuation in the connection channel 74 is small, the disconnection of the communication between the main liquid chamber 6 and the sub liquid chamber 7 through the idle orifice 70 is maintained. Accordingly, the liquid L flows between the main liquid chamber 6 and the sub liquid chamber 7 through the shake orifice 71, and liquid column resonance occurs in the shake orifice 71 so that the shake vibration is attenuated and absorbed.

次に、この防振装置1に、アイドル振動が入力された場合について説明する。
この場合、薄膜体73が弾性変形して接続路74内で液柱共振が生じることで、接続路74内の液圧が大きく変動して高められる。このときの液圧が液圧導入路47から加圧空間96に導入されることによって、切替え手段72が、アイドルオリフィス70を通した主液室6と副液室7との連通の遮断を解除する。
Next, a case where idle vibration is input to the vibration isolator 1 will be described.
In this case, since the thin film body 73 is elastically deformed and liquid column resonance occurs in the connection path 74, the liquid pressure in the connection path 74 is greatly changed and increased. The fluid pressure at this time is introduced into the pressurizing space 96 from the fluid pressure introduction path 47, so that the switching means 72 cancels the disconnection of the communication between the main fluid chamber 6 and the sub fluid chamber 7 through the idle orifice 70. To do.

すなわち、接続路74内の液圧は、液圧導入路47および連絡窓85を通って固定部材80内に伝わり、さらに弁座開口90を通して、弁部材81の弁本体91に伝わる。この際、弁本体91が、固定部材80の底壁部88から離反するように弾性変形することで、弁座開口90が開放されて、固定部材80内と加圧空間96内とが連通する。これにより液圧が、ピストン部材82に及ぼされ、ピストン部材82が、加圧空間96の内容積を拡大するように、コイルスプリング83の付勢力に抗してシリンダ室40内を他方側に向けて摺動する。すると図6および図7に示すように、摺動筒部98の前記他方側部分によって閉塞されていた第2連通開口50が、貫通開口100を通して開放され、この第2連通開口50と通路空間95とが、貫通開口100および摺動筒部98内を通して連通することとなり、アイドルオリフィス70を通した主液室6と副液室7との連通の遮断が解除される。   That is, the hydraulic pressure in the connection path 74 is transmitted to the fixing member 80 through the hydraulic pressure introducing path 47 and the communication window 85, and further to the valve body 91 of the valve member 81 through the valve seat opening 90. At this time, the valve body 91 is elastically deformed so as to be separated from the bottom wall portion 88 of the fixing member 80, whereby the valve seat opening 90 is opened, and the inside of the fixing member 80 and the inside of the pressurizing space 96 communicate with each other. . As a result, the hydraulic pressure is exerted on the piston member 82, and the piston member 82 faces the other side of the cylinder chamber 40 against the urging force of the coil spring 83 so as to expand the internal volume of the pressurizing space 96. Slide. Then, as shown in FIGS. 6 and 7, the second communication opening 50 closed by the other side portion of the sliding cylinder portion 98 is opened through the through opening 100, and the second communication opening 50 and the passage space 95 are opened. Are communicated with each other through the through opening 100 and the sliding cylinder portion 98, and the disconnection of the communication between the main liquid chamber 6 and the sub liquid chamber 7 through the idle orifice 70 is released.

ここで、アイドルオリフィス70は、複数の制限通路70、71のなかで最も流通抵抗が小さいので、アイドルオリフィス70を通した主液室6と副液室7との連通の遮断が解除されたときには、液体Lが、このアイドルオリフィス70を通して主液室6と副液室7との間で積極的に流通することとなる。
したがって、液体Lが流通する制限通路70、71が、シェイクオリフィス71からアイドルオリフィス70に切り替えられることとなる。これにより、液体Lが、アイドルオリフィス70を通して主液室6と副液室7との間を流通し、このアイドルオリフィス70内で液柱共振が生じてアイドル振動が減衰吸収される。
Here, since the idle orifice 70 has the smallest flow resistance among the plurality of restriction passages 70 and 71, when the disconnection of the communication between the main liquid chamber 6 and the sub liquid chamber 7 through the idle orifice 70 is released. The liquid L actively circulates between the main liquid chamber 6 and the sub liquid chamber 7 through the idle orifice 70.
Therefore, the restriction passages 70 and 71 through which the liquid L flows are switched from the shake orifice 71 to the idle orifice 70. As a result, the liquid L flows between the main liquid chamber 6 and the sub liquid chamber 7 through the idle orifice 70, and a liquid column resonance occurs in the idle orifice 70 so that the idle vibration is attenuated and absorbed.

その後、この防振装置1にアイドル振動の入力がなくなり、かわりにシェイク振動が入力されると、接続路74内の液圧変動が小さくなって、接続路74内の液圧が高められた状態から低下することとなり、切替え手段72が、アイドルオリフィス70を通した主液室6と副液室7との連通を遮断する。
すなわち、コイルスプリング83の付勢力により、ピストン部材82が、シリンダ室40内を一方側に向けて摺動させられて、この摺動筒部98の前記他方側部分によって第2連通開口50が閉塞される。この際、固定部材80内の液圧が加圧空間96の液圧よりも小さくなるため、弁部材81の弁本体91が、固定部材80の底壁部88に他方側から圧接することとなり、弁座開口90が閉塞される。また、加圧空間96内の液体Lは、例えばピストン部材82とシリンダ室40を画成する側壁面との間の図示しない隙間、および連通孔46を通って副液室7に流入される。
After that, when no vibration is input to the vibration isolator 1 and shake vibration is input instead, the fluctuation in the hydraulic pressure in the connection path 74 is reduced and the hydraulic pressure in the connection path 74 is increased. Therefore, the switching means 72 blocks the communication between the main liquid chamber 6 and the sub liquid chamber 7 through the idle orifice 70.
That is, the piston member 82 is slid toward the one side in the cylinder chamber 40 by the biasing force of the coil spring 83, and the second communication opening 50 is closed by the other side portion of the sliding cylinder portion 98. Is done. At this time, since the hydraulic pressure in the fixing member 80 becomes smaller than the hydraulic pressure in the pressurizing space 96, the valve main body 91 of the valve member 81 comes into pressure contact with the bottom wall portion 88 of the fixing member 80 from the other side. The valve seat opening 90 is closed. Further, the liquid L in the pressurizing space 96 flows into the sub liquid chamber 7 through a gap (not shown) between the piston member 82 and the side wall surface defining the cylinder chamber 40 and the communication hole 46, for example.

これにより、液体Lの流通する制限通路70、71が、アイドルオリフィス70からシェイクオリフィス71に切り替えられ、液体Lが、シェイクオリフィス71を通して主液室6と副液室7との間を流通し、このシェイクオリフィス71内で液柱共振が生じてシェイク振動が減衰吸収される。   Thereby, the restriction passages 70 and 71 through which the liquid L flows are switched from the idle orifice 70 to the shake orifice 71, and the liquid L flows between the main liquid chamber 6 and the sub liquid chamber 7 through the shake orifice 71, Liquid column resonance occurs in the shake orifice 71, and the shake vibration is attenuated and absorbed.

なお本実施形態では、図8および図9に示すように、摺動筒部98の貫通開口100と仕切り部材本体30の第2連通開口50とが連通した後、ピストン部材82が、他方側に向けて摺動し続けて摺動筒部98の他端縁がストッパリング101に当接したときに、ピストン部材82の区画環部97(ピストン部材において貫通開口よりも拡縮方向に沿った加圧空間側に位置する部分)が、第2連通開口50を閉塞する。したがってこの場合においても、アイドルオリフィス70を通した主液室6と副液室7との連通が遮断されることとなり、液体Lが流通する制限通路70、71が、アイドルオリフィス70からシェイクオリフィス71に切り替えられることとなる。   In this embodiment, as shown in FIGS. 8 and 9, after the penetrating opening 100 of the sliding cylinder portion 98 communicates with the second communication opening 50 of the partition member main body 30, the piston member 82 is moved to the other side. When the other end edge of the sliding cylinder portion 98 abuts against the stopper ring 101 while continuing to slide toward the stopper ring 101, the pressure of the piston member 82 is increased in the expansion / contraction direction than the through-opening in the piston member The portion located on the space side) closes the second communication opening 50. Therefore, also in this case, the communication between the main liquid chamber 6 and the sub liquid chamber 7 through the idle orifice 70 is blocked, and the restriction passages 70 and 71 through which the liquid L flows are connected from the idle orifice 70 to the shake orifice 71. It will be switched to.

以上説明したように、本実施形態に係る防振装置1によれば、薄膜体73が、接続路74を通した主液室6と副液室7との連通を遮断しているので、この防振装置1に入力された振動により薄膜体73が弾性変形して接続路74内で液柱共振が生じると、この接続路74内の液圧が大きく変動することになる。すなわち、防振装置1に入力された振動の周波数に応じて接続路74内の液圧が変動し、この液圧が液圧導入路47を通して切替え手段72に導入されて切替え手段72が作動することで、振動の入力に対して液柱共振を生じさせ振動を減衰吸収する制限通路70、71の共振周波数が切り替えられることになる。   As described above, according to the vibration isolator 1 according to the present embodiment, the thin film body 73 blocks communication between the main liquid chamber 6 and the sub liquid chamber 7 through the connection path 74. When the thin film body 73 is elastically deformed by vibration input to the vibration isolator 1 and liquid column resonance occurs in the connection path 74, the liquid pressure in the connection path 74 greatly fluctuates. That is, the hydraulic pressure in the connection path 74 varies according to the frequency of vibration input to the vibration isolator 1, and this hydraulic pressure is introduced into the switching means 72 through the hydraulic pressure introduction path 47 and the switching means 72 is activated. Thus, the resonance frequencies of the restriction passages 70 and 71 that cause liquid column resonance with respect to the vibration input and attenuate and absorb the vibration are switched.

したがって、防振装置1に入力された振動の周波数に応じて前記制限通路70、71の共振周波数が切り替えられるので、周波数帯が互いに異なる複数種の振動を確実に減衰吸収することができる。
また、切替え手段72が、液圧導入路47から導入された接続路74内の液圧に応じて、液体Lが流通する制限通路70、71を切り替えるので、制限通路70、71の流路長や流路断面積などを変化させることなく、振動の入力に対して液柱共振を生じさせ振動を減衰吸収する制限通路70、71の共振周波数を切り替えることができる
Therefore, since the resonance frequencies of the restriction passages 70 and 71 are switched according to the vibration frequency input to the vibration isolator 1, a plurality of types of vibrations having different frequency bands can be reliably attenuated and absorbed.
Further, since the switching means 72 switches the restriction passages 70 and 71 through which the liquid L flows according to the fluid pressure in the connection passage 74 introduced from the fluid pressure introduction passage 47, the flow path length of the restriction passages 70 and 71. Without changing the channel cross-sectional area, the resonance frequency of the limiting passages 70 and 71 that cause liquid column resonance with respect to vibration input and attenuate and absorb vibration can be switched.

また、この防振装置1にアイドル振動が入力され、摺動筒部98の貫通開口100と仕切り部材本体30の第2連通開口50とが連通した後、入力振動の周波数がさらに高くなり、アイドルオリフィス70内および接続路74内での反共振が発生しても、この防振装置1の動ばね定数が上昇し振動の減衰吸収性能が悪化するのを抑えることができる。
すなわち、接続路74内で反共振が生ずるとこの接続路74内の液圧が高められ、ピストン部材82が、シリンダ室40内を摺動して仕切り部材本体30の第2連通開口50を閉塞する。これにより、アイドルオリフィス70を通した主液室6と副液室7との連通が遮断され、液体Lがシェイクオリフィス71を流通することとなり、この防振装置1の動ばね定数の上昇を抑えることができる。
In addition, after idling vibration is input to the vibration isolator 1 and the through opening 100 of the sliding cylinder portion 98 and the second communication opening 50 of the partition member body 30 communicate with each other, the frequency of the input vibration further increases, Even if anti-resonance occurs in the orifice 70 and the connection path 74, it is possible to suppress the increase in the dynamic spring constant of the vibration isolator 1 and the deterioration of the vibration damping absorption performance.
That is, when anti-resonance occurs in the connection path 74, the hydraulic pressure in the connection path 74 is increased, and the piston member 82 slides in the cylinder chamber 40 and closes the second communication opening 50 of the partition member body 30. To do. As a result, the communication between the main liquid chamber 6 and the sub liquid chamber 7 through the idle orifice 70 is cut off, and the liquid L flows through the shake orifice 71, thereby suppressing an increase in the dynamic spring constant of the vibration isolator 1. be able to.

また本実施形態では、薄膜体73が、仕切り部材本体30に前記中心軸線O方向に延び、仕切り部材8の大型化を抑制しつつ流路断面積を容易に調整可能な薄膜体室41に配置されているので、薄膜体73の前述のチューニングを容易に行うことができる。
また、仕切り部材8が、主液室6に面する高周波メンブラン65を備えているので、この防振装置1全体の柔軟性を高めて減衰吸収性能を向上させることができる。
さらに、高周波メンブラン65が、前記高周波数振動を減衰吸収するので、車速が例えば100Km/h以上の場合や、エンジン回転数が3000rpm以上の場合などに生じる高周波数振動を効果的に抑制し、例えば、この高周波数振動を起因とするこもり音等の発生を抑制することができる。
Further, in the present embodiment, the thin film body 73 extends in the partition member body 30 in the direction of the central axis O, and is disposed in the thin film body chamber 41 in which the flow passage cross-sectional area can be easily adjusted while suppressing the enlargement of the partition member 8. Therefore, the above-described tuning of the thin film body 73 can be easily performed.
Moreover, since the partition member 8 includes the high-frequency membrane 65 facing the main liquid chamber 6, it is possible to increase the flexibility of the entire vibration isolator 1 and improve the attenuation absorption performance.
Furthermore, since the high frequency membrane 65 attenuates and absorbs the high frequency vibration, it effectively suppresses the high frequency vibration that occurs when the vehicle speed is 100 Km / h or higher, or when the engine speed is 3000 rpm or higher, for example, Thus, it is possible to suppress the generation of a humming sound or the like caused by this high frequency vibration.

なお、本発明の技術的範囲は前記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、前記実施形態では、高周波メンブラン65は、前記高周波数振動を減衰吸収するものとしたが、これに限られるものではない。また、高周波メンブラン65はなくても良い。
The technical scope of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.
For example, in the above-described embodiment, the high-frequency membrane 65 attenuates and absorbs the high-frequency vibration, but is not limited thereto. Further, the high-frequency membrane 65 may not be provided.

また前記実施形態では、薄膜体室41が、接続路74の主液室6側の端部を構成しているものとしたが、これに限られるものではなく、例えば、接続路74の副液室7側の端部を構成していても良く、接続路74における主液室6側および副液室7側の両端部の間に位置する部分を構成しても良い。   Moreover, in the said embodiment, although the thin film body chamber 41 shall have comprised the edge part by the side of the main liquid chamber 6 of the connection path 74, it is not restricted to this, For example, the subliquid of the connection path 74 An end portion on the chamber 7 side may be configured, and a portion located between both ends on the main liquid chamber 6 side and the sub liquid chamber 7 side in the connection path 74 may be configured.

さらに前記実施形態では、薄膜体73が、薄膜体室41に配設されているものとしたが、接続路74内に配設されていればこれに限られるものではない。この場合、例えば、接続路74を、仕切り部材8の外周面に形成された周溝と、この周溝と主液室6および副液室7とをそれぞれ連通する開口と、で構成し、薄膜体室41のように前記中心軸線O方向に沿って延びる室を備えない構成としても良い。   Furthermore, in the said embodiment, although the thin film body 73 shall be arrange | positioned in the thin film body chamber 41, if it is arrange | positioned in the connection path 74, it will not be restricted to this. In this case, for example, the connection path 74 is constituted by a circumferential groove formed on the outer circumferential surface of the partition member 8 and an opening that communicates the circumferential groove with the main liquid chamber 6 and the sub liquid chamber 7, and a thin film It is good also as a structure which is not provided with the chamber extended along the said central axis O direction like the body chamber 41. FIG.

さらにまた、前記実施形態では、薄膜体73は、薄膜体室41において液圧導入路47よりも主液室6側に設けられており、接続路74内において液圧導入路47よりも主液室6側に配設されているものとしたが、これに限られるものではない。この薄膜体73は、接続路74内で生じる液柱共振(共振)による液圧変動(液圧振幅)が液圧導入路47を通して切替え手段72に導入されるように配置されていればよい。つまり、主液室6内の液圧もしくは副液室7内の液圧が、直接に液圧導入路47を通して切替え手段72に導入されることを規制するように接続路74内に配設されていれば良いということである。
例えば、液圧導入路47を、接続路74の副液室7側に位置する部分に連通するように配設した場合、薄膜体73を、液圧導入路47よりも副液室7側に配設すれば、副液室7内の液圧が直接に切替え手段72に導入されず、接続路74と薄膜体73との共振系によって発生される液圧変動(液圧振幅)が導入されるため、本発明の効果が奏されることになる。
Furthermore, in the embodiment, the thin film body 73 is provided in the thin film body chamber 41 on the main liquid chamber 6 side than the hydraulic pressure introduction path 47, and in the connection path 74, the main liquid chamber is located on the main liquid chamber 6 side. Although it has been arranged on the chamber 6 side, it is not limited to this. The thin film body 73 only needs to be arranged so that the hydraulic pressure fluctuation (hydraulic pressure amplitude) due to the liquid column resonance (resonance) generated in the connection path 74 is introduced into the switching means 72 through the hydraulic pressure introduction path 47. That is, the liquid pressure in the main liquid chamber 6 or the liquid pressure in the sub liquid chamber 7 is disposed in the connection path 74 so as to restrict the liquid pressure from being directly introduced into the switching means 72 through the liquid pressure introduction path 47. It means that it should be.
For example, when the hydraulic pressure introduction path 47 is disposed so as to communicate with a portion of the connection path 74 located on the sub liquid chamber 7 side, the thin film body 73 is disposed closer to the sub liquid chamber 7 than the hydraulic pressure introduction path 47. If arranged, the hydraulic pressure in the auxiliary liquid chamber 7 is not directly introduced into the switching means 72, but hydraulic pressure fluctuations (hydraulic pressure amplitude) generated by the resonance system of the connection path 74 and the thin film body 73 are introduced. Therefore, the effect of the present invention is exhibited.

また前記実施形態では、ピストン部材82は、区画環部97が第2連通開口50を閉塞するまで、他方側に摺動可能にシリンダ室40内に配設されているものとしたが、これに限られるものではない。
さらに前記実施形態では、切替え手段72は、ピストン部材82を備えているものとしたが、これに限られるものではない。
In the above embodiment, the piston member 82 is disposed in the cylinder chamber 40 so as to be slidable on the other side until the partition ring portion 97 closes the second communication opening 50. It is not limited.
Furthermore, in the said embodiment, although the switching means 72 shall be provided with the piston member 82, it is not restricted to this.

また前記実施形態では、薄膜体73が、当該防振装置1への入力時にアイドルオリフィス70内で液柱共振を生じさせるアイドル振動の入力時に接続路74内で液柱共振を生じさせるように弾性変形する構成とされるものとしたが、これに限られるものではない。
例えば、薄膜体73が、シェイク振動の入力時に接続路74内で液柱共振を生じさせるように弾性変形するように構成し、無入力状態において、アイドルオリフィス70およびシェイクオリフィス71それぞれを通して主液室6と副液室7とが連通され、かつ切替え手段72が、アイドルオリフィス70を通した主液室6と副液室7との連通、遮断を切り替える構成であっても良い。
In the embodiment, the thin film body 73 is elastic so as to cause liquid column resonance in the connection path 74 at the time of input of idle vibration that causes liquid column resonance in the idle orifice 70 when input to the vibration isolator 1. Although it shall be the structure which deform | transforms, it is not restricted to this.
For example, the thin film body 73 is configured to be elastically deformed so as to cause liquid column resonance in the connection path 74 when a shake vibration is input, and the main liquid chamber is passed through the idle orifice 70 and the shake orifice 71 in a no-input state. 6 and the secondary liquid chamber 7 may be communicated, and the switching means 72 may be configured to switch communication between the main liquid chamber 6 and the secondary liquid chamber 7 through the idle orifice 70 and blocking.

また前記実施形態では、切替え手段72が、アイドルオリフィス70を通した主液室6と副液室7との連通、遮断を切り替えるものとしたが、これに限られるものではない。
さらに前記実施形態では、制限通路70、71が、共振周波数を互いに異ならせて複数備えられているものとしたがこれに限られるものではない。
例えば、仕切り部材が、1つの制限通路を備え、切替え手段が、この制限通路の流路長および流路断面積を変化させることで、振動の入力に対して液柱共振を生じさせ振動を減衰吸収する制限通路の共振周波数を切り替える構成であっても良い。
In the above-described embodiment, the switching unit 72 switches between communication and blocking between the main liquid chamber 6 and the sub liquid chamber 7 through the idle orifice 70. However, the present invention is not limited to this.
Further, in the above-described embodiment, a plurality of restriction passages 70 and 71 are provided with resonance frequencies different from each other. However, the present invention is not limited to this.
For example, the partition member has one restriction passage, and the switching means changes the flow path length and the cross-sectional area of the restriction passage, thereby causing liquid column resonance with respect to vibration input and damping the vibration. It may be configured to switch the resonance frequency of the limiting passage to be absorbed.

また前記実施形態では、支持荷重が作用することで主液室6に正圧が作用する圧縮式の防振装置1について説明したが、主液室が鉛直方向下側に位置しかつ副液室が鉛直方向上側に位置するように取り付けられ、支持荷重が作用することで主液室に負圧が作用する吊り下げ式の防振装置にも適用可能である。   In the above-described embodiment, the compression-type vibration isolator 1 in which a positive pressure is applied to the main liquid chamber 6 when a support load is applied has been described. However, the main liquid chamber is located on the lower side in the vertical direction and the auxiliary liquid chamber. Can be applied to a suspension type vibration isolator in which a negative pressure is applied to the main liquid chamber by applying a support load.

また前記実施形態では、第1取付け部材2が振動受部に連結され、第2取付け部材3が振動発生部に連結されているが、本発明は、第1取付け部材2が振動発生部に連結され、第2取付け部材3が振動受部に連結されてもよい。   Moreover, in the said embodiment, although the 1st attachment member 2 is connected with the vibration receiving part and the 2nd attachment member 3 is connected with the vibration generation part, this invention connects the 1st attachment member 2 with the vibration generation part. The second mounting member 3 may be coupled to the vibration receiving portion.

また、本発明に係る防振装置1は、車両のエンジンマウントに限定されるものではなく、エンジンマウント以外に防振装置1に適用することも可能である。例えば、建設機械に搭載された発電機のマウントにも適用することも可能であり、或いは、工場等に設置される機械のマウントにも適用することも可能である。   Further, the vibration isolator 1 according to the present invention is not limited to the engine mount of the vehicle, but can be applied to the vibration isolator 1 other than the engine mount. For example, the present invention can be applied to a mount of a generator mounted on a construction machine, or can be applied to a mount of a machine installed in a factory or the like.

また前記実施形態では、複数の制限通路70、71として、共振周波数がアイドル振動の周波数とされたアイドルオリフィス70と、共振周波数がシェイク振動の周波数とされたシェイクオリフィス71とを備えるものとしたが、これに限られるものではなく、制限通路の共振周波数が、アイドル振動およびシェイク振動とは異なる振動の周波数であっても良い。   In the embodiment, the plurality of restriction passages 70 and 71 include the idle orifice 70 whose resonance frequency is the frequency of idle vibration and the shake orifice 71 whose resonance frequency is the frequency of shake vibration. However, the present invention is not limited to this, and the resonance frequency of the restriction passage may be a vibration frequency different from the idle vibration and the shake vibration.

その他、本発明の趣旨に逸脱しない範囲で、前記実施形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、前記した変形例を適宜組み合わせてもよい。   In addition, it is possible to appropriately replace the constituent elements in the embodiment with known constituent elements without departing from the spirit of the present invention, and the above-described modified examples may be appropriately combined.

L 液体
1 防振装置
2 第1取付け部材
3 第2取付け部材
4 弾性体
5 液室
6 主液室
7 副液室
8 仕切り部材
40 シリンダ室
47 液圧導入路
50 第2連通開口(通路開口部)
70 アイドルオリフィス(第1制限通路)
71 シェイクオリフィス(第2制限通路)
72 切替え手段
73 薄膜体
74 接続路
82 ピストン部材
95 通路空間
96 加圧空間
97 区画環部(区画部)
98 摺動筒部
100 貫通開口
L Liquid 1 Vibration isolator 2 First mounting member 3 Second mounting member 4 Elastic body 5 Liquid chamber 6 Main liquid chamber 7 Sub liquid chamber 8 Partition member 40 Cylinder chamber 47 Hydraulic pressure introduction path 50 Second communication opening (path opening) )
70 Idle orifice (first restricted passage)
71 Shake orifice (second restricted passage)
72 Switching means 73 Thin film body 74 Connection path 82 Piston member 95 Passage space 96 Pressurization space 97 Compartment ring part (compartment part)
98 Sliding cylinder part 100 Through opening

Claims (7)

振動発生部および振動受部のうちのいずれか一方に連結される筒状の第1取付け部材、および他方に連結される第2取付け部材と、
前記第1取付け部材および前記第2取付け部材を弾性的に連結する弾性体と、
液体が封入された前記第1取付け部材内の液室を、前記弾性体を壁面の一部とする一方側の主液室と他方側の副液室とに区画する仕切り部材と、を備えた液体封入型の防振装置であって、
前記仕切り部材は、
主液室と副液室とを連通し振動の入力に対して液柱共振を生じさせ振動を減衰吸収する制限通路と、
該制限通路の共振周波数を切り替える切替え手段と、
主液室と副液室とを接続する接続路と、
前記接続路に連通し、該接続路内の液圧を切替え手段に導入して該切替え手段を作動させる液圧導入路と、
前記接続路内に配設され該接続路を通した主液室と副液室との連通を遮断する薄膜体と、を備えていることを特徴とする防振装置。
A cylindrical first mounting member coupled to one of the vibration generating unit and the vibration receiving unit, and a second mounting member coupled to the other;
An elastic body elastically connecting the first mounting member and the second mounting member;
A partition member that divides the liquid chamber in the first mounting member in which the liquid is sealed into a main liquid chamber on one side and a sub liquid chamber on the other side, the elastic body being a part of a wall surface; A liquid-sealed vibration isolator,
The partition member is
A limiting passage that connects the main liquid chamber and the sub liquid chamber to cause liquid column resonance with respect to vibration input and attenuates and absorbs vibration;
Switching means for switching the resonance frequency of the restriction passage;
A connection path connecting the main liquid chamber and the sub liquid chamber;
A hydraulic pressure introduction path that communicates with the connection path and introduces the hydraulic pressure in the connection path into the switching means to operate the switching means;
A vibration isolator, comprising: a thin film body disposed in the connection path and blocking communication between the main liquid chamber and the sub liquid chamber through the connection path.
請求項1記載の防振装置であって、
前記制限通路は、共振周波数を互いに異ならせて複数備えられ、
前記切替え手段は、前記液圧導入路から導入された前記接続路内の液圧に応じて、液体が流通する制限通路を切り替えることを特徴とする防振装置。
The vibration isolator according to claim 1,
The restriction passage is provided with a plurality of resonance frequencies different from each other,
The vibration isolator according to claim 1, wherein the switching means switches a restriction passage through which liquid flows in accordance with a fluid pressure in the connection passage introduced from the fluid pressure introduction passage.
請求項2記載の防振装置であって、
前記切替え手段は、複数の前記制限通路のうち、流通抵抗が最も小さい第1制限通路を通した主液室と副液室との連通、遮断を切り替えることを特徴とする防振装置。
A vibration isolator according to claim 2,
The said switching means switches the communication between the main liquid chamber and the sub liquid chamber through the first restriction passage having the smallest flow resistance among the plurality of restriction passages, and switches it off.
請求項3記載の防振装置であって、
前記複数の制限通路は、前記第1制限通路と、共振周波数が、入力時に前記第1制限通路内で液柱共振を生じさせる第1振動よりも周波数が低い第2振動の周波数とされた第2制限通路と、を備え、
前記薄膜体は、前記第1振動の入力時に前記接続路内で液柱共振を生じさせるように弾性変形する構成とされていることを特徴とする防振装置。
A vibration isolator according to claim 3,
The plurality of restriction passages and the first restriction passage have a resonance frequency that is a second vibration frequency lower than the first vibration that causes liquid column resonance in the first restriction passage when input. 2 restriction passages,
The anti-vibration device according to claim 1, wherein the thin film body is configured to elastically deform so as to cause liquid column resonance in the connection path when the first vibration is input.
請求項4記載の防振装置であって、
前記第1振動は、アイドル振動であり、前記第2振動は、シェイク振動であることを特徴とする防振装置。
A vibration isolator according to claim 4,
The vibration isolator according to claim 1, wherein the first vibration is an idle vibration, and the second vibration is a shake vibration.
請求項5記載の防振装置であって、
前記仕切り部材には、副液室に連通するシリンダ室と、前記第1制限通路の一部を構成するとともに前記シリンダ室と主液室とを連通する通路開口部と、が形成され、
前記切替え手段は、前記シリンダ室内に配設されたピストン部材を備え、
該ピストン部材は、
前記シリンダ室内を、前記第1制限通路の一部を構成するとともに副液室に連通する通路空間と、前記第1制限通路から隔離されるとともに前記接続路に前記液圧導入路を通して連通する加圧空間と、に区画する区画部と、
該区画部よりも前記通路空間と前記加圧空間との拡縮方向に沿った通路空間側に配設されるとともに貫通開口が形成され、内部が前記第1制限通路の一部を構成する摺動筒部と、
を備え、かつ前記シリンダ室内に前記拡縮方向に摺動可能に配設され、
前記摺動筒部において、前記貫通開口よりも前記拡縮方向に沿った通路空間側に位置する部分は、前記通路開口部を閉塞していることを特徴とする防振装置。
The vibration isolator according to claim 5,
The partition member is formed with a cylinder chamber that communicates with the auxiliary liquid chamber, and a passage opening that forms part of the first restriction passage and communicates the cylinder chamber and the main liquid chamber,
The switching means includes a piston member disposed in the cylinder chamber,
The piston member is
A passage space that constitutes a part of the first restriction passage and communicates with the auxiliary liquid chamber, and is isolated from the first restriction passage and communicates with the connection passage through the fluid pressure introduction passage. A pressure space and a partition section partitioned into
The sliding part is disposed on the side of the passage space along the expansion / contraction direction of the passage space and the pressurizing space with respect to the partition portion, and a through opening is formed, and the inside constitutes a part of the first restriction passage A tube part;
And is slidable in the expansion / contraction direction in the cylinder chamber,
In the sliding cylinder portion, a portion located closer to the passage space along the expansion / contraction direction than the through-opening closes the passage opening.
請求項6記載の防振装置であって、
前記ピストン部材は、該ピストン部材において前記貫通開口よりも前記拡縮方向に沿った加圧空間側に位置する部分が、前記通路開口部を閉塞するまで、前記拡縮方向に沿った通路空間側に摺動可能に前記シリンダ室内に配設されていることを特徴とする防振装置。
The vibration isolator according to claim 6,
The piston member is slid toward the passage space along the expansion / contraction direction until a portion of the piston member located on the pressure space side along the expansion / contraction direction with respect to the through-opening closes the passage opening. An anti-vibration device that is movably disposed in the cylinder chamber.
JP2010026770A 2010-02-09 2010-02-09 Vibration isolator Expired - Fee Related JP5436252B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2010026770A JP5436252B2 (en) 2010-02-09 2010-02-09 Vibration isolator
PCT/JP2011/051301 WO2011099357A1 (en) 2010-02-09 2011-01-25 Vibration-damping device
EP11742104.0A EP2535615B1 (en) 2010-02-09 2011-01-25 Vibration-damping device
CN201180018236.2A CN102834643B (en) 2010-02-09 2011-01-25 Vibration-damping device
IN6724DEN2012 IN2012DN06724A (en) 2010-02-09 2011-01-25
US13/577,396 US9074654B2 (en) 2010-02-09 2011-01-25 Vibration-damping device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010026770A JP5436252B2 (en) 2010-02-09 2010-02-09 Vibration isolator

Publications (2)

Publication Number Publication Date
JP2011163446A true JP2011163446A (en) 2011-08-25
JP5436252B2 JP5436252B2 (en) 2014-03-05

Family

ID=44594374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010026770A Expired - Fee Related JP5436252B2 (en) 2010-02-09 2010-02-09 Vibration isolator

Country Status (1)

Country Link
JP (1) JP5436252B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014052045A (en) * 2012-09-07 2014-03-20 Bridgestone Corp Vibration control device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004003615A (en) * 2002-04-25 2004-01-08 Bridgestone Corp Vibration control equipment
JP2006132666A (en) * 2004-11-05 2006-05-25 Bridgestone Corp Vibration preventing device
JP2007120564A (en) * 2005-10-26 2007-05-17 Bridgestone Corp Vibration isolator and manufacturing method of plunger member
JP2010223324A (en) * 2009-03-23 2010-10-07 Bridgestone Corp Vibration control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004003615A (en) * 2002-04-25 2004-01-08 Bridgestone Corp Vibration control equipment
JP2006132666A (en) * 2004-11-05 2006-05-25 Bridgestone Corp Vibration preventing device
JP2007120564A (en) * 2005-10-26 2007-05-17 Bridgestone Corp Vibration isolator and manufacturing method of plunger member
JP2010223324A (en) * 2009-03-23 2010-10-07 Bridgestone Corp Vibration control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014052045A (en) * 2012-09-07 2014-03-20 Bridgestone Corp Vibration control device

Also Published As

Publication number Publication date
JP5436252B2 (en) 2014-03-05

Similar Documents

Publication Publication Date Title
WO2011099357A1 (en) Vibration-damping device
WO2011089669A1 (en) Liquid-sealed vibration isolator
WO2015041056A1 (en) Vibration-damping device
JP6265562B2 (en) Vibration isolator
JP2013228004A (en) Liquid-sealed type vibration control device
JP2010031989A (en) Fluid-sealed vibration control device
JP7159303B2 (en) Anti-vibration device
JP5325602B2 (en) Fluid filled vibration isolator
JP2018179186A (en) Vibration control device
JP5431982B2 (en) Liquid-filled vibration isolator
JP7326121B2 (en) Anti-vibration device
JP2009243543A (en) Fluid sealed type vibration isolator
JP5450250B2 (en) Vibration isolator
WO2021053905A1 (en) Vibration-damping device
JP2010071452A (en) Liquid-sealed vibration control device
JP2007211971A (en) Liquid-sealed vibration control device
JP5436252B2 (en) Vibration isolator
JP2010223324A (en) Vibration control device
JP2010031988A (en) Fluid-sealed vibration control device
WO2018225289A1 (en) Anti-vibration device
JP2010106865A (en) Vibration isolator
JP5893482B2 (en) Liquid-filled vibration isolator
JP2015017677A (en) Vibration-proofing device
WO2015041033A1 (en) Vibration-damping device
JP2019027510A (en) Vibration control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131210

R150 Certificate of patent or registration of utility model

Ref document number: 5436252

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees