JP2011034942A - Secondary battery and solar cell of superposing electric field - Google Patents
Secondary battery and solar cell of superposing electric field Download PDFInfo
- Publication number
- JP2011034942A JP2011034942A JP2009192542A JP2009192542A JP2011034942A JP 2011034942 A JP2011034942 A JP 2011034942A JP 2009192542 A JP2009192542 A JP 2009192542A JP 2009192542 A JP2009192542 A JP 2009192542A JP 2011034942 A JP2011034942 A JP 2011034942A
- Authority
- JP
- Japan
- Prior art keywords
- electric field
- electrode
- charging
- outside
- grid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Photovoltaic Devices (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
Description
二次電池の急速充放電と太陽電池の変換効率の向上等に関するものである。The present invention relates to rapid charging / discharging of secondary batteries and improvement of conversion efficiency of solar batteries.
従来の二次電池の充電の時間短縮には、また太陽電池の発電効率の向上にはイオン、電子の移動度の向上をもたらす内部電界の強化を考えていなかつた。In order to shorten the charging time of the conventional secondary battery and to improve the power generation efficiency of the solar battery, the inventors have not considered strengthening the internal electric field that brings about the improvement of ion and electron mobility.
現在最高性能の充電器でも充電所要時間が20〜30分かかつていてガソリンの注入に比べてあまりにも長すぎ、また太陽電池の発電効率の向上も限界に近かずきつつある。Even with the highest performance battery charger, the required charging time is 20 to 30 minutes, which is too long compared to gasoline injection, and the improvement of the power generation efficiency of the solar cell is approaching its limit.
二次電池や太陽電池等で従来の両電極の外側に更に絶縁した外部電極を新しく設け、そこに別の直流静電圧を課して従来の内部電界に重畳強化させ、それらの正孔と電子の移動度を高めてそれらの充電時間の短縮、放電電流の増大等の能力を向上させる。この場合重畳する外部電界が電池内部に透過出来るように内部両電極を格子状に窓を開けておく。
「A」二次電池を充電する場合、その所要時間を大幅に短縮する為に、充電電圧による従来の電界(E1)に電界を更に増大させる為に、それらの両電極箔の外側に絶縁層(2)を挟んだ新しい両電極箔(1)を設けその電界(E2)を(E1)に重畳させる。(図1)これには従来の二次電池の正負両電極箔(3)を電界が透過する様に格子状に窓を開けそれらの外側に絶縁層(2)を設け、そのうえそれらの外側に新たに電極箔(1)を重ね、更にそれらの外側に絶縁層(2’)を設け、この新たな両最外層電極箔(1)に別電源または充電器から分岐した直流静電圧を印加し、充電電界による電解質内のイオン等の移動に更に外部から直流電界を重畳させてそのイオン等の移動速度を大幅に高め充電時間を短縮する。これらの格子状電極とそれらの開口部の絶縁層は、それぞれ格子状陰電極箔はグラファイト等の陰極活物質(4)、格子状の陽電極箔はリチウム超イオン伝導体等の陽極活物質(7)と接着一体化している。これら両格子箔内部はセパレーターを挟んで固体高分子電解質のLiBH4*LiIやLi2S等を満たす。また放電時には最外層電極箔(1)の極性を反転させて放電電流を増大させ電気自動車等の速度を加速させる。またこの様にするとこの二次電池を充電させる高速充電器もかなり安価なものとなる。上記の他、現在開発中のハイブリツド・キャパシター等にも採用出来る。
「B」各種の太陽電池のうち発電効率の向上を目指すシリコン太陽電池の例について述べる。(図2)その構造を示すとp型、n型半導体の接触でそれらの境界付近に生じる内部電界に更に外部から新たに加速電界を印加して重畳強化させ、太陽光により発生した電子,正孔が一部電池内に滞留して総てを取り出す事が出来ずに熱となりエネルギーが失われている。これを移動速度を増大させて改善する。この発電効率の向上には最外部に無反射コーテング(8)が施され、外部から課電が出来ようにした新たな透明電極層(9)を設け、その内部に上部電極(11)を絶縁する為の透明絶縁層(10)を設ける。その内部は従来の太陽電池の構成と同じにn型シリコン層(12)、p型シリコン層(13)、下部電極(14)および基盤(15)の順で構成する。In the secondary battery, solar battery, etc., an external electrode that is further insulated is provided on the outside of both conventional electrodes, and another DC static voltage is imposed on the external electrode to superimpose it on the conventional internal electric field. To improve the ability to shorten the charging time and increase the discharge current. In this case, the internal electrodes are opened in a lattice shape so that the superimposed external electric field can penetrate into the battery.
In order to significantly reduce the time required for charging the “A” secondary battery, in order to further increase the electric field to the conventional electric field (E1) due to the charging voltage, an insulating layer is formed on the outside of both electrode foils. New electrode foils (1) sandwiching (2) are provided, and the electric field (E2) is superimposed on (E1). (FIG. 1) For this purpose, both positive and negative electrode foils (3) of a conventional secondary battery are provided with a grid-like window so that an electric field is transmitted, and an insulating layer (2) is provided outside them. A new electrode foil (1) is overlaid, and an insulating layer (2 ') is further provided on the outer side thereof. A DC static voltage branched from a separate power source or charger is applied to both the outermost electrode foils (1). Further, a DC electric field is further superimposed from the outside on the movement of ions and the like in the electrolyte by the charging electric field, thereby greatly increasing the movement speed of the ions and shortening the charging time. These grid-like electrodes and the insulating layers of the openings are respectively made of a cathode-like active material (4) such as graphite for the grid-like negative electrode foil and an anode active material (such as a lithium superionic conductor) for the grid-like positive electrode foil. 7) Bonded and integrated. The insides of both of these lattice foils satisfy LiBH4 * LiI, Li2S, etc., which are solid polymer electrolytes, with a separator interposed therebetween. At the time of discharge, the polarity of the outermost electrode foil (1) is reversed to increase the discharge current and accelerate the speed of the electric vehicle or the like. In this way, the high-speed charger for charging the secondary battery is also quite inexpensive. In addition to the above, it can also be used for hybrid capacitors currently under development.
“B” An example of a silicon solar cell that aims to improve power generation efficiency among various types of solar cells will be described. (Fig. 2) The structure shows that the internal electric field generated near the boundary between the p-type and n-type semiconductors is further strengthened by applying an external acceleration field from the outside to superimpose the electrons generated by sunlight. A part of the holes stays in the battery, so that all of the holes cannot be taken out and become heat so that energy is lost. This is improved by increasing the moving speed. In order to improve the power generation efficiency, a non-reflective coating (8) is applied to the outermost part, a new transparent electrode layer (9) is provided so that electric power can be applied from the outside, and the upper electrode (11) is insulated inside. A transparent insulating layer (10) is provided. The inside is configured in the order of an n-type silicon layer (12), a p-type silicon layer (13), a lower electrode (14), and a base (15) in the same manner as the configuration of a conventional solar cell.
リチユウムイオン二次電池等の製造時には従来の両電極を電界を透す格子状の窓あきの電極にしてそれらの外側に絶縁層を設け、更にそれらの外側に新たに電極箔を載せ、そのうえそれらの外側に絶縁層を設ける。この様に電池を新型の構造にして最外層電極に新たに内部電界に重畳させる為の直流静電圧か充電電源から分岐した直流静電圧を印加する。太陽電池でも新たに最外層に無反射コーテングを施した透明電極層(9)を新たに設け、その内部に透明絶縁層(10)で櫛の歯状の窓あき電極を絶縁する。この新たな透明電極層(9)に直流静電圧を課し従来の内部電界にその電界を重畳強化させる。When manufacturing lithium ion secondary batteries, etc., both conventional electrodes are made into grid-like window-permeable electrodes that transmit an electric field, an insulating layer is provided outside them, and a new electrode foil is further placed outside them, and in addition, outside of them. An insulating layer is provided. In this way, a DC static voltage or a DC static voltage branched from the charging power source for applying a new structure to the outermost layer electrode and superimposing it on the internal electric field is applied to the outermost layer electrode. Also in the solar cell, a transparent electrode layer (9) newly provided with an antireflection coating is newly provided on the outermost layer, and the comb-shaped window-shaped electrode is insulated by the transparent insulating layer (10) therein. A DC static voltage is imposed on the new transparent electrode layer (9), and the electric field is superimposed and strengthened on the conventional internal electric field.
二次電池をこの様な構造にすると充電器とそれから分岐した直流静電圧を印加するだけで充電を最短時間で行う事が出来る。放電時には同様に逆電圧を加えて放電電流を増大させ、電気自動車の速度を急速に加速させる事も出来る。またこの高速充電器もかなり安価なものとなる。太陽電池でもこの重畳電界によりイオン、電子の移動度を向上させてそれらの滞留による熱エネルギー損失を減少させ発電効率を向上させる。When the secondary battery has such a structure, charging can be performed in the shortest time only by applying a charger and a DC electrostatic voltage branched therefrom. Similarly, a reverse voltage can be applied during discharge to increase the discharge current, and the speed of the electric vehicle can be accelerated rapidly. This fast charger is also quite inexpensive. Even in a solar cell, this superimposed electric field improves the mobility of ions and electrons, reduces thermal energy loss due to their retention, and improves power generation efficiency.
[図1]、[図2]は平板またはロール巻き(省略)での本新型二次蓄電池の側面図と本新型太陽電池の側面図を示す。[FIG. 1] and [FIG. 2] show a side view of the new secondary storage battery and a side view of the new solar battery in flat plate or roll winding (omitted).
「A」
1 −+外部電極箔 2 2,2’絶縁層 3 −+内部電界を透す格子状電極箔
4 陰極活物質(グラファイト等) 5 セパレーター 6 固体高分子電解質
(3LiBH4*LiI,Li2S等)7 陽極活物質
(リチウム超イオン伝導体(LiCoO2、LiMn2O4等)
E1 充電電界 E2 外部重畳静電界
「B」
8 無反射コーテング 9 透明電極層 10 透明絶縁層 11 上部電極
12 P型シリコン 13 N型シリコン 14 下部電極 15 基盤"A"
DESCRIPTION OF SYMBOLS 1- + External electrode foil 2 2,2 'insulating layer 3- + Grid-like electrode foil which permeate | transmits an internal electric field 4 Cathode active material (graphite etc.) 5 Separator 6 Solid polymer electrolyte (3LiBH4 * LiI, Li2S etc.) 7 Anode Active material (lithium superionic conductor (LiCoO2, LiMn2O4, etc.)
E1 Charging electric field E2 External superimposed electrostatic field "B"
8 Non-reflective
Claims (1)
「A」二次電池等を充電する場合、その所要時間を大幅に短縮する為に、充電電圧による電界(E1)に内部電界を更に増大させる為に、それらの両電極箔の外側に絶縁層(2)を挟んで新しい両電極箔(1)を設けその電界(E2)を(E1)に重畳させる。これには従来の二次電池の正負両電極箔(3)を電界が透過する様に格子状の窓を開けそれらの外側に絶縁層(2)を設け、そのうえそれらの外側に新たに電極箔(1)を重ね、更にそれらの外側に絶縁層(2’)を設け、新設の両最外電極箔(1)に別電源または充電器から分岐した直流電圧を印加し、充電電界による電解質内のイオン等の移動に更に外部から直流静電界を重畳させてそのイオン等の移動速度を大幅に高め充電時間を短縮させる。これらの格子状電極とそれらの開口部の絶縁層は、それぞれ格子状陰電極箔はグラファイト等の陰極活物質(4)、格子状の陽電極箔はリチウム超イオン伝導体等の陽極活物質(7)と接着一体化している。これら両格子箔間にはセパレーターを挟んで固体高分子電解質のLiBH4*LiIやLi2S等を満たす。また放電時には最外層電極箔(1)の極性を反転させて放電電流を増大させ電気自動車等の速度を加速させる。上記の他に現在開発中のハイブリツド・キャパシター等にも採用出来る。
「B」各種の太陽電池のうち一例としてシリコン太陽電池の発電効率の向上について述べる。その構造を示すとp型、n型半導体の接触境界付近に生じる内部電界に更に外部から加速電界を重畳させ、太陽光により発生した電子,正孔の一部が電池内に滞留して熱となりエネルギーが失われるのを移動速度を速めてこれを防ぐ。この発電効率の向上には新たに最外部に無反射コーテング(8)を施し、外部から課電が出来ようにした透明電極層(9)を設け、その内部に上部電極(11)を絶縁する為に透明絶縁層(10)を設ける。さらにその内部を従来の太陽電池の構造と同じにn型シリコン層(12)、p型シリコン層(13)、下部電極(14)および基盤(15)等の順で構成する。
「選択図」 図1、2A secondary battery, a hybrid capacitor, a solar battery, and the like are provided with an external electrode that is further insulated outside the conventional positive and negative electrodes, and another DC electrostatic voltage is applied thereto to superimpose and strengthen their internal electric field. This increases the mobility of positive and negative ions, holes, electrons, etc., and shortens the charging time, increases the discharge current, and improves the power generation efficiency. In this case, the windows are opened with the internal electrodes arranged in a grid so that the external electric field can penetrate into the battery.
In order to significantly reduce the time required for charging "A" secondary batteries, etc., in order to further increase the internal electric field to the electric field (E1) due to the charging voltage, an insulating layer is formed on the outside of both electrode foils. New electrode foils (1) are provided across (2), and the electric field (E2) is superimposed on (E1). For this purpose, a grid-like window is opened so that an electric field can pass through both the positive and negative electrode foils (3) of a conventional secondary battery, and an insulating layer (2) is provided outside them. (1) are stacked, and an insulating layer (2 ') is further provided outside them, and a DC voltage branched from a separate power source or charger is applied to both newly installed outermost electrode foils (1), and the inside of the electrolyte by a charging electric field is applied. Further, a DC electrostatic field is superimposed on the movement of ions and the like to greatly increase the movement speed of the ions and shorten the charging time. These grid-like electrodes and the insulating layers of the openings are respectively made of a cathode-like active material (4) such as graphite for the grid-like negative electrode foil and an anode active material (such as a lithium superionic conductor) for the grid-like positive electrode foil. 7) Bonded and integrated. A solid electrolyte electrolyte such as LiBH4 * LiI or Li2S is filled with a separator between the two lattice foils. At the time of discharge, the polarity of the outermost electrode foil (1) is reversed to increase the discharge current and accelerate the speed of the electric vehicle or the like. In addition to the above, it can also be used for hybrid capacitors currently under development.
“B” As an example of various types of solar cells, improvement of power generation efficiency of silicon solar cells will be described. In the structure, an acceleration electric field is further superimposed from the outside on the internal electric field generated near the contact boundary between the p-type and n-type semiconductors, and some of the electrons and holes generated by sunlight stay in the battery and become heat. Prevent the loss of energy by increasing the speed of movement. In order to improve the power generation efficiency, a non-reflective coating (8) is newly provided on the outermost part, a transparent electrode layer (9) is provided so that electric power can be applied from the outside, and the upper electrode (11) is insulated inside. For this purpose, a transparent insulating layer (10) is provided. Further, the n-type silicon layer (12), the p-type silicon layer (13), the lower electrode (14), the base (15) and the like are formed in that order in the same manner as the structure of the conventional solar cell.
“Selection diagram” FIGS.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009192542A JP2011034942A (en) | 2009-08-02 | 2009-08-02 | Secondary battery and solar cell of superposing electric field |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009192542A JP2011034942A (en) | 2009-08-02 | 2009-08-02 | Secondary battery and solar cell of superposing electric field |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011034942A true JP2011034942A (en) | 2011-02-17 |
Family
ID=43763792
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009192542A Pending JP2011034942A (en) | 2009-08-02 | 2009-08-02 | Secondary battery and solar cell of superposing electric field |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011034942A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103000701A (en) * | 2012-12-05 | 2013-03-27 | 中山联合光电科技有限公司 | Novel solar battery |
CN103400867A (en) * | 2013-08-06 | 2013-11-20 | 严振华 | Method for improving photoelectric conversion rate of photovoltaic cell |
WO2015062084A1 (en) * | 2013-11-01 | 2015-05-07 | 上海足力新能源科技有限公司 | Battery and battery pack comprising the battery |
KR101778485B1 (en) | 2014-03-03 | 2017-09-26 | 솔라리틱스, 인크. | Method and system for applying electric fields to multiple solar panels |
DE102023203762B3 (en) | 2023-04-24 | 2024-10-24 | Volkswagen Aktiengesellschaft | lithium-ion battery cell |
-
2009
- 2009-08-02 JP JP2009192542A patent/JP2011034942A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103000701A (en) * | 2012-12-05 | 2013-03-27 | 中山联合光电科技有限公司 | Novel solar battery |
CN103400867A (en) * | 2013-08-06 | 2013-11-20 | 严振华 | Method for improving photoelectric conversion rate of photovoltaic cell |
WO2015062084A1 (en) * | 2013-11-01 | 2015-05-07 | 上海足力新能源科技有限公司 | Battery and battery pack comprising the battery |
KR101778485B1 (en) | 2014-03-03 | 2017-09-26 | 솔라리틱스, 인크. | Method and system for applying electric fields to multiple solar panels |
KR101937338B1 (en) | 2014-03-03 | 2019-01-10 | 솔라리틱스, 인크. | Method and system for applying electric fields to multiple solar panels |
KR20190004385A (en) * | 2014-03-03 | 2019-01-11 | 솔라리틱스, 인크. | Method and system for applying electric fields to multiple solar panels |
KR20190004386A (en) * | 2014-03-03 | 2019-01-11 | 솔라리틱스, 인크. | Method and system for applying electric fields to multiple solar panels |
KR102028868B1 (en) | 2014-03-03 | 2019-11-14 | 솔라리틱스, 인크. | Method and system for applying electric fields to multiple solar panels |
KR102089916B1 (en) | 2014-03-03 | 2020-05-18 | 솔라리틱스, 인크. | Method and system for applying electric fields to multiple solar panels |
DE102023203762B3 (en) | 2023-04-24 | 2024-10-24 | Volkswagen Aktiengesellschaft | lithium-ion battery cell |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101664244B1 (en) | Method forming electrode surface pattern and the electrode manufactured by the method and secondary battery including the same | |
CN103730684B (en) | A kind of High-safety all-solid-state lithium ion battery and production method thereof | |
CN206976499U (en) | A kind of all-solid-state battery | |
CN106328996A (en) | Lithium ion secondary battery | |
CN107394272A (en) | A kind of solid lithium ion battery and preparation method thereof | |
CN202308155U (en) | High-security capacitor battery | |
CN101154750A (en) | High power gel polymer lithium ion power cell and method of producing the same | |
US20150162139A1 (en) | Power storage device and super capacitor device | |
CN208298952U (en) | Battery and electronic equipment | |
KR20120031606A (en) | Electrode lead whose protection layer for anti-corrosion is selectively formed, and secondary battery comprising thereof | |
CN102881951A (en) | Capacitor battery with high safety | |
JP2011034942A (en) | Secondary battery and solar cell of superposing electric field | |
CN103855373A (en) | Vanadium pentoxide / graphene composite material and its preparation method and application | |
CN113795939B (en) | Electrode assembly and battery cell | |
TWI398030B (en) | Lithium ion energy-stroage battery | |
KR102298059B1 (en) | Method of manufacturing lithium secondary battery | |
JP2017059538A (en) | Laminated battery | |
CN202917600U (en) | Aluminum-plastic packed high-power lithium ion battery | |
TW201143190A (en) | Lithium ion battery assembly | |
KR101515672B1 (en) | Electrode assembly including anode and cathod electrode more than 2 and electrochemical device using the same | |
CN101409361A (en) | Composite cathode material lithium ion battery | |
CN209730074U (en) | A kind of lithium ion battery capacitor structure | |
CN101771173A (en) | High-power lithium ion battery and manufacturing method thereof | |
US20160172666A1 (en) | Electrode structure and secondary battery | |
JP2002246068A (en) | Nonaqueous secondary cell |