JP2011032916A - 制御弁 - Google Patents
制御弁 Download PDFInfo
- Publication number
- JP2011032916A JP2011032916A JP2009178734A JP2009178734A JP2011032916A JP 2011032916 A JP2011032916 A JP 2011032916A JP 2009178734 A JP2009178734 A JP 2009178734A JP 2009178734 A JP2009178734 A JP 2009178734A JP 2011032916 A JP2011032916 A JP 2011032916A
- Authority
- JP
- Japan
- Prior art keywords
- valve
- pressure
- forming member
- control valve
- port
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
Abstract
【課題】制御弁におけるフィルタ構造を簡易かつ低コストに提供する。
【解決手段】本発明のある態様の制御弁1においては、高圧の吐出冷媒が導入されるポート11が含まれる位置に、ボディ形成部材51,52による溝状の嵌合部が形成され、その嵌合部にフィルタ12が嵌め込まれる。また、圧縮機の起動時においいてクランク室からの冷媒が導入されるポート13が含まれる位置に、ボディ形成部材52,53による溝状の嵌合部が形成され、その嵌合部にフィルタ14が嵌め込まれる。このような構成により、各フィルタを収容するケースが不要となる。
【選択図】図2
【解決手段】本発明のある態様の制御弁1においては、高圧の吐出冷媒が導入されるポート11が含まれる位置に、ボディ形成部材51,52による溝状の嵌合部が形成され、その嵌合部にフィルタ12が嵌め込まれる。また、圧縮機の起動時においいてクランク室からの冷媒が導入されるポート13が含まれる位置に、ボディ形成部材52,53による溝状の嵌合部が形成され、その嵌合部にフィルタ14が嵌め込まれる。このような構成により、各フィルタを収容するケースが不要となる。
【選択図】図2
Description
本発明は、高圧側から作動流体を導入して減圧し、低圧側に導出する制御弁に関する。
作動流体の圧力を用いて制御を行う装置には、一般に、その作動流体の流れを制御するために内部の流体通路を開閉する制御弁が用いられる。例えば、自動車用空調装置には、エンジンの回転数によらず一定の冷房能力が維持されるように、冷媒の吐出容量を可変できる可変容量圧縮機(単に「圧縮機」ともいう)が用いられるものがあり、その圧縮機の容量制御にソレノイド駆動の制御弁が用いられる(例えば特許文献1参照)。
この圧縮機は、エンジンによって回転駆動される回転軸に取り付けられた揺動板に圧縮用のピストンが連結され、揺動板の角度を変化させてピストンのストロークを変えることにより冷媒の吐出量を調整する。揺動板の角度は、密閉されたクランク室内に吐出冷媒の一部を導入し、ピストンの両面にかかる圧力の釣り合いを変化させることで連続的に変えられる。制御弁は、吐出室からクランク室に導入する冷媒流量、およびクランク室から吸入室に導出する冷媒流量の少なくとも一方を制御し、圧縮機の吐出容量を変化させる。
ところで、このような圧縮機は、ピストンなどの摺動部品が多いことから、動作中の摩耗により金属粉等の異物が発生し、冷媒に含まれる形で冷凍サイクルを循環することがある。このため、制御弁には一般に、その高圧側の導入ポートにストレーナが設けられ、異物の侵入が抑制されている。ストレーナは、一般には樹脂または金属製の筒状ケース内にフィルタを収納する形で提供され、制御弁のボディにおいて導入ポートが位置する部分に嵌着される。しかし、このようにストレーナが単体の部品として提供され、制御弁に組み付けられることから、部品コストが嵩む点で改善の余地があった。
本発明はこのような課題に鑑みてなされたものであり、制御弁におけるフィルタ構造を簡易かつ低コストに提供することを目的とする。
本発明のある態様の制御弁は、作動流体が導入される導入ポート、作動流体が導出される導出ポート、および導入ポートと導出ポートとをつなぐ流体通路が形成されたボディと、流体通路に設けられた弁部と、導入ポートに配置されてボディ内への異物の流入を規制するフィルタとを備える。この制御弁は、ボディの外周部の導入ポートが含まれる位置に設けられた溝状の嵌合部と、嵌合部の少なくとも幅方向両端部を外方から覆うように設けられ、導入ポートが含まれる位置に開口部を形成する係止部と、を備える。そして、フィルタが、係止部の開口部よりも大きな幅を有する環状の部材からなり、嵌合部に嵌め込まれるとともに、係止部に外方から係止されるようにボディに取り付けられている。
この態様によると、制御弁のボディに溝状の嵌合部が設けられ、その嵌合部に環状のフィルタが係止部を乗り越えるように嵌め込まれる。フィルタそのものは変形可能であるため、その嵌合部への嵌め込みには何ら問題がない。また、フィルタが嵌め込まれた後は、係止部によってその脱落が防止されるため、安定性にも優れる。この態様によれば、フィルタを収容するケースが不要であり、制御弁のボディに直接取り付ける構成をとるため、フィルタ構造を簡易かつ低コストに実現することができる。
本発明によれば、制御弁におけるフィルタ構造を簡易かつ低コストに提供することができる。
以下、本発明の実施の形態を、図面を参照して詳細に説明する。なお、以下の説明においては便宜上、図示の状態を基準に各構造の位置関係を上下と表現することがある。
[第1の実施の形態]
図1は、第1の実施の形態に係る制御弁の構成を示す断面図である。
本実施の形態の制御弁1は、自動車用空調装置の冷凍サイクルに設置される図示しない可変容量圧縮機(単に「圧縮機」という)を制御する制御弁(電磁弁)として構成されている。この圧縮機は、冷凍サイクルを流れる冷媒を圧縮して高温・高圧のガス冷媒にして吐出する。そのガス冷媒は凝縮器(外部熱交換器)にて凝縮され、さらに膨張装置により断熱膨張されて低温・低圧の霧状の冷媒となる。この低温・低圧の冷媒が蒸発器にて蒸発し、その蒸発潜熱により車室内空気を冷却する。蒸発器で蒸発された冷媒は、再び圧縮機へと戻されて冷凍サイクルを循環する。圧縮機は、自動車のエンジンによって回転駆動される回転軸に取り付けられた揺動板に圧縮用のピストンが連結され、揺動板の角度を変化させてピストンのストロークを変えることにより冷媒の吐出量を調整する。制御弁1は、その圧縮機の吐出室からクランク室に導入する冷媒流量を制御することで揺動板の角度、ひいてはその圧縮機の吐出容量を変化させる。
図1は、第1の実施の形態に係る制御弁の構成を示す断面図である。
本実施の形態の制御弁1は、自動車用空調装置の冷凍サイクルに設置される図示しない可変容量圧縮機(単に「圧縮機」という)を制御する制御弁(電磁弁)として構成されている。この圧縮機は、冷凍サイクルを流れる冷媒を圧縮して高温・高圧のガス冷媒にして吐出する。そのガス冷媒は凝縮器(外部熱交換器)にて凝縮され、さらに膨張装置により断熱膨張されて低温・低圧の霧状の冷媒となる。この低温・低圧の冷媒が蒸発器にて蒸発し、その蒸発潜熱により車室内空気を冷却する。蒸発器で蒸発された冷媒は、再び圧縮機へと戻されて冷凍サイクルを循環する。圧縮機は、自動車のエンジンによって回転駆動される回転軸に取り付けられた揺動板に圧縮用のピストンが連結され、揺動板の角度を変化させてピストンのストロークを変えることにより冷媒の吐出量を調整する。制御弁1は、その圧縮機の吐出室からクランク室に導入する冷媒流量を制御することで揺動板の角度、ひいてはその圧縮機の吐出容量を変化させる。
制御弁1は、圧縮機の吸入圧力Psを設定圧力に保つように、吐出室からクランク室に導入する冷媒流量を制御するいわゆるPs感知弁として構成されている。制御弁1は、吐出冷媒の一部をクランク室へ導入するための冷媒通路を開閉する弁部を含む弁本体2と、その弁部の開度を調整してクランク室へ導入する冷媒流量を制御するソレノイド3とを一体に組み付けて構成される。弁本体2は、段付円筒状のボディ5、ボディ5の内部に設けられた弁部、ボディ5の内部に設けられて弁部を開閉するための駆動力を発生するパワーエレメント4(「感圧部」に該当する)等を備えている。ボディ5とソレノイド3とは接続部材6を介して接続固定されている。
ボディ5の側部には、圧縮機の吐出室に連通して吐出圧力Pdを受けるポート11(「吐出室連通ポート」に該当する)が設けられている。ポート11には、ボディ5の内部へのごみ等の侵入を抑制するためのフィルタ12が取り付けられている。ポート11は、ボディ5の上部に設けられたポート13(「クランク室連通ポート」に該当する)と内部で連通している。ポート13にも、ボディ5の内部へのごみ等の侵入を抑制するためのフィルタ14が取り付けられている。ポート13は、圧縮機のクランク室に連通し、主弁を経由した冷媒をクランク室へ向けて導出する一方、圧縮機の起動時にはクランク室から排出された冷媒を導入する。このとき導入された冷媒は、副弁を介して吸入室へ導出される。ボディ5の下端開口部は、ソレノイド3との間に形成された空間を介して圧縮機の吸入室に連通する。
ポート11とポート13とを連通する冷媒通路には、段付円筒状の弁形成部材15が軸線方向に変位可能に設けられ、その内部通路により弁孔16が形成されている。弁形成部材15は、弁孔16の下端開口部にて拡径されており、その拡径部の基端部により弁座17(主弁座)が形成されている。そして、弁座17にポート11側から接離可能に対向するように、弁体18(主弁体)が配設されている。弁体18は、段付円筒状の作動ロッド19の一部として形成されている。作動ロッド19は、ボディ5の内周面に沿って摺動しつつガイドされることで軸線方向に動作する。弁座17はテーパ面をなし、弁体18の先端外周縁部が弁座17に着脱することによって主弁(第1の弁部)を開閉し、吐出室からクランク室へ流れる冷媒流量を調整する。ボディ5におけるポート13のやや上方には弁座20(副弁座)が形成されている。一方、弁形成部材15の上端部には半径方向外向きに延出するフランジ部が設けられ、そのフランジ部により弁体21(副弁体)が形成されている。弁体21は、上方から弁座20に着脱して副弁(第2の弁部)を開閉し、クランク室から吸入室へリリーフする冷媒流量を調整する。
ボディ5の下端開口部は、その内径が下方に向かって拡径されており、円板状のストッパ23が圧入されている。ストッパ23の中央部には挿通孔24が設けられ、作動ロッド19の下端部が挿通されている。接続部材6は有底円筒状をなし、その上半部にボディ5の下端部が内挿されるように圧入され、底部にソレノイド3が接続されている。接続部材6の側部には、圧縮機の吸入室に連通して吸入圧力Psを受けるポート26(「吸入室連通ポート」に該当する)が形成されている。ボディ5、接続部材6およびソレノイド3により囲まれる内部空間は、吸入圧力Psが導入される圧力室28を形成する。圧力室28には、吸入圧力Psを感知して軸線方向に動作するパワーエレメント4(「感圧部」に該当する)が配置されている。
一方、ソレノイド3は、ヨークとしても機能する有底円筒状のケース30と、ケース30に対して固定された有底筒状のスリーブ31と、ケース30に固定されるとともにスリーブ31の開口部側である上半部に内挿された円筒状のコア32と、スリーブ31の底部側である下半部に収容されてコア32と軸線方向に対向配置された円筒状のプランジャ33と、外部からの供給電流により磁気回路を生成する電磁コイル34と、ケース30の下端開口部を封止するように設けられた端部部材35とを備えている。接続部材6の底部とケース30の底部とが突き合わされ、その底部中央を貫通するように挿通孔29が形成されている。そして、コア32の上端部がその挿通孔29に挿通されて外方に加締められることにより、接続部材6とケース30とを内方から挟み込むように連結固定している。
コア32の中央を軸線方向に貫通するように、円筒状のシャフト36が挿通されている。シャフト36は、その下端部がプランジャ33の上端部に同軸状に圧入されている。その結果、シャフト36とプランジャ33とが固定され、両者を軸線方向に貫通する内部通路37が形成されている。シャフト36は、その上端部がパワーエレメント4に連結されており、ソレノイド力をパワーエレメント4を介して作動ロッド19に伝達する。本実施の形態において、シャフト36は、長方形状のステンレス鋼板をプレス加工により管状に丸めて形成されており、その丸め方向の両端を接合することなく、所定幅の間隙を残した構成とされている。すなわち、シャフト36の一側面には全長にわたって軸線に平行なスリット38が形成されており、内外を連通させている。このため、圧力室28内の吸入圧力Psは、スリット38を介してシャフト36の内部に導入され、そのシャフト36およびプランジャ33の内部通路37を通ってプランジャ33の背圧室39に導かれる。なお、変形例においては、シャフト36の長手方向の一部に内外を連通させるスリットを形成し、そのスリットから圧力室28内の吸入圧力Psを導入するようにしてもよい。
スリーブ31は、非磁性材料からなり、その底部中央部が上方にやや凸となり、プランジャ33を下方から支持できるように構成されている。また、スリーブ31には円筒状のボビン41が外挿されており、そのボビン41に電磁コイル34が巻回されている。コア32の上端部外周面、スリーブ31の上端面、およびケース30の底部内面により囲まれた空間にはシールリング47が介装され、ソレノイド3の内外のシールを確保している。
ケース30の下端部は拡径され、半径方向外向きに突出した拡径部40となっており、その内方に円板状のカラー42が配設されている。カラー42は、その拡径部40の下端部が内方に加締められることによりケース30に固定されている。カラー42は、磁性材料からなり、ケース30とともに磁気回路を構成する。カラー42の底部中央には挿通孔43が設けられ、スリーブ31の下端部がその挿通孔43を介して露出している。ボビン41からは電磁コイル34につながる一対の接続端子44が延出し、それぞれカラー42および端部部材35を貫通して外部に引き出されている。同図には説明の便宜上、その一対の片方のみが表示されている。
端部部材35は、ケース30に内包されるソレノイド3内の構造物全体を下方から封止するように取り付けられている。端部部材35は、耐食性を有する樹脂材のモールド成形(本実施の形態では射出成形)により形成され、その樹脂材がケース30と電磁コイル34との間隙にも満たされている。このように樹脂材がケース30と電磁コイル34との間隙に樹脂材を満たすことで、電磁コイル34で発生した熱をケース30に伝達しやすくし、その放熱性能を高めている。なお、この樹脂モールドの具体的方法については後述する。端部部材35からは接続端子44の先端部が引き出されており、図示しない外部電源に接続される。なお、端部部材35を形成する樹脂材としては、例えばガラスを含有した66ナイロン等のように適度な硬さと弾性を有するものが好ましい。一定以上の取付精度を確保するために、ゴムよりも硬度の高いものであるのが好ましい。
端部部材35は、ケース30の下端開口部側から拡径部40を乗り越えるようにしてケース30の外周面に所定長さオーバラップするように延設されている。また上述のように、端部部材35がケース30の内方にも満たされ、ボビン41の上端部にまで延設されているため、端部部材35がケース30から脱落することが確実に防止されている。また、ケース30の下端部において端部部材35のオーバラップ部が形成されていることにより、ケース30の内部への冷媒の進入を抑制するシール構造が同時に実現されている。
ただし、本実施の形態ではそのシール作用をより確実なものとするために、端部部材35の上端開口部とケース30の側面との間に比較的小さなOリング48が介装されている。また、端部部材35の上方には、Oリング49がケース30に外挿されるように取り付けられている。Oリング49は、Oリング48よりも大きく、図示しない圧縮機のハウジングに設けられた取付孔に制御弁1が取り付けられた際に、その取付孔とケース30との間に介装されるように配置され、外部からハウジング内部への異物の侵入を規制する。なお、変形例においてはOリング48を省略してもよい。その場合、端部部材35の先端部にOリング48を嵌合収容する凹溝を設ける必要もない。
図2は、図1の上半部に対応する部分拡大断面図である。
ボディ5は、ステンレス鋼板をプレス成形して得られた複数の円筒状のボディ形成部材を順次嵌合し、軸線方向に連結することにより形成されている。すなわち、ボディ5は、ボディ形成部材51にボディ形成部材52を内挿させるように嵌合し、その2重管構造にさらにボディ形成部材53を嵌合して形成されている。ボディ形成部材51は、上方に向かって縮径する段付円筒状をなし、その大径部の下半部が接続部材6の上半部に内挿されるように圧入されている。ボディ形成部材51の中径部には内外を連通させる連通孔55が設けられている。
ボディ5は、ステンレス鋼板をプレス成形して得られた複数の円筒状のボディ形成部材を順次嵌合し、軸線方向に連結することにより形成されている。すなわち、ボディ5は、ボディ形成部材51にボディ形成部材52を内挿させるように嵌合し、その2重管構造にさらにボディ形成部材53を嵌合して形成されている。ボディ形成部材51は、上方に向かって縮径する段付円筒状をなし、その大径部の下半部が接続部材6の上半部に内挿されるように圧入されている。ボディ形成部材51の中径部には内外を連通させる連通孔55が設けられている。
ボディ形成部材52は、上方に向かって拡径する段付円筒状をなし、その中径部がボディ形成部材51の小径部に圧入され、大径部がボディ形成部材51の小径部とほぼ同じ外径を有する。ボディ形成部材52の小径部は、ストッパ23の挿通孔24の内径とほぼ同じ外径を有し、その先端部が挿通孔24を貫通して圧力室28に延出している。ボディ形成部材52の大径部の基端部上面に弁座20が形成されている。また、ボディ形成部材52の中径部において連通孔55に対応する位置には、内外を連通させて連通孔55と共にポート11を形成する連通孔56が設けられている。ボディ形成部材51とボディ形成部材52とストッパ23とにより囲まれる空間には、シール用のOリング61が介装されている。
ボディ形成部材52の中径部における大径部近傍には、内外を連通させる連通孔57が設けられている。ボディ形成部材53は、有底円筒状をなし、その底部がボディ形成部材52の上端開口部を覆うように圧入されている。ボディ形成部材53は、その下端開口部がボディ形成部材51の上端部にオーバラップする位置まで延設されており、その下端部の連通孔57に対応する位置には、内外を連通させて連通孔57と共にポート13を形成する連通孔58が設けられている。なお、本実施の形態においては、ボディ形成部材51およびボディ形成部材52が「第1ボディ」を構成し、ボディ形成部材53が「第2ボディ」を構成する。
ボディ形成部材51の小径部の下端面と、ボディ形成部材52の中径部の下部外周面と、Oリング61と、ボディ形成部材51の内周面とにより囲まれる空間にフィルタ12が配置されている。すなわち、ボディ形成部材51の小径部の下端面と、ボディ形成部材52の中径部の下部外周面と、Oリング61とにより溝状の嵌合部59が形成され、その嵌合部59に環状のフィルタ12が嵌着されている。そして、その嵌合部59を外方から覆うようにボディ形成部材51が配設されている。すなわち、フィルタ12は、ボディ形成部材51とボディ形成部材52とにより挟まれる空間に内外から係止可能に配置され、その脱落が確実に防止されている。フィルタ12は、長尺帯状の金属メッシュをその長手方向に丸めてその両端部を所定量オーバラップさせ、そのオーバラップ部にスポット溶接を施すことにより環状に形成されている。フィルタ12は、図示のように連通孔55,56よりも大きな幅を有するため、その一部が連通孔55の外方または連通孔56の内方に外れることもない。
一方、ボディ形成部材51の小径部の上端面と、ボディ形成部材52の中径部の上部外周面と、ボディ形成部材52の大径部の下端面と、ボディ形成部材53の下端部の内周面とにより囲まれる空間にフィルタ14が配置されている。すなわち、ボディ形成部材51の小径部の上端面と、ボディ形成部材52の中径部の上部外周面と、ボディ形成部材52の大径部の下端面とにより溝状の嵌合部60が形成され、その嵌合部60に環状のフィルタ14が嵌着されている。そして、その嵌合部60を外方から覆うようにボディ形成部材53が組み付けられている。すなわち、フィルタ14は、ボディ形成部材52とボディ形成部材53とにより挟まれる空間に内外から係止可能に配置され、その脱落が確実に防止されている。フィルタ14は、長尺帯状の金属メッシュをその長手方向に丸めてその両端部を所定量オーバラップさせ、そのオーバラップ部にスポット溶接を施すことにより環状に形成されている。フィルタ14は、図示のように連通孔57,58よりも大きな幅を有するため、その一部が連通孔57の内方または連通孔58の外方に外れることもない。
弁形成部材15は、それぞれステンレス鋼板をプレス成形して得られた円筒状の弁体形成部材63と弁座形成部材64とを端部にて接合し、軸線方向に連結することにより形成されている。弁体形成部材63は、その側部のポート13に対応する位置に内外を連通させる連通孔65が設けられ、上端部には半径方向外向きに延出するフランジ部が設けられている。そのフランジ部が弁体21を形成し、上方から弁座20に着脱して副弁を開閉する。また、弁体形成部材63は、その上半部がやや拡径されており、作動ロッド19の摺動部を形成している。一方、弁座形成部材64は、その上半部の内方に弁孔16を形成し、その上端部が弁体形成部材63の下端部に圧入されている。弁座形成部材64の下半部は拡径されており、その側部のポート11に対応する位置に内外を連通させる連通孔66が設けられている。弁座17は、その拡径部の基端部に形成されている。ボディ形成部材52の連通孔56と連通孔57との間には、リング状のストッパ67が内挿されるように圧入されており、ボディ形成部材52とストッパ67と弁座形成部材64とにより囲まれる空間にシール用のOリング68が配設されている。Oリング68は、ポート11から導入された高圧の冷媒が、弁形成部材15とボディ形成部材52との間隙を介してポート13側に流れるのを規制する。
作動ロッド19は、弁体形成部材71とガイド部材72とを軸線方向に連結することにより形成されている。弁体形成部材71は、ステンレス鋼材を切削加工して得られた円筒状をなし、その下半部がボディ形成部材52の小径部に形成されたガイド孔25に摺動可能に内挿されている。また、弁体形成部材71の側部には半径方向外向きに突出する複数の脚部73が設けられ、弁座形成部材64の下半部に摺動可能に支持されている。弁体18は、弁座形成部材64の上端部により形成され、弁座17に下方から着脱して主弁を開閉する。
ガイド部材72は、ステンレス鋼板をプレス成形して得られた段付円筒状をなし、その下端部が弁体形成部材71の上半部に内挿されるように圧入されている。弁体形成部材71の上半部の内径が拡径されており、ガイド部材72を連結したときにはその連結部の内径が等しくなるように構成されている。ガイド部材72は、弁座形成部材64を所定の間隙をもって貫通し、その上端部は2段階に拡径されている。1段目の拡径部は、弁体形成部材63によって軸線方向に摺動可能に支持され、その摺動部のやや上方の側部には内外を連通する連通孔74が設けられている。2段目の拡径部は、ボディ形成部材52の大径部によって軸線方向に摺動可能に支持されている。
ガイド部材72とボディ形成部材53との間には、作動ロッド19を主弁の開弁方向に付勢するスプリング75が介装されている。また、ガイド部材72と弁体形成部材63との間には、弁形成部材15を副弁の閉弁方向に付勢するスプリング76が介装されている。スプリング76の荷重はスプリング75の荷重よりも小さく設定されている。弁体形成部材63、ガイド部材72およびボディ形成部材53により囲まれる圧力室77は、作動ロッド19の内部通路78を介して圧力室28に連通している。つまり、圧力室77には、圧力室28と同様に吸入圧力Psが満たされる。
なお、変形例においては、ボディ形成部材52と弁体形成部材71との間にシール部材を設け、ポート11から導入された吐出冷媒が圧力室28へ漏れることを規制するようにしてもよい。例えば、ボディ形成部材52の小径部の基端部に薄膜シート状(リング状)のパッキンを設けてもよい。そのパッキンに前後差圧が作用したときにセルフシール作用によりその内周部が弁体形成部材71の摺動面に圧着するように構成してもよい。
パワーエレメント4は、作動ロッド19とシャフト36との間に介装されて弁部の開閉方向に変位可能に支持された中空のハウジング81と、ハウジング81内に密閉された基準圧力室Sを形成するように支持された感圧部材82と、感圧部材82の上端部に連結された反力伝達部材69とを備えている。ハウジング81は、ステンレス鋼板をプレス成形して得られた第1ハウジング84と第2ハウジング85とを接合して形成され、内部に感圧部材82および反力伝達部材69の収容空間を形成する。
第1ハウジング84は有底筒状をなし、その底部中央に下方に延出する3つの脚部86が設けられている(同図にはその1つのみ表示)。そして、その3つの脚部86に囲まれる空間にシャフト36の上端部を収容するようにしてシャフト36に連結されている。各脚部86は、第1ハウジング84の底部に切り込みを入れ、その切り込み部を下方に折り曲げることにより得られる。そのように脚部86を形成する結果、第1ハウジング84の底部には、内外を連通させる3つの連通孔87が形成される。第1ハウジング84の底部中央において3つの脚部86に囲まれる位置は、感圧部材82の下端中央を嵌合させるために凹形状に形成されている。第1ハウジング84の上半部側部には、内外を連通させるとともに反力伝達部材69の一部を露出させる複数の挿通孔88が設けられている。
第2ハウジング85は有底筒状をなし、その上端部に半径方向外向きに延設されたフランジ部の先端にて第1ハウジング84に接合(溶接)されている。第2ハウジング85は、感圧部材82の小径部に外挿されて摺動可能に支持される一方、その底部にて作動ロッド19を下方から支持している。第2ハウジング85の底部中央には、内外を連通させる連通孔89が設けられている。この連通孔89を介して作動ロッド19の内部通路78とハウジング81の収容空間が連通される。第2ハウジング85の上端外周縁において、複数の挿通孔88に対応する位置には、反力伝達部材69の一部を露出させる複数の挿通孔90がそれぞれ設けられている。
感圧部材82は、上下(弁部の開閉方向)に対向する一対のダイヤフラム91,92と、その一対のダイヤフラムのそれぞれに接合された一対のストッパ部材93,94と、その一対のストッパ部材の間に介装されたスプリング95を含んで構成される。ダイヤフラム91、92はともに薄膜状の金属ダイヤフラムをプレス成形して得られた有底筒状の本体を有し、その開口部を突き合わせるように接合されて基準圧力室Sを形成している。すなわち、各ダイヤフラムの開口端部において半径方向外向きに延出する外周縁部を互いに突き合わせ、その外周縁部を一対のリング部材96,97により挟んで封止した状態で外周溶接を施すことにより密閉された基準圧力室Sが形成されている。この溶接は真空雰囲気内で行われるため、基準圧力室Sは真空状態となっているが、基準圧力室S内に大気等を満たすようにしてもよい。一対のリング部材96,97は同じ外径を有し、第1ハウジング84の内周面に摺動しつつガイドされるガイド部材としても機能する。ダイヤフラム91の底部中央には上方に凸となる連結部が形成され、ダイヤフラム92の底部中央には下方に凸となる連結部が形成されている。
ストッパ部材93は段付円柱状をなし、その上面中央に突設された凸部98がダイヤフラム91の連結部に下方から嵌合されるように連結されている。ストッパ部材93の側部には半径方向外向きに延出するフランジ部45が設けられている。一方、ストッパ部材94も段付円柱状をなし、その下面中央に突設された凸部99がダイヤフラム92の連結部に上方から嵌合されるように連結されている。すなわち、第1ハウジング84の底部中央の凹形状とストッパ部材94の凸部99とによりダイヤフラム92の連結部が挟まれるように固定されている。ストッパ部材94の側部には半径方向外向きに延出するフランジ部46が設けられている。スプリング95は、フランジ部45とフランジ部46との間に介装され、ストッパ部材93とストッパ部材94とを互いに離間させる方向に付勢している。このため、感圧部材82は、圧力室28の吸入圧力Psと基準圧力室Sの基準圧力との差圧に応じて軸線方向(弁部の開閉方向)に伸長または収縮する。ただし、その差圧が大きくなっても感圧部材82が所定量収縮すると、ストッパ部材93とストッパ部材94の互いの先端面が当接して係止されるため、その収縮が規制される。
反力伝達部材69は、円板状をなし、その外周縁部からハウジング81を貫通して上方に延びる3つの脚部70を有する(同図には1つのみ表示)。反力伝達部材69の中央位置は、感圧部材82の上端中央を嵌合させるために凹形状に形成されている。すなわち、その凹形状とストッパ部材93の凸部98とによりダイヤフラム91の連結部が挟まれるように固定されている。反力伝達部材69と第2ハウジング85との間には、両者を離間する方向に付勢するスプリング79が介装されている。なお、感圧部材82の伸長により反力伝達部材69が第2ハウジング85の底部に当接状態となることもあるが、第2ハウジング85の底部が図示のように波うち形状となっているため、作動ロッド19の内部通路78とハウジング81の収容空間の連通状態は保持される。
このような構成において、圧力室28内の吸入圧力Psが所定の設定圧力Psetよりも低くなると感圧部材82が伸長方向に変形し、反力伝達部材69の脚部70がストッパ23の下面を押圧する。その結果、反力伝達部材69に作用する反力が、感圧部材82およびハウジング81を介してシャフト36に伝達され、ソレノイド3によるソレノイド力を低減する方向の力が作用するようになっている。この設定圧力Psetは、基本的にはスプリング95のばね荷重によって予め調整され、蒸発器内の温度と吸入圧力Psとの関係から、蒸発器の凍結を防止できる圧力値として設定されている。設定圧力Psetは、ソレノイド3への供給電流(設定電流)を変えることにより変化させることができる。
本実施の形態においては、主弁の有効受圧径A(弁孔16の開口端部の内径)と、ガイド孔25の内径Bと、ガイド部材72の弁体形成部材63との摺動部の外径C(=弁体形成部材63の拡径部の内径)とが実質的に等しく形成されている。したがって、作動ロッド19に作用する吐出圧力Pdによる力、クランク圧力Pcによる力、吸入圧力Psによる力はいずれもキャンセルされる。このため、圧縮機の制御状態においては、弁体18は、ソレノイド3による閉弁方向のソレノイド力、スプリング75による開弁方向の力、およびパワーエレメント4による開弁方向の反力に基づいて開閉動作することになる。一方、弁座形成部材64の下部摺動部の外径A2(=Oリング68の内径)が、主弁の有効受圧径Aよりも所定量小さく形成されている。したがって、ポート11から導入された吐出圧力Pdが弁座形成部材64ひいては弁形成部材15に対して副弁の閉弁方向に作用するようになる。このため、スプリング76の荷重が小さくても、制御弁1の定常制御状態において副弁の閉弁状態を保持することができる。ただし、有効受圧径Aと外径A2との差は、制御弁1の起動時(ソレノイド3に起動電流を供給したとき)において副弁のスムーズな開弁を阻害しない程度に設定されている。一方、弁形成部材15には、弁体形成部材63の部分においてクランク圧力Pcと吸入圧力Psとの差圧(Pc−Ps)が作用するが、その差圧(Pc−Ps)は通常の制御状態において支障がないほど小さい。このため、圧縮機の制御状態においてはスプリング76の付勢力によって弁体21が弁座20に着座した状態(副弁の閉弁状態)が保持される。なお、このように吐出圧力Pd等の利用して制御弁1の定常制御状態における副弁の閉弁状態を確保可能な構成においては、スプリング76を省略することも可能になる。
次に、制御弁の動作について説明する。
図3および図4は、制御弁の動作を表す図であり、図2に対応する。既に説明した図2は、制御弁の最大容量運転状態を示している。図3は、制御弁のブリード機能を動作させたときの状態を示している。図4は、比較的安定した制御状態を示している。以下においては、図1に基づき、適宜図2〜図4を参照しつつ説明する。
図3および図4は、制御弁の動作を表す図であり、図2に対応する。既に説明した図2は、制御弁の最大容量運転状態を示している。図3は、制御弁のブリード機能を動作させたときの状態を示している。図4は、比較的安定した制御状態を示している。以下においては、図1に基づき、適宜図2〜図4を参照しつつ説明する。
制御弁1において、ソレノイド3が非通電のとき、つまり自動車用空調装置が動作していないときには、コア32とプランジャ33との間に吸引力が作用しない。また、スプリング75が作動ロッド19およびパワーエレメント4を介してシャフト36を下方に付勢しているため、弁体18が弁座17から離間して主弁が全開状態となる。一方、スプリング76の付勢力により弁体21が弁座20に着座した状態が保持されるため、副弁は閉弁状態となっている。このとき、圧縮機の吐出室からポート11に導入された吐出圧力Pdの冷媒は、全開状態の主弁を通過し、ポート13からクランク室へと流れることになる。したがって、クランク圧力Pcが高くなり、圧縮機は最小容量運転を行うようになる。また、この場合には吸入圧力Psが比較的高いので、感圧部材82が収縮した状態となる。このとき、脚部70がストッパ23から離間した状態となるため、パワーエレメント4は作動ロッド19とシャフト36との間に介装されてはいるが、実質的に機能しない。
一方、自動車用空調装置の起動時など、ソレノイド3の電磁コイル34に最大の制御電流が供給されると、プランジャ33は、コア32に最大の吸引力で吸引される。このとき、図3に示すように、ソレノイド力がパワーエレメント4を介して作動ロッド19にそのまま伝達されて弁体18が弁座17に着座するが、ソレノイド力が大きいために主弁が閉じるだけでは留まらず、作動ロッド19が弁形成部材15を押圧しながらさらに上昇する。その結果、弁体21が弁座20から離間して副弁が開放される。このとき、感圧部材82はストッパ部材93とストッパ部材94とが当接する最小状態まで収縮し、パワーエレメント4はその上死点に変位する。
すなわち、ソレノイド3に起動電流を供給することで主弁を閉じてクランク室への吐出冷媒の導入を規制すると同時に弁形成部材15を変位させ、副弁を直ちに開いてクランク室内の冷媒を吸入室に速やかにリリーフさせる。本実施の形態では、圧縮機に形成された減圧通路(クランク室と吸入室とをつなぐオリフィス等)を介してもクランク室の減圧が行われるが、このように副弁を速やかに開弁させてその減圧応答性を最大限に高めることができ、圧縮機を速やかに起動させることができる。この状態から、ソレノイド3に供給する制御電流をやや低減すると、図2に示したように、主弁および副弁の双方が閉じた最大容量運転状態となる。
ここで、ソレノイド3に供給される電流値が所定値に設定された制御状態にあるときには、図4に示すように、弁体21が弁座20に着座して副弁を閉じた状態で、弁体18が弁体21とは別体にて動作して主弁を開閉する。このとき、弁体18は、スプリング75による開弁方向の力と、スプリング76による閉弁方向の力と、ソレノイド3による閉弁方向のソレノイド力と、吸入圧力Psにより動作するパワーエレメント4によるソレノイド力を低減する方向の力とがバランスした弁リフト位置にて停止する。
そして、たとえば冷凍負荷が大きくなり吸入圧力Psが設定圧力Psetよりも高くなると、感圧部材82が縮小するため、パワーエレメント4ひいては弁体18が相対的に上方(閉弁方向)へ変位する。その結果、主弁の弁開度が小さくなり、圧縮機は吐出容量を増やすよう動作する。その結果、吸入圧力Psが低下する方向に変化する。逆に、冷凍負荷が小さくなって吸入圧力Psが設定圧力Psetよりも低くなると、感圧部材82が伸長する。その結果、反力伝達部材69の反力がシャフト36に対してソレノイド力を低減させる方向に作用する。この結果、弁体18への閉弁方向の力が低減されて主弁の弁開度が大きくなり、圧縮機は吐出容量を減らすよう動作する。その結果、吸入圧力Psが設定圧力Psetに維持され、過剰冷房が防止される。
図5は、制御弁の組み付け工程および取り付け工程の特徴的部分を概略的に示す図である。(A)および(B)は、その組み付け経過を表している。(C)は制御弁が圧縮機に取り付けられるときの状態を表している。
制御弁1の組み付けに際しては、まず同図(A)に示すように、ケース30の内方にスリーブ31に収容したコア32,プランジャ33およびシャフト36、電磁コイル34を巻回したボビン41、接続端子44、およびカラー42を含むソレノイド組立体を組み付ける。このとき、接続部材6も組み付けられる。その後、そのソレノイド組立体を図示しないモールド成形型に組み込み、樹脂材をモールド(射出成形)することにより、同図(B)に示すように端部部材35を一体成形する。そのモールドの過程でケース30と電磁コイル34との間隙にも樹脂材が満たされる。その後、同図(C)に示すように、弁本体2を接続部材6に組み付けることにより制御弁1が構成される。
制御弁1の組み付けに際しては、まず同図(A)に示すように、ケース30の内方にスリーブ31に収容したコア32,プランジャ33およびシャフト36、電磁コイル34を巻回したボビン41、接続端子44、およびカラー42を含むソレノイド組立体を組み付ける。このとき、接続部材6も組み付けられる。その後、そのソレノイド組立体を図示しないモールド成形型に組み込み、樹脂材をモールド(射出成形)することにより、同図(B)に示すように端部部材35を一体成形する。そのモールドの過程でケース30と電磁コイル34との間隙にも樹脂材が満たされる。その後、同図(C)に示すように、弁本体2を接続部材6に組み付けることにより制御弁1が構成される。
このように組み付けられた制御弁1は、同図(C)に示すように、圧縮機のハウジングに設けられた取付孔100に取り付けられる。このとき、制御弁1は、その弁本体2側から取付孔100に挿入され、図示しないワッシャなどによって固定される。ケース30と取付孔100との間にOリング49が介装されるため、外部雰囲気が取付孔100の内部に侵入することが効果的に防止または抑制される。
以上に説明したように、本実施の形態の制御弁1においては、高圧の吐出冷媒が導入されるポート11が含まれる位置に、ボディ形成部材51,52による溝状の嵌合部が形成され、その嵌合部にフィルタ12が嵌め込まれる。また、圧縮機の起動時においいてクランク室からの冷媒が導入されるポート13が含まれる位置に、ボディ形成部材52,53による溝状の嵌合部が形成され、その嵌合部にフィルタ14が嵌め込まれる。このような構成により、各フィルタを収容するケースが不要となる。また、フィルタをボディ5に直接取り付ける構成をとるため、フィルタ構造が簡易かつ低コストに実現される。
また、作動ロッド19とシャフト36とが弾性部材などを介することなくハウジング81を介して剛に連結され、ソレノイド力がそのまま主弁の弁体18に伝達される。このため、ソレノイド3がオフからオンに切り替えられて起動電流が供給されたときに、主弁を速やかに閉じることができる。また、主弁の弁座17と副弁の弁体21が弁形成部材15に一体に形成され、弁形成部材15が可動弁座としても機能する。このため、主弁が閉じると同時に副弁が開くように動作するため、クランク室への冷媒の導入を規制すると同時にクランク室から冷媒を排出することができ、圧縮機を速やかに起動させることができる。また、作動ロッド19がソレノイド3により直接的に駆動されるため、仮にポート11を通過した異物がボディ形成部材52と弁体形成部材71との間隙に侵入したとしても、制御弁1の駆動時に作動ロッド19が大きく変位することにより、その異物を間隙から掻き出すことができる。このため、ボディ形成部材52と弁体形成部材71との間隙の入口にシール部材を配置しなくとも、異物の噛み込みの発生を防止または抑制することができる。
[第2の実施の形態]
次に、本発明の第2の実施の形態について説明する。本実施の形態に係る制御弁は、副弁の開弁構造が異なるが、第1の実施の形態と共通する部分も有する。このため、第1の実施の形態とほぼ同様の構成部分については同一の符号を付している。図6は、第2の実施の形態に係る制御弁の構成を示す断面図である。
次に、本発明の第2の実施の形態について説明する。本実施の形態に係る制御弁は、副弁の開弁構造が異なるが、第1の実施の形態と共通する部分も有する。このため、第1の実施の形態とほぼ同様の構成部分については同一の符号を付している。図6は、第2の実施の形態に係る制御弁の構成を示す断面図である。
図6は、第2の実施の形態に係る制御弁の構成を示す断面図である。
本実施の形態の制御弁101は、自動車用空調装置の冷凍サイクルに設置される図示しない可変容量圧縮機(単に「圧縮機」という)を制御する制御弁(電磁弁)として構成されている。この圧縮機は、冷凍サイクルを流れる冷媒を圧縮して高温・高圧のガス冷媒にして吐出する。そのガス冷媒は凝縮器(外部熱交換器)にて凝縮され、さらに膨張装置により断熱膨張されて低温・低圧の霧状の冷媒となる。この低温・低圧の冷媒が蒸発器にて蒸発し、その蒸発潜熱により車室内空気を冷却する。蒸発器で蒸発された冷媒は、再び圧縮機へと戻されて冷凍サイクルを循環する。圧縮機は、自動車のエンジンによって回転駆動される回転軸に取り付けられた揺動板に圧縮用のピストンが連結され、揺動板の角度を変化させてピストンのストロークを変えることにより冷媒の吐出量を調整する。制御弁101は、その圧縮機の吐出室からクランク室に導入する冷媒流量を制御することで揺動板の角度、ひいてはその圧縮機の吐出容量を変化させる。
本実施の形態の制御弁101は、自動車用空調装置の冷凍サイクルに設置される図示しない可変容量圧縮機(単に「圧縮機」という)を制御する制御弁(電磁弁)として構成されている。この圧縮機は、冷凍サイクルを流れる冷媒を圧縮して高温・高圧のガス冷媒にして吐出する。そのガス冷媒は凝縮器(外部熱交換器)にて凝縮され、さらに膨張装置により断熱膨張されて低温・低圧の霧状の冷媒となる。この低温・低圧の冷媒が蒸発器にて蒸発し、その蒸発潜熱により車室内空気を冷却する。蒸発器で蒸発された冷媒は、再び圧縮機へと戻されて冷凍サイクルを循環する。圧縮機は、自動車のエンジンによって回転駆動される回転軸に取り付けられた揺動板に圧縮用のピストンが連結され、揺動板の角度を変化させてピストンのストロークを変えることにより冷媒の吐出量を調整する。制御弁101は、その圧縮機の吐出室からクランク室に導入する冷媒流量を制御することで揺動板の角度、ひいてはその圧縮機の吐出容量を変化させる。
制御弁101は、圧縮機の吸入圧力Psを設定圧力に保つように、吐出室からクランク室に導入する冷媒流量を制御するいわゆるPs感知弁として構成されている。制御弁101は、吐出冷媒の一部をクランク室へ導入するための冷媒通路を開閉する弁部を含む弁本体102と、その弁部の開度を調整してクランク室へ導入する冷媒流量を制御するソレノイド103とを一体に組み付けて構成される。弁本体102は、段付円筒状のボディ105、ボディ105の内部に設けられた弁部、ボディ105の内部に設けられて弁部を開閉するための駆動力を発生するパワーエレメント104(「感圧部」に該当する)等を備えている。ボディ105とソレノイド103とは接続部材106を介して接続固定されている。なお、ボディ105と接続部材106とを合わせたものを制御弁101のボディと捉えることもできる。
ボディ105の側部には、圧縮機の吐出室に連通して吐出圧力Pdを受けるポート11(「吐出室連通ポート」に該当する)が設けられている。ポート11には、ボディ105の内部へのごみ等の侵入を抑制するためのフィルタ12が取り付けられている。ポート11は、ボディ105の上部に設けられたポート13(「クランク室連通ポート」に該当する)と内部で連通している。ポート13は、圧縮機のクランク室に連通し、主弁を経由した冷媒をクランク室へ向けて導出する一方、圧縮機の起動時にはクランク室から排出された冷媒を導入する。このとき導入された冷媒は、副弁を介して吸入室へ導出される。ボディ105の下端開口部は、ソレノイド103との間に形成された空間を介して圧縮機の吸入室に連通する。ボディ105の下端部の側部には、圧縮機の吸入室に連通して吸入圧力Psを受けるポート26(「吸入室連通ポート」に該当する)が形成されている。
ボディ105内のポート11とポート13とを連通する冷媒通路(主通路)には弁孔16が形成され、その弁孔16のポート11側の開口端部に弁座17(主弁座)が形成されている。また、ボディ105には、円筒状の弁形成部材115が軸線方向に変位可能に設けられている。弁形成部材115は、その上端部が縮径されて弁孔16に挿通され、その縮径部の基端部により弁体18(主弁体)が形成されている。すなわち、弁体18は、弁形成部材115の一部として形成され、弁座17にポート11側から接離可能に対向するように配置されている。弁形成部材115の内部通路は、ポート13とポート26とを連通させる冷媒通路(副通路)を形成する。
弁形成部材115は、ボディ105の中央部に設けられた挿通孔24に摺動可能な摺動部と、弁孔16の上端部に摺動可能な摺動部を有し、これらの摺動部がガイドされることで軸線方向に動作する。弁形成部材115の縮径部には、内外を連通する連通孔116が設けられている。弁座17はテーパ面をなし、弁体18の先端外周縁部が弁座17に着脱することによって主弁(第1の弁部)を開閉し、吐出室からクランク室へ流れる冷媒流量を調整する。
ボディ105は、その下半部の内径が複数段に拡径されており、その下半部の軸線方向中央付近に円板状のストッパ123が圧入されている。ストッパ123の中央部には、段付円筒状の弁座形成部材120が加締接合されている。弁座形成部材120には、円柱状の作動ロッド119が軸線方向に摺動可能に挿通されている。弁座形成部材120は、ストッパ123の上面に当接するように配設され、その上端部には半径方向外向きに延出するフランジ部が設けられている。このフランジ部の下面により弁座20(副弁座)が形成されている。また、そのフランジ部を外側から囲むように段付円筒状の弁体形成部材122が配設されている。
弁体形成部材122は、その上端部が弁形成部材115の下端部に摺動可能に支持され、下端部には半径方向内向きに延出するフランジ部が設けられている。このフランジ部により弁体21(副弁体)が形成されている。弁体21は、下方から弁座20に着脱して副弁(第2の弁部)を開閉し、クランク室から吸入室へリリーフする冷媒流量を調整する。 接続部材106は有底段付円筒状をなし、その拡径された上半部にボディ105の下端部が内挿されるように圧入され、底部にソレノイド103が接続されている。ボディ105、接続部材106およびソレノイド103により囲まれる内部空間は、吸入圧力Psが導入される圧力室28を形成する。圧力室28には、吸入圧力Psを感知して軸線方向に動作するパワーエレメント104が配置されている。
一方、ソレノイド103は、ヨークとしても機能する有底円筒状のケース130と、ケース130に対して固定された有底円筒状のスリーブ131と、ケース130に固定されるとともにスリーブ131の開口部側である上半部に内挿された円筒状のコア32と、スリーブ131の底部側である下半部に収容されてコア32と軸線方向に対向配置された円柱状のプランジャ133と、外部からの供給電流により磁気回路を生成する電磁コイル34と、ケース130の下端開口部を封止するように設けられた端部部材135とを備えている。接続部材106の底部とケース130の底部とが突き合わされ、その底部中央を貫通するように挿通孔29が形成されている。そして、コア32の上端部がその挿通孔29に挿通されて外方に加締められることにより、接続部材106とケース130とを内方から挟み込むように連結固定している。
コア32の中央を軸線方向に貫通するように、長尺柱状のシャフト136が挿通されている。シャフト136は、その下端部がプランジャ133の上端部に同軸状に圧入されている。コア32とシャフト136との間隙には、圧力室28と連通する冷媒通路が形成されている。プランジャ133の外周面の所定箇所には軸線方向に沿った溝部137が形成されている。コア32とシャフト136との間隙を通過した吸入圧力Psの冷媒は、さらにその溝部137とスリーブ131との間に形成された通路を通ってプランジャ133の下部、つまり背圧室39に導入される。シャフト136は、その上端部がパワーエレメント104に連結されており、ソレノイド力をパワーエレメント104を介して作動ロッド119に伝達する。
スリーブ131は、非磁性材料からなり、その底部中央部が上方にやや凸となり、プランジャ133を下方から支持できるように構成されている。また、スリーブ131には円筒状のボビン41が外挿されており、そのボビン41に電磁コイル34が巻回されている。このボビン41に電磁コイル34が巻回されたコイル組立体とケース130との間には、樹脂材からなる段付円筒状の熱伝達部材134が介装されている。熱伝達部材134は、電磁コイル34で発生した熱をケース130に伝達してその放熱効率を高める。コア32の上端部外周面、スリーブ131の上端面、およびケース130の底部内面により囲まれた空間にはシールリング47が介装され、ソレノイド103の内外のシールを確保している。
ケース130の下端部は拡径され、半径方向外向きに突出した拡径部40となっており、その内方に円板状のカラー142が配設されている。カラー142は、その拡径部40の下端部が内方に加締められることによりケース130に固定されている。カラー142は、磁性材料からなり、ケース130とともに磁気回路を構成する。カラー142の底部中央には挿通孔43が設けられ、スリーブ131の下端部がその挿通孔43を介して露出している。ボビン41からは電磁コイル34につながる一対の接続端子44が延出し、それぞれカラー142および端部部材135を貫通して外部に引き出されている。同図には説明の便宜上、その一対の片方のみが表示されている。
端部部材135は、ケース130に内包されるソレノイド103内の構造物全体を下方から封止するように取り付けられている。端部部材135からは接続端子44の先端部が引き出されており、図示しない外部電源に接続される。なお、端部部材135を形成する樹脂材としては、例えばガラスを含有した66ナイロン等のように適度な硬さと弾性を有するものが好ましい。一定以上の取付精度を確保するために、ゴムよりも硬度の高いものであるのが好ましい。
端部部材135の上端外周面とケース130の下端内周面との間に比較的小さなOリング48が介装されている。また、ケース130の拡径部の上方には、Oリング49がケース130に外挿されるように取り付けられている。Oリング49は、Oリング48よりも大きく、図示しない圧縮機のハウジングに設けられた取付孔に制御弁101が取り付けられた際に、その取付孔とケース130との間に介装されるように配置され、外部からハウジング内部への異物の侵入を規制する。
図7は、図6の上半部に対応する部分拡大断面図である。
ボディ105の外周部のポート11が含まれる位置には、ボディ105の内方に向かって段階的に幅が大きくなる溝状の嵌合部159が形成され、その嵌合部159に環状のフィルタ12が嵌着されている。すなわち、嵌合部159は、小幅部160と、その小幅部160より幅が大きい大幅部162とからなる。本実施の形態では、この嵌合部159を旋盤による切削加工により成形する。具体的には、ボディ105のポート11が含まれる位置にT字状の先端形状を有するバイトを突き当てるようにして、まず小幅部160と同幅で大幅部162と同じ深さの溝部を形成し、その溝部の形成後にそのままバイトをボディ105の上方および下方に所定量ずつずらして切削を進める。その後、バイトを上下方向の元の位置に戻してから退避させることにより、図示のような段付溝が形成される。
ボディ105の外周部のポート11が含まれる位置には、ボディ105の内方に向かって段階的に幅が大きくなる溝状の嵌合部159が形成され、その嵌合部159に環状のフィルタ12が嵌着されている。すなわち、嵌合部159は、小幅部160と、その小幅部160より幅が大きい大幅部162とからなる。本実施の形態では、この嵌合部159を旋盤による切削加工により成形する。具体的には、ボディ105のポート11が含まれる位置にT字状の先端形状を有するバイトを突き当てるようにして、まず小幅部160と同幅で大幅部162と同じ深さの溝部を形成し、その溝部の形成後にそのままバイトをボディ105の上方および下方に所定量ずつずらして切削を進める。その後、バイトを上下方向の元の位置に戻してから退避させることにより、図示のような段付溝が形成される。
このようにして嵌合部159が形成された後、フィルタ12を挿入嵌合させる。フィルタ12は、長尺帯状の金属メッシュをその長手方向に丸めてその両端部を所定量オーバラップさせ、そのオーバラップ部にスポット溶接を施すことにより環状に形成されている。フィルタ12は、図示のように大幅部162の幅よりも大きな幅を有するため、その上下端がそれぞれ折り曲げられた状態で嵌合部159に嵌合状態で組み付けられる。このため、フィルタ12の脱落は確実に防止されている。
弁形成部材115は、有底円筒状をなし、その底部に内外を連通する連通孔140が設けられている。弁形成部材115の下端部と、弁体形成部材122と、弁座形成部材120とにより囲まれた空間は、連通孔140を介してポート13に連通し、クランク圧力Pcが満たされる圧力室150を形成する。弁形成部材115の下部には凹溝が周設され、その凹溝とボディ105との間には、弁形成部材115を主弁の開弁方向に付勢するスプリング75が介装されている。作動ロッド119は、弁座形成部材120を軸線方向に貫通し、その一端側が圧力室150に延出して弁形成部材115に連結され、他端側が圧力室28に延出してパワーエレメント104に連結されている。
なお、本実施の形態では省略したが、変形例においては、ボディ105と弁形成部材115との間にシール部材を設け、ポート11から導入された吐出冷媒が圧力室28へ漏れることを規制するようにしてもよい。例えば、挿通孔24のポート11側の開口端部に薄膜シート状(リング状)のパッキンを設けてもよい。そのパッキンに前後差圧が作用したときにセルフシール作用によりその内周部が弁形成部材115の摺動面に圧着するように構成してもよい。
パワーエレメント104は、作動ロッド119とシャフト136との間に介装されて弁部の開閉方向に変位可能に支持された中空のハウジング181と、ハウジング181内に密閉された基準圧力室Sを形成するように支持された感圧部材182と、感圧部材182の上端部に連結された反力伝達部材169とを備えている。ハウジング181は、ステンレス鋼板をプレス成形して得られた有底円筒状の第1ハウジング184と第2ハウジング185を、それらの開口部を突き合わせるように接合して形成され、内部に感圧部材182および反力伝達部材169の収容空間を形成する。
第1ハウジング184は、その底部中央に上方に突出した嵌合凸部186が設けられ、その嵌合凸部186にシャフト136の上端部を収容するようにしてシャフト136に連結されている。第1ハウジング184は、その側面が周方向に波形状となっており、その波形状の外側頂点部において接続部材106に摺動可能に支持されている。第2ハウジング185は、その下端部が第1ハウジング184の上端部に接合(溶接)されている。第2ハウジング185は、その底部中央にて作動ロッド119を下方から支持している。第2ハウジング185の上端外周縁には、反力伝達部材169の一部を露出させる複数の挿通孔90がそれぞれ設けられている。
感圧部材182は、上下(弁部の開閉方向)に対向する一対のダイヤフラム191,192と、その一対のダイヤフラムに挟まれるガイド部材188と、その一対のダイヤフラムのそれぞれに接合された一対のストッパ部材193,194と、その一対のストッパ部材の間に介装されたスプリング195を含んで構成される。ダイヤフラム191、192はともに薄膜円板状の金属ダイヤフラムからなり、円筒状のガイド部材188の上端開口部、下端開口部をそれぞれ封止するように装着されている。すなわち、ガイド部材188とリング部材96との間にダイヤフラム191の外周縁部が挟まれるようにして外周溶接を施し、ガイド部材188とリング部材97との間にダイヤフラム192の外周縁部が挟まれるようにして外周溶接を施すことにより密閉された基準圧力室Sが形成されている。この溶接は真空雰囲気内で行われるため、基準圧力室Sは真空状態となっているが、基準圧力室S内に大気等を満たすようにしてもよい。
ストッパ部材193は段付円柱状をなし、その上面がダイヤフラム191の下面中央に接合されている。ストッパ部材193の上端部には半径方向外向きに延出するフランジ部145が設けられている。一方、ストッパ部材194も段付円柱状をなし、その下面がダイヤフラム192の上面中央に接合されている。ストッパ部材194の下端部には半径方向外向きに延出するフランジ部146が設けられている。スプリング195は、フランジ部145とフランジ部146との間に介装され、ストッパ部材193とストッパ部材194とを互いに離間させる方向に付勢している。このため、感圧部材182は、圧力室28の吸入圧力Psと基準圧力室Sの基準圧力との差圧に応じて軸線方向(弁部の開閉方向)に伸長または収縮する。ただし、その差圧が大きくなっても感圧部材182が所定量収縮すると、ストッパ部材193とストッパ部材194の互いの先端面が当接して係止されるため、その収縮が規制される。
スプリング195は、隣接するコイルが密着したときの密着高さが、各コイルの厚みの合計よりも小さくなる圧縮コイルスプリングからなる。すなわち、スプリング195は、隣接するコイルの外径が徐々に変化し、軸線方向の端部よりも中央部の外径が大きな樽型形状をなすように形成され、その一端部がストッパ部材193を支持軸として支持され、他端部がストッパ部材194を支持軸として支持されるように組み付けられている。このように、樽形の圧縮コイルスプリングを採用することにより、スプリング195をその荷重の大きさに比してコンパクトに形成することができる。
反力伝達部材169は、円板状をなし、その外周縁部からハウジング181を貫通して上方に延びる3つの脚部70を有する(同図には1つのみ表示)。反力伝達部材169の中央位置は、感圧部材182の上端中央に接合されるよう凹形状に形成されている。すなわち、その凹形状とストッパ部材193とによりダイヤフラム191の中央部が挟まれるように固定されている。反力伝達部材169と第2ハウジング185との間には、両者を離間する方向に付勢するスプリング79が介装されている。
ストッパ123の脚部70に対向する位置には挿通孔128が設けられており、脚部70の上端部はこの挿通孔128を貫通してその上部の空間に延出している。弁座形成部材120は、このように延出した3つの脚部70の内方に圧入され、脚部70と一体動作するように構成されている。したがって、脚部70は、図示のように弁体21が弁座20に着座して副弁が閉じた状態になると、それより上方へ変位することはない。
このような構成において、制御弁101の定常制御中に圧力室28内の吸入圧力Psが所定の設定圧力Psetよりも低くなると、感圧部材182が伸長方向に変形する。このとき、副弁が閉弁状態にあるため、反力伝達部材169が感圧部材182の上方への変位を規制するため、感圧部材182は相対的に下方に変位する。すなわち、反力伝達部材169に作用する弁座形成部材120からの反力が、感圧部材182およびハウジング181を介してシャフト136に伝達され、ソレノイド103によるソレノイド力を低減する方向の力が作用する。この設定圧力Psetは、基本的にはスプリング195のばね荷重によって予め調整され、蒸発器内の温度と吸入圧力Psとの関係から、蒸発器の凍結を防止できる圧力値として設定されている。設定圧力Psetは、ソレノイド103への供給電流(設定電流)を変えることにより変化させることができる。
本実施の形態においては、主弁の有効受圧径A(弁孔16の開口端部の内径)と、挿通孔24の内径Bと、作動ロッド119の弁体形成部材122との摺動部の外径Cと、副弁の有効受圧径D(弁座20の外径)とが実質的に等しく形成されている。したがって、作動ロッド119に作用する吐出圧力Pdによる力、およびクランク圧力Pcによる力はキャンセルされる。また、弁体形成部材122に作用する吸入圧力Psによる力もキャンセルされる。このため、圧縮機の制御状態においては、弁体18は、ソレノイド103による閉弁方向のソレノイド力、スプリング75による開弁方向の力、およびパワーエレメント104による開弁方向の反力に基づいて開閉動作することになる。一方、スプリング195の荷重がスプリング79の荷重よりも相当大きく設定されている。このため、制御弁101の定常制御状態において副弁の閉弁状態を保持することができる。
次に、制御弁の動作について説明する。
図8および図9は、制御弁の動作を表す図であり、図7に対応する。既に説明した図7は、制御弁の最大容量運転状態を示している。図8は、制御弁のブリード機能を動作させたときの状態を示している。図9は、比較的安定した制御状態を示している。以下においては、図6に基づき、適宜図7〜図9を参照しつつ説明する。
図8および図9は、制御弁の動作を表す図であり、図7に対応する。既に説明した図7は、制御弁の最大容量運転状態を示している。図8は、制御弁のブリード機能を動作させたときの状態を示している。図9は、比較的安定した制御状態を示している。以下においては、図6に基づき、適宜図7〜図9を参照しつつ説明する。
制御弁101において、ソレノイド103が非通電のとき、つまり自動車用空調装置が動作していないときには、コア32とプランジャ133との間に吸引力が作用しない。また、スプリング75が作動ロッド119およびパワーエレメント104を介してシャフト136を下方に付勢しているため、弁体18が弁座17から離間して主弁が全開状態となる。このとき、圧縮機の吐出室からポート11に導入された吐出圧力Pdの冷媒は、全開状態の主弁を通過し、ポート13からクランク室へと流れることになる。したがって、クランク圧力Pcが高くなり、圧縮機は最小容量運転を行うようになる。
また、この場合には吸入圧力Psが比較的高いので、感圧部材182が収縮した状態となる。このとき、ソレノイド力が作用しないため、パワーエレメント104が下死点に変位し、その結果、弁体21が弁座20から離間して副弁が開放された状態となる。また、弁体形成部材122が弁座形成部材120から離間した状態となるため、パワーエレメント104は作動ロッド119とシャフト136との間に介装されてはいるが、実質的に機能しない。一方、弁形成部材115が全開状態で下死点へ変位して弁座形成部材120に当接した状態となり、作動ロッド119の下端部は封止される。すなわち、作動ロッド119の下端面と弁座形成部材120の上端面によって第2の副弁が閉じられることになり、それによってポート13を介したクランク室からの冷媒の導出が規制されるため、最小容量運転状態は維持される。
一方、自動車用空調装置の起動時など、ソレノイド103の電磁コイル34に最大の制御電流が供給されると、プランジャ133は、コア32に最大の吸引力で吸引される。このとき、図8に示すように、ソレノイド力がパワーエレメント104を介して作動ロッド119にそのまま伝達されて弁体18が弁座17に着座して主弁が閉じられる。このとき、作動ロッド119が下死点から上昇するため、上述した第2の副弁は開放される。一方、夏場などの高負荷時における圧縮機の起動直後は吸入圧力Psが高く感圧部材182が収縮状態にあるため、弁体21が弁座20から離間する副弁の開放状態が維持される。
なお、本実施の形態では、このように感圧部材182を収縮状態とできる吸入圧力Psとして、空調装置が多用される夏場などの所定の高負荷時に開弁可能な値を設定している。本実施の形態におけるその設定値は、ダイヤフラム191およびダイヤフラム192の有効受圧面積と吸入圧力Ps(正確には吸入圧力Psと基準圧力室Sの基準圧力との差圧)とにより算出される荷重にスプリング79の荷重を加えた感圧部材182の収縮方向の荷重が、スプリング195による感圧部材182の伸張方向の荷重に打ち勝つことができる吸入圧力Psとなっている。
すなわち、ソレノイド103に起動電流を供給することで主弁を閉じてクランク室への吐出冷媒の導入を規制する一方、副弁を開弁状態とするため、クランク室内の冷媒を吸入室に速やかにリリーフさせる。本実施の形態では、圧縮機に形成された減圧通路(クランク室と吸入室とをつなぐオリフィス等)を介してもクランク室の減圧が行われるが、このように副弁を速やかに開弁させてその減圧応答性を最大限に高めることができ、圧縮機を速やかに起動させることができる。この状態から、吸入圧力Psが低下すると、図7に示したように、主弁および副弁の双方が閉じた最大容量運転状態となる。
ここで、ソレノイド103に供給される電流値が所定値に設定された制御状態にあるときには、吸入圧力Psもある程度低い状態にあるため、図9に示すように、弁体21が弁座20に着座して副弁を閉じた状態で、弁体18が動作して主弁を開閉する。このとき、弁体18は、スプリング75による開弁方向の力と、ソレノイド103による閉弁方向のソレノイド力と、吸入圧力Psにより動作するパワーエレメント104によるソレノイド力を低減する方向の力とがバランスした弁リフト位置にて停止する。
そして、たとえば冷凍負荷が大きくなり吸入圧力Psが設定圧力Psetよりも高くなると、感圧部材182が縮小するため、パワーエレメント104ひいては弁体18が相対的に上方(閉弁方向)へ変位する。その結果、主弁の弁開度が小さくなり、圧縮機は吐出容量を増やすよう動作する。その結果、吸入圧力Psが低下する方向に変化する。逆に、冷凍負荷が小さくなって吸入圧力Psが設定圧力Psetよりも低くなると、感圧部材182が伸長する。その結果、反力伝達部材169の反力がシャフト136に対してソレノイド力を低減させる方向に作用する。この結果、弁体18への閉弁方向の力が低減されて主弁の弁開度が大きくなり、圧縮機は吐出容量を減らすよう動作する。その結果、吸入圧力Psが設定圧力Psetに維持され、過剰冷房が防止される。
以上に説明したように、本実施の形態の制御弁101においては、本実施の形態の制御弁101においては、高圧の吐出冷媒が導入されるポート11が含まれる位置に溝状の嵌合部が形成され、その嵌合部にフィルタ12が嵌め込まれる。このような構成により、フィルタを収容するケースが不要となる。また、フィルタをボディ5に直接取り付ける構成をとるため、フィルタ構造が簡易かつ低コストに実現される。
作動ロッド119とシャフト136とが弾性部材などを介することなくハウジング181を介して剛に連結され、ソレノイド力がそのまま主弁の弁体18に伝達される。このため、ソレノイド103がオフからオンに切り替えられて起動電流が供給されたときに、主弁を速やかに閉じることができる。また、特に夏場などの高負荷時においては圧縮機起動時の吸入圧力Psが高いため、副弁の開弁状態を維持できる。つまり、主弁が閉じると同時に副弁を開弁状態とできるため、クランク室への冷媒の導入を規制すると同時にクランク室から冷媒を排出することができ、圧縮機を速やかに起動させることができる。また、作動ロッド119がソレノイド103により直接的に駆動されるため、仮にポート11を通過した異物がボディ105と弁形成部材115との間隙に侵入したとしても、制御弁101の駆動時に作動ロッド119が大きく変位することにより、その異物を間隙から掻き出すことができる。このため、挿通孔24のポート11側の開口部にシール部材を配置しなくとも、異物の噛み込みの発生を防止または抑制することができる。
以上、本発明の好適な実施の形態について説明したが、本発明はその特定の実施の形態に限定されるものではなく、本発明の技術思想の範囲内で種々の変形が可能であることはいうまでもない。
上記実施の形態においては、簡易なフィルタ構造を、圧縮機の容量制御を行ういわゆるPs感知弁に適用した例を示したが、適用対象となる制御弁の制御方式や制御対象はこれらに限られない。例えば、クランク圧力Pcを感知してこれを一定に保持するよう制御するいわゆるPc感知弁や、吐出圧力Pdと吸入圧力Psとの差圧(Pd−Ps)を設定差圧に保持するいわゆるPd−Ps弁に適用してもよい。さらに、車両用空調装置ではなく、燃料噴射弁等のように車両に搭載される他の装置において作動流体を制御する電磁弁に適用してもよい。あるいは、例えば給湯装置の注湯を制御する制御弁のように、車両以外の装置において作動流体を制御する電磁弁に適用してもよい。さらに、電磁弁ではなく、作動流体による前後差圧により弁部が開閉する機械式の制御弁に適用してもよい。
1 制御弁、 2 弁本体、 3 ソレノイド、 4 パワーエレメント、 5 ボディ、 16 弁孔、 17 弁座、 18 弁体、 19 作動ロッド、 20 弁座、 21 弁体、 28 圧力室、 36 シャフト、 69 反力伝達部材、 70 脚部、 82 感圧部材、 91,92 ダイヤフラム、 93,94 ストッパ部材、 95 スプリング、 101 制御弁、 102 弁本体、 103 ソレノイド、 104 パワーエレメント、 105 ボディ、 119 作動ロッド、 136 シャフト、 169 反力伝達部材、 181 ハウジング、 182 感圧部材、 188 ガイド部材、 191,192 ダイヤフラム、 193,194 ストッパ部材、 195 スプリング。
Claims (4)
- 作動流体が導入される導入ポート、作動流体が導出される導出ポート、および前記導入ポートと前記導出ポートとをつなぐ流体通路が形成されたボディと、前記流体通路に設けられた弁部と、前記導入ポートに配置されて前記ボディ内への異物の流入を規制するフィルタとを備える制御弁において、
前記ボディの外周部の前記導入ポートが含まれる位置に設けられた溝状の嵌合部と、
前記嵌合部の少なくとも幅方向両端部を外方から覆うように設けられ、前記導入ポートが含まれる位置に開口部を形成する係止部と、
を備え、
前記フィルタが、前記係止部の開口部よりも大きな幅を有する環状の部材からなり、前記嵌合部に嵌め込まれるとともに、前記係止部に外方から係止されるように前記ボディに取り付けられていることを特徴とする制御弁。 - 前記フィルタが長尺帯状の金属メッシュをその長手方向の両端部が所定量オーバラップするように丸めて形成されていることを特徴とする請求項1に記載の制御弁。
- 前記ボディが、プレス成形により得られた筒状の第1ボディに対し、プレス成形された筒状の第2ボディを外挿嵌合させるようにして構成され、
前記第1ボディにより前記嵌合部が形成され、前記第2ボディにより前記係止部が形成されていることを特徴とする請求項1または2に記載の制御弁。 - 前記ボディの外周部の前記導入ポートが含まれる位置に、前記ボディの内方に向かって段階的に幅が大きくなる溝部が周設され、その溝部の幅の大きい部分により前記嵌合部が形成され、その溝部の幅の小さい部分により前記係止部が形成されていることを特徴とする請求項1または2に記載の制御弁。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009178734A JP2011032916A (ja) | 2009-07-31 | 2009-07-31 | 制御弁 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009178734A JP2011032916A (ja) | 2009-07-31 | 2009-07-31 | 制御弁 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011032916A true JP2011032916A (ja) | 2011-02-17 |
Family
ID=43762241
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009178734A Pending JP2011032916A (ja) | 2009-07-31 | 2009-07-31 | 制御弁 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011032916A (ja) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013224639A (ja) * | 2012-04-23 | 2013-10-31 | Tgk Co Ltd | 可変容量圧縮機用制御弁 |
JP2015021605A (ja) * | 2013-07-23 | 2015-02-02 | 株式会社テージーケー | 電磁弁 |
EP2913527A1 (en) * | 2014-02-27 | 2015-09-02 | TGK CO., Ltd. | Control valve for variable displacement compressor |
WO2020095918A1 (ja) * | 2018-11-07 | 2020-05-14 | イーグル工業株式会社 | 容量制御弁 |
KR20210091270A (ko) * | 2018-12-04 | 2021-07-21 | 이구루코교 가부시기가이샤 | 용량 제어 밸브 |
CN113167261A (zh) * | 2018-12-12 | 2021-07-23 | 翰昂汽车零部件有限公司 | 斜盘式压缩机 |
CN113167264A (zh) * | 2018-12-04 | 2021-07-23 | 伊格尔工业股份有限公司 | 容量控制阀 |
CN113646528A (zh) * | 2019-04-03 | 2021-11-12 | 伊格尔工业股份有限公司 | 容量控制阀 |
US11473683B2 (en) | 2018-08-08 | 2022-10-18 | Eagle Industry Co., Ltd. | Capacity control valve |
US11480166B2 (en) | 2018-07-13 | 2022-10-25 | Eagle Industry Co., Ltd. | Capacity control valve |
US11536257B2 (en) | 2018-07-12 | 2022-12-27 | Eagle Industry Co., Ltd. | Capacity control valve |
US11555489B2 (en) | 2018-07-12 | 2023-01-17 | Eagle Industry Co., Ltd. | Capacity control valve |
US11598437B2 (en) | 2019-03-01 | 2023-03-07 | Eagle Industry Co., Ltd. | Capacity control valve |
US11802552B2 (en) | 2019-07-12 | 2023-10-31 | Eagle Industry Co., Ltd. | Capacity control valve |
US11873805B2 (en) | 2018-08-08 | 2024-01-16 | Eagle Industry Co., Ltd. | Capacity control valve |
US11927275B2 (en) | 2019-04-03 | 2024-03-12 | Eagle Industry Co., Ltd. | Capacity control valve |
US11994120B2 (en) | 2018-07-12 | 2024-05-28 | Eagle Industry Co., Ltd. | Capacity control valve |
US12012948B2 (en) | 2018-08-08 | 2024-06-18 | Eagle Industry Co., Ltd. | Capacity control valve |
US12018663B2 (en) | 2020-04-23 | 2024-06-25 | Eagle Industry Co., Ltd. | Capacity control valve |
US12025237B2 (en) | 2020-05-25 | 2024-07-02 | Eagle Industry Co., Ltd. | Capacity control valve |
US12110882B2 (en) | 2020-05-25 | 2024-10-08 | Eagle Industry Co., Ltd. | Capacity control valve |
US12129840B2 (en) | 2019-10-28 | 2024-10-29 | Eagle Industry Co., Ltd. | Capacity control valve |
-
2009
- 2009-07-31 JP JP2009178734A patent/JP2011032916A/ja active Pending
Cited By (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013224639A (ja) * | 2012-04-23 | 2013-10-31 | Tgk Co Ltd | 可変容量圧縮機用制御弁 |
JP2015021605A (ja) * | 2013-07-23 | 2015-02-02 | 株式会社テージーケー | 電磁弁 |
US9562524B2 (en) | 2014-02-27 | 2017-02-07 | Tgk Co., Ltd. | Control valve for variable displacement compressor |
EP2963291A3 (en) * | 2014-02-27 | 2016-01-27 | TGK CO., Ltd. | Control valve for variable displacement compressor |
EP2963292A3 (en) * | 2014-02-27 | 2016-01-27 | TGK CO., Ltd. | Control valve for variable displacement compressor |
EP2977607A1 (en) * | 2014-02-27 | 2016-01-27 | TGK CO., Ltd. | Control valve for variable displacement compressor |
US9512833B2 (en) | 2014-02-27 | 2016-12-06 | Tgk Co., Ltd. | Control valve for variable displacement compressor |
US9556862B2 (en) | 2014-02-27 | 2017-01-31 | Tgk Co., Ltd. | Control valve for variable displacement compressor |
EP2913527A1 (en) * | 2014-02-27 | 2015-09-02 | TGK CO., Ltd. | Control valve for variable displacement compressor |
US11994120B2 (en) | 2018-07-12 | 2024-05-28 | Eagle Industry Co., Ltd. | Capacity control valve |
US11536257B2 (en) | 2018-07-12 | 2022-12-27 | Eagle Industry Co., Ltd. | Capacity control valve |
US11555489B2 (en) | 2018-07-12 | 2023-01-17 | Eagle Industry Co., Ltd. | Capacity control valve |
US11480166B2 (en) | 2018-07-13 | 2022-10-25 | Eagle Industry Co., Ltd. | Capacity control valve |
US12012948B2 (en) | 2018-08-08 | 2024-06-18 | Eagle Industry Co., Ltd. | Capacity control valve |
US11873805B2 (en) | 2018-08-08 | 2024-01-16 | Eagle Industry Co., Ltd. | Capacity control valve |
US11473683B2 (en) | 2018-08-08 | 2022-10-18 | Eagle Industry Co., Ltd. | Capacity control valve |
CN112955684A (zh) * | 2018-11-07 | 2021-06-11 | 伊格尔工业股份有限公司 | 容量控制阀 |
CN112955684B (zh) * | 2018-11-07 | 2023-05-16 | 伊格尔工业股份有限公司 | 容量控制阀 |
US11378194B2 (en) | 2018-11-07 | 2022-07-05 | Eagle Industry Co., Ltd. | Capacity control valve |
JPWO2020095918A1 (ja) * | 2018-11-07 | 2021-09-30 | イーグル工業株式会社 | 容量制御弁 |
JP7286672B2 (ja) | 2018-11-07 | 2023-06-05 | イーグル工業株式会社 | 容量制御弁 |
WO2020095918A1 (ja) * | 2018-11-07 | 2020-05-14 | イーグル工業株式会社 | 容量制御弁 |
US11473684B2 (en) | 2018-12-04 | 2022-10-18 | Eagle Industry Co., Ltd. | Capacity control valve |
KR20210091270A (ko) * | 2018-12-04 | 2021-07-21 | 이구루코교 가부시기가이샤 | 용량 제어 밸브 |
CN113167264B (zh) * | 2018-12-04 | 2023-02-28 | 伊格尔工业股份有限公司 | 容量控制阀 |
EP3892855A4 (en) * | 2018-12-04 | 2022-06-22 | Eagle Industry Co., Ltd. | DISPLACEMENT CONTROL VALVE |
CN113167263A (zh) * | 2018-12-04 | 2021-07-23 | 伊格尔工业股份有限公司 | 容量控制阀 |
CN113167264A (zh) * | 2018-12-04 | 2021-07-23 | 伊格尔工业股份有限公司 | 容量控制阀 |
KR102603184B1 (ko) | 2018-12-04 | 2023-11-16 | 이구루코교 가부시기가이샤 | 용량 제어 밸브 |
CN113167261B (zh) * | 2018-12-12 | 2023-11-03 | 翰昂汽车零部件有限公司 | 斜盘式压缩机 |
CN113167261A (zh) * | 2018-12-12 | 2021-07-23 | 翰昂汽车零部件有限公司 | 斜盘式压缩机 |
US12037995B2 (en) | 2018-12-12 | 2024-07-16 | Hanon Systems | Swash plate compressor |
US11598437B2 (en) | 2019-03-01 | 2023-03-07 | Eagle Industry Co., Ltd. | Capacity control valve |
US11841090B2 (en) | 2019-04-03 | 2023-12-12 | Eagle Industry Co., Ltd. | Capacity control valve |
CN113646528A (zh) * | 2019-04-03 | 2021-11-12 | 伊格尔工业股份有限公司 | 容量控制阀 |
US11927275B2 (en) | 2019-04-03 | 2024-03-12 | Eagle Industry Co., Ltd. | Capacity control valve |
US11802552B2 (en) | 2019-07-12 | 2023-10-31 | Eagle Industry Co., Ltd. | Capacity control valve |
US12129840B2 (en) | 2019-10-28 | 2024-10-29 | Eagle Industry Co., Ltd. | Capacity control valve |
US12018663B2 (en) | 2020-04-23 | 2024-06-25 | Eagle Industry Co., Ltd. | Capacity control valve |
US12025237B2 (en) | 2020-05-25 | 2024-07-02 | Eagle Industry Co., Ltd. | Capacity control valve |
US12110882B2 (en) | 2020-05-25 | 2024-10-08 | Eagle Industry Co., Ltd. | Capacity control valve |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2011032916A (ja) | 制御弁 | |
JP6103586B2 (ja) | 可変容量圧縮機用制御弁 | |
JP6281046B2 (ja) | 可変容量圧縮機用制御弁 | |
JP2018040385A (ja) | 電磁弁 | |
JP6064123B2 (ja) | 制御弁 | |
JP2011043102A (ja) | 可変容量圧縮機用制御弁 | |
JP2012144986A (ja) | 可変容量圧縮機用制御弁 | |
JP6085789B2 (ja) | 可変容量圧縮機用制御弁 | |
JP2011038630A (ja) | 電磁弁 | |
JP5467184B2 (ja) | 可変容量圧縮機用制御弁 | |
JP6216950B2 (ja) | 可変容量圧縮機用制御弁および制御弁 | |
JP2008025553A (ja) | 可変容量圧縮機用制御弁 | |
JP5499254B2 (ja) | 可変容量圧縮機用制御弁 | |
JP5369262B2 (ja) | 可変容量圧縮機用制御弁 | |
JP5292585B2 (ja) | 可変容量圧縮機用制御弁 | |
JP6064185B2 (ja) | 可変容量圧縮機用制御弁 | |
JP6064182B2 (ja) | 可変容量圧縮機用制御弁 | |
JP6040371B2 (ja) | 制御弁 | |
JP6175630B2 (ja) | 制御弁 | |
JP2010196794A (ja) | 電磁弁 | |
JP6175716B2 (ja) | 制御弁 | |
JP6040343B2 (ja) | 電磁弁 | |
JP2011021527A (ja) | 可変容量圧縮機用制御弁および電磁弁 | |
JP2010024874A (ja) | 可変容量圧縮機用制御弁 | |
JP2010216418A (ja) | 可変容量圧縮機用制御弁 |