Nothing Special   »   [go: up one dir, main page]

JP2011157436A - Inorganic particle dispersion and cured film - Google Patents

Inorganic particle dispersion and cured film Download PDF

Info

Publication number
JP2011157436A
JP2011157436A JP2010018401A JP2010018401A JP2011157436A JP 2011157436 A JP2011157436 A JP 2011157436A JP 2010018401 A JP2010018401 A JP 2010018401A JP 2010018401 A JP2010018401 A JP 2010018401A JP 2011157436 A JP2011157436 A JP 2011157436A
Authority
JP
Japan
Prior art keywords
meth
group
acrylate
monomer
organic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010018401A
Other languages
Japanese (ja)
Other versions
JP5471522B2 (en
Inventor
Hisayoshi Arai
久由 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp, Dainippon Ink and Chemicals Co Ltd filed Critical DIC Corp
Priority to JP2010018401A priority Critical patent/JP5471522B2/en
Publication of JP2011157436A publication Critical patent/JP2011157436A/en
Application granted granted Critical
Publication of JP5471522B2 publication Critical patent/JP5471522B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Paints Or Removers (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dispersion producing a cured film having high hardness and excellent film surface scratch resistance, and a cured film obtained by curing the dispersion. <P>SOLUTION: In the dispersion, surface-treated inorganic particles are dispersed in a polymerizable organic component, and the surface-treated inorganic particles are obtained by treating the surfaces of inorganic particles with an organosilane compound having a group for starting polymerization reaction by active energy. The polymerizable organic component is a reaction product prepared by addition reaction of a monomer (b) having a (meth)acryloyl group and a carboxy group to a (meth)acrylic polymer (a1) having an epoxy group, or a reaction product prepared by addition reaction of a monomer (c) having a (meth)acryloyl group and an epoxy group to a (meth)acrylic polymer (a2) having a carboxy group. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、硬化膜の製造に好適に用いられる分散体に関し、特に無機粒子が重合性有機成分に分散して得られる分散体に関する。 The present invention relates to a dispersion suitably used for production of a cured film, and particularly to a dispersion obtained by dispersing inorganic particles in a polymerizable organic component.

UV硬化型ハードコート材(HC材)は傷や汚れからの表面保護や意匠性の付与目的で、自動車部品、化粧品容器、電子機器ケースなどに幅広く使用されてきた。近年では、携帯電話やPDAなどのモバイル機器の表示画面や、ATMやカーナビゲーションなどの画面表示入力用タッチパネルなどの用途で、表示画面への傷つき防止を目的に多用されている。表示デバイス自体が、従来の据え置き型からモバイル環境で使用されるようになり、表面保護に好ましく用いることのできる材料に対する要求はますます大きくなっている。このような状況から、HC材の耐擦傷性を向上させるために、より高い硬度の材料が望まれている。 UV curable hard coat materials (HC materials) have been widely used for automobile parts, cosmetic containers, electronic device cases, and the like for the purpose of providing surface protection from scratches and dirt and imparting design properties. In recent years, it is frequently used for the purpose of preventing damage to the display screen in applications such as a display screen of a mobile device such as a mobile phone or a PDA, a touch panel for screen display input such as ATM or car navigation. As the display device itself is used in a mobile environment from a conventional stationary type, a demand for a material that can be preferably used for surface protection is increasing. Under such circumstances, a material with higher hardness is desired in order to improve the scratch resistance of the HC material.

UV硬化型の有機系HC材では、架橋密度を上げることで、硬度や耐擦傷性をある程度向上させることができる。しかし、架橋反応がアクリル基の重合であるため、硬化によるコート自体の収縮を避けることができず、硬化収縮により基材への密着性の低下、歪みなどが発生し問題となっている。   In the UV curable organic HC material, the hardness and scratch resistance can be improved to some extent by increasing the crosslinking density. However, since the crosslinking reaction is polymerization of acrylic groups, shrinkage of the coat itself due to curing cannot be avoided, and the shrinkage due to curing causes problems such as a decrease in adhesion to the substrate and distortion.

また、ポリシロキサンなどを代表とする、無機系HC材は、有機系に比べ、高硬度、高耐擦傷性を有する上、耐熱性、耐候性に優れる利点があるが、100℃近い加熱プロセスを必要とし、かつ重縮合反応を経由するため硬化時に有機基の脱離に伴う収縮が生じ、厚膜化が困難であるなどの欠点を有しているため、その使用範囲は限定的である。   In addition, inorganic HC materials represented by polysiloxane and the like have advantages such as high hardness and high scratch resistance as well as excellent heat resistance and weather resistance compared to organic materials, but a heating process close to 100 ° C. Since it is necessary and passes through a polycondensation reaction, shrinkage occurs due to elimination of the organic group during curing, and it has a disadvantage that it is difficult to increase the film thickness, so that the range of use is limited.

このような状況の中で、ナノスケールレベルで有機成分、無機成分が混合されることで、両者の利点を併せ持つ材料の創製が可能であることから、有機無機ハイブリッド材料に対する期待が大きくなっている。当該材料としては、比較的安価に入手できるナノ材料にフュームドシリカ粉体が挙げられるが、従来では、強い二次凝集を解く簡便な手法がなかったため、十分な物性を発揮できなかった。 Under such circumstances, organic and inorganic components are mixed at the nanoscale level, so it is possible to create materials that have the advantages of both. . Examples of the material include fumed silica powder as a nanomaterial that can be obtained at a relatively low cost. However, conventionally, there has been no simple method for solving strong secondary aggregation, so that sufficient physical properties could not be exhibited.

従来技術としては、例えば、特許文献1には、表面に光重合開始剤を有するシリカ微粒子及び該シリカ微粒子を用いた皮膜形成方法に関して、表面に光重合開始剤が導入されているシリカ微粒子を、ラジカル重合性多官能モノマーに添加し、活性光線を照射することにより、耐久性、透明性に優れた皮膜を形成することができ、当該発明の表面に光重合開始剤が導入されているシリカ微粒子は、上記活性光線の照射のみで他の工程を要せずに、耐久性、透明性に優れた皮膜を得られる点で大きな優位性を有することが記載されている。当該発明により得られる皮膜の基材密着性、耐払拭性、耐ひっかき性について評価結果が記載されているが、上記目標を達成した皮膜が得られているか否かは不明である。 As a prior art, for example, in Patent Document 1, silica fine particles having a photopolymerization initiator on the surface thereof are disclosed in regard to silica fine particles having a photopolymerization initiator on the surface and a film forming method using the silica fine particles. Silica fine particles in which a photopolymerization initiator is introduced on the surface of the present invention can be formed into a film excellent in durability and transparency by being added to a radical polymerizable polyfunctional monomer and irradiated with actinic rays Describes that it has a great advantage in that a film excellent in durability and transparency can be obtained only by irradiation with the actinic ray without requiring other steps. Although the evaluation result is described about the base-material adhesiveness, wiping resistance, and scratch resistance of the film obtained by the invention, it is unclear whether a film that achieves the above target is obtained.

また、特許文献2には、オルガノシラン化合物の加水分解物及び/又はその部分縮合物により表面処理された無機微粒子を少なくとも1種含有する塗布組成物に関して、当該塗布組成物から得られる膜の鉛筆硬度が3H〜4Hの範囲であり、また、#0000のスチールウールに500g/cmの荷重をかけたスチールウール耐性試験について、傷が全くつかなかったものが得られることが記載されている。 Patent Document 2 discloses a film pencil obtained from a coating composition containing at least one inorganic fine particle surface-treated with a hydrolyzate of an organosilane compound and / or a partial condensate thereof. In the steel wool resistance test in which the hardness is in the range of 3H to 4H and a load of 500 g / cm 2 is applied to steel wool of # 0000, it is described that a product having no scratches is obtained.

特開平9‐328522JP-A-9-328522 特開2008‐121011JP2008-121011

本発明の課題は、硬度が強いとともに、膜表面の耐擦傷性に優れた硬化膜を得ることのできる分散体、及び該分散体を硬化させて得られる硬化膜を提供することにある。 An object of the present invention is to provide a dispersion capable of obtaining a cured film having high hardness and excellent scratch resistance on the film surface, and a cured film obtained by curing the dispersion.

上記課題を解決するため、本発明者は、硬化膜硬化膜を作製することのできる分散体について検討を行い、本発明を完成させるに至った。即ち、本発明は、
1.無機粒子が重合性有機成分に分散された分散体において、
1)無機粒子が、光又は熱エネルギーにより重合反応を開始せしめる基を有するオルガノシラン化合物により表面処理されたものであり、
2)重合成有機成分が、エポキシ基を有する(メタ)アクリル重合体(a1)に(メタ)アクリロイル基及びカルボキシル基を有する単量体(b)を付加反応させてなる反応生成物、又はカルボキシル基を有する(メタ)アクリル重合体(a2)に(メタ)アクリロイル基及びエポキシ基を有する単量体(c)を付加反応させてなる反応生成物であって、(メタ)アクリロイル当量が200〜600(g/eq.)で、水酸基価が90〜280(mgKOH/g)であることを特徴とする分散体、
2.前記分散体を硬化させてなる硬化膜、
3.前記分散体を用いて基材上に塗膜を形成した後に、該塗膜に光を照射するか、該塗膜を加熱することにより硬化膜を製造する方法に関する。
In order to solve the above-mentioned problems, the present inventors have studied a dispersion capable of producing a cured film cured film, and have completed the present invention. That is, the present invention
1. In a dispersion in which inorganic particles are dispersed in a polymerizable organic component,
1) Inorganic particles are surface-treated with an organosilane compound having a group that initiates a polymerization reaction by light or thermal energy,
2) A reaction product obtained by adding a monomer (b) having a (meth) acryloyl group and a carboxyl group to a (meth) acrylic polymer (a1) having a polysynthetic organic component having an epoxy group, or carboxyl It is a reaction product obtained by subjecting a (meth) acrylic polymer (a2) having a group to a monomer (c) having a (meth) acryloyl group and an epoxy group, and having a (meth) acryloyl equivalent of 200 to 600 (g / eq.) And a hydroxyl value of 90 to 280 (mgKOH / g),
2. A cured film obtained by curing the dispersion,
3. The present invention relates to a method for producing a cured film by forming a coating film on a substrate using the dispersion and then irradiating the coating film with light or heating the coating film.

本発明によれば、硬度が強いとともに、膜表面の耐擦傷性に優れた硬化膜とすることができる分散体、及び該分散体を硬化させて得られる硬化膜を提供することができる。   According to the present invention, it is possible to provide a dispersion that can be a cured film having high hardness and excellent scratch resistance on the film surface, and a cured film obtained by curing the dispersion.

(分散体)
本発明の分散体は、表面処理された無機粒子が重合性有機成分に分散された分散体において、表面処理された無機粒子が、光又は熱エネルギーにより重合反応を開始せしめる基を有するオルガノシラン化合物により無機粒子表面が処理されたものであり、
重合性有機成分が、エポキシ基を有する(メタ)アクリル重合体(a1)に(メタ)アクリロイル基及びカルボキシル基を有する単量体(b)を付加反応させてなる反応生成物、又はカルボキシル基を有する(メタ)アクリル重合体(a2)に(メタ)アクリロイル基及びエポキシ基を有する単量体(c)を付加反応させてなる反応生成物であって、(メタ)アクリロイル当量が200〜600(g/eq.)で、水酸基価が90〜280(mgKOH/g)であることを特徴とする分散体である。
(Dispersion)
The dispersion of the present invention is an organosilane compound in which a surface-treated inorganic particle has a group that initiates a polymerization reaction by light or heat energy in a dispersion in which surface-treated inorganic particles are dispersed in a polymerizable organic component. The surface of the inorganic particles is treated by
A reaction product obtained by adding a monomer (b) having a (meth) acryloyl group and a carboxyl group to a (meth) acrylic polymer (a1) having a polymerizable organic component having an epoxy group, or a carboxyl group The (meth) acrylic polymer (a2) having a (meth) acryloyl group and an epoxy group-containing monomer (c) is a reaction product, and has a (meth) acryloyl equivalent of 200 to 600 ( g / eq.) and a hydroxyl value of 90 to 280 (mg KOH / g).

本発明の無機粒子は、特に限定はないが、シリカ粒子、ジルコニア粒子、アルミナ粒子、酸化セリウム粒子、チタニウム粒子、又はチタン酸バリウム粒子等のオルガノシラン化合物により表面処理が可能な無機粒子であれば制限はないが、特にシリカ粒子が好ましい。これらの粒子の好ましい一次粒子径は、10nm〜300nmの範囲を挙げることができる。10nm以下であると、分散体中の無機粒子の分散が不十分となり、300nm以上であると、硬化膜の十分な強度が保持できないため好ましくない。   The inorganic particles of the present invention are not particularly limited as long as they are inorganic particles that can be surface treated with organosilane compounds such as silica particles, zirconia particles, alumina particles, cerium oxide particles, titanium particles, or barium titanate particles. Although there is no limitation, silica particles are particularly preferable. The preferable primary particle diameter of these particles can be in the range of 10 nm to 300 nm. If it is 10 nm or less, the dispersion of the inorganic particles in the dispersion becomes insufficient, and if it is 300 nm or more, it is not preferable because sufficient strength of the cured film cannot be maintained.

本発明のオルガノシラン化合物は、通常公知の方法によって製造することができる。
即ち、例えば、一般式(1)で表されるような、オルガノシラン化合物(C)を得るには、反応可能な任意の基Rを有し、且つ光エネルギー又は熱エネルギーにより重合反応を開始せしめる基を有する化合物(A)と、Rと反応可能な任意の基Rを有するアルコキシシラン化合物(B)を反応させればよい。
The organosilane compound of the present invention can be produced by a generally known method.
That is, for example, in order to obtain an organosilane compound (C) as represented by the general formula (1), it has an arbitrary group R 1 capable of reacting and initiates a polymerization reaction by light energy or thermal energy. compounds having allowed to group with (a), an alkoxysilane compound having an R 1 capable of reacting any group R 2 with (B) may be reacted.

Figure 2011157436
Figure 2011157436

(式中、RとRは反応可能な任意の官能基を示し、Rは、RとRの反応の結果得られるエステル結合、ウレタン結合等である。)
但し、一般式(1)は、オルガノシラン化合物の製造方法の一態様を示したに過ぎず、これに限定されるものではない。
(In the formula, R 1 and R 2 represent any functional group capable of reacting, and R 3 is an ester bond, a urethane bond, or the like obtained as a result of the reaction of R 1 and R 2. )
However, the general formula (1) merely shows one embodiment of a method for producing an organosilane compound, and is not limited thereto.

更に、オルガノシラン化合物により表面処理された無機粒子を得るためには、無機粒子と光エネルギー又は熱エネルギーにより重合反応を開始せしめる基を有するオルガノシラン化合物を反応せしめればよい。無機粒子は、その表面にオルガノシラン化合物と反応し得る官能基を有することが必要で、例えば、シリカ粒子の場合には、シリカ粒子の表面に有するシラノール基とオルガノシラン化合物のアルコキシシリル基との反応を行うことにより、目的とするオルガノシラン化合物により表面処理された無機粒子を得ることができる。   Furthermore, in order to obtain inorganic particles surface-treated with an organosilane compound, the inorganic particles may be reacted with an organosilane compound having a group that initiates a polymerization reaction by light energy or thermal energy. The inorganic particles must have a functional group capable of reacting with the organosilane compound on the surface. For example, in the case of silica particles, the silanol groups possessed on the surface of the silica particles and the alkoxysilyl groups of the organosilane compound. By carrying out the reaction, inorganic particles surface-treated with the target organosilane compound can be obtained.

シリカ粒子以外の無機粒子であっても、通常公知の方法によって、同様にして目的とする、本発明のオルガノシラン化合物により表面処理された無機粒子を得ることができる。   Even inorganic particles other than silica particles can be obtained in the same manner by using a generally known method, and similarly target inorganic particles surface-treated with the organosilane compound of the present invention.

本発明に用いられるオルガノシラン化合物は、光エネルギー又は熱エネルギーにより重合反応を開始せしめる基を有する。
光エネルギーにより重合反応を開始せしめる基としては、通常公知の実質的に光ラジカル重合反応を開始せしめる基であれば制限なく用いることができる。
The organosilane compound used in the present invention has a group that initiates a polymerization reaction by light energy or heat energy.
The group that initiates the polymerization reaction by light energy can be used without limitation as long as it is a generally known group that substantially initiates the radical photopolymerization reaction.

このような基として、例えば、アセトフェノン類、ベンゾイン類、ベンゾフェノン類、ホスフィンオキシド類、ケタール類、アントラキノン類、チオキサントン類、アゾ化合物、過酸化物類、2,3‐ジアルキルジオン化合物類、ジスルフィド化合物類、フルオロアミン化合物類や芳香族スルホニウム類、活性ハロゲン化合物、また下記で示される各種化合物などが挙げられる。   Examples of such groups include acetophenones, benzoins, benzophenones, phosphine oxides, ketals, anthraquinones, thioxanthones, azo compounds, peroxides, 2,3-dialkyldione compounds, disulfide compounds , Fluoroamine compounds, aromatic sulfoniums, active halogen compounds, and various compounds shown below.

アセトフェノン類の例には、2,2‐ジエトキシアセトフェノン、p‐ジメチルアセトフェノン、1‐ヒドロキシジメチルフェニルケトン、1‐ヒドロキシシクロヘキシルフェニルケトン、2‐メチル‐4‐メチルチオ‐2‐モルフォリノプロピオフェノンおよび2‐ベンジル‐2‐ジメチルアミノ‐1‐(4‐モルフォリノフェニル)‐ブタノンが含まれる。   Examples of acetophenones include 2,2-diethoxyacetophenone, p-dimethylacetophenone, 1-hydroxydimethylphenylketone, 1-hydroxycyclohexylphenylketone, 2-methyl-4-methylthio-2-morpholinopropiophenone and 2 -Benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone is included.

ベンゾイン類の例には、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインジメチルケタール、ベンゾインベンゼンスルホン酸エステル、ベンゾイントルエンスルホン酸エステル、ベンゾインメチルエーテル、ベンゾインエチルエーテルおよびベンゾインイソプロピルエーテルが含まれる。   Examples of benzoins include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin dimethyl ketal, benzoin benzene sulfonate, benzoin toluene sulfonate, benzoin methyl ether, benzoin ethyl ether and benzoin isopropyl ether It is.

ベンゾフェノン類の例には、ベンゾフェノン、ヒドロキシベンゾフェノン、4‐ベンゾイル‐4'‐メチルジフェニルサルファイド、2,4‐ジクロロベンゾフェノン、4,4‐ジクロロベンゾフェノンおよびp‐クロロベンゾフェノンが含まれる。   Examples of benzophenones include benzophenone, hydroxybenzophenone, 4-benzoyl-4′-methyldiphenyl sulfide, 2,4-dichlorobenzophenone, 4,4-dichlorobenzophenone and p-chlorobenzophenone.

ホスフィンオキシド類の例には、2,4,6‐トリメチルベンゾイルジフェニルフォスフィンオキシドが含まれる。   Examples of phosphine oxides include 2,4,6-trimethylbenzoyldiphenylphosphine oxide.

活性エステル類の例には、IRGACURE OXE01(1,2‐オクタンジオン,1‐[4‐(フェニルチオ)‐2‐(O‐ベンゾイルオキシム)]チバスペシャリティーケミカルス製)、スルホン酸エステル類、環状活性エステル化合物などが含まれる。   Examples of active esters include IRGACURE OXE01 (1,2-octanedione, 1- [4- (phenylthio) -2- (O-benzoyloxime)] by Chivas Specialty Chemicals), sulfonate esters, cyclic activity An ester compound is included.

オニウム塩類の例には、芳香族ジアゾニウム塩、芳香族ヨードニウム塩、芳香族スルホニウム塩が挙げられる。   Examples of the onium salts include aromatic diazonium salts, aromatic iodonium salts, and aromatic sulfonium salts.

ボレート塩としては、例えば、特許第2764769号、特開2002‐116539号等の各公報、および、Kunz,Martin“Rad Tech’98.Proceeding April 19〜22頁,1998年,Chicago”等に記載される有機ホウ酸塩記載される化合物があげられる。   Examples of the borate salt are described in Japanese Patent Nos. 2764769 and 2002-116539, and Kunz, Martin “Rad Tech'98. Proceeding April 19-22, 1998, Chicago”. And the organic borate compounds described.

また、熱ラジカル重合開始剤としては、有機あるいは無機過酸化物、有機アゾおよびジアゾ化合物等を用いることができる。
具体的には、有機過酸化物として過酸化ベンゾイル、過酸化ハロゲンベンゾイル、過酸化ラウロイル、過酸化アセチル、過酸化ジブチル、クメンヒドロぺルオキシド、ブチルヒドロぺルオキシド、無機過酸化物として、過酸化水素、過硫酸アンモニウム、過硫酸カリウム等、アゾ化合物として2,2’‐アゾビス(イソブチロニトリル)、2,2’‐アゾビス(プロピオニトリル)、1,1’‐アゾビス(シクロヘキサンカルボニトリル)等、ジアゾ化合物としてジアゾアミノベンゼン、p‐ニトロベンゼンジアゾニウム等が挙げられる。
As the thermal radical polymerization initiator, organic or inorganic peroxides, organic azo, diazo compounds, and the like can be used.
Specifically, benzoyl peroxide, halogen benzoyl peroxide, lauroyl peroxide, acetyl peroxide, dibutyl peroxide, cumene hydroperoxide, butyl hydroperoxide as organic peroxides, hydrogen peroxide, peroxides as inorganic peroxides. Diazo compounds such as 2,2'-azobis (isobutyronitrile), 2,2'-azobis (propionitrile), 1,1'-azobis (cyclohexanecarbonitrile) as azo compounds such as ammonium sulfate and potassium persulfate And diazoaminobenzene, p-nitrobenzenediazonium and the like.

好ましい開始剤の化学構造の骨格としては活性ハロゲン系、アセトフェノン系、オキサゾール系、オキサジアゾール系、ホスフィンオキシド系、有機アゾ系が好ましく、特には活性ハロゲン系、アセトフェノン系、オキサゾール系、オキサジアゾール系が好ましい。   As the skeleton of the chemical structure of the preferred initiator, active halogen type, acetophenone type, oxazole type, oxadiazole type, phosphine oxide type, organic azo type are preferable, especially active halogen type, acetophenone type, oxazole type, oxadiazole. A system is preferred.

このようにして得られるオルガノシラン可能物としては、例えば、以下の化合物を挙げることができるがこれらに限らない。   Examples of the possible organosilane thus obtained include, but are not limited to, the following compounds.

Figure 2011157436
Figure 2011157436

本発明の重合性有機成分としては、無機粒子を分散し得る成分であれば特に制限はないが、エポキシ基を有する(メタ)アクリル重合体(a1)に(メタ)アクリロイル基及びカルボキシル基を有する単量体(b)を付加反応させてなる反応生成物、又はカルボキシル基を有する(メタ)アクリル重合体(a2)に(メタ)アクリロイル基及びエポキシ基を有する単量体(c)を付加反応させてなる反応生成物であって、(メタ)アクリロイル当量が200〜600(g/eq.)で、水酸基価が90〜280(mgKOH/g)であるものが特に好ましい。 The polymerizable organic component of the present invention is not particularly limited as long as it is a component capable of dispersing inorganic particles, but the (meth) acrylic polymer (a1) having an epoxy group has a (meth) acryloyl group and a carboxyl group. Addition reaction of monomer (c) having (meth) acryloyl group and epoxy group to reaction product obtained by addition reaction of monomer (b) or (meth) acrylic polymer (a2) having carboxyl group Particularly preferred is a reaction product having a (meth) acryloyl equivalent of 200 to 600 (g / eq.) And a hydroxyl value of 90 to 280 (mg KOH / g).

ここで、エポキシ基を有する(メタ)アクリル重合体(a1)は、例えば(メタ)アクリロイル基及びエポキシ基を有する重合性単量体(b)と必要に応じて他の重合性単量体との共重合反応によって得られるものを挙げることができる。前記(メタ)アクリロイル基及びエポキシ基を有する単量体(b)としては、例えば、(メタ)アクリル酸グリシジル、α‐エチル(メタ)アクリル酸グリシジル、α‐n‐プロピル(メタ)アクリル酸グリシジル、α‐n‐ブチル(メタ)アクリル酸グリシジル、(メタ)アクリル酸‐3,4‐エポキシブチル、(メタ)アクリル酸‐4,5‐エポキシペンチル、(メタ)アクリル酸‐6,7‐エポキシペンチル、α‐エチル(メタ)アクリル酸‐6,7‐エポキシペンチル、β‐メチルグリシジル(メタ)アクリレート、(メタ)アクリル酸‐3,4‐エポキシシクロヘキシル、ラクトン変性(メタ)アクリル酸‐3,4‐エポキシシクロヘキシル、ビニルシクロヘキセンオキシド等が挙げられる。これらは単独で用いても良いし、2種以上を併用しても良い。 Here, the (meth) acrylic polymer (a1) having an epoxy group includes, for example, a polymerizable monomer (b) having a (meth) acryloyl group and an epoxy group, and other polymerizable monomers as necessary. What is obtained by the copolymerization reaction of these can be mentioned. Examples of the monomer (b) having a (meth) acryloyl group and an epoxy group include glycidyl (meth) acrylate, glycidyl α-ethyl (meth) acrylate, and glycidyl α-n-propyl (meth) acrylate. , Α-n-butyl (meth) acrylate glycidyl, (meth) acrylic acid-3,4-epoxybutyl, (meth) acrylic acid-4,5-epoxypentyl, (meth) acrylic acid-6,7-epoxy Pentyl, α-ethyl (meth) acrylic acid-6,7-epoxypentyl, β-methylglycidyl (meth) acrylate, (meth) acrylic acid-3,4-epoxycyclohexyl, lactone-modified (meth) acrylic acid-3 4-epoxycyclohexyl, vinylcyclohexene oxide and the like can be mentioned. These may be used alone or in combination of two or more.

(メタ)アクリル重合体(a1)を調整するに当たり、(メタ)アクリロイル基及びエポキシ基を有する単量体の使用量は通常25〜100質量部好ましくは、40〜100質量部である。他の重合性単量体は、任意成分であり、その使用量は通常0〜75質量部、好ましくは、0〜60質量部である。 In adjusting the (meth) acrylic polymer (a1), the amount of the monomer having a (meth) acryloyl group and an epoxy group is usually 25 to 100 parts by mass, preferably 40 to 100 parts by mass. The other polymerizable monomer is an optional component, and its use amount is usually 0 to 75 parts by mass, preferably 0 to 60 parts by mass.

また、(メタ)アクリル重合体(a2)は、例えば、(メタ)アクリロイル基及びカルボキシル基を有する単量体と必要に応じて他の重合性単量体との共重合反応によって得られる。(メタ)アクリロイル基及びカルボキシル基を有する単量体としては、例えば、(メタ)アクリル酸、β‐カルボキシエチル(メタ)アクリレート、2‐アクリロイルオキシエチルコハク酸、2‐アクリロイルオキシエチルフタル酸、2‐アクリロイルオキシエチルヘキサヒドロフタル酸及びこれらのラクトン変性物等エステル結合を有する不飽和モノカルボン酸、マレイン酸等が挙げられる。これらは単独で用いても良いし、2種以上を併用しても良い。
(メタ)アクリル重合体(a2)を調整するに当たり、(メタ)アクリロイル基及びカルボキシル基を有する重合性単量体の使用量は通常25〜100質量部、好ましくは40〜100質量部である。他の重合性単量体は、任意成分であり、その使用量は通常0〜75質量部、好ましくは、0〜60質量部である。
The (meth) acrylic polymer (a2) is obtained, for example, by a copolymerization reaction between a monomer having a (meth) acryloyl group and a carboxyl group and, if necessary, another polymerizable monomer. Examples of the monomer having a (meth) acryloyl group and a carboxyl group include (meth) acrylic acid, β-carboxyethyl (meth) acrylate, 2-acryloyloxyethyl succinic acid, 2-acryloyloxyethylphthalic acid, 2 -Unsaturated monocarboxylic acid, maleic acid, etc. having an ester bond such as acryloyloxyethyl hexahydrophthalic acid and modified lactones thereof. These may be used alone or in combination of two or more.
In adjusting the (meth) acrylic polymer (a2), the amount of the polymerizable monomer having a (meth) acryloyl group and a carboxyl group is usually 25 to 100 parts by mass, preferably 40 to 100 parts by mass. The other polymerizable monomer is an optional component, and its use amount is usually 0 to 75 parts by mass, preferably 0 to 60 parts by mass.

(メタ)アクリル重合体(a1)や(メタ)アクリル重合体(a2)の調製時に必要に応じて共重合させる他の重合性不飽和単量体としては、例えば、以下の単量体等が挙げられる。
(1)(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸‐n‐ブチル、(メタ)アクリル酸‐t‐ブチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸テトラデシル、(メタ)アクリル酸ヘキサデシル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸オクタデシル、(メタ)アクリル酸ドコシル等の炭素数1〜22のアルキル基を持つ(メタ)アクリル酸エステル類;
(2)(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸イソボロニル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸ジシクロペンテニルオキシエチル等の脂環式のアルキル基を有する(メタ)アクリル酸エステル類;
(3)(メタ)アクリル酸ベンゾイルオキシエチル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸フェニルエチル、(メタ)アクリル酸フェノキシエチル、(メタ)アクリル酸フェノキシジエチレングリコール、(メタ)アクリル酸2‐ヒドロキシ‐3‐フェノシプロピル等の芳香環を有する(メタ)アクリル酸エステル類;
(4)(メタ)アクリル酸ヒドロキエチル;(メタ)アクリル酸ヒドロキシプロピル、(メタ)アクリル酸ヒドロキシブチル、(メタ)アクリル酸グリセロール;ラクトン変性(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸ポリエチレングリコール、(メタ)アクリル酸ポリプロピレングリコール等のポリアルキレングリコール基を有する(メタ)アクリル酸エステル等のヒドロキシアルキル基を有するアクリル酸エステル類;
(5)フマル酸ジメチル、フマル酸ジエチル、フマル酸ジブチル、イタコン酸ジメチル、イタコン酸ジブチル、フマル酸メチルエチル、フマル酸メチルブチル、イタコン酸メチルエチル等の不飽和ジカルボン酸エステル類;
(6)スチレン、α‐メチルスチレン、クロロスチレン等のスチレン誘導体類;
(7)ブタジエン、イソプレン、ピペリレン、ジメチルブタジエン等のジエン系化合物類;
(8)塩化ビニル、臭化ビニル等のハロゲン化ビニルやハロゲン化ビニリデン類;
(9)メチルビニルケトン、ブチルビニルケトン等の不飽和ケトン類;
(10)酢酸ビニル、酪酸ビニル等のビニルエステル類;
(11)メチルビニルエーテル、ブチルビニルエーテル等のビニルエーテル類;
(12)アクリロニトリル、メタクリロニトリル、シアン化ビニリデン等のシアン化ビニル類;
(13)アクリルアミドやそのアルキド置換アミド類;
(14)N‐フェニルマレイミド、N‐シクロヘキシルマレイミド等のN‐置換マレイミド類;
(15)フッ化ビニル、フッ化ビニリデン、トリフルオロエチレン、クロロトリフルオロエチレン、ブロモトリフルオロエチレン、ペンタフルオロプロピレンもしくはヘキサフルオロプロピレンの如きフッ素含有α‐オレフィン類;又はトリフルオロメチルトリフルオロビニルエーテル、ペンタフルオロエチルトリフルオロビニルエーテルもしくは、ヘプタフルオロプロピルトリフルオロビニルエーテルの如き(パー)フルオロアルキル基の炭素数が1から18なる(パー)フルオロアルキル・パーフルオロビニルエーテル類;2,2,2‐トリフルオロエチル(メタ)アクリレート、2,2,3,3‐テトラフルオロプロピル(メタ)アクリレート、1H,1H,5H‐オクタフルオロペンチル(メタ)アクリレート、1H,1H,2H,2H‐ヘプタデカフルオロデシル(メタ)アクリレートもしくはパーフルオロエチルオキシエチル(メタ)アクリレートの如き(パー)フルオロアルキル基の炭素数が1から18なる(パー)フルオロアルキル(メタ)アクリレート類等のフッ素含有エチレン性不飽和単量体類;
(16)γ‐メタクリロキシプロピルトリメトキシシラン等のシリル基含有(メタ)アクリレート類;
(17)N,N‐ジメチルアミノエチル(メタ)アクリレート、N,N‐ジエチルアミノエチル(メタ)アクリレートもしくはN,N‐ジエチルアミノプロピル(メタ)アクリレート等のN,N‐ジアルキルアミノアルキル(メタ)アクリレート等が挙げられる。
Examples of other polymerizable unsaturated monomers that are copolymerized as necessary when preparing the (meth) acrylic polymer (a1) or the (meth) acrylic polymer (a2) include the following monomers: Can be mentioned.
(1) Methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, (meth) acrylate-n-butyl, (meth) acrylate-t-butyl, (meth) acrylate hexyl , Heptyl (meth) acrylate, octyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, dodecyl (meth) acrylate, tetradecyl (meth) acrylate, hexadecyl (meth) acrylate, (Meth) acrylic acid esters having an alkyl group having 1 to 22 carbon atoms such as stearyl (meth) acrylate, octadecyl (meth) acrylate, docosyl (meth) acrylate;
(2) (meth) having an alicyclic alkyl group such as cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate Acrylic esters;
(3) Benzoyloxyethyl (meth) acrylate, benzyl (meth) acrylate, phenylethyl (meth) acrylate, phenoxyethyl (meth) acrylate, phenoxydiethylene glycol (meth) acrylate, (meth) acrylic acid 2- (Meth) acrylic acid esters having an aromatic ring such as hydroxy-3-phenopropyl;
(4) Hydroxyethyl (meth) acrylate; hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, glycerol (meth) acrylate; lactone-modified hydroxyethyl (meth) acrylate, polyethylene (meth) acrylate Acrylic acid esters having a hydroxyalkyl group such as glycol, (meth) acrylic acid ester having a polyalkylene glycol group such as (meth) acrylic acid polypropylene glycol;
(5) Unsaturated dicarboxylic acid esters such as dimethyl fumarate, diethyl fumarate, dibutyl fumarate, dimethyl itaconate, dibutyl itaconate, methyl ethyl fumarate, methyl butyl fumarate, methyl ethyl itaconate;
(6) Styrene derivatives such as styrene, α-methylstyrene, chlorostyrene;
(7) Diene compounds such as butadiene, isoprene, piperylene, dimethylbutadiene;
(8) Vinyl halides and vinylidene halides such as vinyl chloride and vinyl bromide;
(9) Unsaturated ketones such as methyl vinyl ketone and butyl vinyl ketone;
(10) Vinyl esters such as vinyl acetate and vinyl butyrate;
(11) Vinyl ethers such as methyl vinyl ether and butyl vinyl ether;
(12) Vinyl cyanides such as acrylonitrile, methacrylonitrile, vinylidene cyanide;
(13) Acrylamide and its alkyd-substituted amides;
(14) N-substituted maleimides such as N-phenylmaleimide and N-cyclohexylmaleimide;
(15) Fluorine-containing α-olefins such as vinyl fluoride, vinylidene fluoride, trifluoroethylene, chlorotrifluoroethylene, bromotrifluoroethylene, pentafluoropropylene or hexafluoropropylene; or trifluoromethyl trifluorovinyl ether, penta (Per) fluoroalkyl perfluorovinyl ethers having a (per) fluoroalkyl group of 1 to 18 carbon atoms such as fluoroethyl trifluorovinyl ether or heptafluoropropyl trifluorovinyl ether; 2,2,2-trifluoroethyl ( (Meth) acrylate, 2,2,3,3-tetrafluoropropyl (meth) acrylate, 1H, 1H, 5H-octafluoropentyl (meth) acrylate, 1H, 1H, 2H, Fluorine-containing such as (per) fluoroalkyl (meth) acrylates having a (per) fluoroalkyl group of 1 to 18 carbon atoms such as H-heptadecafluorodecyl (meth) acrylate or perfluoroethyloxyethyl (meth) acrylate Ethylenically unsaturated monomers;
(16) Silyl group-containing (meth) acrylates such as γ-methacryloxypropyltrimethoxysilane;
(17) N, N-dialkylaminoalkyl (meth) acrylate such as N, N-dimethylaminoethyl (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate or N, N-diethylaminopropyl (meth) acrylate, etc. Is mentioned.

これらの(メタ)アクリル重合体(a1)や(メタ)アクリル重合体(a2)を調製する際に用いる他の不飽和単量体は、単独で用いても良いし、2種以上を併用しても良い。   Other unsaturated monomers used in preparing these (meth) acrylic polymers (a1) and (meth) acrylic polymers (a2) may be used alone or in combination of two or more. May be.

前記(メタ)アクリル重合体(a1)と(a2)は、公知慣用の方法を用いて重合(共重合)させれば得られ、その共重合形態は特に制限されない。例えば、触媒(重合開始剤)の存在下に、付加重合により製造することができ、ランダム共重合体、ブロック共重合体、グラフト共重合体等のいずれでもよい。また共重合方法も塊状重合法、溶液重合法、懸濁重合法、乳化重合法等の公知の重合方法が使用できる。   The (meth) acrylic polymers (a1) and (a2) can be obtained by polymerization (copolymerization) using a known and commonly used method, and the copolymerization form is not particularly limited. For example, it can be produced by addition polymerization in the presence of a catalyst (polymerization initiator), and any of a random copolymer, a block copolymer, a graft copolymer and the like may be used. As the copolymerization method, a known polymerization method such as a bulk polymerization method, a solution polymerization method, a suspension polymerization method or an emulsion polymerization method can be used.

ここで、溶液重合等に用いることができる溶媒として代表的なものを挙げれば、例えば、アセトン、メチルエチルケトン、メチル‐n‐プロピルケトン、メチルイソプロピルケトン、メチル‐n‐ブチルケトン、メチルイソブチルケトン、メチル‐n‐アミルケトン、メチル‐n‐ヘキシルケトン、ジエチルケトン、エチル‐n‐ブチルケトン、ジ‐n‐プロピルケトン、ジイソブチルケトン、シクロヘキサノン、ホロン等のケトン系溶媒;   Here, typical solvents that can be used for solution polymerization and the like include, for example, acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl isopropyl ketone, methyl-n-butyl ketone, methyl isobutyl ketone, methyl- ketone solvents such as n-amyl ketone, methyl-n-hexyl ketone, diethyl ketone, ethyl-n-butyl ketone, di-n-propyl ketone, diisobutyl ketone, cyclohexanone, and holon;

エチルエーテル、イソプロピルエーテル、n‐ブチルエーテル、ジイソアミルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコール、ジオキサン、テトラヒドロフラン等のエーテル系溶媒; Ether solvents such as ethyl ether, isopropyl ether, n-butyl ether, diisoamyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, diethylene glycol dimethyl ether, diethylene glycol, dioxane, tetrahydrofuran;

ギ酸エチル、ギ酸プロピル、ギ酸‐n‐ブチル、酢酸エチル、酢酸‐n‐プロピル、酢酸イソプロピル、酢酸‐n‐ブチル、酢酸‐n‐アミル、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、エチル‐3‐エトキシプロピオネート等のエステル系溶媒; Ethyl formate, propyl formate, ethyl n-butyl formate, ethyl acetate, n-propyl acetate, isopropyl acetate, n-butyl acetate, n-amyl acetate, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol Ester solvents such as monomethyl ether acetate, diethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, ethyl-3-ethoxypropionate;

メタノール、エタノール、イソプロピルアルコール、n‐ブチルアルコール、イソブチルアルコール、ジアセトンアルコール、3‐メトキシ‐1‐プロパノール、3‐メトキシ‐1‐ブタノール、3‐メチル‐3‐メトキシブタノール等のアルコール系溶媒; Alcohol solvents such as methanol, ethanol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, diacetone alcohol, 3-methoxy-1-propanol, 3-methoxy-1-butanol, 3-methyl-3-methoxybutanol;

トルエン、キシレン、ソルベッソ100、ソルベッソ150、スワゾール1800、スワゾール310、アイソパーE、アイソパーG、エクソンナフサ5号、エクソンナフサ6号等の炭化水素系溶媒が挙げられる。これらは単独で用いても良いし、2種以上を併用しても良いが、二段目の反応となるエポキシ基を有する(メタ)アクリル重合体(a1)とカルボキシル基を有する単量体(b)の反応、又はカルボキシル基を有する(メタ)アクリル系単量体(a2)とエポキシ基を有する単量体(c)の反応を効率的に行うためには100〜150℃の高温で行う方が好ましく、この観点から溶媒の沸点は100℃以上、好ましくは100〜150℃のものを用いるのが好ましい。 Examples thereof include hydrocarbon solvents such as toluene, xylene, Solvesso 100, Solvesso 150, Swazol 1800, Swazol 310, Isopar E, Isopar G, Exxon Naphtha 5 and Exxon Naphtha 6. These may be used singly or in combination of two or more, but the (meth) acrylic polymer (a1) having an epoxy group and a monomer having a carboxyl group (2) In order to efficiently carry out the reaction of b) or the reaction of the carboxyl group-containing (meth) acrylic monomer (a2) and the epoxy group-containing monomer (c), the reaction is carried out at a high temperature of 100 to 150 ° C. From this viewpoint, it is preferable to use a solvent having a boiling point of 100 ° C. or higher, preferably 100 to 150 ° C.

また、上述の触媒としては、ラジカル重合開始剤として一般的に知られるものが使用でき、例えば2,2’‐アゾビスイソブチロニトリル、2,2’‐アゾビス‐(2,4‐ジメチルバレロニトリル)、2,2’‐アゾビス‐(4‐メトキシ‐2,4‐ジメチルバレロニトリル)等のアゾ化合物;ベンゾイルペルオキシド、ラウロイルペルオキシド、t‐ブチルペルオキシピバレート、t‐ブチルパーオキシエチルヘキサノエイト、1,1’‐ビス‐(t‐ブチルペルオキシ)シクロヘキサン、t‐アミルペルオキシ‐2‐エチルヘキサノエート、t‐ヘキシルペルオキシ‐2‐エチルヘキサノエート等の有機過酸化物及び過酸化水素等が挙げられる。   As the above-mentioned catalyst, those generally known as radical polymerization initiators can be used. For example, 2,2′-azobisisobutyronitrile, 2,2′-azobis- (2,4-dimethylvalero) can be used. Nitrile), 2,2'-azobis- (4-methoxy-2,4-dimethylvaleronitrile) and other azo compounds; benzoyl peroxide, lauroyl peroxide, t-butylperoxypivalate, t-butylperoxyethylhexanoate 1,1'-bis- (t-butylperoxy) cyclohexane, t-amylperoxy-2-ethylhexanoate, organic peroxides such as t-hexylperoxy-2-ethylhexanoate, hydrogen peroxide, etc. Is mentioned.

触媒として過酸化物を用いる場合には、過酸化物を還元剤とともに用いてレドックス型開始剤としてもよい。   When using a peroxide as a catalyst, it is good also as a redox type initiator using a peroxide with a reducing agent.

エポキシ基を有する(メタ)アクリル重合体(a1)に(メタ)アクリロイル基及びカルボキシル基を有する単量体(b)を付加反応させてなる反応生成物は、前述の通りエポキシ基を有する(メタ)アクリル重合体(a1)と(メタ)アクリロイル基及びカルボキシル基を有する単量体(b)とを反応させる。(メタ)アクリロイル基及びカルボキシル基を有する単量体(b)としては、例えば、(メタ)アクリル酸、β‐カルボキシエチル(メタ)アクリレート、2‐アクリロイルオキシチルコハク酸、2‐アクリロイルオキシエチルフタル酸、2‐アクリロイルオキシエチルヘキサヒドロフタル酸及びこれらのラクトン変性物等エステル結合を有する不飽和モノカルボン酸、マレイン酸等が挙げられる。   The reaction product obtained by adding the (meth) acryloyl group and the monomer (b) having a carboxyl group to the (meth) acrylic polymer (a1) having an epoxy group has an epoxy group as described above (meta ) The acrylic polymer (a1) is reacted with the monomer (b) having a (meth) acryloyl group and a carboxyl group. Examples of the monomer (b) having a (meth) acryloyl group and a carboxyl group include (meth) acrylic acid, β-carboxyethyl (meth) acrylate, 2-acryloyloxytyl succinic acid, and 2-acryloyloxyethylphthalate. Examples include acid, 2-acryloyloxyethylhexahydrophthalic acid, and unsaturated carboxylic acids having an ester bond such as lactone-modified products thereof and maleic acid.

また、単量体(b)として無水コハク酸や無水マレイン酸等の無水酸をペンタエリスリトールトリアクリレート等の水酸基含有多官能(メタ)アクリレートモノマーと反応させた後、カルボキシル基含有多官能(メタ)アクリレートモノマーとしたものを用いても良い。これら(メタ)アクリロイル基及びカルボキシル基を有する単量体(b)は各々単独で用いても良いし、2種以上を併用しても良い。   Further, after reacting an anhydride such as succinic anhydride or maleic anhydride with a hydroxyl group-containing polyfunctional (meth) acrylate monomer such as pentaerythritol triacrylate as the monomer (b), a carboxyl group-containing polyfunctional (meth) An acrylate monomer may be used. These monomers (b) having a (meth) acryloyl group and a carboxyl group may be used alone or in combination of two or more.

重合体(a1)と単量体(b)との反応は通常、両成分を混合し、80〜120℃程度に加熱することにより行われる。重合体(a1)と単量体(b)の使用量は、得られる反応生成物の(メタ)アクリル当量が200〜600(g/eq.)になるものであれば特に限定されないが、通常、エポキシ基1モルに対して単量体(b)中のカルボキシル基のモル数を0.4〜1.1モルとすることが好ましい。   Reaction of a polymer (a1) and a monomer (b) is normally performed by mixing both components and heating to about 80-120 degreeC. Although the usage-amount of a polymer (a1) and a monomer (b) will not be specifically limited if the (meth) acryl equivalent of the obtained reaction product will be 200-600 (g / eq.), Usually The number of moles of the carboxyl group in the monomer (b) is preferably 0.4 to 1.1 mole per mole of the epoxy group.

カルボキシル基を有する(メタ)アクリル重合体(a2)に(メタ)アクリロイル基及びエポキシ基を有する単量体(c)を付加反応させてなる反応生成物は、前述の通りカルボキシル基を有する(メタ)アクリル重合体(a2)と(メタ)アクリロイル基及びエポキシ基を有する単量体(c)とを反応することにより得られる。(メタ)アクリロイル基及びエポキシ基を有する単量体(c)としては、例えば、(メタ)アクリル酸グリシジル、α‐エチル(メタ)アクリル酸グリシジル、α‐n‐プロピル(メタ)アクリル酸グリシジル、α‐n‐ブチル(メタ)アクリル酸グリシジル、(メタ)アクリル酸‐3,4‐エポキシブチル、(メタ)アクリル酸‐4,5‐エポキシペンチル、(メタ)アクリル酸‐6,7‐エポキシペンチル、α‐エチル(メタ)アクリル酸‐6,7‐エポキシペンチル、β‐メチルグリシジル(メタ)アクリレート、(メタ)アクリル酸‐3,4‐エポキシシクロヘキシル、ラクトン変性(メタ)アクリル酸‐3,4‐エポキシシクロヘキシル、ビニルシクロヘキセンオキシド等が挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。   The reaction product obtained by addition reaction of the monomer (c) having a (meth) acryloyl group and an epoxy group to the (meth) acrylic polymer (a2) having a carboxyl group has a carboxyl group as described above (meta ) It can be obtained by reacting the acrylic polymer (a2) with the monomer (c) having a (meth) acryloyl group and an epoxy group. Examples of the monomer (c) having a (meth) acryloyl group and an epoxy group include glycidyl (meth) acrylate, glycidyl α-ethyl (meth) acrylate, glycidyl α-n-propyl (meth) acrylate, α-n-butyl (meth) acrylate glycidyl, (meth) acrylic acid-3,4-epoxybutyl, (meth) acrylic acid-4,5-epoxypentyl, (meth) acrylic acid-6,7-epoxypentyl , Α-ethyl (meth) acrylic acid-6,7-epoxypentyl, β-methylglycidyl (meth) acrylate, (meth) acrylic acid-3,4-epoxycyclohexyl, lactone-modified (meth) acrylic acid-3,4 -Epoxycyclohexyl, vinylcyclohexene oxide and the like. These may be used alone or in combination of two or more.

重合体(a2)と単量体(c)との反応は通常、両成分を混合し、80〜120℃程度に加熱することにより行われる。重合体(a1)と単量体(c)の使用量は、得られる反応生生物の(メタ)アクリル当量が200〜600(g/eq.)になるものであれば特に限定されないが、通常、カルボキシル基1モルに対して単量体(c)中のエポキシ基のモル数を0.4〜1.1モルとすることが好ましい。   Reaction of a polymer (a2) and a monomer (c) is normally performed by mixing both components and heating to about 80-120 degreeC. Although the usage-amount of a polymer (a1) and a monomer (c) will not be specifically limited if the (meth) acryl equivalent of the obtained reaction living organisms will be 200-600 (g / eq.), Usually The number of moles of the epoxy group in the monomer (c) is preferably 0.4 to 1.1 mole per mole of the carboxyl group.

前記エポキシ基を有する(メタ)アクリル重合体(a1)と(メタ)アクリロイル基及びカルボキシル基を有する単量体(b)との反応や、カルボキシル基を有する(メタ)アクリル重合体(a2)と(メタ)アクリロイル基及びエポキシ基を有する単量体(c)との反応は、例えば以下の方法でも行なう事もできる。   Reaction of the (meth) acrylic polymer (a1) having the epoxy group with the monomer (b) having a (meth) acryloyl group and a carboxyl group, and a (meth) acrylic polymer (a2) having a carboxyl group The reaction with the monomer (c) having a (meth) acryloyl group and an epoxy group can also be performed, for example, by the following method.

方法1:(メタ)アクリル重合体(a1)を溶液重合法にて重合し、反応系に(メタ)アクリロイル基及びカルボキシル基を有する単量体(b)を加えて反応させる方法、   Method 1: A method in which the (meth) acrylic polymer (a1) is polymerized by a solution polymerization method, and the monomer (b) having a (meth) acryloyl group and a carboxyl group is added to the reaction system and reacted.

方法2:(メタ)アクリル重合体(a2)を溶液重合法にて重合し、(メタ)アクリロイル基及びエポキシ基を有する単量体(c)を加えて反応させる方法、   Method 2: (meth) acrylic polymer (a2) is polymerized by a solution polymerization method, and a monomer (c) having a (meth) acryloyl group and an epoxy group is added and reacted.

尚、本発明の重合性有機成分は重合性不飽和二重結合を1分子あたり一つ有する単量体を重合して得られる構造を主骨格とする重合体が好ましいが、重合時のゲル化を生じない範囲で重合性不飽和二重結合を二つ以上有する単量体を併用しても良い。   The polymerizable organic component of the present invention is preferably a polymer having a main skeleton having a structure obtained by polymerizing a monomer having one polymerizable unsaturated double bond per molecule. A monomer having two or more polymerizable unsaturated double bonds may be used in combination as long as the above does not occur.

前述の通り、本発明のエポキシ基を有する(メタ)アクリル重合体(a1)と(メタ)アクリロイル基及びカルボキシル基を有する単量体(b)とを反応することにより得られる重合体は、グリシジル(メタ)アクリレートを含有する重合性単量体を重合させて得られたエポキシ基含有アクリル系重合体と(メタ)アクリル酸とを反応させて得られたアクリル系重合体が好ましい。   As described above, the polymer obtained by reacting the (meth) acrylic polymer (a1) having an epoxy group of the present invention with the monomer (b) having a (meth) acryloyl group and a carboxyl group is glycidyl. An acrylic polymer obtained by reacting an epoxy group-containing acrylic polymer obtained by polymerizing a polymerizable monomer containing (meth) acrylate and (meth) acrylic acid is preferred.

前記エポキシ基含有アクリル重合体(a1)のエポキシ当量としては、140〜500(g/eq.)が好ましく、140〜300(g/eq.)がより好ましい。更にエポキシ基含有アクリル系重合体(a1)のガラス転移温度としては、30℃以上が好ましく、30〜100℃がより好ましい。   The epoxy equivalent of the epoxy group-containing acrylic polymer (a1) is preferably 140 to 500 (g / eq.), And more preferably 140 to 300 (g / eq.). Furthermore, as a glass transition temperature of an epoxy-group-containing acrylic polymer (a1), 30 degreeC or more is preferable and 30-100 degreeC is more preferable.

なお、本発明においてエポキシ当量とは、JIS‐K‐7236にて定義される値である。   In the present invention, the epoxy equivalent is a value defined by JIS-K-7236.

本発明の重合性有機成分が有する(メタ)アクリロイル当量は200〜600(g/eq.)が好ましく、特に200〜400(g/eq.)が好ましい。また、水酸基当量は90〜280(mgKOH/g)が好ましく、特に140〜280(mgKOH/g)が好ましい。   The (meth) acryloyl equivalent of the polymerizable organic component of the present invention is preferably 200 to 600 (g / eq.), Particularly preferably 200 to 400 (g / eq.). The hydroxyl equivalent is preferably 90 to 280 (mgKOH / g), particularly preferably 140 to 280 (mgKOH / g).

本発明で重量平均分子量と数平均分子量の測定は、ゲルパーミエーションクロマトグラフ(GPC)を用い、下記の条件により求めた。 In the present invention, the weight average molecular weight and the number average molecular weight were measured using a gel permeation chromatograph (GPC) under the following conditions.

測定装置 ; 東ソー株式会社製 HLC‐8220
カラム ; 東ソー株式会社製ガードカラムHXL‐H
+東ソー株式会社製 TSKgel G5000HXL
+東ソー株式会社製 TSKgel G4000HXL
+東ソー株式会社製 TSKgel G3000HXL
+東ソー株式会社製 TSKgel G2000HXL
検出器 ; RI(示差屈折計)
データ処理:東ソー株式会社製 SC‐8010
測定条件: カラム温度 40℃
溶媒 テトラヒドロフラン
流速 1.0mL/分
標準 ;ポリスチレン
試料 ;樹脂固形分換算で0.4重量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(100μL)
Measuring device: HLC-8220 manufactured by Tosoh Corporation
Column: Tosoh Corporation guard column HXL-H
+ Tosoh Corporation TSKgel G5000HXL
+ Tosoh Corporation TSKgel G4000HXL
+ Tosoh Corporation TSKgel G3000HXL
+ Tosoh Corporation TSKgel G2000HXL
Detector: RI (differential refractometer)
Data processing: Tosoh Corporation SC-8010
Measurement conditions: Column temperature 40 ° C
Solvent tetrahydrofuran
Flow rate: 1.0 mL / min Standard; Polystyrene sample; 0.4 wt% tetrahydrofuran solution in terms of resin solids filtered through a microfilter (100 μL)

本発明の重合性有機成分の重量平均分子量としては、硬化収縮効果とレベリング性の観点から5,000〜100,000が好ましく、5,000〜50,000がより好ましい。   The weight average molecular weight of the polymerizable organic component of the present invention is preferably from 5,000 to 100,000, more preferably from 5,000 to 50,000, from the viewpoints of curing shrinkage effect and leveling properties.

本発明の重合性有機成分は、重合性有機成分の有する水酸基と一つのイソシアネートと(メタ)アクリロイル基を有する単量体とを本発明の効果を損なわない範囲で反応させてもよい。これにより、(メタ)アクリロイル基当量と水酸基当量を適宜調整することが可能である。   The polymerizable organic component of the present invention may be reacted with a hydroxyl group of the polymerizable organic component, one isocyanate, and a monomer having a (meth) acryloyl group as long as the effects of the present invention are not impaired. Thereby, it is possible to adjust a (meth) acryloyl group equivalent and a hydroxyl group equivalent suitably.

前記一つのイソシアネートと(メタ)アクリロイル基を有する単量体としては、例えば、一つのイソシアネートと一つの(メタ)アクリロイル基を有する単量体、一つのイソシアネートと二つの(メタ)アクリロイル基を有する単量体、一つのイソシアネートと三つの(メタ)アクリロイル基を有する単量体、一つのイソシアネートと四つの(メタ)アクリロイル基を有する単量体、一つのイソシアネートと五つの(メタ)アクリロイル基を有する単量体等が挙げられる。このような単量体としては、例えば、下記一般式(2)で表される化合物を好ましく例示することができる。   Examples of the monomer having one isocyanate and a (meth) acryloyl group include a monomer having one isocyanate and one (meth) acryloyl group, and a monomer having one isocyanate and two (meth) acryloyl groups. Monomer, Monomer having one isocyanate and three (meth) acryloyl groups, Monomer having one isocyanate and four (meth) acryloyl groups, One isocyanate and five (meth) acryloyl groups And the like. As such a monomer, for example, a compound represented by the following general formula (2) can be preferably exemplified.

Figure 2011157436
Figure 2011157436

一般式(2)中、Rは水素原子又はメチル基である。Rは炭素原子数2から4のアルキレン基である。nは1〜5の整数を表す。具体的には、例えば、カレンズAOI、カレンズMOI、カレンズBEI(商品名、昭和電工(株)製)の他、ジイソシアネート化合物とヒドロキシアクリレートとの反応付加物等が例示できる。ここで、ジイソシアネート化合物としては、公知のものを特に限定されず使用することができ、例えば、トリレンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート等が挙げられる。 In general formula (2), R 1 is a hydrogen atom or a methyl group. R 2 is an alkylene group having 2 to 4 carbon atoms. n represents an integer of 1 to 5. Specifically, for example, in addition to Karenz AOI, Karenz MOI, Karenz BEI (trade name, manufactured by Showa Denko KK), a reaction adduct of a diisocyanate compound and hydroxyacrylate can be exemplified. Here, as a diisocyanate compound, a well-known thing can be used without being specifically limited, For example, tolylene diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate etc. are mentioned.

ヒドロキシアクリレートとしては、水酸基及び(メタ)アクリル基を有する化合物であれば特に限定されず、公知のものを使用することができるが、例えば、2‐ヒドロキシエチルアクリレート、2‐ヒドロキシプロピルアクリレート、4‐ヒドロキシブチルアクリレート、グリセリンジアクリレート、トリメチロールプロパンジアクリレート、ペンタエリスリトールトリアクリレート、ジペンタエリスリトールペンタアクリレート等が挙げられる。中でも、架橋密度を高めることが出来る点で、カレンズBEIの如く一分子中に2個以上の(メタ)アクリロイル基を持つものが好ましい。 The hydroxy acrylate is not particularly limited as long as it is a compound having a hydroxyl group and a (meth) acryl group, and a known one can be used. For example, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 4- Examples thereof include hydroxybutyl acrylate, glycerin diacrylate, trimethylolpropane diacrylate, pentaerythritol triacrylate, dipentaerythritol pentaacrylate and the like. Among these, those having two or more (meth) acryloyl groups in one molecule, such as Karenz BEI, are preferable in that the crosslinking density can be increased.

本発明の重合性有機成分に一つのイソシアネートと(メタ)アクリロイル基を有する単量体を反応させる方法は、特に限定されず、公知の方法を採用することができる。具体的には、例えば、本発明の重合性有機成分に一つのイソシアネートと(メタ)アクリロイル基を有する単量体を滴下しながら加え、50〜120℃、より好ましくは、60〜90℃に加熱し反応させれば良い。なお、重合性有機成分と一つのイソシアネートと(メタ)アクリロイル基を有する単量体の使用量は特に限定されないが、通常、重合性有機成分の水酸基(モル):一つのイソシアネートと(メタ)アクリロイル基を有する単量体のイソシアネート基(モル)=1:0.1〜1:0.9であり、好ましくは、1:0.1〜1:0.7である。   The method of reacting one isocyanate and a monomer having a (meth) acryloyl group with the polymerizable organic component of the present invention is not particularly limited, and a known method can be adopted. Specifically, for example, a monomer having one isocyanate and a (meth) acryloyl group is added dropwise to the polymerizable organic component of the present invention, and heated to 50 to 120 ° C., more preferably 60 to 90 ° C. And react. The amount of the polymerizable organic component, one isocyanate, and the monomer having a (meth) acryloyl group is not particularly limited. Usually, the hydroxyl group (mole) of the polymerizable organic component: one isocyanate and (meth) acryloyl. The isocyanate group (mol) of the monomer having a group is 1: 0.1 to 1: 0.9, preferably 1: 0.1 to 1: 0.7.

本発明の重合性有機成分は種々の無機粒子の分散剤として好適に用いることができる。無機粒子としては、乾式シリカ微粒子、湿式シリカ微粒子等が挙げられる。乾式シリカ微粒子は、例えば、四塩化珪素を酸素または水素炎中で燃焼することにより得られるシリカ微粒子である。また、湿式シリカ微粒子は、例えば、珪酸ナトリウムを鉱酸で中和して得られるシリカ微粒子である。本発明の重合性有機成分は無機粒子の分散性が高い。その為、本発明の重合性有機成分中に無機粒子を分散させた分散体は長期間にわたり分散安定性が良好に保たれる。 The polymerizable organic component of the present invention can be suitably used as a dispersant for various inorganic particles. Examples of the inorganic particles include dry silica fine particles and wet silica fine particles. The dry silica fine particles are, for example, silica fine particles obtained by burning silicon tetrachloride in an oxygen or hydrogen flame. The wet silica fine particles are, for example, silica fine particles obtained by neutralizing sodium silicate with a mineral acid. The polymerizable organic component of the present invention has high dispersibility of inorganic particles. Therefore, the dispersion in which inorganic particles are dispersed in the polymerizable organic component of the present invention maintains good dispersion stability over a long period of time.

また、該分散体をウレタン(メタ)アクリレートやエポキシ(メタ)アクリレート等の活性エネルギー線硬化型オリゴマーや活性エネルギー線硬化型モノマーに加えて活性エネルギー線硬化型樹脂組成物を調製した場合でも、該活性エネルギー線硬化型樹脂組成物中で無機粒子は長期間にわたって安定して分散する。このように本発明の重合性有機成分は無機粒子の分散性が高い為、組成物中で分散性安定性が悪い無機粒子を分散させる際の重合性有機成分として用いるのが好ましい。また、本発明の重合性有機成分は、(メタ)アクリロイル基を有する化合物に無機粒子を分散させる際に用いる分散剤として用いるのが好ましい。 In addition, even when an active energy ray curable resin composition is prepared by adding the dispersion to an active energy ray curable oligomer such as urethane (meth) acrylate or epoxy (meth) acrylate or an active energy ray curable monomer, In the active energy ray-curable resin composition, the inorganic particles are stably dispersed over a long period of time. Thus, since the polymerizable organic component of the present invention has high dispersibility of inorganic particles, it is preferably used as a polymerizable organic component when dispersing inorganic particles having poor dispersibility stability in the composition. In addition, the polymerizable organic component of the present invention is preferably used as a dispersant used when dispersing inorganic particles in a compound having a (meth) acryloyl group.

本発明の重合性有機成分は平均一次粒子径10nm〜300nmの無機粒子の分散剤として用いるのが好ましく、平均一次粒子径10nm〜200nmの無機粒子の分散剤として用いるのがより好ましい。   The polymerizable organic component of the present invention is preferably used as a dispersant for inorganic particles having an average primary particle size of 10 nm to 300 nm, and more preferably used as a dispersant for inorganic particles having an average primary particle size of 10 nm to 200 nm.

本発明の重合性有機成分を用いて無機粒子が分散してなる反応性分散体を調製することができる。反応性分散体における各成分の含有量は特に制限されないが、本発明の重合性有機成分と無機粒子とを、〔(重合性有機成分):(無機粒子)〕で10〜90重量部:90〜10重量部となるように含有するのが好ましく、30〜90重量部:70〜10重量部となるように含有するのがより好ましい。また、本発明の分散体中の無機粒子用重合性有機成分と無機粒子との合計の含有率は、固形分換算で1〜50重量%が好ましく、1〜30重量%がより好ましい。   A reactive dispersion in which inorganic particles are dispersed using the polymerizable organic component of the present invention can be prepared. The content of each component in the reactive dispersion is not particularly limited, but the polymerizable organic component and the inorganic particles of the present invention are 10 to 90 parts by weight: 90 in [(polymerizable organic component) :( inorganic particles)]. The content is preferably 10 to 10 parts by weight, and more preferably 30 to 90 parts by weight: 70 to 10 parts by weight. Further, the total content of the polymerizable organic component for inorganic particles and the inorganic particles in the dispersion of the present invention is preferably 1 to 50% by weight, more preferably 1 to 30% by weight in terms of solid content.

反応性分散体を製造する際に、本発明の重合性有機成分と無機粒子と前記重合性有機成分以外の(メタ)アクリロイル基を有する化合物とを含有することで活性エネルギー線硬化型樹脂組成物とすることができる。前記無機粒子用重合性有機成分以外の(メタ)アクリロイル基を有する化合物としては、例えば、活性エネルギー線硬化型モノマーおよび/または活性エネルギー線硬化型オリゴマー等が挙げられる。各成分の含有量は特に制限されないが、本発明の重合性有機成分と活性エネルギー線硬化型モノマーおよび/または活性エネルギー線硬化型オリゴマーとを、〔(重合性有機成分):(活性エネルギー線硬化型モノマーおよび/または活性エネルギー線硬化型オリゴマー)〕で10〜90重量部:90〜10重量部となるように含有するのが好ましく、30〜90重量部:70〜10重量部となるように含有するのがより好ましい。 In producing the reactive dispersion, the active energy ray-curable resin composition contains the polymerizable organic component of the present invention, inorganic particles, and a compound having a (meth) acryloyl group other than the polymerizable organic component. It can be. Examples of the compound having a (meth) acryloyl group other than the polymerizable organic component for inorganic particles include an active energy ray-curable monomer and / or an active energy ray-curable oligomer. The content of each component is not particularly limited, but the polymerizable organic component of the present invention and the active energy ray-curable monomer and / or the active energy ray-curable oligomer are selected from [(polymerizable organic component): (active energy ray-curable). 10 to 90 parts by weight: 90 to 10 parts by weight, and preferably 30 to 90 parts by weight: 70 to 10 parts by weight. It is more preferable to contain.

前記活性エネルギー線硬化型モノマーとしては、例えば、本発明の分散剤の調製で用いることができる前記重合性単量体等の他に、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート;ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、テトラプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、1,3−ブチレングリコールジ(メタ)アクリレート、1,4−ブチレングリコールジ(メタ)アクリレート、1,6−ヘキサメチレングリコールジ(メタ)アクリレート、1,9−ノナンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールにカプロラクトン付加した化合物のジ(メタ)アクリレート、ネオペンチルグリコールアジペートジ(メタ)アクリレート、   Examples of the active energy ray-curable monomer include ethylene glycol di (meth) acrylate and propylene glycol di (meth) acrylate in addition to the polymerizable monomer that can be used in the preparation of the dispersant of the present invention. Diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) Acrylate, tetrapropylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, 1,3-butylene glycol di (meth) acrylate, 1,4-butylene glycol di (meth) acrylate Relate, 1,6-hexamethylene glycol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, hydroxypivalate neopentyl glycol di (meth) acrylate, hydroxypivalin Di (meth) acrylate of a compound obtained by adding caprolactone to acid neopentyl glycol, neopentyl glycol adipate di (meth) acrylate,

トリメチロールプロパン、ジトリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、テトラメチロールメタン、およびそれらに1〜20モルのアルキレンオキサイドを付加させた水酸基含有化合物などの水酸基を3つ以上有する化合物に(メタ)アクリル酸が3分子以上エステル結合した化合物等が挙げられる。 (Meth) acrylic to compounds having 3 or more hydroxyl groups such as trimethylolpropane, ditrimethylolpropane, pentaerythritol, dipentaerythritol, tetramethylolmethane, and a hydroxyl group-containing compound in which 1 to 20 mol of alkylene oxide is added thereto. Examples include compounds in which three or more molecules of acid are ester-bonded.

前記活性エネルギー線硬化型オリゴマーとしては、例えば、本発明の分散剤以外のアクリル(メタ)アクリレート、ウレタン(メタ)アクリレート、エステル(メタ)アクリレート、エポキシ(メタ)アクリレート等からなる群から選ばれる1種以上の(メタ)アクリレート化合物が挙げられる。   The active energy ray-curable oligomer is, for example, selected from the group consisting of acrylic (meth) acrylate, urethane (meth) acrylate, ester (meth) acrylate, epoxy (meth) acrylate and the like other than the dispersant of the present invention. The (meth) acrylate compound more than a seed | species is mentioned.

ウレタン(メタ)アクリレートとしては、例えば、イソシアネート化合物を水酸基含有(メタ)アクリレート化合物と反応せしめてなる多官能ウレタン(メタ)アクリレートが挙げられる。ここで用いるイソシアネート化合物としては、例えば、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、キシレンジイソシアネート、水添キシレンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、ノルボルネンジイソシアネートなどの脂肪族もしくは脂環式のジイソシアネート化合物;トルエンジイソシアネート、4,4’―ジフェニルメタンジイソシアネートなどの芳香族ジイソシアネート;ジイソシアネート化合物の3量体であるイソシアヌレート型イソシアネートプレポリマー等が挙げられる。また、該多官能ウレタン(メタ)アクリレートを製造する際に、イソシアネート化合物と反応せしめる水酸基含有(メタ)アクリレート化合物の一部を2価〜4価のアルコールおよび/またはポリオール化合物で置換して重合せしめたものでも良い。   Examples of the urethane (meth) acrylate include polyfunctional urethane (meth) acrylate obtained by reacting an isocyanate compound with a hydroxyl group-containing (meth) acrylate compound. Examples of the isocyanate compound used here include aliphatic or cycloaliphatic diisocyanate compounds such as hexamethylene diisocyanate, isophorone diisocyanate, xylene diisocyanate, hydrogenated xylene diisocyanate, dicyclohexylmethane diisocyanate, norbornene diisocyanate; toluene diisocyanate, 4,4 ′ -Aromatic diisocyanates such as diphenylmethane diisocyanate; and isocyanurate type isocyanate prepolymers which are trimers of diisocyanate compounds. Moreover, when manufacturing this polyfunctional urethane (meth) acrylate, it superposes | polymerizes by substituting a part of hydroxyl-containing (meth) acrylate compound made to react with an isocyanate compound with a bivalent-tetravalent alcohol and / or a polyol compound. It may be good.

また、エステルアクリレートとしては、エチレングリコール、プロピレングリコール、ジエチレングリコール、ネオペンチルグリコール、ビスフェノールA、水添ビスフェノールA、エトキシ化ビスフェノールA、エトキシ化水添ビスフェノールA、プロポキシ化ビスフェノールA、プロポキシ化水添ビスフェノールAおよび2価以上の多価アルコールから選ばれる1種以上と、無水フタル酸、イソフタル酸、テレフタル酸、アジピン酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、無水マレイン酸、フマル酸、無水トリメリット酸、無水ピロメリット酸などに代表される多塩基酸から選ばれる1種以上をエステル化反応せしめて得られる水酸基を有するエステルポリオールをさらに(メタ)アクリレート化した多官能エステル(メタ)アクリレートなどが挙げられる。   The ester acrylates include ethylene glycol, propylene glycol, diethylene glycol, neopentyl glycol, bisphenol A, hydrogenated bisphenol A, ethoxylated bisphenol A, ethoxylated hydrogenated bisphenol A, propoxylated bisphenol A, and propoxylated hydrogenated bisphenol A. And one or more selected from dihydric or higher polyhydric alcohols, and phthalic anhydride, isophthalic acid, terephthalic acid, adipic acid, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, maleic anhydride, fumaric acid, trimellitic anhydride , A polyfunctional ester obtained by further esterifying an ester polyol having a hydroxyl group obtained by esterifying one or more selected from polybasic acids represented by pyromellitic anhydride, etc. Meth) acrylate.

更に、エポキシアクリレートとしては、例えば、プロピレングリコール、ブタンジオール、ペンタンジオール、ヘキサンジオール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール、テトラエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ネオペンチルグリコール、ヒドロキシピバリン酸ネオペンチルグリコール、ビスフェノールA、エトキシ化ビスフェノールAなどの2価のアルコールのトリグリシジルエーテル化物等のジエポキシ化合物に(メタ)アクリル酸を付加せしめて得られる2価のエポキシ(メタ)アクリレート化合物;トリメチロールプロパン、エトキシ化トリメチロールプロパン、プロポキシ化トリメチロールプロパン、グリセリンなどの3価アルコールをエポキシ化して得られるエポキシ化合物に、(メタ)アクリル酸を付加せしめて得られる平均3個以上のラジカル重合性不飽和二重結合を有するエポキシトリ(メタ)アクリレート化合物;少なくとも1個の芳香環を有する多価フェノールまたはそのアルキレンオキサイド付加体にグリシジルエーテルを反応せしめたエポキシ化合物に(メタ)アクリル酸を付加せしめて得られるフェノールノボラック、クレゾールノボラック等の多官能芳香族エポキシアクリレート;これら多官能芳香族エポキシアクリレートの水添タイプである多官能脂環式エポキシアクリレート;さらに分子中に存在する2級の水酸基とジイソシアネート化合物の片方のイソシアネート基でウレタン化した後、残存する片末端のイソシアネート基と水酸基含有(メタ)アクリレートを反応させて得られるウレタン変性エポキシアクリレートなどが挙げられる。   Further, as the epoxy acrylate, for example, propylene glycol, butanediol, pentanediol, hexanediol, diethylene glycol, dipropylene glycol, triethylene glycol, tripropylene glycol, tetraethylene glycol, polyethylene glycol, polypropylene glycol, neopentyl glycol, hydroxy A divalent epoxy (meth) acrylate compound obtained by adding (meth) acrylic acid to a diepoxy compound such as a triglycidyl etherified product of a divalent alcohol such as neopentyl glycol pivalate, bisphenol A, and ethoxylated bisphenol A; Such as trimethylolpropane, ethoxylated trimethylolpropane, propoxylated trimethylolpropane, glycerin, etc. An epoxy tri (meth) acrylate compound having an average of three or more radically polymerizable unsaturated double bonds obtained by adding (meth) acrylic acid to an epoxy compound obtained by epoxidizing a monohydric alcohol; at least one Polyfunctional aromatic epoxy acrylates such as phenol novolak and cresol novolak obtained by adding (meth) acrylic acid to an epoxy compound obtained by reacting a polyhydric phenol having an aromatic ring or an alkylene oxide adduct thereof with glycidyl ether; Polyfunctional alicyclic epoxy acrylate, which is a hydrogenated type of functional aromatic epoxy acrylate; and further urethanated with a secondary hydroxyl group present in the molecule and one isocyanate group of the diisocyanate compound, and then the remaining isocyanate group at one end And hydroxyl Urethane-modified epoxy acrylate obtained by containing (meth) acrylate is reacted and the like.

これらの中でも、それぞれ、平均3個以上のラジカル重合性不飽和二重結合を有する、エステルアクリレートとウレタンアクリレートは、硬化塗膜の耐摩耗性が良好なため、特に好ましい。   Among these, ester acrylates and urethane acrylates each having an average of 3 or more radically polymerizable unsaturated double bonds are particularly preferable because the cured film has good wear resistance.

反応性分散体の製造方法は特に限定されないが、例えばエポキシ基を有する(メタ)アクリル重合体(a1)に(メタ)アクリロイル基及びカルボキシル基を有する単量体(c)を付加反応させてなる(メタ)アクリロイル当量が200〜600で、水酸基価が90〜280mg/KOHの反応生成物または、カルボキシル基を有する(メタ)アクリル重合体(a2)に(メタ)アクリロイル基及びエポキシ基を有する単量体(d)を付加反応させてなる(メタ)アクリロイル当量が200〜600で、水酸基価が90〜280mg/KOHの反応生成物(以下、無機粒子用重合性有機成分)10〜90重量部とシリカ微粒子90〜10重量部とを、無機粒子用重合性有機成分と無機粒子との合計の濃度が1〜50重量%となるように分散媒(有機溶剤)で希釈して、機械的手段を用いて分散させる方法が挙げられる。   Although the manufacturing method of a reactive dispersion is not specifically limited, For example, the (meth) acrylic polymer (a1) which has an epoxy group is made to add and react the monomer (c) which has a (meth) acryloyl group and a carboxyl group. A reaction product having a (meth) acryloyl equivalent of 200 to 600 and a hydroxyl value of 90 to 280 mg / KOH, or a (meth) acrylic polymer (a2) having a carboxyl group and having a (meth) acryloyl group and an epoxy group. 10 to 90 parts by weight of a reaction product (hereinafter, polymerizable organic component for inorganic particles) having a (meth) acryloyl equivalent of 200 to 600 and a hydroxyl value of 90 to 280 mg / KOH obtained by addition reaction of the monomer (d) And 90 to 10 parts by weight of silica fine particles so that the total concentration of the polymerizable organic component for inorganic particles and the inorganic particles is 1 to 50% by weight. Diluted with an organic solvent), and a method of dispersing by using a mechanical means.

前記有機溶剤としては、例えば、アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)等のケトン類、テトラヒドロフラン(THF)、ジオキソラ等の環状エーテル類、酢酸メチル、酢酸エチル、酢酸ブチル等のエステル類、トルエン、キシレン等の芳香族類、カルビトール、セロソルブ、メタノール、イソプロパノール、ブタノール、プロピレングリコールモノメチルエーテルなどのアルコール類が挙げられ、これらを単独又は併用して使用可能であるが、中でも、重合性有機成分の合成溶媒であるメチルエチルケトンが塗工時の揮発性や溶媒回収の面から好ましい。   Examples of the organic solvent include ketones such as acetone, methyl ethyl ketone (MEK), and methyl isobutyl ketone (MIBK), cyclic ethers such as tetrahydrofuran (THF) and dioxola, and esters such as methyl acetate, ethyl acetate, and butyl acetate. , Aromatics such as toluene and xylene, and alcohols such as carbitol, cellosolve, methanol, isopropanol, butanol, propylene glycol monomethyl ether, and these can be used alone or in combination. Methyl ethyl ketone, which is a synthetic solvent for organic components, is preferred from the viewpoints of volatility during coating and solvent recovery.

機械的手段としては、例えば、ディスパー、タービン翼等攪拌翼を有する分散機、ペイントシェイカー、ロールミル、ボールミル、アトライター、サンドミル、ビーズミル等が挙げられる。反応性分散体を製造するには、得られる分散体をコーティング剤等に用いる場合には、塗工性、塗料安定性および硬化被膜の透明性等の点から、ガラスビーズ、ジルコニアビーズ等の分散メディアを使用するビーズミルによる分散が好ましい。   Examples of the mechanical means include a disperser, a disperser having a stirring blade such as a turbine blade, a paint shaker, a roll mill, a ball mill, an attritor, a sand mill, and a bead mill. In order to produce a reactive dispersion, when the obtained dispersion is used as a coating agent, it is possible to disperse glass beads, zirconia beads, etc. from the viewpoints of coatability, paint stability, and transparency of the cured film. Dispersion with a bead mill using media is preferred.

以下に、実施例及び比較例を挙げて本発明を更に具体的に説明する。 Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.

(合成例)
撹拌装置、冷却管、滴下ロートおよび窒素導入管を備えた反応装置に、グリシジルメタクリレート(以下、GMAという)250g、メチルイソブチルケトン(以下、MIBKという)1000g及びt−ブチルパーオキシエチルヘキサノエイト(以下、P−Oという)10gを仕込んだ後、窒素気流下に約1時間かけて系内温度が約90℃になるまで昇温し、1時間保温した。次いで、あらかじめGMA750g、P−Oが30gからなる混合液を仕込んだ滴下ロートより、窒素気流下に混合液を約2時間要して系内に滴下し、3時間同温度に保温した。その後、120℃に昇温し、2時間保温した。60℃まで冷却後、窒素導入管を空気導入管につけ替え、アクリル酸(以下、AAという)507g、メトキノン2.3gおよびトリフェニルフォスフィン9.3gを仕込み混合した後、空気バブリング下にて、110℃まで昇温した。同温度にて8時間保温後、メトキノン1.6gを仕込み、冷却して、不揮発分が50%となるようMIBKを加え、重合性有機成分(A−1)の溶液を得た。該重合性有機成分(A−1)は、アクリル当量が約214g/eq、水酸基価が約262mgKOH/g、重量平均分子量が約30,000であった。
(Synthesis example)
In a reactor equipped with a stirrer, a cooling tube, a dropping funnel and a nitrogen introduction tube, 250 g of glycidyl methacrylate (hereinafter referred to as GMA), 1000 g of methyl isobutyl ketone (hereinafter referred to as MIBK) and t-butyl peroxyethyl hexanoate ( Then, 10 g of PO) was charged, and then the system temperature was raised to about 90 ° C. over about 1 hour under a nitrogen stream, and the temperature was kept for 1 hour. Next, the mixture was dropped into the system for about 2 hours under a nitrogen stream from a dropping funnel charged beforehand with a mixture consisting of 750 g of GMA and 30 g of PO, and kept at the same temperature for 3 hours. Then, it heated up at 120 degreeC and heat-retained for 2 hours. After cooling to 60 ° C., the nitrogen introduction tube was replaced with an air introduction tube, 507 g of acrylic acid (hereinafter referred to as AA), 2.3 g of methoquinone and 9.3 g of triphenylphosphine were charged and mixed, and then under air bubbling, The temperature was raised to 110 ° C. After incubating at the same temperature for 8 hours, 1.6 g of methoquinone was charged, cooled, and MIBK was added so that the non-volatile content was 50% to obtain a solution of a polymerizable organic component (A-1). The polymerizable organic component (A-1) had an acrylic equivalent of about 214 g / eq, a hydroxyl value of about 262 mgKOH / g, and a weight average molecular weight of about 30,000.

(実施例1)
脱水酢酸エチル80mLに4(2−ヒドロキシエトキシ)−フェニル(2−ヒドロキシ−2−プロピル)ケトン(チバスペシャルティ製、イルガキュアー2959)7.96g(35.6mmol)を溶解させ、さらに3−トリエトキシシリルプロピルイソシアネート(信越化学工業社製、KBE9007)8.00g(32.3mmol)を加え、80℃室温で20時間攪拌した。得られた反応溶液を減圧濃縮し、酢酸エチルとヘキサンの混合溶媒に溶解してシリカゲルカラムで精製後乾燥することで、末端に光重合開始剤部分を有するトリエトキシシランの精製粉末(B−1)を得た。
Example 1
In 80 mL of dehydrated ethyl acetate, 7.96 g (35.6 mmol) of 4 (2-hydroxyethoxy) -phenyl (2-hydroxy-2-propyl) ketone (manufactured by Ciba Specialty, Irgacure 2959) was dissolved, and further 3-triethoxy 8.00 g (32.3 mmol) of silylpropyl isocyanate (manufactured by Shin-Etsu Chemical Co., Ltd., KBE9007) was added, and the mixture was stirred at 80 ° C. for 20 hours. The obtained reaction solution was concentrated under reduced pressure, dissolved in a mixed solvent of ethyl acetate and hexane, purified with a silica gel column and then dried to obtain a purified powder of triethoxysilane having a photopolymerization initiator moiety at the end (B-1 )

<表面に光重合開始剤部分を導入した無機粒子の合成>
固形分で10gのコロイダルシリカ(日産化学、MIBK−ST)に、上記光重合開始剤部分を有するトリエトキシシラン(B−1)0.8gを添加して80℃で16時間撹拌し、表面に光ラジカル開始剤を導入したシリカ粒子分散液(C−1)を得た。
<Synthesis of inorganic particles having a photoinitiator moiety introduced on the surface>
To 10 g of colloidal silica (Nissan Chemical, MIBK-ST) in solid content, 0.8 g of triethoxysilane (B-1) having the above photopolymerization initiator portion was added and stirred at 80 ° C. for 16 hours. A silica particle dispersion (C-1) into which a photo radical initiator was introduced was obtained.

<光硬化性組成物の調整>
重合性有機成分(A−1)を固形分で1.0g、ジペンタエリスリトールヘキサアクリレート(DPHA)1.0g、表面に光ラジカル開始剤を導入したシリカ粒子分散液(C−1)を固形分で2.0g混合した後、イルガキュアー2959を不揮発分100部に対して3重量部添加し、光硬化性組成物を得た。
<Preparation of photocurable composition>
1.0 g of polymerizable organic component (A-1) in solid content, 1.0 g of dipentaerythritol hexaacrylate (DPHA), and silica particle dispersion (C-1) having a photoradical initiator introduced on the surface thereof as solid content Then, 3 parts by weight of Irgacure 2959 was added to 100 parts of the nonvolatile content to obtain a photocurable composition.

<硬化塗膜の作製方法>
活性エネルギー線硬化性樹脂組成物を、トリアセチルセルロース(TAC)フィルム(膜厚40μm)上にバーコーターで塗布し(膜厚10μm)、70℃で1分乾燥させ、窒素下で高圧水銀灯を用いて250mJ/cmの照射量で通過させて硬化させることにより、硬化塗膜を有する試験片を得た。
<Method for producing cured coating film>
The active energy ray-curable resin composition is applied onto a triacetyl cellulose (TAC) film (film thickness 40 μm) with a bar coater (film thickness 10 μm), dried at 70 ° C. for 1 minute, and using a high-pressure mercury lamp under nitrogen. A test piece having a cured coating film was obtained by passing through and curing at an irradiation dose of 250 mJ / cm 2 .

<硬化塗膜の評価方法(鉛筆硬度)>
上記試験片の硬化皮膜をJIS K5600に従い荷重500gの鉛筆引っかき試験によって評価した。5回試験を行い、全てにおいて塑性変形、凝集破壊の見られない硬度スケールを求めた。
<Method for evaluating cured coating film (pencil hardness)>
The cured film of the test piece was evaluated by a pencil scratch test with a load of 500 g according to JIS K5600. The test was conducted five times, and a hardness scale in which no plastic deformation and cohesive failure were observed was obtained in all cases.

<硬化塗膜の評価方法(スチールウール耐性)>
新東科学製HEIDON往復摩耗試験機を用い、荷重1kg、スピード100mm/sで試験片のスチールウール摩擦を行った。試験前後の塗膜のヘーズ変化をJIS K7136に従い評価した。
鉛筆硬度は4H、ヘーズ変化は0.2であった。
<Evaluation method of cured coating (steel wool resistance)>
Using a HEIDON reciprocating wear tester manufactured by Shinto Kagaku, the test piece was subjected to steel wool friction at a load of 1 kg and a speed of 100 mm / s. The haze change of the coating film before and after the test was evaluated according to JIS K7136.
The pencil hardness was 4H and the haze change was 0.2.

(実施例2)
<光硬化性組成物の調整>
重合性有機成分(A−1)を固形分で1.0g、ジペンタエリスリトールヘキサアクリレート(DPHA)1.0g、表面に光ラジカル開始剤を導入したシリカ粒子分散液(C−1)を固形分で2.0g混合した後、イルガキュアー184を不揮発分100部に対して3重量部添加し、光硬化性組成物を得た。
(Example 2)
<Preparation of photocurable composition>
1.0 g of polymerizable organic component (A-1) in solid content, 1.0 g of dipentaerythritol hexaacrylate (DPHA), and silica particle dispersion (C-1) having a photoradical initiator introduced on the surface thereof as solid content After mixing 2.0 g of Irgacure 184, 3 parts by weight of Irgacure 184 was added to 100 parts of the nonvolatile content to obtain a photocurable composition.

実施例1と同様に硬化塗膜を作成し、鉛筆硬度およびスチールウール耐性を評価した。
鉛筆硬度は4H、ヘーズ変化は0.1であった。
A cured coating film was prepared in the same manner as in Example 1, and pencil hardness and steel wool resistance were evaluated.
The pencil hardness was 4H and the haze change was 0.1.

(比較例1)<光硬化性組成物の調整>
重合性有機成分(A−1)を固形分で1.0g、ジペンタエリスリトールヘキサアクリ
レート(DPHA)1.0g、固形分で2.0gのコロイダルシリカ(日産化学、MIBK−ST)を混合した後、イルガキュアー2959を全固形分に対して5.2重量部添加し、光硬化性組成物を得た。
(Comparative example 1) <Preparation of a photocurable composition>
After mixing 1.0 g of polymerizable organic component (A-1) in solid content, 1.0 g of dipentaerythritol hexaacrylate (DPHA), and 2.0 g in solid content of colloidal silica (Nissan Chemical, MIBK-ST) Irgacure 2959 was added in an amount of 5.2 parts by weight based on the total solid content to obtain a photocurable composition.

実施例1と同様に硬化塗膜を作成し、鉛筆硬度およびスチールウール耐性を評価した。
鉛筆硬度は3H、ヘーズ変化は0.2であった。
A cured coating film was prepared in the same manner as in Example 1, and pencil hardness and steel wool resistance were evaluated.
The pencil hardness was 3H and the haze change was 0.2.

本発明の分散体は、光エネルギー又は熱エネルギーによる重合反応を行うことにより硬化膜とすることができ、該硬化膜は各種素材の高強度表面硬化膜として利用が可能である。 The dispersion of the present invention can be made into a cured film by performing a polymerization reaction with light energy or thermal energy, and the cured film can be used as a high-strength surface cured film of various materials.

Claims (8)

無機粒子が重合性有機成分に分散された分散体において、
1)無機粒子が、光又は熱エネルギーにより重合反応を開始せしめる基を有するオルガノシラン化合物により表面処理されたものであり、
2)重合性有機成分が、エポキシ基を有する(メタ)アクリル重合体(a1)に(メタ)アクリロイル基及びカルボキシル基を有する単量体(b)を付加反応させてなる反応生成物、又はカルボキシル基を有する(メタ)アクリル重合体(a2)に(メタ)アクリロイル基及びエポキシ基を有する単量体(c)を付加反応させてなる反応生成物であって、(メタ)アクリロイル当量が200〜600(g/eq.)で、水酸基価が90〜280(mgKOH/g)であることを特徴とする分散体。
In a dispersion in which inorganic particles are dispersed in a polymerizable organic component,
1) Inorganic particles are surface-treated with an organosilane compound having a group that initiates a polymerization reaction by light or thermal energy,
2) A reaction product obtained by adding a monomer (b) having a (meth) acryloyl group and a carboxyl group to a (meth) acrylic polymer (a1) having a polymerizable organic component having an epoxy group, or carboxyl It is a reaction product obtained by subjecting a (meth) acrylic polymer (a2) having a group to a monomer (c) having a (meth) acryloyl group and an epoxy group, and having a (meth) acryloyl equivalent of 200 to 600 (g / eq.) And a hydroxyl value of 90 to 280 (mgKOH / g).
重合性有機成分が、グリシジル(メタ)アクリレートを重合させて得られたエポキシ基を有する(メタ)アクリル重合体に(メタ)アクリル酸を付加反応させてなるものである請求項1に記載の分散体。   The dispersion according to claim 1, wherein the polymerizable organic component is obtained by addition reaction of (meth) acrylic acid to a (meth) acrylic polymer having an epoxy group obtained by polymerizing glycidyl (meth) acrylate. body. 重合性有機成分の重量平均分子量が5,000〜100,000である請求項1又は2に記載の分散体。   The dispersion according to claim 1 or 2, wherein the polymerizable organic component has a weight average molecular weight of 5,000 to 100,000. 無機粒子が、一次粒子径が10nm〜300nmのシリカ粒子又はジルコニア粒子である請求項1〜3の何れかに記載の分散体。   The dispersion according to any one of claims 1 to 3, wherein the inorganic particles are silica particles or zirconia particles having a primary particle diameter of 10 nm to 300 nm. 光エネルギーにより重合反応を開始せしめる基が、アセトフェノン基、ベンゾイン基、ベンゾフェノン基、芳香族スルホニウム塩から選ばれる基である請求項1〜4の何れかに記載の分散体。   The dispersion according to any one of claims 1 to 4, wherein the group that initiates the polymerization reaction by light energy is a group selected from an acetophenone group, a benzoin group, a benzophenone group, and an aromatic sulfonium salt. 熱エネルギーにより重合反応を開始せしめる基が、パーオキサイド基、アゾ基、ジアゾ基から選ばれる基である請求項1〜4の何れかに記載の分散体。   The dispersion according to any one of claims 1 to 4, wherein the group that initiates the polymerization reaction by thermal energy is a group selected from a peroxide group, an azo group, and a diazo group. 請求項1〜6の何れかに記載の分散体を硬化させてなる硬化膜。   A cured film obtained by curing the dispersion according to claim 1. 請求項1〜6の何れかに記載の分散体を用いて基材上に塗膜を形成した後に、該塗膜に光を照射するか、該塗膜を加熱することにより請求項7に記載の硬化膜を製造する方法。   After forming a coating film on a base material using the dispersion according to any one of claims 1 to 6, the coating film is irradiated with light or heated to heat the coating film. A method for producing a cured film.
JP2010018401A 2010-01-29 2010-01-29 Inorganic particle dispersion and cured film Active JP5471522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010018401A JP5471522B2 (en) 2010-01-29 2010-01-29 Inorganic particle dispersion and cured film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010018401A JP5471522B2 (en) 2010-01-29 2010-01-29 Inorganic particle dispersion and cured film

Publications (2)

Publication Number Publication Date
JP2011157436A true JP2011157436A (en) 2011-08-18
JP5471522B2 JP5471522B2 (en) 2014-04-16

Family

ID=44589664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010018401A Active JP5471522B2 (en) 2010-01-29 2010-01-29 Inorganic particle dispersion and cured film

Country Status (1)

Country Link
JP (1) JP5471522B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011157435A (en) * 2010-01-29 2011-08-18 Dic Corp Method for producing inorganic particle dispersion
JP5605525B2 (en) * 2012-06-21 2014-10-15 Dic株式会社 Active energy ray-curable resin composition, method for producing active energy ray-curable resin composition, paint, coating film, and film
JP2015054886A (en) * 2013-09-11 2015-03-23 荒川化学工業株式会社 Resin composition, active energy ray-curable hard coat agent comprising the same, and decorative film
WO2015198788A1 (en) * 2014-06-26 2015-12-30 Dic株式会社 Actinic-ray-curable resin composition, coating composition, coating film, and layered film
KR101751372B1 (en) 2013-09-25 2017-07-03 하리마 카세이 가부시키가이샤 Photocurable resin composition and cured film thereof
JP2018053005A (en) * 2016-09-26 2018-04-05 荒川化学工業株式会社 Optically active energy ray-curable resin composition, cured film and optical film
JP2018159067A (en) * 2017-03-23 2018-10-11 荒川化学工業株式会社 Active energy ray-curable hard coating agent, cured coat, and laminate film
JPWO2018003516A1 (en) * 2016-06-29 2018-10-11 Dic株式会社 Resin composition, paint, and article coated with the paint
JP2021109934A (en) * 2020-01-14 2021-08-02 信越化学工業株式会社 Surface-modified inorganic particle, surface-modified inorganic particle liquid dispersion, production method of the same, and photocurable composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51130497A (en) * 1975-05-09 1976-11-12 Wako Pure Chem Ind Ltd Preparation of novel graft polymers
JPH05295052A (en) * 1992-04-23 1993-11-09 Nippon Oil & Fats Co Ltd Production of grafted vinyl polymer
JPH09328522A (en) * 1996-06-12 1997-12-22 Sekisui Chem Co Ltd Fine silica particle having photopolymerization initiator at the surface thereof and film-forming method using the same
JP2004035818A (en) * 2002-07-05 2004-02-05 Mitsubishi Rayon Co Ltd Photo-curing resin composition and method for producing photo-curing sheet and molded article
JP2011157435A (en) * 2010-01-29 2011-08-18 Dic Corp Method for producing inorganic particle dispersion

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51130497A (en) * 1975-05-09 1976-11-12 Wako Pure Chem Ind Ltd Preparation of novel graft polymers
JPH05295052A (en) * 1992-04-23 1993-11-09 Nippon Oil & Fats Co Ltd Production of grafted vinyl polymer
JPH09328522A (en) * 1996-06-12 1997-12-22 Sekisui Chem Co Ltd Fine silica particle having photopolymerization initiator at the surface thereof and film-forming method using the same
JP2004035818A (en) * 2002-07-05 2004-02-05 Mitsubishi Rayon Co Ltd Photo-curing resin composition and method for producing photo-curing sheet and molded article
JP2011157435A (en) * 2010-01-29 2011-08-18 Dic Corp Method for producing inorganic particle dispersion

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011157435A (en) * 2010-01-29 2011-08-18 Dic Corp Method for producing inorganic particle dispersion
KR101598162B1 (en) 2012-06-21 2016-02-26 디아이씨 가부시끼가이샤 Active energy ray-curable resin composition, manufacturing method for active energy ray-curable resin composition, coating material, coating film, and film
JP5605525B2 (en) * 2012-06-21 2014-10-15 Dic株式会社 Active energy ray-curable resin composition, method for producing active energy ray-curable resin composition, paint, coating film, and film
KR20140144239A (en) * 2012-06-21 2014-12-18 디아이씨 가부시끼가이샤 Active energy ray-curable resin composition, manufacturing method for active energy ray-curable resin composition, coating material, coating film, and film
JPWO2013191243A1 (en) * 2012-06-21 2016-05-26 Dic株式会社 Active energy ray-curable resin composition, method for producing active energy ray-curable resin composition, paint, coating film, and film
JP2015054886A (en) * 2013-09-11 2015-03-23 荒川化学工業株式会社 Resin composition, active energy ray-curable hard coat agent comprising the same, and decorative film
KR101751372B1 (en) 2013-09-25 2017-07-03 하리마 카세이 가부시키가이샤 Photocurable resin composition and cured film thereof
WO2015198788A1 (en) * 2014-06-26 2015-12-30 Dic株式会社 Actinic-ray-curable resin composition, coating composition, coating film, and layered film
JP5935952B2 (en) * 2014-06-26 2016-06-15 Dic株式会社 Active energy ray-curable resin composition, paint, coating film, and laminated film
JPWO2018003516A1 (en) * 2016-06-29 2018-10-11 Dic株式会社 Resin composition, paint, and article coated with the paint
JP2018053005A (en) * 2016-09-26 2018-04-05 荒川化学工業株式会社 Optically active energy ray-curable resin composition, cured film and optical film
JP2018159067A (en) * 2017-03-23 2018-10-11 荒川化学工業株式会社 Active energy ray-curable hard coating agent, cured coat, and laminate film
JP7020222B2 (en) 2017-03-23 2022-02-16 荒川化学工業株式会社 Active energy ray-curable hard coat agent, cured coating film, laminated film
JP2021109934A (en) * 2020-01-14 2021-08-02 信越化学工業株式会社 Surface-modified inorganic particle, surface-modified inorganic particle liquid dispersion, production method of the same, and photocurable composition

Also Published As

Publication number Publication date
JP5471522B2 (en) 2014-04-16

Similar Documents

Publication Publication Date Title
JP5471522B2 (en) Inorganic particle dispersion and cured film
JP5407114B2 (en) Active energy ray-curable coating composition containing reactive dispersion, method for producing reactive dispersion, and cured film
TWI599586B (en) Active energy curable resin composition, method for producing active energy curable resin composition, coating, coated film and film
JP5468741B2 (en) Water-based resin composition and paint for building exterior topcoat containing the same
WO2007064003A1 (en) Single layer film and hydrophilic material composed of same
TWI689539B (en) Active energy ray-curable resin composition, paint, coating film, and film
TWI627061B (en) Active energy ray-curable resin composition, method for producing active energy ray-curable resin composition, coating material, coating film, and film
JP2008138165A (en) Photocuring hard coating agent and resin molding having hard coating film made of photocuring hard coating agent
JP2011157435A (en) Method for producing inorganic particle dispersion
WO2009144980A1 (en) Coating agent and method for production thereof
JP6031195B2 (en) Photocurable resin composition and cured film thereof
JP5479402B2 (en) Aqueous undercoat paint composition for repair and repair method
JP7088599B2 (en) Flexible hard coat containing urethane oligomer hydrogen bonded to acrylic polymer
JP6032382B2 (en) Active energy ray-curable resin composition, method for producing the same, paint, coating film, and laminated film
WO2015198787A1 (en) Active-energy-curing resin composition, coating material, coating film, and laminate film
JP2008242076A (en) Antistatic hard coat composition and optical article
JP2013129778A (en) Method for producing metal oxide particle dispersion, energy ray-curable resin composition, and film
JP2014077146A (en) Aqueous primer composition for repairing, and repairing method
JP6958553B2 (en) Active energy ray-curable resin composition and laminated film
JP6187726B1 (en) Laminated film
JP6421972B2 (en) Active energy ray-curable composition, cured film thereof, and article having the cured film
JP6578473B2 (en) Active energy ray-curable resin composition, paint, coating film, and laminated film
JP2005036105A (en) Photosensitive resin composition and film with cured coating thereof
JP2012116993A (en) Active energy ray-curable matting material liquid composition and coated article
JP2011252078A (en) Ultraviolet-curing coating composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140120

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5471522

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250