JP2011148970A - Base oil for cooling device, device-cooling oil obtained through blending of the base oil, device to be cooled by the cooling oil, and device cooling method using the cooling oil - Google Patents
Base oil for cooling device, device-cooling oil obtained through blending of the base oil, device to be cooled by the cooling oil, and device cooling method using the cooling oil Download PDFInfo
- Publication number
- JP2011148970A JP2011148970A JP2010178798A JP2010178798A JP2011148970A JP 2011148970 A JP2011148970 A JP 2011148970A JP 2010178798 A JP2010178798 A JP 2010178798A JP 2010178798 A JP2010178798 A JP 2010178798A JP 2011148970 A JP2011148970 A JP 2011148970A
- Authority
- JP
- Japan
- Prior art keywords
- cooling
- oil
- base oil
- equipment
- equipment cooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M105/00—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
- C10M105/02—Well-defined hydrocarbons
- C10M105/04—Well-defined hydrocarbons aliphatic
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M107/00—Lubricating compositions characterised by the base-material being a macromolecular compound
- C10M107/02—Hydrocarbon polymers; Hydrocarbon polymers modified by oxidation
- C10M107/10—Hydrocarbon polymers; Hydrocarbon polymers modified by oxidation containing aliphatic monomer having more than 4 carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M171/00—Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
- C10M171/02—Specified values of viscosity or viscosity index
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/02—Well-defined aliphatic compounds
- C10M2203/0206—Well-defined aliphatic compounds used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/06—Well-defined aromatic compounds
- C10M2203/065—Well-defined aromatic compounds used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/10—Petroleum or coal fractions, e.g. tars, solvents, bitumen
- C10M2203/102—Aliphatic fractions
- C10M2203/1025—Aliphatic fractions used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
- C10M2205/02—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
- C10M2205/028—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
- C10M2205/0285—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/283—Esters of polyhydroxy compounds
- C10M2207/2835—Esters of polyhydroxy compounds used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2020/00—Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
- C10N2020/01—Physico-chemical properties
- C10N2020/017—Specific gravity or density
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2020/00—Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
- C10N2020/01—Physico-chemical properties
- C10N2020/02—Viscosity; Viscosity index
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2020/00—Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
- C10N2020/01—Physico-chemical properties
- C10N2020/065—Saturated Compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2020/00—Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
- C10N2020/01—Physico-chemical properties
- C10N2020/067—Unsaturated Compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2020/00—Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
- C10N2020/01—Physico-chemical properties
- C10N2020/071—Branched chain compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/06—Instruments or other precision apparatus, e.g. damping fluids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/14—Electric or magnetic purposes
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/14—Electric or magnetic purposes
- C10N2040/16—Dielectric; Insulating oil or insulators
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/14—Electric or magnetic purposes
- C10N2040/17—Electric or magnetic purposes for electric contacts
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Lubricants (AREA)
Abstract
Description
本発明は、機器冷却用基油、該基油を配合してなる機器冷却油、該冷却油により冷却される機器、および該冷却油による機器冷却方法に関する。 The present invention relates to an equipment cooling base oil, equipment cooling oil obtained by blending the base oil, equipment cooled by the cooling oil, and equipment cooling method using the cooling oil.
電気自動車やハイブリッド車の高性能化によりモーターの出力密度が上がり、発熱量も増えてきている。そのため、コイルや磁石等の耐熱性の向上を図るだけではなく、モーターの高効率化による発熱量の低減など、モーター設計上も種々の工夫がなされている。
モーターの冷却法としては、大きく分けて空冷、水冷および油冷の3方式がある。これらの中で、空冷方式は、冷却媒体を特に準備する必要がないという点では優れるが、大きな冷却容量を確保することが難しい。水冷方式は、水の熱伝導率が高いので冷却性には優れるが、導電性があるためモーターコイルを直接冷却できず冷却パイプを張り巡らせる必要性が生じるので冷却装置が大きくなってしまうという問題がある。
これらの冷却方式に対し、油冷方式では、用いられる油が冷却効率に優れるとともに導電性も低いのでモーターを直接冷却できコンパクトな設計が可能となる。それ故、回転部材の潤滑も同時に必要な場合、同一パッケージ化によりモーター冷却油を兼用油として使用することも可能になる。例えば、ハイブリッド車では、変速機油を循環させてモーターの冷却を同時に行う機構が実用化されている。また、電気自動車のホイール駆動モーターでは、潤滑油を循環させて遊星歯車の潤滑とモーターコイル冷却とを兼ねる設計上の工夫もなされている。
Due to the high performance of electric and hybrid vehicles, the output density of motors has increased and the amount of heat generated has also increased. For this reason, various designs have been made in the motor design, such as not only improving the heat resistance of coils and magnets, but also reducing the amount of heat generated by increasing the efficiency of the motor.
Motor cooling methods can be broadly divided into air cooling, water cooling and oil cooling. Among these, the air cooling method is excellent in that it is not necessary to prepare a cooling medium, but it is difficult to ensure a large cooling capacity. The water-cooling method is excellent in cooling because of the high thermal conductivity of water, but because of the conductivity, the motor coil cannot be directly cooled, and the necessity to stretch the cooling pipes arises, so the cooling device becomes large There is.
In contrast to these cooling systems, the oil cooling system has excellent cooling efficiency and low electrical conductivity, so that the motor can be directly cooled and a compact design can be achieved. Therefore, if it is necessary to lubricate the rotating member at the same time, the motor cooling oil can be used as the dual-purpose oil by forming the same package. For example, in a hybrid vehicle, a mechanism for circulating a transmission oil and simultaneously cooling a motor has been put into practical use. In addition, the wheel drive motor of an electric vehicle has been devised in a design that serves as both lubrication of a planetary gear and motor coil cooling by circulating lubricating oil.
このように変速機等の潤滑とモーター冷却を同時に行う兼用油としては、例えば、低粘度の鉱物油や合成油に(A)炭化水素基含有ジチオリン酸亜鉛、(B)トリアリールホスフェート、および(C)トリアリールチオホスフェートのうち少なくともいずれかを配合してなる潤滑油組成物が提案されている(特許文献1参照)。また、尿素アダクト値が4質量%以下であり、40℃における動粘度が25mm2/s以下であり、粘度指数が100以上である潤滑油基油を用いた熱伝達係数が720W/m2・℃以上である潤滑油組成物(特許文献2参照)や、エステル系合成油を基油全量基準で10質量%以上、100質量%以下含有し、40℃における動粘度15mm2/s未満、粘度指数120以上、15℃における密度0.85g/cm3以上である潤滑油基油を用いた熱伝達係数が780W/m2・℃以上である潤滑油組成物(特許文献3参照)も同様の兼用油として提案されている。上述の各文献には、提案された潤滑油組成物は、電気絶縁性、冷却性および潤滑性に優れており、電気自動車またはハイブリッド車等の電動モーター装着車に好適に用いられるとの記載がある。 As the dual-purpose oil that simultaneously performs lubrication of the transmission and the motor cooling as described above, for example, (A) a hydrocarbon group-containing zinc dithiophosphate, (B) a triaryl phosphate, and ( C) A lubricating oil composition comprising at least one of triarylthiophosphates has been proposed (see Patent Document 1). The heat transfer coefficient using a lubricating base oil having a urea adduct value of 4% by mass or less, a kinematic viscosity at 40 ° C. of 25 mm 2 / s or less, and a viscosity index of 100 or more is 720 W / m 2. A lubricating oil composition (see Patent Document 2) having a temperature of ℃ or higher or an ester-based synthetic oil in an amount of 10% by mass to 100% by mass based on the total amount of the base oil, a kinematic viscosity at 40 ° C of less than 15 mm 2 / s, a viscosity The same applies to a lubricating oil composition (see Patent Document 3) having a heat transfer coefficient of 780 W / m 2 · ° C. or higher using a lubricating base oil having an index of 120 or higher and a density of 0.85 g / cm 3 or higher at 15 ° C. It has been proposed as a combined oil. In each of the above-mentioned documents, it is described that the proposed lubricating oil composition is excellent in electric insulation, cooling and lubricity, and can be suitably used for an electric motor-equipped vehicle such as an electric vehicle or a hybrid vehicle. is there.
しかしながら、特許文献1では、潤滑油組成物の冷却性については低粘度にすることしか触れておらず、冷却性能に関しては何のデータも開示されていない。また、実施例に基油として記載されているネオペンチルグリコール2−エチルヘキサン酸ジエステルやアルキルベンゼンは、熱伝導率が低く冷却性がよいとは言えない。また、特許文献2では、明細書段落〔0020〕に、「尿素アダクト物として・・・熱伝導性を悪化させる成分・・・が、精度よくかつ確実に捕集される」と記載されている。すなわち、尿素アダクト成分は熱伝導性を悪化させる成分であると言及しているが、実際の熱伝導性の面からは正反対であり、「パラフィン主鎖が長い成分は熱伝導性が悪い」との見解は誤りであると思われる。それ故、特許文献2に、冷却性に優れる潤滑油組成物が開示されているといえるかは疑問が残る。また、特許文献3において具体的に開示されている基油はエステル化合物であり、体積抵抗率が低いので、電気絶縁性に劣りモーター冷却油としては必ずしも好ましくない。 However, Patent Document 1 only mentions that the viscosity of the lubricating oil composition is low, and does not disclose any data regarding the cooling performance. Further, neopentyl glycol 2-ethylhexanoic acid diester and alkylbenzene described as base oils in the examples cannot be said to have low heat conductivity and good cooling properties. Patent Document 2 describes in paragraph [0020] of the specification that “as a urea adduct, a component that deteriorates thermal conductivity is collected accurately and reliably”. . That is, although the urea adduct component is mentioned as a component that deteriorates the thermal conductivity, it is the opposite from the actual thermal conductivity side, and “a component with a long paraffin main chain has poor thermal conductivity”. This view seems to be wrong. Therefore, it remains doubtful whether Patent Document 2 discloses a lubricating oil composition having excellent cooling performance. Further, the base oil specifically disclosed in Patent Document 3 is an ester compound and has a low volume resistivity, so that it is inferior in electrical insulation and not necessarily preferable as a motor cooling oil.
そこで、本発明の目的は、電気絶縁性と熱伝導性に優れる機器冷却用基油、該基油を配合してなる機器冷却油、該冷却油により冷却される機器、および該冷却油による機器冷却方法を提供することにある。 Therefore, an object of the present invention is to provide a base oil for equipment cooling excellent in electrical insulation and thermal conductivity, equipment cooling oil blended with the base oil, equipment cooled by the cooling oil, and equipment using the cooling oil It is to provide a cooling method.
流体による冷却性を示す尺度として「熱伝達係数(単位面積、単位温度、単位時間あたりの伝熱量)」があり、この値が大きいほど冷却性がよい。ただし、熱伝達係数は物性値ではなく流速や材質などの条件により変化する値なので、この値を高めるような設計上の工夫がなされている。
一方、流体側の工夫で熱伝達係数を増大させるには、ヌッセルト数、レイノルズ数およびプラントル数が関係するので、流体の物性値としては、動粘度、熱伝導率、比熱および密度が冷却性に影響する。具体的には、動粘度は小さいほど、熱伝導率、比熱および密度は大きいほど流体としての冷却性に優れる。それ故、従来は流体(潤滑油等)の低粘度化により冷却性能を上げること検討されてきた。しかしながら、潤滑油の場合、低粘度化すると冷却性能は向上するが、十分な油膜厚さを確保できず潤滑不良となる。そのため、必要最低限の限界粘度は変速機等の潤滑部分の条件により決まることになる。よって、同じ動粘度でも、熱伝導率、比熱および密度の大きい潤滑油ほど冷却性能に優れる。例えば、温度が均一な板の強制対流による熱伝達係数は、熱伝導率の3分の2乗、比熱の3分の1乗、密度の3分の1乗に比例するので熱伝導率の影響が最も大きい。
There is a “heat transfer coefficient (unit area, unit temperature, amount of heat transfer per unit time)” as a scale indicating the cooling performance by the fluid, and the larger this value, the better the cooling performance. However, since the heat transfer coefficient is not a physical property value but a value that changes depending on conditions such as a flow velocity and a material, a design device has been devised to increase this value.
On the other hand, in order to increase the heat transfer coefficient with a device on the fluid side, the Nusselt number, Reynolds number, and Prandtl number are related, so the physical properties of the fluid are kinematic viscosity, thermal conductivity, specific heat, and density. Affect. Specifically, the smaller the kinematic viscosity, the greater the thermal conductivity, specific heat, and density, and the better the cooling performance as a fluid. Therefore, conventionally, it has been studied to improve the cooling performance by reducing the viscosity of the fluid (lubricating oil or the like). However, in the case of lubricating oil, the cooling performance improves when the viscosity is lowered, but a sufficient oil film thickness cannot be secured, resulting in poor lubrication. Therefore, the necessary minimum limit viscosity is determined by the condition of the lubrication part such as a transmission. Therefore, even with the same kinematic viscosity, a lubricating oil with higher thermal conductivity, specific heat, and density has better cooling performance. For example, the heat transfer coefficient due to forced convection of a plate with uniform temperature is proportional to the thermal conductivity of 2/3, specific heat of 1/3, and density of 1/3. Is the largest.
そこで、モーター等の機器で使用される冷却油としても熱伝導率の高い基油が望まれるが、これまで基油の分子構造と熱伝導率との相関については検討された例も知見もなかった。基本的な低分子化合物については、化学便覧に載っている程度、すなわちグリセリン、エチレングリコール、メタノールなどのアルコール類の熱伝導率が高い事が知られている程度である。しかし、アルコールなどの極性化合物は体積抵抗率が低く(電気絶縁性が悪く)、モーター等の機器を直接冷却する冷却油としては全く使用できない。また潤滑油としての潤滑性も期待できない。
これに対して、本発明者は、分子設計の観点より鋭意検討を行い、所定の分子構造を有する炭化水素化合物が冷却性、電気絶縁性および潤滑性に優れることを見出した。
すなわち、本発明は以下のような機器冷却用基油、該基油を配合してなる機器冷却油、該冷却油により冷却される機器、および該冷却油による機器冷却方法を提供するものである。
Therefore, a base oil with high thermal conductivity is desired as a cooling oil used in equipment such as motors. However, there have been no studies or knowledge on the correlation between the molecular structure of the base oil and the thermal conductivity. It was. Basic low molecular weight compounds are listed in the chemical handbook, that is, are known to have high thermal conductivity of alcohols such as glycerin, ethylene glycol, and methanol. However, polar compounds such as alcohol have a low volume resistivity (poor electrical insulation) and cannot be used as a cooling oil for directly cooling devices such as motors. Also, lubricity as a lubricating oil cannot be expected.
On the other hand, the present inventor has intensively studied from the viewpoint of molecular design and found that a hydrocarbon compound having a predetermined molecular structure is excellent in cooling property, electrical insulation property and lubricity.
That is, the present invention provides the following equipment cooling base oil, equipment cooling oil obtained by blending the base oil, equipment cooled by the cooling oil, and equipment cooling method using the cooling oil. .
(1)主鎖中の末端メチル基およびメチレン基の総数が16以上であり、分子中のメチル分岐およびエチル分岐の総数が1以下である炭化水素化合物を30質量%以上含有し、40℃動粘度が4mm2/s以上、30mm2/s以下であることを特徴とする機器冷却用基油。
(2)上述の(1)に記載の機器冷却用基油において、前記主鎖中のメチレン基の総数が16以上であることを特徴とする機器冷却用基油。
(3)上述の(1)または(2)に記載の機器冷却用基油において、前記炭化水素化合物が鎖状構造であることを特徴とする機器冷却用基油。
(4)上述の(1)から(3)までのいずれか1つに記載の機器冷却用基油において、前記炭化水素化合物が飽和構造であることを特徴とする機器冷却用基油。
(5)上述の(1)から(3)までのいずれか1つに記載の機器冷却用基油において、前記炭化水素化合物が不飽和構造を有することを特徴とする機器冷却用基油。
(6)上述の(1)から(5)までのいずれか1つに記載の機器冷却用基油において、25℃における熱伝導率が0.138W/(m・K)以上であることを特徴とする機器冷却用基油。
(7)上述の(1)から(6)までのいずれか1つに記載の機器冷却用基油において、25℃における体積抵抗率が1013Ω・cm以上であることを特徴とする機器冷却用基油。
(8)上述の(1)から(7)までのいずれか1つに記載の機器冷却用基油を配合してなることを特徴とする機器冷却油。
(9)上述の(8)に記載の機器冷却油により冷却されることを特徴とする機器。
(10)上述の(9)に記載の機器が電気自動車用またはハイブリッド車用であることを特徴とする機器。
(11)上述の(9)または(10)に記載の機器がモーター、バッテリー、インバーター、エンジンおよび電池の少なくともいずれかであることを特徴とする機器。
(12)上述の(8)に記載の機器冷却油を用いることを特徴とする機器冷却方法。
(1) Contains 30% by mass or more of a hydrocarbon compound in which the total number of terminal methyl groups and methylene groups in the main chain is 16 or more, and the total number of methyl branches and ethyl branches in the molecule is 1 or less; A base oil for equipment cooling having a viscosity of 4 mm 2 / s or more and 30 mm 2 / s or less.
(2) The equipment cooling base oil as set forth in (1) above, wherein the total number of methylene groups in the main chain is 16 or more.
(3) The base oil for equipment cooling according to the above (1) or (2), wherein the hydrocarbon compound has a chain structure.
(4) The base oil for equipment cooling according to any one of (1) to (3) above, wherein the hydrocarbon compound has a saturated structure.
(5) The base oil for equipment cooling according to any one of (1) to (3) above, wherein the hydrocarbon compound has an unsaturated structure.
(6) In the equipment cooling base oil according to any one of (1) to (5) above, the thermal conductivity at 25 ° C. is 0.138 W / (m · K) or more. Equipment cooling base oil.
(7) In the equipment cooling base oil as described in any one of (1) to (6) above, the equipment has a volume resistivity at 25 ° C. of 10 13 Ω · cm or more. Base oil for use.
(8) An equipment cooling oil comprising the equipment cooling base oil according to any one of (1) to (7) above.
(9) A device that is cooled by the device cooling oil described in (8) above.
(10) The device described in (9) above is for an electric vehicle or a hybrid vehicle.
(11) The device described in (9) or (10) above is at least one of a motor, a battery, an inverter, an engine, and a battery.
(12) A device cooling method using the device cooling oil described in (8) above.
本発明の機器冷却用基油を配合してなる機器冷却油は、電気絶縁性と熱伝導性に優れるので、電気自動車やハイブリッド車等に搭載されるモーター、バッテリー、インバーター、エンジンおよび電池等の冷却用として好適である。 The equipment cooling oil obtained by blending the equipment cooling base oil of the present invention is excellent in electrical insulation and thermal conductivity, so that motors, batteries, inverters, engines, batteries, etc. mounted on electric cars, hybrid cars, etc. Suitable for cooling.
本発明の機器冷却用基油(以下、単に「基油」ともいう。)は、主鎖中の末端メチル基およびメチレン基の総数が16以上であり、分子中のメチル分岐およびエチル分岐の総数が1以下である炭化水素化合物を30質量%以上含有し、40℃動粘度が4mm2/s以上、30mm2/s以下であることを特徴とする。ここで、主鎖とは分子中で一番長い鎖状構造部分をいう。
以下に、本発明を詳細に説明する。
The base oil for equipment cooling of the present invention (hereinafter also simply referred to as “base oil”) has a total number of terminal methyl groups and methylene groups in the main chain of 16 or more, and the total number of methyl branches and ethyl branches in the molecule. Is characterized by containing 30% by mass or more of a hydrocarbon compound having an A of 1 or less and a 40 ° C. kinematic viscosity of 4 mm 2 / s or more and 30 mm 2 / s or less. Here, the main chain refers to the longest chain structure in the molecule.
The present invention is described in detail below.
液体分子による熱伝導性を向上させるためには、分子間の衝突による熱振動エネルギーの授受を良くすることと、分子内で振動エネルギーが拡散しないような構造とする分子設計が重要である。また、分子間の衝突頻度を増やすには、分子の主鎖を長くして炭素−炭素結合間の回転運動により、分子末端の可動範囲を広くすることが有効である。具体的には、分子内で振動エネルギーを拡散させずに、分子主鎖に集約されたままにするために、振動エネルギーを拡散させる短いメチル分岐、エチル分岐を少なくする。メチル基、エチル基は可動範囲も小さいので隣接分子への衝突(エネルギー授受)にも不利である。このような構造を有する分子としては、長い鎖状分子を有する炭化水素化合物が有利である。 In order to improve the thermal conductivity of liquid molecules, it is important to improve the transfer of thermal vibration energy due to collision between molecules and to design the molecule so that the vibration energy does not diffuse within the molecule. In order to increase the collision frequency between molecules, it is effective to lengthen the main chain of the molecule and widen the movable range of the molecule end by the rotational motion between carbon-carbon bonds. Specifically, short methyl branches and ethyl branches that diffuse vibrational energy are reduced so that vibrational energy is not diffused in the molecule and remains concentrated in the molecular main chain. The methyl group and ethyl group are also disadvantageous for collision (energy transfer) with adjacent molecules because of their small movable range. As the molecule having such a structure, a hydrocarbon compound having a long chain molecule is advantageous.
そこで、本発明では、主鎖中の末端メチル基およびメチレン基の総数が16以上であり、分子中のメチル分岐およびエチル分岐の総数が1以下である炭化水素化合物を、基油の主要成分として用いる。また、前記炭化水素化合物におけるメチレン基の総数は16以上であることが冷却性向上の観点より好ましい。
また、上述の炭化水素化合物は、基油としての冷却性能向上の観点より鎖状構造であることが好ましく、直鎖状であることがさらに好ましい。さらに、この炭化水素化合物は、飽和構造であっても不飽和構造であってもよい。
Therefore, in the present invention, a hydrocarbon compound in which the total number of terminal methyl groups and methylene groups in the main chain is 16 or more and the total number of methyl branches and ethyl branches in the molecule is 1 or less is used as the main component of the base oil. Use. The total number of methylene groups in the hydrocarbon compound is preferably 16 or more from the viewpoint of improving the cooling performance.
Moreover, the above-mentioned hydrocarbon compound preferably has a chain structure from the viewpoint of improving the cooling performance as a base oil, and more preferably has a linear structure. Further, the hydrocarbon compound may be a saturated structure or an unsaturated structure.
このような炭化水素化合物としては、公知のアルファオレフィンのオリゴマーをそのまま用いたり、さらに水素化して用いることができる。アルファオレフィンとしては、1−オクテン、1−デセン、1−ドデセンおよび1−テトラデセンなどが使用可能である。
オリゴマー化触媒としては、一般に使用されるBF3錯体触媒や固体酸触媒などを用いてもよいが、分岐の多い骨格異性体が生成しやすいため、目的とする構造の生成物が得られにくいおそれがある。それ故、骨格異性化が起こりにくいメタロセン錯体触媒を用いることが好ましい。
オリゴマーの水素化には、通常のスポンジニッケルやニッケル珪藻土などのニッケル触媒、パラジウム活性炭、あるいはルテニウム活性炭などの貴金属触媒等が好適である。また、担持触媒や錯体触媒など、用いる触媒の種類に制限はない。
As such a hydrocarbon compound, a known alpha olefin oligomer can be used as it is, or further hydrogenated. As the alpha olefin, 1-octene, 1-decene, 1-dodecene, 1-tetradecene and the like can be used.
As the oligomerization catalyst, a commonly used BF 3 complex catalyst, solid acid catalyst, or the like may be used. However, a branched skeletal isomer is likely to be generated, and thus a product having a target structure may not be easily obtained. There is. Therefore, it is preferable to use a metallocene complex catalyst that hardly causes skeletal isomerization.
For the oligomer hydrogenation, nickel catalysts such as ordinary sponge nickel and nickel diatomaceous earth, noble metal catalysts such as palladium activated carbon and ruthenium activated carbon are suitable. Moreover, there is no restriction | limiting in the kind of catalyst to be used, such as a supported catalyst and a complex catalyst.
本発明の基油は、上述の炭化水素化合物を30質量%以上含むが、基油としての含有量は50%以上であることが好ましく、60質量%以上であることがより好ましく、70質量%以上であることがさらに好ましく、80質量%以上であることが特に好ましい。上記の炭化水素化合物の含有量が30質量%未満であるような基油を用いると、冷却性能を十分に発揮できないおそれがある。もちろん、機器冷却用基油として本発明の基油を単独(100質量%)で用いてもよい。 The base oil of the present invention contains 30% by mass or more of the above-described hydrocarbon compound, but the content as the base oil is preferably 50% or more, more preferably 60% by mass or more, and 70% by mass. More preferably, it is more preferably 80% by mass or more. If a base oil having a content of the hydrocarbon compound of less than 30% by mass is used, the cooling performance may not be exhibited sufficiently. Of course, you may use the base oil of this invention independently (100 mass%) as a base oil for apparatus cooling.
本発明の基油は、40℃動粘度が4mm2/s以上、30mm2/s以下であり、好ましくは4mm2/s以上、20mm2/s以下である。40℃動粘度が4mm2/s未満であると、例えば、モーターと変速機等との兼用油として用いた場合に潤滑性が不足するおそれがある。一方、40℃動粘度が30mm2/sを超えると、冷却性が不足するおそれがあり、また、モーター等の冷却油としての系内循環等に支障をきたすおそれがある。 The base oil of the present invention has a kinematic viscosity at 40 ° C. of 4 mm 2 / s or more and 30 mm 2 / s or less, preferably 4 mm 2 / s or more and 20 mm 2 / s or less. When the 40 ° C. kinematic viscosity is less than 4 mm 2 / s, for example, when used as a combined oil for a motor and a transmission, the lubricity may be insufficient. On the other hand, if the 40 ° C. kinematic viscosity exceeds 30 mm 2 / s, the cooling performance may be insufficient, and there may be a problem in the system circulation as cooling oil for motors and the like.
本発明の基油は、25℃における熱伝導率が0.138W/(m・K)以上であることが冷却性の点で好ましく、より好ましくは、0.139W/(m・K)以上である。
また、本発明の基油は、25℃における体積抵抗率が1013Ω・cm以上であることが絶縁性の観点より好ましく、より好ましくは1014Ω・cm以上である。
The base oil of the present invention preferably has a thermal conductivity at 25 ° C. of 0.138 W / (m · K) or more from the viewpoint of cooling properties, more preferably 0.139 W / (m · K) or more. is there.
In addition, the base oil of the present invention preferably has a volume resistivity at 25 ° C. of 10 13 Ω · cm or more from the viewpoint of insulation, and more preferably 10 14 Ω · cm or more.
本発明の基油としては、上述の炭化水素化合物に他の成分(基油)を混合して使用することもできる。その場合、他の成分の種類としては特に制限はないが、上述した粘度範囲を損なわず、さらに冷却性、絶縁性および潤滑性を損なわない成分を、本発明の効果を損なわない程度に混合する必要がある。
このような他の成分としては、鉱油あるいは合成油が好ましく挙げられる。鉱油としては、例えばナフテン系鉱油、パラフィン系鉱油、GTL鉱油 WAX異性化鉱油などが挙げられる。具体的には、溶剤精製あるいは水添精製による軽質ニュートラル油、中質ニュートラル油、重質ニュートラル油、ブライトストックなどが例示できる。
一方、合成油としては、ポリブテンまたはその水素化物、ポリα−オレフィン(1−オクテンオリゴマー、1−デセンオリゴマー等)またはその水素化物、α−オレフィンコポリマー、アルキルベンゼン、ポリオールエステル、二塩基酸エステル、ポリオキシアルキレングリコール、ポリオキシアルキレングリコールエステル、ポリオキシアルキレングリコールエーテル、ヒンダードエステル、シリコーンオイルなどが挙げられる。
As the base oil of the present invention, other components (base oils) can be mixed with the above-described hydrocarbon compounds. In that case, there are no particular limitations on the types of other components, but components that do not impair the above-described viscosity range and that do not impair the cooling performance, insulating properties, and lubricity are mixed to such an extent that the effects of the present invention are not impaired. There is a need.
Preferred examples of such other components include mineral oil and synthetic oil. Examples of the mineral oil include naphthenic mineral oil, paraffinic mineral oil, GTL mineral oil, WAX isomerized mineral oil, and the like. Specific examples include light neutral oil, medium neutral oil, heavy neutral oil, bright stock and the like by solvent refining or hydrogenation refining.
On the other hand, synthetic oils include polybutene or its hydride, poly α-olefin (1-octene oligomer, 1-decene oligomer, etc.) or its hydride, α-olefin copolymer, alkylbenzene, polyol ester, dibasic acid ester, poly Examples thereof include oxyalkylene glycol, polyoxyalkylene glycol ester, polyoxyalkylene glycol ether, hindered ester, and silicone oil.
上述した本発明の基油からなる機器冷却油は、電気自動車やハイブリッド車等のモーター、バッテリー、インバーター、エンジンおよび電池等の冷却用として好適に使用できる。また、基油の40℃粘度も所定の範囲にあるので、潤滑性にも優れており、遊星歯車や変速機等の潤滑も行う兼用油としても好ましい。
なお、本発明の機器冷却油に対しては、本発明の目的を阻害しない範囲で種々の添加剤を配合することができる。例えば、粘度指数向上剤、酸化防止剤、清浄分散剤、摩擦調整剤(油性剤、極圧剤)、耐摩耗剤、金属不活性化剤、流動点降下剤、および消泡剤などを必要に応じて配合することができる。ただし、機器冷却油を兼用油として用いる場合は、電気絶縁性を損なわずに潤滑性能を発揮させるような配合処方とするよう留意すべきである。それ故、機器冷却油として、25℃における熱伝導率が0.138W/(m・K)以上であり、25℃における体積抵抗率が1013Ω・cm以上であって、さらに40℃動粘度も4mm2/s以上、30mm2/s以下であるように配合処方を決定することが望ましい。
The above-described equipment cooling oil comprising the base oil of the present invention can be suitably used for cooling motors, batteries, inverters, engines, batteries, and the like of electric vehicles and hybrid vehicles. Further, since the 40 ° C. viscosity of the base oil is also in a predetermined range, it is excellent in lubricity and is preferable as a dual-purpose oil that also lubricates planetary gears, transmissions, and the like.
In addition, various additives can be mix | blended with the apparatus cooling oil of this invention in the range which does not inhibit the objective of this invention. For example, viscosity index improvers, antioxidants, detergent dispersants, friction modifiers (oiliness agents, extreme pressure agents), antiwear agents, metal deactivators, pour point depressants, and antifoaming agents are required It can be blended accordingly. However, when equipment cooling oil is used as a dual-purpose oil, care should be taken so as to have a blended formulation that exhibits lubricating performance without impairing electrical insulation. Therefore, as equipment cooling oil, the thermal conductivity at 25 ° C. is 0.138 W / (m · K) or more, the volume resistivity at 25 ° C. is 10 13 Ω · cm or more, and the kinematic viscosity at 40 ° C. It is desirable that the formulation is determined so that it is 4 mm 2 / s or more and 30 mm 2 / s or less.
粘度指数向上剤としては、例えば、非分散型ポリメタクリレート、分散型ポリメタクリレート、オレフィン系共重合体(例えば、エチレン−プロピレン共重合体など)、分散型オレフィン系共重合体、スチレン系共重合体(例えば、スチレン−ジエン水素化共重合体など)などが挙げられる。これら粘度指数向上剤の質量平均分子量は、例えば分散型および非分散型ポリメタクリレートでは5千以上、30万以下が好ましい。また、オレフィン系共重合体では800以上、10万以下程度が好ましい。これらの粘度指数向上剤は、単独でまたは複数種を任意に組合せて配合させることができるが、その配合量は、冷却油全量基準で0.1質量%以上、20質量%以下の範囲が好ましい。 Examples of the viscosity index improver include non-dispersed polymethacrylates, dispersed polymethacrylates, olefin copolymers (for example, ethylene-propylene copolymers), dispersed olefin copolymers, styrene copolymers. (For example, styrene-diene hydrogenated copolymer). The mass average molecular weight of these viscosity index improvers is preferably 5,000 or more and 300,000 or less for, for example, dispersed and non-dispersed polymethacrylates. In the case of an olefin copolymer, about 800 or more and 100,000 or less are preferable. These viscosity index improvers can be blended singly or in any combination, but the blending amount is preferably in the range of 0.1% by mass or more and 20% by mass or less based on the total amount of cooling oil. .
酸化防止剤としては、アルキル化ジフェニルアミン、フェニル−α−ナフチルアミン、アルキル化フェニル−α−ナフチルアミン等のアミン系酸化防止剤、2,6−ジ−t−ブチルフェノール、4,4’−メチレンビス(2,6−ジ−t−ブチルフェノール)、イソオクチル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、n−オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート等のフェノール系酸化防止剤、ジラウリル−3,3’−チオジプロピオネイト等の硫黄系酸化防止剤、ホスファイト等のリン系酸化防止剤、さらにモリブデン系酸化防止剤が挙げられる。これらの酸化防止剤は単独でまたは複数種を任意に組合せて含有させることができるが、通常2種以上の組み合わせが好ましく、その配合量は、冷却油全量基準で0.01質量%以上、5質量%以下が好ましい。 Antioxidants include amine-based antioxidants such as alkylated diphenylamine, phenyl-α-naphthylamine, alkylated phenyl-α-naphthylamine, 2,6-di-t-butylphenol, 4,4′-methylenebis (2, 6-di-t-butylphenol), isooctyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, n-octadecyl-3- (3,5-di-t-butyl-4- Phenol-based antioxidants such as hydroxyphenyl) propionate, sulfur-based antioxidants such as dilauryl-3,3'-thiodipropionate, phosphorus-based antioxidants such as phosphite, and molybdenum-based antioxidants. . These antioxidants can be contained alone or in any combination of two or more, but usually two or more combinations are preferable, and the blending amount is 0.01% by mass or more based on the total amount of the cooling oil. The mass% or less is preferable.
清浄分散剤としては、アルカリ土類金属スルホネート、アルカリ土類金属フェネート、アルカリ土類金属サリチレート、アルカリ土類金属ホスホネート等の金属系洗浄剤、並びにアルケニルコハク酸イミド、ベンジルアミン、アルキルポリアミン、アルケニルコハク酸エステル等の無灰系分散剤が挙げられる。これらの清浄分散剤は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。その配合量は、冷却油全量基準で、0.1質量%以上、30質量%以下が好ましい。 Examples of cleaning dispersants include metal detergents such as alkaline earth metal sulfonates, alkaline earth metal phenates, alkaline earth metal salicylates, alkaline earth metal phosphonates, alkenyl succinimides, benzyl amines, alkyl polyamines, alkenyl succinates. Examples include ashless dispersants such as acid esters. These detergent dispersants may be used alone or in combination of two or more. The blending amount is preferably 0.1% by mass or more and 30% by mass or less based on the total amount of cooling oil.
摩擦調整剤や耐摩耗剤としては、例えば硫化オレフィン、ジアルキルポリスルフィド、ジアリールアルキルポリスルフィド、ジアリールポリスルフィドなどの硫黄系化合物、リン酸エステル、チオリン酸エステル、亜リン酸エステル、アルキルハイドロゲンホスファイト、リン酸エステルアミン塩、亜リン酸エステルアミン塩などのリン系化合物、塩素化油脂、塩素化パラフィン、塩素化脂肪酸エステル、塩素化脂肪酸などの塩素系化合物、アルキル若しくはアルケニルマレイン酸エステル、アルキル若しくはアルケニルコハク酸エステルなどのエステル系化合物、アルキル若しくはアルケニルマレイン酸、アルキル若しくはアルケニルコハク酸などの有機酸系化合物、ナフテン酸塩、ジチオリン酸亜鉛(ZnDTP)、ジチオカルバミン酸亜鉛(ZnDTC)、硫化オキシモリブデンオルガノホスホロジチオエート(MoDTP)、硫化オキシモリブデンジチオカルバメート(MoDTC)などの有機金属系化合物などが挙げられる。その配合量は、冷却油全量基準で0.1質量%以上、5質量%以下が好ましい。 Examples of friction modifiers and antiwear agents include sulfur compounds such as sulfurized olefins, dialkyl polysulfides, diarylalkyl polysulfides, diaryl polysulfides, phosphate esters, thiophosphate esters, phosphite esters, alkyl hydrogen phosphites, phosphate esters. Phosphorus compounds such as amine salts and phosphite amine salts, chlorinated oils and fats, chlorinated paraffins, chlorinated fatty acid esters, chlorinated fatty acid and other chlorinated compounds, alkyl or alkenyl maleic acid esters, alkyl or alkenyl succinic acid esters Ester compounds such as alkyl or alkenyl maleic acid, organic acid compounds such as alkyl or alkenyl succinic acid, naphthenate, zinc dithiophosphate (ZnDTP), dithiocarbamic acid Lead (ZnDTC), sulfurized oxymolybdenum organo phosphorodithioate (MoDTP), and an organic metal-based compounds such as sulfurized oxymolybdenum dithiocarbamate (MoDTC). The blending amount is preferably 0.1% by mass or more and 5% by mass or less based on the total amount of cooling oil.
金属不活性化剤としては、ベンゾトリアゾール、トリアゾール誘導体、ベンゾトリアゾール誘導体、チアジアゾール誘導体等が挙げられ、その配合量は、冷却油全量基準で0.01質量%以下、3質量%以下が好ましい。
流動点降下剤としては、例えばエチレン−酢酸ビニル共重合体、塩素化パラフィンとナフタレンとの縮合物、塩素化パラフィンとフェノールとの縮合物、ポリメタクリレート、ポリアルキルスチレン等が挙げられ、特に、ポリメタクリレートが好ましく用いられる。これらの配合量は、冷却油全量基準で0.01質量%以上、5質量%以下が好ましい。
消泡剤としては、液状シリコーンが適しており、例えば、メチルシリコーン、フルオロシリコーン、ポリアクリレートなどが好適である。これら消泡剤の好ましい配合量は、冷却油全量基準で0.0005質量%以上、0.01質量%以下である。
Examples of the metal deactivator include benzotriazole, triazole derivatives, benzotriazole derivatives, thiadiazole derivatives, and the like, and the blending amount is preferably 0.01% by mass or less and 3% by mass or less based on the total amount of the cooling oil.
Examples of the pour point depressant include ethylene-vinyl acetate copolymer, condensate of chlorinated paraffin and naphthalene, condensate of chlorinated paraffin and phenol, polymethacrylate, polyalkylstyrene, etc. Methacrylate is preferably used. These blending amounts are preferably 0.01% by mass or more and 5% by mass or less based on the total amount of the cooling oil.
As the antifoaming agent, liquid silicone is suitable, for example, methyl silicone, fluorosilicone, polyacrylate and the like are suitable. A preferable blending amount of these antifoaming agents is 0.0005% by mass or more and 0.01% by mass or less based on the total amount of cooling oil.
次に、本発明を実施例によりさらに詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。
具体的には、表1に示すような各基油を調製して、各種の評価を行った。基油の調製方法および評価方法(物性測定方法)は以下の通りである。
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples.
Specifically, various base oils as shown in Table 1 were prepared and subjected to various evaluations. The base oil preparation method and evaluation method (physical property measurement method) are as follows.
〔実施例1〕
メタロセン触媒で製造した1−デセン二量体(出光興産(株)製 商品名:リニアレンダイマー A−20)について各種の物性(熱伝導率、動粘度、密度、体積抵抗率)を測定した。
[Example 1]
Various physical properties (thermal conductivity, kinematic viscosity, density, volume resistivity) of 1-decene dimer (product name: Linear Ren Dimer A-20, manufactured by Idemitsu Kosan Co., Ltd.) produced with a metallocene catalyst were measured.
〔実施例2〕
メタロセン触媒で製造した1−デセン二量体水素化物(出光興産(株)製 商品名:リニアレンPAO A−20H)について各種の物性(熱伝導率、動粘度、密度、体積抵抗率、引火点)を測定した。なお、図1に、ガスクロマトグラムを示す。高純度の単一組成物であることが分る。
[Example 2]
Various physical properties (thermal conductivity, kinematic viscosity, density, volume resistivity, flash point) of 1-decene dimer hydride manufactured by metallocene catalyst (trade name: Linearlene PAO A-20H manufactured by Idemitsu Kosan Co., Ltd.) Was measured. FIG. 1 shows a gas chromatogram. It turns out that it is a single composition of high purity.
〔実施例3〕
メタロセン触媒で製造した1−デセン二量体水素化物(出光興産(株)製 商品名:リニアレンPAO A−20H)と1−デセン三量体水素化物(出光興産(株)製 商品名:リニアレンPAO A−30H)を28/72の質量比で混合し、各種の物性(熱伝導率、動粘度、粘度指数、密度、体積抵抗率)を測定した。前記した三量体水素化物は主鎖中の末端メチル基およびメチレン基の総数が19、メチル分岐およびエチル分岐基の総数は1であり、前記した二量体水素化物は主鎖中の末端メチル基およびメチレン基総数が18、メチル分岐およびエチル分岐基の総数は1である。
Example 3
1-decene dimer hydride manufactured by metallocene catalyst (trade name: Linearlene PAO A-20H manufactured by Idemitsu Kosan Co., Ltd.) and 1-decene dimer hydride (trade name: Linearlene PAO manufactured by Idemitsu Kosan Co., Ltd.) A-30H) was mixed at a mass ratio of 28/72, and various physical properties (thermal conductivity, kinematic viscosity, viscosity index, density, volume resistivity) were measured. The above-mentioned trimer hydride has a total number of terminal methyl groups and methylene groups in the main chain of 19 and a total number of methyl branch and ethyl branch groups of 1, and the dimer hydride has a terminal methyl group in the main chain. The total number of groups and methylene groups is 18, and the total number of methyl and ethyl branches is 1.
〔比較例1〕
市販ポリアルファオレフィン(INEOS社製 商品名;Durasyn 162)について各種の物性(熱伝導率、動粘度、密度、体積抵抗率、引火点)を測定した。なお、図2にガスクロマトグラムを示す。
[Comparative Example 1]
Various properties (thermal conductivity, kinematic viscosity, density, volume resistivity, flash point) of a commercially available polyalphaolefin (trade name: Durasyn 162, manufactured by INEOS) were measured. FIG. 2 shows a gas chromatogram.
〔比較例2〕
グループII精製鉱油(出光興産(株)製)について各種の物性(熱伝導率、動粘度、粘度指数、密度、体積抵抗率)を測定した。
[Comparative Example 2]
Various physical properties (thermal conductivity, kinematic viscosity, viscosity index, density, volume resistivity) of Group II refined mineral oil (manufactured by Idemitsu Kosan Co., Ltd.) were measured.
〔比較例3〕
ソフト型ドデシルベンゼン(東京化成工業株式会社製 試薬)について、各種の物性(熱伝導率、動粘度、密度、体積抵抗率)を測定した。
[Comparative Example 3]
Various properties (thermal conductivity, kinematic viscosity, density, volume resistivity) of soft-type dodecylbenzene (reagent manufactured by Tokyo Chemical Industry Co., Ltd.) were measured.
〔比較例4〕
n−ドデカン(東京化成工業株式会社製 試薬)について、各種の物性(熱伝導率、動粘度、密度、体積抵抗率)を測定した。
[Comparative Example 4]
Various properties (thermal conductivity, kinematic viscosity, density, volume resistivity) of n-dodecane (a reagent manufactured by Tokyo Chemical Industry Co., Ltd.) were measured.
〔比較例5〕
500ミリリットルのDean-Stark装置付き四つ口フラスコに2−エチルヘキサン酸(東京化成工業株式会社製 試薬)173g、ネオペンチルグリコール(東京化成工業株式会社製 試薬)52g、チタンテトライソプロポキシド(東京化成工業株式会社製 試薬)0.1g、キシレン(東京化成工業株式会社製 試薬)100ccを入れ,窒素気流攪拌下に水を留去しながら160℃で4時間反応させた。その後、飽和食塩水洗浄、0.1規定水酸化ナトリウム水溶液洗浄を各3回行った後、無水硫酸マグネシウムで乾燥させた。硫酸マグネシウムを濾過した後、減圧下に未反応2−エチルヘキサン酸を留去して、2−エチルヘキサン酸のネオペンチルグリコールジエステル155gを得た。この化合物について、各種の物性(熱伝導率、動粘度、粘度指数、密度、体積抵抗率)を測定した。
[Comparative Example 5]
In a 500 ml four-necked flask equipped with a Dean-Stark apparatus, 173 g of 2-ethylhexanoic acid (reagent manufactured by Tokyo Chemical Industry Co., Ltd.), 52 g of neopentyl glycol (reagent manufactured by Tokyo Chemical Industry Co., Ltd.), titanium tetraisopropoxide (Tokyo) (Reagent manufactured by Kasei Kogyo Co., Ltd.) 0.1 g and 100 cc of xylene (reagent manufactured by Tokyo Kasei Kogyo Co., Ltd.) were added and reacted at 160 ° C. for 4 hours while distilling off water while stirring with a nitrogen stream. Thereafter, washing with a saturated saline solution and washing with a 0.1 N aqueous sodium hydroxide solution were performed three times each, followed by drying over anhydrous magnesium sulfate. After filtering the magnesium sulfate, unreacted 2-ethylhexanoic acid was distilled off under reduced pressure to obtain 155 g of neopentyl glycol diester of 2-ethylhexanoic acid. Various physical properties (thermal conductivity, kinematic viscosity, viscosity index, density, volume resistivity) of this compound were measured.
〔物性測定方法〕
(1)熱伝導率
デカゴン社製 熱特性計KD2proを用い、シングルニードルセンサーにて室温(25℃)で測定した。
[Method of measuring physical properties]
(1) Thermal conductivity It measured at room temperature (25 degreeC) with the single needle sensor using the thermal characteristic meter KD2pro by a Decagon company.
(2)体積抵抗率
JIS C 2101の24(体積抵抗率試験)に準拠し,室温(25℃)で測定した。
(3)動粘度
JIS K 2283に規定される「石油製品動粘度試験方法」に準拠して測定した。
(4)粘度指数
JIS K 2283に規定される「石油製品動粘度試験方法」に準拠して測定した。
(5)密度
JIS K2249「原油および石油製品−密度試験方法」に準拠して測定した。
(6)引火点
JIS K2265に準拠し、C.O.C法により測定した。
(7)主鎖中の末端メチル基とメチレン基の総数、および分子中のメチル分岐とエチル分岐の総数
JEOL製AL−400型NMRを用い、該当する官能基に起因するプロトンシグナルの積分強度から求めた。
(2) Volume resistivity Measured at room temperature (25 ° C.) in accordance with 24 (volume resistivity test) of JIS C 2101.
(3) Kinematic viscosity It measured based on the "petroleum product kinematic viscosity test method" prescribed | regulated to JISK2283.
(4) Viscosity index It measured based on the "petroleum product kinematic viscosity test method" prescribed | regulated to JISK2283.
(5) Density Density was measured according to JIS K2249 “Crude oil and petroleum products—Density test method”.
(6) Flash point In accordance with JIS K2265, C.I. O. It was measured by C method.
(7) The total number of terminal methyl groups and methylene groups in the main chain, and the total number of methyl branches and ethyl branches in the molecule. Asked.
〔評価結果〕
表1の結果からわかるように、実施例1から3までに示される本発明の基油(化合物)は、いずれも主鎖中の末端メチル基およびメチレン基の総数が16以上であり、分子中のメチル分岐およびエチル分岐の総数が1以下であるので、熱伝導性(冷却性)および電気絶縁性の双方に優れる。さらに、動粘度も所定の範囲内であるので潤滑性能にも優れる。それ故、本発明の基油を用いた冷却油は、電気自動車やハイブリッド車用のモーター、バッテリー、インバーター、エンジンおよび電池等の冷却用として、さらに変速機等の潤滑も兼ねた兼用油としても好適であることが理解できる。
一方、比較例1は、市販のPAOを用いた場合であるが、図1からもわかるように異性体が多く、1H−NMRから求めたメチル分岐とエチル分岐の総数も多いため、熱伝導性に劣り、また引火点も低い。比較例2は、精製鉱油を用いた場合であるが、多数の混合物のため、熱伝導性に劣る。比較例3は、ソフト型ドデシルベンゼンを用いた場合であるが、多数の異性体混合物であり、主鎖が短く、分子中のメチル分岐とエチル分岐の総数も多いため熱伝導性に劣る。比較例4は、n−ドデカンを用いた場合であるが、メチル分岐やエチル分岐は無いものの、主鎖が短いため熱伝導性に劣る。比較例5は、多価アルコールのエステルであるが、分子中のメチル分岐とエチル分岐の総数が多いため熱伝導性に劣る。また、電気絶縁性にも劣る。ちなみに、比較例1、3、5において使用した基油(化合物)は、いずれも先行技術として挙げた特許文献1の実施例で用いられた基油である。
〔Evaluation results〕
As can be seen from the results in Table 1, the base oils (compounds) of the present invention shown in Examples 1 to 3 each have a total number of terminal methyl groups and methylene groups in the main chain of 16 or more. Since the total number of methyl branches and ethyl branches is 1 or less, both thermal conductivity (coolability) and electrical insulation are excellent. Furthermore, since the kinematic viscosity is within a predetermined range, the lubricating performance is excellent. Therefore, the cooling oil using the base oil of the present invention can be used for cooling motors, batteries, inverters, engines and batteries for electric vehicles and hybrid vehicles, and also as a combined oil that also serves as lubrication for transmissions, etc. It can be understood that it is preferable.
On the other hand, Comparative Example 1 is a case where commercially available PAO is used, but as shown in FIG. 1, there are many isomers, and the total number of methyl branches and ethyl branches determined from 1 H-NMR is also large. It is inferior in nature and has a low flash point. Although the comparative example 2 is a case where refined mineral oil is used, since it is many mixtures, it is inferior to thermal conductivity. Comparative Example 3 is a case where soft-type dodecylbenzene is used, but it is a mixture of many isomers, has a short main chain, and has a large total number of methyl branches and ethyl branches in the molecule, and is inferior in thermal conductivity. Although the comparative example 4 is a case where n-dodecane is used, although there is no methyl branch and ethyl branch, since the main chain is short, it is inferior to thermal conductivity. Comparative Example 5 is an ester of a polyhydric alcohol, but is inferior in thermal conductivity because the total number of methyl branches and ethyl branches in the molecule is large. Moreover, it is inferior also in electrical insulation. Incidentally, the base oils (compounds) used in Comparative Examples 1, 3, and 5 are all base oils used in the examples of Patent Document 1 cited as the prior art.
Claims (12)
40℃動粘度が4mm2/s以上、30mm2/s以下である
ことを特徴とする機器冷却用基油。 Containing 30% by mass or more of a hydrocarbon compound in which the total number of terminal methyl groups and methylene groups in the main chain is 16 or more and the total number of methyl branches and ethyl branches in the molecule is 1 or less;
40 ° C. kinematic viscosity 4 mm 2 / s or more, equipment cooling base oil, characterized in that at most 30 mm 2 / s.
前記主鎖中のメチレン基の総数が16以上である
ことを特徴とする機器冷却用基油。 In the base oil for equipment cooling according to claim 1,
The total number of methylene groups in the main chain is 16 or more.
前記炭化水素化合物が鎖状構造である
ことを特徴とする機器冷却用基油。 In the base oil for apparatus cooling of Claim 1 or Claim 2,
The hydrocarbon base oil for equipment cooling, wherein the hydrocarbon compound has a chain structure.
前記炭化水素化合物が飽和構造である
ことを特徴とする機器冷却用基油。 In the base oil for apparatus cooling of any one of Claim 1- Claim 3,
A base oil for equipment cooling, wherein the hydrocarbon compound has a saturated structure.
前記炭化水素化合物が不飽和構造を有する
ことを特徴とする機器冷却用基油。 In the base oil for apparatus cooling of any one of Claim 1- Claim 3,
A base oil for equipment cooling, wherein the hydrocarbon compound has an unsaturated structure.
25℃における熱伝導率が0.138W/(m・K)以上である
ことを特徴とする機器冷却用基油。 In the base oil for apparatus cooling of any one of Claim 1- Claim 5,
A base oil for equipment cooling having a thermal conductivity at 25 ° C of 0.138 W / (m · K) or more.
25℃における体積抵抗率が1013Ω・cm以上である
ことを特徴とする機器冷却用基油。 In the base oil for apparatus cooling of any one of Claim 1- Claim 6,
The volume resistivity at 25 ° C. is 10 13 Ω · cm or more.
ことを特徴とする機器冷却油。 An equipment cooling oil comprising the equipment cooling base oil according to any one of claims 1 to 7.
ことを特徴とする機器。 The equipment is cooled by the equipment cooling oil according to claim 8.
ことを特徴とする機器。 The device according to claim 9 is for an electric vehicle or a hybrid vehicle.
ことを特徴とする機器。 The device according to claim 9 or 10 is at least one of a motor, a battery, an inverter, an engine, and a battery.
ことを特徴とする機器冷却方法。 The equipment cooling oil according to claim 8 is used. The equipment cooling method characterized by things.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010178798A JP2011148970A (en) | 2009-12-24 | 2010-08-09 | Base oil for cooling device, device-cooling oil obtained through blending of the base oil, device to be cooled by the cooling oil, and device cooling method using the cooling oil |
CN2010800593806A CN102666815A (en) | 2009-12-24 | 2010-11-05 | Base oil for cooling machine, machine cooling oil obtained by mixing the base oil, machine cooled by the cooling oil, and method for cooling machine using the cooling oil |
KR1020127019414A KR20120108027A (en) | 2009-12-24 | 2010-11-05 | Base oil for cooling device, device-cooling oil containing the base oil, device to be cooled by the cooling oil, and device cooling method using the cooling oil |
EP10839075.8A EP2518131A4 (en) | 2009-12-24 | 2010-11-05 | Base oil for cooling device, device-cooling oil containing the base oil, device to be cooled by the cooling oil, and device cooling method using the cooling oil |
PCT/JP2010/069664 WO2011077839A1 (en) | 2009-12-24 | 2010-11-05 | Base oil for cooling device, device-cooling oil containing the base oil, device to be cooled by the cooling oil, and device cooling method using the cooling oil |
US13/517,385 US20120264661A1 (en) | 2009-12-24 | 2010-11-05 | Base oil for cooling device, device-cooling oil containing the base oil, device to be cooled by the cooling oil, and device cooling method using the cooling oil |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009291778 | 2009-12-24 | ||
JP2009291778 | 2009-12-24 | ||
JP2010178798A JP2011148970A (en) | 2009-12-24 | 2010-08-09 | Base oil for cooling device, device-cooling oil obtained through blending of the base oil, device to be cooled by the cooling oil, and device cooling method using the cooling oil |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011148970A true JP2011148970A (en) | 2011-08-04 |
Family
ID=44195384
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010178798A Pending JP2011148970A (en) | 2009-12-24 | 2010-08-09 | Base oil for cooling device, device-cooling oil obtained through blending of the base oil, device to be cooled by the cooling oil, and device cooling method using the cooling oil |
Country Status (6)
Country | Link |
---|---|
US (1) | US20120264661A1 (en) |
EP (1) | EP2518131A4 (en) |
JP (1) | JP2011148970A (en) |
KR (1) | KR20120108027A (en) |
CN (1) | CN102666815A (en) |
WO (1) | WO2011077839A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014157384A1 (en) | 2013-03-29 | 2014-10-02 | Jx日鉱日石エネルギー株式会社 | Lubricating-oil base oil, method for producing same, and electrically insulating oil |
WO2016157960A1 (en) * | 2015-03-31 | 2016-10-06 | 出光興産株式会社 | Transmission lubricating oil composition |
JP2016194002A (en) * | 2015-03-31 | 2016-11-17 | 出光興産株式会社 | Lubricant composition for electric vehicle or hybrid vehicle |
JP2018519394A (en) * | 2015-06-29 | 2018-07-19 | トータル マーケティング サービス | Low viscosity lubricating polyolefin |
JP2020511554A (en) * | 2016-10-27 | 2020-04-16 | トータル・マーケティング・サービシーズ | Use of biodegradable hydrocarbon fluids in electric vehicles |
JP2021500463A (en) * | 2017-10-20 | 2021-01-07 | トタル マーケティング セルヴィス | Composition for cooling and lubricating the vehicle drive system |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150089464A (en) * | 2014-01-28 | 2015-08-05 | 주식회사 엘지화학 | Battery module |
CN107429339B (en) | 2015-03-27 | 2020-03-17 | 杰富意钢铁株式会社 | High-strength steel and method for producing same, and steel pipe and method for producing same |
FR3037968A1 (en) * | 2015-06-29 | 2016-12-30 | Total Marketing Services | POLYOLEFINS AS SPECIAL FLUID |
US20180100115A1 (en) * | 2016-10-07 | 2018-04-12 | Exxonmobil Research And Engineering Company | High conductivity lubricating oils for electric and hybrid vehicles |
FR3075888A1 (en) * | 2017-12-21 | 2019-06-28 | Ksb Sas | MOTOR PUMP GROUP FILLED WITH OIL |
FR3083244B1 (en) * | 2018-07-02 | 2020-07-17 | Total Marketing Services | COMPOSITION FOR COOLING AND LUBRICATING A PROPULSION SYSTEM OF AN ELECTRIC OR HYBRID VEHICLE |
FR3088073B1 (en) | 2018-11-05 | 2021-07-23 | Total Marketing Services | USE OF A DIESTER TO IMPROVE THE ANTI-WEAR PROPERTIES OF A LUBRICANT COMPOSITION |
KR102115676B1 (en) * | 2018-12-28 | 2020-05-27 | 대림산업 주식회사 | Alphaolefin oligomer having a uniform structure and preparation method thereof |
FR3093729A1 (en) * | 2019-03-13 | 2020-09-18 | Total Marketing Services | Use of an ester in a cooling composition |
EP4231413A3 (en) | 2019-06-12 | 2023-12-06 | The Lubrizol Corporation | Organic heat transfer system, method and fluid |
WO2022019333A1 (en) * | 2020-07-22 | 2022-01-27 | 出光興産株式会社 | Lubricating oil composition |
JP7555808B2 (en) | 2020-12-11 | 2024-09-25 | Eneos株式会社 | Cooling liquid composition |
US11753599B2 (en) | 2021-06-04 | 2023-09-12 | Afton Chemical Corporation | Lubricating compositions for a hybrid engine |
EP4448701A1 (en) * | 2021-12-16 | 2024-10-23 | The Lubrizol Corporation | Organic heat transfer system, method and fluid |
JP2024082099A (en) * | 2022-12-07 | 2024-06-19 | 出光興産株式会社 | Lubricating oil composition and circulation system using lubricating oil composition |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04226511A (en) * | 1990-07-19 | 1992-08-17 | Ethyl Corp | Method for forming oligomer of olefin, and use of the product and dimer product thereby obtained |
JPH07507077A (en) * | 1992-02-06 | 1995-08-03 | ビーピー・コーポレーシヨン・ノース・アメリカ・インコーポレーテツド | Synthetic lubricant composition containing α-olefin dimer |
WO2002097017A1 (en) * | 2001-05-28 | 2002-12-05 | Nissan Motor Co., Ltd. | Transmission oil composition for automobile |
WO2007026646A1 (en) * | 2005-08-31 | 2007-03-08 | Idemitsu Kosan Co., Ltd. | Refrigerator oil composition |
JP2007137951A (en) * | 2005-11-15 | 2007-06-07 | Idemitsu Kosan Co Ltd | Lubricating oil composition, bearing oil, and bearing using the same |
JP2007137952A (en) * | 2005-11-15 | 2007-06-07 | Idemitsu Kosan Co Ltd | Lubricating oil composition for internal combustion engine |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5171905A (en) * | 1990-07-19 | 1992-12-15 | Ethyl Corporation | Olefin dimer products |
JP4806176B2 (en) * | 2004-09-03 | 2011-11-02 | 出光興産株式会社 | Internal olefin composition and petroleum drilling base oil containing the composition |
US8268762B2 (en) * | 2005-11-15 | 2012-09-18 | Idemitsu Kosan Co., Ltd. | Transmission fluid composition |
JP2009161604A (en) * | 2007-12-28 | 2009-07-23 | Nippon Oil Corp | Automotive transmission oil composition |
JP5647389B2 (en) * | 2008-03-31 | 2014-12-24 | Jx日鉱日石エネルギー株式会社 | Transmission oil composition for automobiles |
-
2010
- 2010-08-09 JP JP2010178798A patent/JP2011148970A/en active Pending
- 2010-11-05 KR KR1020127019414A patent/KR20120108027A/en not_active Application Discontinuation
- 2010-11-05 US US13/517,385 patent/US20120264661A1/en not_active Abandoned
- 2010-11-05 CN CN2010800593806A patent/CN102666815A/en active Pending
- 2010-11-05 WO PCT/JP2010/069664 patent/WO2011077839A1/en active Application Filing
- 2010-11-05 EP EP10839075.8A patent/EP2518131A4/en not_active Withdrawn
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04226511A (en) * | 1990-07-19 | 1992-08-17 | Ethyl Corp | Method for forming oligomer of olefin, and use of the product and dimer product thereby obtained |
JPH07507077A (en) * | 1992-02-06 | 1995-08-03 | ビーピー・コーポレーシヨン・ノース・アメリカ・インコーポレーテツド | Synthetic lubricant composition containing α-olefin dimer |
WO2002097017A1 (en) * | 2001-05-28 | 2002-12-05 | Nissan Motor Co., Ltd. | Transmission oil composition for automobile |
WO2007026646A1 (en) * | 2005-08-31 | 2007-03-08 | Idemitsu Kosan Co., Ltd. | Refrigerator oil composition |
JP2007137951A (en) * | 2005-11-15 | 2007-06-07 | Idemitsu Kosan Co Ltd | Lubricating oil composition, bearing oil, and bearing using the same |
JP2007137952A (en) * | 2005-11-15 | 2007-06-07 | Idemitsu Kosan Co Ltd | Lubricating oil composition for internal combustion engine |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014157384A1 (en) | 2013-03-29 | 2014-10-02 | Jx日鉱日石エネルギー株式会社 | Lubricating-oil base oil, method for producing same, and electrically insulating oil |
WO2016157960A1 (en) * | 2015-03-31 | 2016-10-06 | 出光興産株式会社 | Transmission lubricating oil composition |
JP2016194002A (en) * | 2015-03-31 | 2016-11-17 | 出光興産株式会社 | Lubricant composition for electric vehicle or hybrid vehicle |
US10815447B2 (en) | 2015-03-31 | 2020-10-27 | Idemitsu Kosan Co., Ltd. | Electric vehicle or hybrid vehicle lubricating oil composition |
US10889779B2 (en) | 2015-03-31 | 2021-01-12 | Idemitsu Kosan Co., Ltd. | Transmission lubricating oil composition |
JP2018519394A (en) * | 2015-06-29 | 2018-07-19 | トータル マーケティング サービス | Low viscosity lubricating polyolefin |
JP2020511554A (en) * | 2016-10-27 | 2020-04-16 | トータル・マーケティング・サービシーズ | Use of biodegradable hydrocarbon fluids in electric vehicles |
JP2021500463A (en) * | 2017-10-20 | 2021-01-07 | トタル マーケティング セルヴィス | Composition for cooling and lubricating the vehicle drive system |
JP7260555B2 (en) | 2017-10-20 | 2023-04-18 | トタル マーケティング セルヴィス | Composition for cooling and lubricating vehicle drive systems |
Also Published As
Publication number | Publication date |
---|---|
KR20120108027A (en) | 2012-10-04 |
CN102666815A (en) | 2012-09-12 |
EP2518131A1 (en) | 2012-10-31 |
US20120264661A1 (en) | 2012-10-18 |
WO2011077839A1 (en) | 2011-06-30 |
EP2518131A4 (en) | 2013-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011077839A1 (en) | Base oil for cooling device, device-cooling oil containing the base oil, device to be cooled by the cooling oil, and device cooling method using the cooling oil | |
JP2012031359A (en) | Base oil for cooling of device, device-cooling oil containing the base oil, device to be cooled by the cooling oil, and device cooling method using the cooling oil | |
JP5779376B2 (en) | Lubricating oil composition | |
ES2444921T3 (en) | Process for manufacturing low viscosity oligomeric oil products | |
US20120283162A1 (en) | Base oil for cooling of device, device-cooling oil containing the base oil, device to be cooled by the cooling oil, and device cooling method using the cooling oil | |
WO2011080991A1 (en) | Base oil for cooling of device, device-cooling oil containing the base oil, device to be cooled by the cooling oil, and device cooling method using the cooling oil | |
EP2103673B1 (en) | Lubricating oil composition for internal combustion engine | |
CN104471042A (en) | Lubricating composition | |
US9023191B2 (en) | Lubricant composition for an internal combustion engine and method for lubricating an internal combustion engine | |
JP2009511728A (en) | Lubricating oil composition | |
JP2021020920A (en) | Ether compounds and related compositions and methods | |
TW201002814A (en) | Lubricant composition | |
EP2554647A1 (en) | Lubricant composition for an internal combustion engine | |
JP5325384B2 (en) | Lubricating oil composition for internal combustion engines | |
JP2012017391A (en) | Cooling oil and cooling method | |
US20130023456A1 (en) | Lubricant composition for an internal combustion engine | |
JP2017115100A (en) | Mineral oil base oil, lubricant composition, internal combustion engine and lubrication method of internal combustion engine | |
JP2011157542A (en) | Base oil for cooling device, device-cooling oil containing the base oil, device to be cooled by the cooling oil, and device cooling method using the cooling oil | |
JP2011157540A (en) | Base oil for cooling device, device-cooling oil containing the base oil, device to be cooled by the cooling oil, and device cooling method using the cooling oil | |
KR20130047742A (en) | Lubricating oil composition and lubricating oil composition for continuously variable transmission | |
JP2008094969A (en) | Friction-reducing additive, lubricant composition containing the same and method of preparing the friction-reducing additive | |
RU2659031C2 (en) | Lubricant composition | |
US20190270943A1 (en) | Mineral-oil base oil, lubricating oil composition, internal combustion engine, and lubricating method for internal combustion engine | |
JP5931250B2 (en) | Lubricating oil composition | |
WO2017150687A1 (en) | Lubricating oil composition, lubricating method, and transmission |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130214 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140617 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140804 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20141216 |