Nothing Special   »   [go: up one dir, main page]

JP2011009519A - Optical semiconductor device and method for manufacturing the optical semiconductor device - Google Patents

Optical semiconductor device and method for manufacturing the optical semiconductor device Download PDF

Info

Publication number
JP2011009519A
JP2011009519A JP2009152284A JP2009152284A JP2011009519A JP 2011009519 A JP2011009519 A JP 2011009519A JP 2009152284 A JP2009152284 A JP 2009152284A JP 2009152284 A JP2009152284 A JP 2009152284A JP 2011009519 A JP2011009519 A JP 2011009519A
Authority
JP
Japan
Prior art keywords
optical semiconductor
semiconductor device
manufacturing
resin
reflecting layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009152284A
Other languages
Japanese (ja)
Inventor
Naoyuki Urasaki
直之 浦崎
Isato Kotani
勇人 小谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2009152284A priority Critical patent/JP2011009519A/en
Publication of JP2011009519A publication Critical patent/JP2011009519A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/157Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2924/15738Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950 C and less than 1550 C
    • H01L2924/15747Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical semiconductor device and a method for manufacturing the optical semiconductor device capable of enhancing productivity.SOLUTION: The method for manufacturing an optical semiconductor device 100 includes the steps of: forming a light-reflecting layer 30 formed with a plurality of through-holes 30a, by transfer molding by use of a thermosetting resin composition on a wiring member 10 to obtain a formed body 70, formed with a plurality of recess parts 32 plugging one of aperture parts of the through-hole 30a by a wiring member 10; arranging optical semiconductor elements 20 inside the recess section 32, respectively; supplying the recess section 32, arranged with the semiconductor element 20 with a sealing resin so as to coat a surface 30b of the light-reflecting layer 30; arranging a lens 50 covering the recess section 32, in a state of being separates from the surface 30b of the light-reflecting layer 30 by intervention of the sealing resin to then harden the sealing resin; and dividing the formed body 70 for each recess section 32 and obtaining a plurality of optical semiconductor devices 100.

Description

本発明は、光半導体装置及び光半導体装置の製造方法に関するものである。   The present invention relates to an optical semiconductor device and a method for manufacturing the optical semiconductor device.

光半導体素子である発光ダイオード(Light Emitting Diode:LED)は、安価で長寿命な素子として注目されており、各種のインジケータ、光源、平面型表示装置、液晶ディスプレイのバックライト等の光半導体装置に広く使用されている。従来の光半導体装置としては、ケース材の内部に配置されたLED素子がカバーで覆われており、LED素子とカバーとの間のキャビティ部には空気が満たされた構成を有するものがある(例えば下記特許文献1参照)。また、別の光半導体装置としては、ケース材の内部に配置されたLED素子がカバーで覆われ、LED素子とカバーとの間のキャビティ部にシリコーン樹脂が満たされた構成を有しており、キャビティ部に針を差し込んでシリコーン樹脂が注入されるものがある(例えば下記特許文献2参照)。更には、ハウジング(ケース材)上に緩衝材を介して保護材を設けた光半導体装置がある(例えば下記特許文献3参照)。   Light emitting diodes (LEDs), which are optical semiconductor elements, are attracting attention as inexpensive and long-life elements, and are used in optical semiconductor devices such as various indicators, light sources, flat display devices, and liquid crystal display backlights. Widely used. As a conventional optical semiconductor device, there is a device in which an LED element arranged inside a case material is covered with a cover, and a cavity portion between the LED element and the cover is filled with air ( For example, see Patent Document 1 below). In addition, as another optical semiconductor device, the LED element arranged inside the case material is covered with a cover, and a cavity portion between the LED element and the cover is filled with silicone resin, There is one in which a silicone resin is injected by inserting a needle into the cavity (see, for example, Patent Document 2 below). Furthermore, there is an optical semiconductor device in which a protective material is provided on a housing (case material) via a cushioning material (see, for example, Patent Document 3 below).

米国特許第6204523号明細書US Pat. No. 6,204,523 特開2005−183965号公報JP 2005-183965 A 特開2008−172140号公報JP 2008-172140 A

しかしながら、上記特許文献2の光半導体装置では、シリコーン樹脂の注入のために針がカバーを貫通する必要があり、カバーに使用できる材料が制限されること、カバーが変形してしまう場合があること、キャビティ部内のシリコーン樹脂の中に残存する気泡の除去が困難であること、カバーの針を差し込んだ部分からシリコーン樹脂が漏れ出してしまうこと等の問題がある。   However, in the optical semiconductor device of Patent Document 2, the needle needs to penetrate the cover for injecting the silicone resin, and the material that can be used for the cover is limited, and the cover may be deformed. There are problems such as difficulty in removing bubbles remaining in the silicone resin in the cavity and leakage of the silicone resin from the portion of the cover where the needle is inserted.

更に、上記特許文献1〜3のいずれの光半導体装置においても、光半導体装置は一つずつ製造されるため、多くの労力や所要時間を要し効率的ではなく、生産性に問題がある。特に特許文献3のようにハウジング上に緩衝材を介して保護材を設けた光半導体装置を製造する場合には、個々のハウジングに緩く保護材を設ける工程が生産性を低下させる要因となりやすい。   Further, in any of the optical semiconductor devices of Patent Documents 1 to 3, since the optical semiconductor devices are manufactured one by one, a lot of labor and time are required, which is not efficient and has a problem in productivity. In particular, when manufacturing an optical semiconductor device in which a protective material is provided on a housing via a cushioning material as in Patent Document 3, a process of loosely providing a protective material on each housing tends to cause a reduction in productivity.

本発明は、上記課題の解決のためになされたものであり、生産性を向上させることが可能な光半導体装置及び光半導体装置の製造方法を提供することを目的とする。   SUMMARY An advantage of some aspects of the invention is that it provides an optical semiconductor device and a method for manufacturing the optical semiconductor device capable of improving productivity.

本発明に係る光半導体装置の製造方法は、熱硬化性樹脂組成物を用いたトランスファ成形によって貫通孔が複数形成された光反射層を配線部材上に形成し、貫通孔の一方の開口部を配線部材で塞いでなる複数の凹部が形成された成形体を得る工程と、光半導体素子を凹部内にそれぞれ配置する工程と、光反射層の表面を覆うように半導体素子が配置された凹部に封止樹脂を供給する工程と、封止樹脂を介在させることにより、光反射層の表面から離間させた状態で凹部を覆うレンズを配置した後、封止樹脂を硬化させる工程と、成形体を凹部ごとに分割して複数の光半導体装置を得る工程と、を備えることを特徴とする。   In the method for manufacturing an optical semiconductor device according to the present invention, a light reflecting layer in which a plurality of through holes are formed by transfer molding using a thermosetting resin composition is formed on a wiring member, and one opening of the through hole is formed. A step of obtaining a molded body in which a plurality of recesses formed by closing with wiring members are formed; a step of arranging optical semiconductor elements in the recesses; and a recess in which the semiconductor elements are arranged so as to cover the surface of the light reflecting layer A step of supplying a sealing resin, a step of disposing a lens covering the recess in a state of being spaced from the surface of the light reflecting layer by interposing the sealing resin, and a step of curing the sealing resin; And a step of obtaining a plurality of optical semiconductor devices by dividing each recess.

本発明に係る光半導体装置の製造方法では、複数の凹部が形成された成形体を用いて光半導体素子の配置、光半導体素子の封止、レンズの配置を行い、上記成形体を分割して複数の光半導体装置を一度に得ている。したがって、成形体が良好に分割され、光半導体装置を一つずつ製造する従来の製造方法と比較して格段に生産性を向上させることができる。   In the method for manufacturing an optical semiconductor device according to the present invention, an optical semiconductor element is disposed, an optical semiconductor element is sealed, and a lens is disposed using a molded body having a plurality of recesses, and the molded body is divided. A plurality of optical semiconductor devices are obtained at a time. Therefore, the molded body is well divided, and the productivity can be significantly improved as compared with the conventional manufacturing method in which the optical semiconductor devices are manufactured one by one.

また、熱硬化性樹脂組成物は、(A)エポキシ樹脂、(B)硬化剤、(C)硬化促進剤、(D)無機充填剤、及び、(E)白色顔料を含み、熱硬化性樹脂組成物の硬化物の波長420〜800nmにおける光反射率が80%以上であることが好ましい。この場合、光半導体装置の生産性を更に向上させることができる。   The thermosetting resin composition includes (A) an epoxy resin, (B) a curing agent, (C) a curing accelerator, (D) an inorganic filler, and (E) a white pigment, and includes a thermosetting resin. The light reflectance of the cured product of the composition at a wavelength of 420 to 800 nm is preferably 80% or more. In this case, the productivity of the optical semiconductor device can be further improved.

また、(D)無機充填剤は、シリカ、アルミナ、酸化マグネシウム、酸化アンチモン、水酸化アルミニウム、水酸化マグネシウム、硫酸バリウム、炭酸マグネシウム及び炭酸バリウムからなる群より選ばれる少なくとも1種であることが好ましい。この場合、光半導体装置の耐熱性や難燃性を高度に両立することができる。   Further, (D) the inorganic filler is preferably at least one selected from the group consisting of silica, alumina, magnesium oxide, antimony oxide, aluminum hydroxide, magnesium hydroxide, barium sulfate, magnesium carbonate and barium carbonate. . In this case, the heat resistance and flame retardancy of the optical semiconductor device can be highly compatible.

また、(E)白色顔料は、無機中空粒子であることが好ましい。この場合、光半導体装置の発光効率を高くすることができる。   Moreover, it is preferable that (E) white pigment is an inorganic hollow particle. In this case, the light emission efficiency of the optical semiconductor device can be increased.

また、(E)白色顔料は、酸化チタンであることが好ましい。この場合、光半導体装置の発光効率を高くすることができる。   The (E) white pigment is preferably titanium oxide. In this case, the light emission efficiency of the optical semiconductor device can be increased.

また、(E)白色顔料の中心粒径は、0.1〜50μmであることが好ましい。この場合、熱硬化性樹脂組成物の難燃性及び流動性を向上させることができる。なお、中心粒径とは、体積基準粒度分布曲線において積算値が50%のときの粒径値であり、例えばレーザ光式粒度分布計(例えば、Beckman Coulter社製、商品名:LS 13 320)を用いて測定することができる。   Moreover, it is preferable that the center particle diameter of (E) white pigment is 0.1-50 micrometers. In this case, the flame retardancy and fluidity of the thermosetting resin composition can be improved. The central particle size is a particle size value when the integrated value is 50% in the volume-based particle size distribution curve. For example, a laser particle size distribution meter (for example, trade name: LS 13 320 manufactured by Beckman Coulter) Can be measured.

また、(D)無機充填剤と(E)白色顔料との合計量は、熱硬化性樹脂組成物全体に対して10〜85体積%であることが好ましい。この場合、光半導体装置を小型化及び薄型化できると共に光半導体装置の発光効率を高くすることができる。   Moreover, it is preferable that the total amount of (D) inorganic filler and (E) white pigment is 10-85 volume% with respect to the whole thermosetting resin composition. In this case, the optical semiconductor device can be reduced in size and thickness, and the light emission efficiency of the optical semiconductor device can be increased.

また、封止樹脂の弾性率は、0.001〜10MPaであることが好ましい。この場合、封止樹脂の耐熱性、耐光性、応力緩和効果を向上させることができる。   Moreover, it is preferable that the elasticity modulus of sealing resin is 0.001-10 MPa. In this case, the heat resistance, light resistance, and stress relaxation effect of the sealing resin can be improved.

また、レンズは、アクリル樹脂、ウレタン樹脂、シリコーン樹脂、フッ素樹脂、エポキシ樹脂及び脂環式オレフィン樹脂からなる群より選ばれる少なくとも1種を含むことが好ましい。   Moreover, it is preferable that a lens contains at least 1 sort (s) chosen from the group which consists of an acrylic resin, a urethane resin, a silicone resin, a fluororesin, an epoxy resin, and an alicyclic olefin resin.

本発明に係る光半導体装置は、上記光半導体装置の製造方法を用いて製造されることを特徴とする。   An optical semiconductor device according to the present invention is manufactured using the above-described optical semiconductor device manufacturing method.

本発明に係る光半導体装置では、上記光半導体装置の製造方法を用いて製造されるため、生産性を向上させることができる。   Since the optical semiconductor device according to the present invention is manufactured using the method for manufacturing an optical semiconductor device, productivity can be improved.

本発明によれば、生産性を向上させることが可能な光半導体装置及び光半導体装置の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the optical semiconductor device which can improve productivity, and an optical semiconductor device can be provided.

本発明に係る光半導体装置の一実施形態を示す斜視図である。1 is a perspective view showing an embodiment of an optical semiconductor device according to the present invention. (a)は図1のII−II線断面図であり、(b)は(a)の要部を拡大して示す断面図である。(A) is the II-II sectional view taken on the line of FIG. 1, (b) is sectional drawing which expands and shows the principal part of (a). 本発明に係る光半導体装置の製造方法の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the manufacturing method of the optical semiconductor device which concerns on this invention. 図3の後続の工程の手順を示す断面図である。FIG. 4 is a cross-sectional view showing the procedure of the subsequent step of FIG. 3. 図4の工程後の成形体を示す斜視図である。It is a perspective view which shows the molded object after the process of FIG. 図4の後続の工程の手順を示す断面図である。FIG. 5 is a cross-sectional view showing the procedure of the subsequent step of FIG. 4.

以下、図面を参照しながら、本発明に係る光半導体装置及び光半導体装置の製造方法の好適な実施形態について詳細に説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of an optical semiconductor device and a method for manufacturing an optical semiconductor device according to the present invention will be described in detail with reference to the drawings.

<光半導体装置>
図1は、本発明に係る光半導体装置の一実施形態を示す斜視図である。但し、図1では、封止体及びレンズは省略している。図2(a)は、図1のII−II線断面図であり、図2(b)は(a)の要部を拡大して示す断面図である。
<Optical semiconductor device>
FIG. 1 is a perspective view showing an embodiment of an optical semiconductor device according to the present invention. However, in FIG. 1, the sealing body and the lens are omitted. 2A is a cross-sectional view taken along the line II-II in FIG. 1, and FIG. 2B is a cross-sectional view showing an enlarged main part of FIG.

図1,2に示すように、光半導体装置100は、配線部材10と、光半導体素子20と、光反射層30と、封止体40と、レンズ50とを備える。光半導体装置100は、一般に表面実装型(SMD型)に分類されるものである。   As shown in FIGS. 1 and 2, the optical semiconductor device 100 includes a wiring member 10, an optical semiconductor element 20, a light reflection layer 30, a sealing body 40, and a lens 50. The optical semiconductor device 100 is generally classified into a surface mount type (SMD type).

配線部材10としては、リードフレームを公知の方法で配線形成したものを用いることが好ましく、例えば、42アロイリードフレームや銅リードフレーム等のリードフレームが用いられる。配線部材10は、例えば矩形状をなしており、導体部材14a,14bを有している。   As the wiring member 10, it is preferable to use a lead frame formed by a known method. For example, a lead frame such as a 42 alloy lead frame or a copper lead frame is used. The wiring member 10 has a rectangular shape, for example, and includes conductor members 14a and 14b.

なお、配線部材10としては、基材と、基材上に配置された複数の導体部材(接続端子)とを有する配線板を用いても良い。この場合、基材としては、銅張積層板に用いられる基材等の基材が用いられ、例えばエポキシ樹脂積層板等の樹脂積層板が挙げられる。   In addition, as the wiring member 10, you may use the wiring board which has a base material and several conductor members (connection terminal) arrange | positioned on a base material. In this case, as the substrate, a substrate such as a substrate used for a copper clad laminate is used, and for example, a resin laminate such as an epoxy resin laminate may be used.

導体部材14a,14bは、金属により形成されている。導体部材14aは、配線部材10の短手方向の略中央において、配線部材10の長手方向の一端から他端にかけて配置されている。導体部材14bは、配線部材10の短手方向における両端部のそれぞれに3つずつ配置されており、各導体部材14bは、配線部材10の長手方向に長尺状をなしている。各導体部材14bは、互いに離れて並んでいると共に、導体部材14aと離れて、導体部材14aを挟んで対称となるように配置されている。   The conductor members 14a and 14b are made of metal. The conductor member 14 a is disposed from one end to the other end in the longitudinal direction of the wiring member 10 at the approximate center in the short direction of the wiring member 10. Three conductor members 14 b are arranged at each of both ends in the short direction of the wiring member 10, and each conductor member 14 b is elongated in the longitudinal direction of the wiring member 10. The respective conductor members 14b are arranged apart from each other and are arranged so as to be symmetric with respect to the conductor member 14a, apart from the conductor member 14a.

導体部材14aと導体部材14bとの間には、白色樹脂層16が配置されている。白色樹脂層16は、後述する光反射層30と同様の樹脂により形成されている。   A white resin layer 16 is disposed between the conductor member 14a and the conductor member 14b. The white resin layer 16 is formed of the same resin as the light reflection layer 30 described later.

光半導体素子20は、例えばダイボンド材(図示せず)を介して導体部材14a上に3つマウントされており、互いに離れて配線部材10の長手方向に並んでいる。各光半導体素子20の表面は、ボンディングワイヤ18により、導体部材14aを挟んで対称に位置する導体部材14bのそれぞれに電気的に接続されている。光半導体素子20は、ボンディングワイヤ18を通して電力が供給されることにより発光し、その光が封止体40を通してレンズ50から出射する。光半導体素子20としては、特に制限なくGaN系の青色素子や緑色素子、GaP系の緑色素子や橙色素子、GaAs系の赤色素子等の素子を使用することができる。   Three optical semiconductor elements 20 are mounted on the conductor member 14a via, for example, a die bond material (not shown), and are arranged in the longitudinal direction of the wiring member 10 apart from each other. The surface of each optical semiconductor element 20 is electrically connected by a bonding wire 18 to each of the conductor members 14b located symmetrically with the conductor member 14a interposed therebetween. The optical semiconductor element 20 emits light when power is supplied through the bonding wire 18, and the light is emitted from the lens 50 through the sealing body 40. As the optical semiconductor element 20, elements such as a GaN blue element, a green element, a GaP green element, an orange element, and a GaAs red element can be used without particular limitation.

光反射層30は、配線部材10の外縁部に沿って配線部材10上に配置された四方の側壁により、内部に貫通孔30aが形成された略直方体状の部材である。貫通孔30aは、光反射層30の四方の側壁が傾斜することにより、光反射層30の表面30bから裏面(配線部材10側の面)にかけて開口が小さくなるように形成されている。光反射層30は、配線部材10と共に光半導体素子搭載用基板を構成しており、貫通孔30aの裏面側の開口部が配線部材10により塞がれることにより、凹部(キャビティ部)32が形成されている。凹部32の内部を光反射層30の表面30b側から見た場合、凹部32の底部には、3つの光半導体素子20が露出している。すなわち、凹部32の底部は、光半導体素子搭載領域に相当する。   The light reflecting layer 30 is a substantially rectangular parallelepiped member having a through-hole 30 a formed therein by four side walls disposed on the wiring member 10 along the outer edge portion of the wiring member 10. The through hole 30a is formed so that the opening becomes smaller from the front surface 30b to the back surface (surface on the wiring member 10 side) of the light reflecting layer 30 when the four side walls of the light reflecting layer 30 are inclined. The light reflecting layer 30 constitutes an optical semiconductor element mounting substrate together with the wiring member 10, and a recess (cavity portion) 32 is formed by closing the opening on the back side of the through hole 30 a by the wiring member 10. Has been. When the inside of the recess 32 is viewed from the surface 30 b side of the light reflecting layer 30, the three optical semiconductor elements 20 are exposed at the bottom of the recess 32. That is, the bottom of the recess 32 corresponds to the optical semiconductor element mounting region.

封止体40は、光反射層30の凹部32内に配置されて光半導体素子20を封止する第1の部分40aと、第1の部分40a上に配置されて光反射層30の表面30bを覆う第2の部分40bとを有している。第2の部分40bは、第1の部分40aと一体化している。第2の部分40bは、厚さ数μm〜数百μmの樹脂層を形成しており、例えば、第2の部分の厚みは、5〜500μmが好ましく、10〜300μmがより好ましく、20〜200μmが更に好ましい。厚みが5μm未満であると、応力緩和の効果が小さくなる傾向があり、500μmを超えると、光半導体装置100の製造時におけるダイシング性が低下する傾向がある。   The sealing body 40 is disposed in the recess 32 of the light reflecting layer 30 to seal the optical semiconductor element 20, and the surface 30 b of the light reflecting layer 30 is disposed on the first portion 40 a. And a second portion 40b covering the. The second portion 40b is integrated with the first portion 40a. The second portion 40b forms a resin layer having a thickness of several μm to several hundred μm. For example, the thickness of the second portion is preferably 5 to 500 μm, more preferably 10 to 300 μm, and more preferably 20 to 200 μm. Is more preferable. If the thickness is less than 5 μm, the stress relaxation effect tends to be small, and if it exceeds 500 μm, the dicing property during the production of the optical semiconductor device 100 tends to be reduced.

封止体40は、凹部32内及び光反射層30の表面30bに透光性を有する封止樹脂(透光封止樹脂)が供給されて形成されている。封止樹脂としては、エポキシ樹脂、アクリル樹脂、ウレタン樹脂、シリコーン樹脂やそれらの変性樹脂が挙げられ、中でも、着色や劣化が抑制されると共に応力緩和効果により熱応力によるボンディングワイヤ18の断線等が抑制されることから信頼性を更に向上させることができるため、ゲル状やゴム状のシリコーン樹脂が好ましく、ゲル状やゴム状のジメチルシリコーン樹脂がより好ましい。ジメチルシリコーン樹脂としては、KJR−9022X−5、KER−2600(信越化学工業株式会社製、商品名)、OE−6351,JCR6115,JCR6110(東レ・ダウコーニング株式会社製、商品名)、XE−14−C2042、IVS4012、IVS5022(モメンティブ・パフォーマンス・マテリアルズ社製、商品名)等を使用することができる。封止樹脂には、必要に応じて蛍光体が添加されてもよい。封止樹脂の室温(25℃)における弾性率は、耐熱性、耐光性、応力緩和効果を向上させる観点から0.001〜10MPaが好ましい。なお、封止樹脂の弾性率は、針入度(JIS K 2220 1/4コーン)やゴム硬さ(JIS タイプA)を用いて測定することができる。   The sealing body 40 is formed by supplying a light-transmitting sealing resin (translucent sealing resin) to the inside of the recess 32 and the surface 30 b of the light reflecting layer 30. Examples of the sealing resin include an epoxy resin, an acrylic resin, a urethane resin, a silicone resin, and modified resins thereof. Among them, the coloring and deterioration are suppressed, and the bonding wire 18 is disconnected due to thermal stress due to the stress relaxation effect. Since the reliability can be further improved since it is suppressed, a gel-like or rubber-like silicone resin is preferred, and a gel-like or rubber-like dimethyl silicone resin is more preferred. Examples of the dimethyl silicone resin include KJR-9022X-5, KER-2600 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.), OE-6351, JCR6115, JCR6110 (trade name, manufactured by Toray Dow Corning Co., Ltd.), XE-14. -C2042, IVS4012, IVS5022 (a product name made by Momentive Performance Materials, Inc.), etc. can be used. A phosphor may be added to the sealing resin as necessary. The elastic modulus at room temperature (25 ° C.) of the sealing resin is preferably 0.001 to 10 MPa from the viewpoint of improving heat resistance, light resistance, and stress relaxation effect. In addition, the elasticity modulus of sealing resin can be measured using the penetration (JIS K 2220 1/4 cone) and rubber hardness (JIS type A).

レンズ50は、封止体40の第2の部分40b上に配置されていると共に、凹部32を覆っている。レンズ50としては、例えば凸レンズ、凹レンズ、シリンドリカルレンズ、フレネルレンズ形状等のレンズを用いることができる。レンズ50と光反射層30とは、封止体40の第2の部分40bを介在させて互いに離間している。   The lens 50 is disposed on the second portion 40 b of the sealing body 40 and covers the recess 32. As the lens 50, for example, a convex lens, a concave lens, a cylindrical lens, a Fresnel lens shape, or the like can be used. The lens 50 and the light reflecting layer 30 are separated from each other with the second portion 40b of the sealing body 40 interposed therebetween.

レンズ50の素材としては、硬質でタック性がなく、外部からの応力に対して変形しない程度の弾性率(例えば、100〜2000MPa)を有し、可視光領域において透明なものであれば特に制限はなく、アクリル樹脂、ウレタン樹脂、シリコーン樹脂、フッ素樹脂、エポキシ樹脂、脂環式オレフィン樹脂が好ましい。レンズ50としては、例えば、「TOPAS5013LS−01」(ポリプラスチックス株式会社製、商品名)、SR7010(東レ・ダウコーニング株式会社製、商品名)、LPS−L500(信越化学工業株式会社製、商品名)、ネオフロンCTFE(ダイキン工業株式会社製、商品名)、ZEONEX480(日本ゼオン株式会社製、商品名)等を用いることができる。   The material of the lens 50 is not particularly limited as long as it is hard, has no tackiness, has an elastic modulus (eg, 100 to 2000 MPa) that does not deform with respect to external stress, and is transparent in the visible light region. Acrylic resin, urethane resin, silicone resin, fluororesin, epoxy resin, and alicyclic olefin resin are preferred. Examples of the lens 50 include “TOPAS5013LS-01” (trade name, manufactured by Polyplastics Co., Ltd.), SR7010 (trade name, manufactured by Toray Dow Corning Co., Ltd.), LPS-L500 (manufactured by Shin-Etsu Chemical Co., Ltd., product). Name), NEOFRON CTFE (trade name, manufactured by Daikin Industries, Ltd.), ZEONEX 480 (trade name, manufactured by Nippon Zeon Co., Ltd.), and the like can be used.

次に、光反射層30を形成する熱硬化性樹脂組成物(モールド材料)について詳細に説明する。熱硬化性樹脂組成物は、(A)エポキシ樹脂、(B)硬化剤、(C)硬化促進剤、(D)無機充填剤、及び、(E)白色顔料を含むことが好ましい。   Next, the thermosetting resin composition (mold material) for forming the light reflecting layer 30 will be described in detail. The thermosetting resin composition preferably contains (A) an epoxy resin, (B) a curing agent, (C) a curing accelerator, (D) an inorganic filler, and (E) a white pigment.

(A)エポキシ樹脂
エポキシ樹脂としては、電子部品封止用エポキシ樹脂成形材料として一般に使用されているものを用いることができる。エポキシ樹脂としては、特に限定されないが、例えば、フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂をはじめとするフェノール類とアルデヒド類のノボラック樹脂をエポキシ化したもの、ビスフェノールA、ビスフェノールF、ビスフェノールS、アルキル置換ビフェノール等のジグリシジエーテル、ジアミノジフェニルメタン、イソシアヌル酸等のポリアミンとエピクロルヒドリンの反応により得られるグリシジルアミン型エポキシ樹脂、オレフィン結合を過酢酸等の過酸で酸化して得られる線状脂肪族エポキシ樹脂、及び脂環族エポキシ樹脂等を挙げることができる。これらのエポキシ樹脂は、単独で用いてもよく、2種以上を併用してもよい。また、これらのエポキシ樹脂のうち、比較的着色のないものを使用することが好ましく、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、トリグリシジルイソシアヌレートが好ましい。
(A) Epoxy resin As an epoxy resin, what is generally used as an epoxy resin molding material for electronic component sealing can be used. The epoxy resin is not particularly limited. For example, a phenol novolac type epoxy resin, an orthocresol novolac type epoxy resin and other phenols and aldehyde novolak resins epoxidized, bisphenol A, bisphenol F, bisphenol S, etc. , Glycidylamine type epoxy resins obtained by reaction of polyamines such as diglycidyl ethers such as alkyl-substituted biphenols, diaminodiphenylmethane, isocyanuric acid and epichlorohydrin, linear aliphatics obtained by oxidizing olefinic bonds with peracids such as peracetic acid An epoxy resin, an alicyclic epoxy resin, etc. can be mentioned. These epoxy resins may be used independently and may use 2 or more types together. Of these epoxy resins, those having relatively little color are preferably used. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, and triglycidyl isocyanurate are preferable.

(B)硬化剤
硬化剤としては、エポキシ樹脂と反応するものであれば、特に制限なく用いることができるが、比較的着色のないものが好ましい。硬化剤としては、例えば、酸無水物硬化剤、イソシアヌル酸誘導体、フェノール系硬化剤等が挙げられる。酸無水物系硬化剤としては、例えば、無水フタル酸、無水マレイン酸、無水トリメリット酸、無水ピロメリット酸、ヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、無水メチルナジック酸、無水ナジック酸、無水グルタル酸、無水ジメチルグルタル酸、無水ジエチルグルタル酸、無水コハク酸、メチルヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、ノルボルネンジカルボン酸無水物、メチルノルボルネンジカルボン酸無水物、ノルボルナンジカルボン酸無水物、メチルノルボルナンジカンルボン酸無水物が挙げられる。イソシアヌル酸誘導体としては、1,3,5−トリス(1−カルボキシメチル)イソシアヌレート、1,3,5−トリス(2−カルボキシエチル)イソシアヌレート、1,3,5−トリス(3−カルボキシプロピル)イソシアヌレート、1,3−ビス(2−カルボキシエチル)イソシアヌレート等が挙げられる。フェノール系硬化剤としては、フェノールノボラック樹脂、クレゾールノボラック樹脂、ジシクロペンタジエン変性フェノール樹脂、パラキシレン変性フェノール樹脂、フェノール類とベンズアルデヒドやナフチルアルデヒド等との縮合物、トリフェノールメタン化合物、多官能型フェノール樹脂等が挙げられる。これらの硬化剤は、単独で用いてもよく、2種以上を併用してもよい。
(B) Curing agent As the curing agent, any curing agent that can react with an epoxy resin can be used without particular limitation. Examples of the curing agent include acid anhydride curing agents, isocyanuric acid derivatives, phenolic curing agents, and the like. Examples of the acid anhydride curing agent include phthalic anhydride, maleic anhydride, trimellitic anhydride, pyromellitic anhydride, hexahydrophthalic anhydride, tetrahydrophthalic anhydride, methyl nadic anhydride, nadic anhydride, glutaric anhydride. Acid, dimethyl glutaric anhydride, diethyl glutaric anhydride, succinic anhydride, methyl hexahydrophthalic anhydride, methyl tetrahydrophthalic anhydride, norbornene dicarboxylic anhydride, methyl norbornene dicarboxylic anhydride, norbornane dicarboxylic anhydride, methyl norbornane Dicanrubonic anhydride may be mentioned. Isocyanuric acid derivatives include 1,3,5-tris (1-carboxymethyl) isocyanurate, 1,3,5-tris (2-carboxyethyl) isocyanurate, 1,3,5-tris (3-carboxypropyl) ) Isocyanurate, 1,3-bis (2-carboxyethyl) isocyanurate and the like. Examples of phenolic curing agents include phenol novolac resins, cresol novolac resins, dicyclopentadiene modified phenol resins, paraxylene modified phenol resins, condensates of phenols with benzaldehyde, naphthyl aldehyde, etc., triphenolmethane compounds, polyfunctional phenols. Examples thereof include resins. These curing agents may be used alone or in combination of two or more.

これらの硬化剤の中では、無水フタル酸、無水トリメリット酸、ヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水グルタル酸、無水ジメチルグルタル酸、無水ジエチルグルタル酸、1,3,5−トリス(3−カルボキシプロピル)イソシアヌレートを用いることが好ましい。硬化剤は、その分子量が100〜400程度のものが好ましく、また、無色ないし淡黄色のものが好ましい。   Among these curing agents, phthalic anhydride, trimellitic anhydride, hexahydrophthalic anhydride, tetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, glutaric anhydride, dimethylglutaric anhydride, anhydrous Diethyl glutaric acid, 1,3,5-tris (3-carboxypropyl) isocyanurate is preferably used. The curing agent preferably has a molecular weight of about 100 to 400, and is preferably colorless or light yellow.

硬化剤の含有量は、エポキシ樹脂100質量部に対して、50〜200質量部が好ましく、100〜150質量部がより好ましい。硬化剤の含有量が、50質量部未満では、エポキシ樹脂の硬化反応が十分に進行しない傾向があり、200質量部を超えると、得られる成形体が変色する傾向にある。   50-200 mass parts is preferable with respect to 100 mass parts of epoxy resins, and, as for content of a hardening | curing agent, 100-150 mass parts is more preferable. If the content of the curing agent is less than 50 parts by mass, the curing reaction of the epoxy resin tends not to proceed sufficiently, and if it exceeds 200 parts by mass, the resulting molded product tends to discolor.

(C)硬化促進剤
硬化促進剤としては、特に限定されるものではなく、例えば、1,8−ジアザ−ビシクロ(5,4,0)ウンデセン−7、トリエチレンジアミン、トリ−2,4,6−ジメチルアミノメチルフェノール等の3級アミン類、2−エチル−4メチルイミダゾール、2−メチルイミダゾール等のイミダゾール類、トリフェニルホスフィン、テトラフェニルホスホニウムテトラフェニルボレート、テトラ−n−ブチルホスホニウム−o,o−ジエチルホスホロジチオエート、テトラ−n−ブチルホスホニウム−テトラフルオロボレート、テトラ−n−ブチルホスホニウム−テトラフェニルボレート等のリン化合物、4級アンモニウム塩、有機金属塩類、及びこれらの誘導体等が挙げられる。これらは単独で使用してもよく、二種以上を併用してもよい。これらの硬化促進剤の中では、3級アミン類、イミダゾール類、リン化合物を用いることが好ましい。
(C) Curing accelerator The curing accelerator is not particularly limited. For example, 1,8-diaza-bicyclo (5,4,0) undecene-7, triethylenediamine, tri-2,4,6. -Tertiary amines such as dimethylaminomethylphenol, imidazoles such as 2-ethyl-4methylimidazole and 2-methylimidazole, triphenylphosphine, tetraphenylphosphonium tetraphenylborate, tetra-n-butylphosphonium-o, o -Phosphorus compounds such as diethyl phosphorodithioate, tetra-n-butylphosphonium-tetrafluoroborate, tetra-n-butylphosphonium-tetraphenylborate, quaternary ammonium salts, organometallic salts, and derivatives thereof . These may be used alone or in combination of two or more. Among these curing accelerators, it is preferable to use tertiary amines, imidazoles, and phosphorus compounds.

硬化促進剤の含有量は、エポキシ樹脂100質量部に対して、0.01〜10.0質量部であることが好ましく、0.1〜8.0質量部がより好ましい。硬化促進剤の含有量が、0.01質量部未満では、十分な硬化促進効果を得られない傾向があり、10.0質量部を超えると、得られる成形体が変色する傾向がある。   It is preferable that content of a hardening accelerator is 0.01-10.0 mass parts with respect to 100 mass parts of epoxy resins, and 0.1-8.0 mass parts is more preferable. If the content of the curing accelerator is less than 0.01 parts by mass, a sufficient curing acceleration effect tends not to be obtained, and if it exceeds 10.0 parts by mass, the resulting molded product tends to discolor.

(D)無機充填剤
無機充填剤としては、シリカ、アルミナ、酸化マグネシウム、酸化アンチモン、水酸化アルミニウム、水酸化マグネシウム、硫酸バリウム、炭酸マグネシウム及び炭酸バリウムからなる群より選ばれる少なくとも1種以上であることが好ましく、信頼性が向上する観点から、低熱膨張であるシリカがより好ましい。
(D) Inorganic filler The inorganic filler is at least one selected from the group consisting of silica, alumina, magnesium oxide, antimony oxide, aluminum hydroxide, magnesium hydroxide, barium sulfate, magnesium carbonate and barium carbonate. In view of improving reliability, silica having low thermal expansion is more preferable.

無機充填剤としては、難燃効果の観点から、水酸化アルミニウム及び水酸化マグネシウムが好ましい。また、水酸化アルミニウム及び水酸化マグネシウムは、白色であるため反射率に与える影響が小さい観点からも好ましい。更に、耐湿信頼性の観点から、水酸化アルミニウムや水酸化マグネシウムにおけるイオン性化合物の含有量は少ないことが好ましい。イオン性化合物(例えば、Na化合物)の含有量は、熱硬化性樹脂組成物全体に対して、0.2質量%以下が好ましい。   As the inorganic filler, aluminum hydroxide and magnesium hydroxide are preferable from the viewpoint of flame retardancy. Moreover, since aluminum hydroxide and magnesium hydroxide are white, they are preferable also from a viewpoint with little influence on a reflectance. Further, from the viewpoint of moisture resistance reliability, the content of ionic compounds in aluminum hydroxide or magnesium hydroxide is preferably small. As for content of an ionic compound (for example, Na compound), 0.2 mass% or less is preferable with respect to the whole thermosetting resin composition.

無機充填剤の含有量は、エポキシ樹脂100質量部に対して、100〜2000質量部が好ましく、500〜1500質量部がより好ましい。無機充填剤の含有量が、100質量部未満では、材料の強度が低下する傾向があり、2000質量部を超えると、流動性や硬化性に悪影響を与える傾向にある。   100-2000 mass parts is preferable with respect to 100 mass parts of epoxy resins, and, as for content of an inorganic filler, 500-1500 mass parts is more preferable. If the content of the inorganic filler is less than 100 parts by mass, the strength of the material tends to decrease, and if it exceeds 2000 parts by mass, the fluidity and curability tend to be adversely affected.

無機充填剤の中心粒径は、0.1〜50μmであることが好ましい。中心粒径が0.1μm未満であると、粒子が凝集しやすく分散性が悪くなる傾向にあり、50μmを超えると、成形性が低下する傾向にある。   The center particle size of the inorganic filler is preferably 0.1 to 50 μm. If the center particle size is less than 0.1 μm, the particles tend to aggregate and the dispersibility tends to deteriorate, and if it exceeds 50 μm, the moldability tends to decrease.

(E)白色顔料
白色顔料としては、光反射性が向上する観点から酸化チタン(ルチル型)が好ましい。白色顔料としては、無機中空粒子も好ましく、無機中空粒子としては、例えば、珪酸ソーダガラス、アルミ珪酸ガラス、硼珪酸ソーダガラス、シラス等の中空粒子が挙げられる。
(E) White pigment As the white pigment, titanium oxide (rutile type) is preferable from the viewpoint of improving light reflectivity. As the white pigment, inorganic hollow particles are also preferable. Examples of the inorganic hollow particles include hollow particles such as sodium silicate glass, aluminum silicate glass, sodium borosilicate glass, and shirasu.

白色顔料の中心粒径は、0.1〜50μmであることが好ましい。中心粒径が0.1μm未満であると粒子が凝集しやすく分散性が悪くなる傾向にあり、50μmを超えると反射特性が十分に得られなくなる傾向がある。   The center particle diameter of the white pigment is preferably 0.1 to 50 μm. If the center particle size is less than 0.1 μm, the particles tend to aggregate and the dispersibility tends to deteriorate, and if it exceeds 50 μm, the reflection characteristics tend not to be sufficiently obtained.

白色顔料の含有量は、エポキシ樹脂100質量部に対して、100〜4500質量部が好ましく、200〜2000質量部がより好ましい。白色顔料の含有量が、100質量部未満では、反射率が低下する傾向があり、4500質量部を超えると、成形性が悪化する傾向にある。   100-4500 mass parts is preferable with respect to 100 mass parts of epoxy resins, and, as for content of a white pigment, 200-2000 mass parts is more preferable. When the content of the white pigment is less than 100 parts by mass, the reflectance tends to decrease, and when it exceeds 4500 parts by mass, the moldability tends to deteriorate.

白色顔料の充填量は、熱硬化性樹脂組成物全体に対して、10〜85体積%が好ましく、50〜85体積%がより好ましく、70〜85体積%が更に好ましい。充填量が10体積%未満であると、光反射特性が低下する傾向があり、85体積%を超えると、成型性が悪くなる傾向がある。   The filling amount of the white pigment is preferably 10 to 85% by volume, more preferably 50 to 85% by volume, and still more preferably 70 to 85% by volume with respect to the entire thermosetting resin composition. When the filling amount is less than 10% by volume, the light reflection property tends to be lowered, and when it exceeds 85% by volume, the moldability tends to be deteriorated.

(F)カップリング剤
白色顔料の分散性を向上させる目的で、熱硬化性樹脂組成物は任意にカップリング剤を含有しても良い。カップリング剤としては、シランカップリング剤やチタネート系カップリング剤等があるが、着色が抑制される観点から、一般にエポキシシラン系が優れており、具体例として3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン等がある。
(F) Coupling agent For the purpose of improving the dispersibility of the white pigment, the thermosetting resin composition may optionally contain a coupling agent. As coupling agents, there are silane coupling agents and titanate coupling agents, but from the viewpoint of suppressing coloring, epoxy silanes are generally superior, and a specific example is 3-glycidoxypropyltrimethoxysilane. 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, and the like.

カップリング剤の含有量は、エポキシ樹脂100質量部に対して、0.1〜5質量部が好ましく、1〜3質量部がより好ましい。カップリング剤の含有量が、0.1質量部未満では、流動性が低下する傾向があり、5質量部を超えると、硬化性が低下したり離型性が悪化する傾向にある。   0.1-5 mass parts is preferable with respect to 100 mass parts of epoxy resins, and, as for content of a coupling agent, 1-3 mass parts is more preferable. When the content of the coupling agent is less than 0.1 parts by mass, the fluidity tends to decrease, and when it exceeds 5 parts by mass, the curability tends to decrease or the releasability tends to deteriorate.

その他、熱硬化性樹脂組成物には、添加剤として、酸化防止剤、光安定剤、紫外線吸収剤、離型剤、イオン捕捉剤、可撓化剤等を添加してもよい。可撓化剤としては、アクリル樹脂、ウレタン樹脂等が適している。   In addition, an antioxidant, a light stabilizer, an ultraviolet absorber, a release agent, an ion scavenger, a flexible agent, and the like may be added as additives to the thermosetting resin composition. As the flexibilizer, acrylic resin, urethane resin, or the like is suitable.

熱硬化性樹脂組成物の硬化物厚さ1mmの波長420〜800nmにおける光反射率は、80%以上が好ましく、85%以上がより好ましく、90%以上が更に好ましい。光反射率が80%未満であると、光半導体装置の発光効率が低下する傾向がある。   The light reflectance at a wavelength of 420 to 800 nm with a cured product thickness of 1 mm of the thermosetting resin composition is preferably 80% or more, more preferably 85% or more, and still more preferably 90% or more. If the light reflectance is less than 80%, the light emission efficiency of the optical semiconductor device tends to decrease.

本実施形態に係る光半導体装置100では、凹部32に配置される光半導体素子20が封止体40により封止される簡易な構造を有しているため、複数の凹部32が形成された成形体を用い、該成形体を分割することにより複数の光半導体装置を一度に製造する方法を好適に適用することができる。したがって、成形体が良好に分割され、光半導体装置を一つずつ製造する従来の製造方法と比較して効率よく光半導体装置が得られ、格段に生産性を向上させることができる。   In the optical semiconductor device 100 according to the present embodiment, since the optical semiconductor element 20 disposed in the recess 32 has a simple structure in which the optical semiconductor element 20 is sealed by the sealing body 40, the molding in which the plurality of recesses 32 are formed. A method of manufacturing a plurality of optical semiconductor devices at a time by dividing a molded body using a body can be suitably applied. Therefore, an optical semiconductor device can be obtained efficiently and productivity can be significantly improved as compared with a conventional manufacturing method in which a molded body is well divided and optical semiconductor devices are manufactured one by one.

ところで、上記特許文献1,2の光半導体装置では、ケース材とレンズとして機能する上記カバーとが接して固定されている。そのため、温度サイクル試験等において、発生する応力が緩和されずにカバーやケース材に負荷されることから、剥離やクラック等を生じてしまうとの問題もある。一方、本実施形態に係る光半導体装置100では、光反射層30とレンズ50とが封止体40の第2の部分40bを介在させて互いに所定間隔(好ましくは5〜500μm)をおいて離間している。これにより、温度サイクル試験やリフロー試験において、熱応力を緩和するように光反射層30やレンズ50が微視的な尺度において移動可能であり、レンズ50や光反射層30に剥離やクラック等が生じることを抑制することが可能であり、光半導体装置100の信頼性を向上させることができる。   By the way, in the optical semiconductor devices of Patent Documents 1 and 2, the case material and the cover functioning as a lens are in contact and fixed. Therefore, in a temperature cycle test or the like, since the generated stress is not relaxed and is applied to the cover or the case material, there is a problem that peeling or cracking occurs. On the other hand, in the optical semiconductor device 100 according to the present embodiment, the light reflecting layer 30 and the lens 50 are separated from each other at a predetermined interval (preferably 5 to 500 μm) with the second portion 40b of the sealing body 40 interposed therebetween. is doing. Thereby, in the temperature cycle test and the reflow test, the light reflecting layer 30 and the lens 50 can move on a microscopic scale so as to relieve the thermal stress, and the lens 50 and the light reflecting layer 30 are peeled or cracked. Occurrence can be suppressed, and the reliability of the optical semiconductor device 100 can be improved.

また、光半導体装置100では、凹部32を覆うレンズ50を備えることにより、光半導体装置100の輝度を向上させることが可能であり、更には、封止体40への異物の付着や封止体40の変形を抑制できると共に光半導体装置100のハンドリング性を向上させることもできる。   Further, in the optical semiconductor device 100, it is possible to improve the luminance of the optical semiconductor device 100 by providing the lens 50 that covers the concave portion 32, and further, adhesion of foreign matters to the sealing body 40 and the sealing body. 40 can be suppressed, and the handling property of the optical semiconductor device 100 can be improved.

ところで、上記特許文献1の光半導体装置では、キャビティ部の空気とLED素子やカバーとの界面における屈折率が大きく異なるため、光取り出し効率が低下するという問題がある。一方、本願発明では、光半導体素子20及びレンズ50の間に封止体40が配置されているため、空気と光半導体素子20又はレンズ50との界面が生じることを抑制することができる。この場合、封止体40と光半導体素子20又はレンズ50との屈折率の差を小さくすることで、光取り出し効率を更に向上させることができる。   However, the optical semiconductor device of Patent Document 1 has a problem that the light extraction efficiency is lowered because the refractive index at the interface between the air in the cavity and the LED element or the cover is greatly different. On the other hand, in this invention, since the sealing body 40 is arrange | positioned between the optical semiconductor element 20 and the lens 50, it can suppress that the interface of air and the optical semiconductor element 20 or the lens 50 arises. In this case, the light extraction efficiency can be further improved by reducing the difference in refractive index between the sealing body 40 and the optical semiconductor element 20 or the lens 50.

更に、光半導体装置100では、耐熱性、耐光性、耐温度サイクル性、耐リフロー性に優れることから、高輝度LEDパッケージに好適な光半導体装置を提供することができる。   Furthermore, since the optical semiconductor device 100 is excellent in heat resistance, light resistance, temperature cycle resistance, and reflow resistance, an optical semiconductor device suitable for a high-intensity LED package can be provided.

<光半導体装置の製造方法>
次に、本実施形態に係る光半導体装置100の製造方法について、図3〜図6を用いて説明する。図3は、本発明に係る光半導体装置の製造方法の一実施形態を示す断面図である。図4は、図3の後続の工程の手順を示す断面図である。図5は、図4の工程後の成形体を示す斜視図である。図6は、図4の後続の工程の手順を示す断面図である。
<Method for Manufacturing Optical Semiconductor Device>
Next, a method for manufacturing the optical semiconductor device 100 according to the present embodiment will be described with reference to FIGS. FIG. 3 is a cross-sectional view showing an embodiment of a method for manufacturing an optical semiconductor device according to the present invention. FIG. 4 is a cross-sectional view showing the procedure of the subsequent process of FIG. FIG. 5 is a perspective view showing the molded body after the step of FIG. FIG. 6 is a cross-sectional view showing the procedure of the subsequent step of FIG.

まず、銅箔をフォトエッチングする方法等の公知の方法を用いて回路を形成した後、回路の表面にNi/Agめっきを施すことによって、導体部材14a,14bを形成し、図3(a)に示すように、配線部材10を得る。   First, after forming a circuit using a known method such as a method of photo-etching a copper foil, Ni / Ag plating is applied to the surface of the circuit to form conductor members 14a and 14b, and FIG. As shown in FIG.

次に、凹部32を有する光反射層30がマトリックス状(例えば、縦10個×横16個)に複数連なった形状の凹部を有する金型60を用意し、図3(b)に示すように、配線部材10上に金型60を配置する。次に、金型60の樹脂注入口(図示せず)から熱硬化性樹脂組成物を注入し、配線部材10上に光反射層30を形成する。光反射層30はトランスファ成形で形成され、MAP(Mold Array Package)法を用いることができる。熱硬化性樹脂組成物の注入後、金型温度を例えば180℃に90秒保持することによって熱硬化性樹脂組成物を硬化させる。なお、トランスファ成形時に金型60内を減圧にすると、樹脂充填性が向上するため好ましい。光反射層30を形成した後、例えば温度120〜180℃で1〜3時間加熱することによって熱硬化性樹脂組成物のアフターキュアを行ってもよい。以上により、図4(a)に示すように、凹部32を有する光反射層30が複数連なった成形体70が形成されると共に、導体部材14a,14b間に白色樹脂層16が形成される。   Next, a mold 60 having a concave portion in which a plurality of light reflecting layers 30 having concave portions 32 are arranged in a matrix (for example, 10 vertical × 16 horizontal) is prepared, as shown in FIG. Then, the mold 60 is disposed on the wiring member 10. Next, a thermosetting resin composition is injected from a resin injection port (not shown) of the mold 60 to form the light reflecting layer 30 on the wiring member 10. The light reflecting layer 30 is formed by transfer molding, and a MAP (Mold Array Package) method can be used. After injecting the thermosetting resin composition, the thermosetting resin composition is cured by maintaining the mold temperature at 180 ° C. for 90 seconds, for example. Note that it is preferable to reduce the pressure in the mold 60 during transfer molding because the resin filling property is improved. After the light reflecting layer 30 is formed, the thermosetting resin composition may be after-cured by heating at a temperature of 120 to 180 ° C. for 1 to 3 hours, for example. As a result, as shown in FIG. 4A, a molded body 70 in which a plurality of light reflecting layers 30 each having a recess 32 is formed is formed, and a white resin layer 16 is formed between the conductor members 14a and 14b.

続いて、凹部32内の導体部材14a上に例えばダイボンド材を塗布し、ダイボンド材上に3つの光半導体素子20を並べて配置する。そして、図4(b)に示すように、各光半導体素子20の表面をボンディングワイヤ18を用いて導体部材14bと電気的に接続する。なお、実装方法として、ワイヤボンド方式だけでなく、フリップチップ方式を用いてもよい。以上により、図5(a),(b)に示すように、成形体70における各凹部32の底部に3つの光半導体素子20が実装される。   Subsequently, for example, a die bond material is applied onto the conductor member 14a in the recess 32, and the three optical semiconductor elements 20 are arranged side by side on the die bond material. Then, as shown in FIG. 4B, the surface of each optical semiconductor element 20 is electrically connected to the conductor member 14 b using a bonding wire 18. As a mounting method, not only a wire bond method but also a flip chip method may be used. As described above, as shown in FIGS. 5A and 5B, the three optical semiconductor elements 20 are mounted on the bottom of each recess 32 in the molded body 70.

次に、ポッティングにより以下のように封止体40を形成する。まず、図6(a)に示すように、各凹部32内に封止樹脂を供給し、光半導体素子20を封止する第1の部分40aを形成する。そして、凹部32に封止樹脂が満たされた後も封止樹脂を供給し続け、第1の部分40a上に配置されると共に光反射層30の表面30bを覆う第2の部分40bを形成する。以上により、封止体40が得られる。   Next, the sealing body 40 is formed by potting as follows. First, as shown in FIG. 6A, a sealing resin is supplied into each recess 32 to form a first portion 40 a that seals the optical semiconductor element 20. After the recess 32 is filled with the sealing resin, the sealing resin is continuously supplied to form the second portion 40b that is disposed on the first portion 40a and covers the surface 30b of the light reflecting layer 30. . Thus, the sealing body 40 is obtained.

続いて、図6(b)に示すように、封止体40の第2の部分40b上における各凹部32上の位置にそれぞれレンズ50を配置し、レンズ50を封止樹脂に接着させる。その後、加熱加圧(例えば、150℃、0.05MPa)して封止樹脂を硬化し、成形体70上にレンズ50を搭載する。なお、レンズ50は、予め成形されたものを用いることができる。各レンズ50は、後述するダイシングのため、各レンズ50間に一定の間隔を有して配置される。以上により、封止体40の第2の部分40bを介在させることにより、レンズ50が光反射層30の表面30bから離間した状態が得られ、複数の光半導体装置100が一体的に連なった成形体が得られる。   Subsequently, as shown in FIG. 6B, the lens 50 is disposed at a position on each recess 32 on the second portion 40b of the sealing body 40, and the lens 50 is adhered to the sealing resin. Thereafter, the sealing resin is cured by heating and pressing (for example, 150 ° C., 0.05 MPa), and the lens 50 is mounted on the molded body 70. In addition, the lens 50 can use what was shape | molded previously. The lenses 50 are arranged with a constant interval between the lenses 50 for dicing described later. As described above, by interposing the second portion 40b of the sealing body 40, a state in which the lens 50 is separated from the surface 30b of the light reflecting layer 30 is obtained, and molding in which a plurality of optical semiconductor devices 100 are integrally connected. The body is obtained.

次に、図6(c)に示すように、複数の光半導体装置100が一体的に連なった成形体を凹部32ごとに分割(個片化)し、図2(a)に示す光半導体装置100を複数得る。分割には、ダイシング、レーザ加工、ウォータージェット加工、金型加工等の公知の方法により分割することで、光半導体装置を1つ又は複数有する光半導体装置(SMD型光半導体装置)を得ることができる。   Next, as shown in FIG. 6C, the molded body in which the plurality of optical semiconductor devices 100 are integrally connected is divided (divided into pieces) into the recesses 32, and the optical semiconductor device shown in FIG. Obtain multiple 100s. For the division, an optical semiconductor device (SMD type optical semiconductor device) having one or a plurality of optical semiconductor devices can be obtained by dividing by a known method such as dicing, laser processing, water jet processing, or die processing. it can.

本実施形態に係る光半導体装置100の製造方法では、複数の凹部32が形成された成形体70を用いて光半導体素子20の配置、光半導体素子20の封止、レンズ50の配置を行い、上記成形体70を分割して複数の光半導体装置100を一度に得ている。したがって、成形体70が良好に分割され、従来の光半導体装置の製造方法と比較して効率よく光半導体装置が得られ、格段に生産性を向上させることができる。特に、熱硬化性樹脂組成物が(A)エポキシ樹脂、(B)硬化剤、(C)硬化促進剤、(D)無機充填剤、及び、(E)白色顔料を含み、熱硬化性樹脂組成物の硬化物の波長420〜800nmにおける光反射率が80%以上である場合には、金型60の樹脂注入口(材料投入口)の形状に応じて熱硬化性樹脂組成物を容易に調整することができるため、更に生産性を向上させることができる。   In the manufacturing method of the optical semiconductor device 100 according to the present embodiment, the optical semiconductor element 20 is arranged, the optical semiconductor element 20 is sealed, and the lens 50 is arranged using the molded body 70 in which the plurality of concave portions 32 are formed. The molded body 70 is divided to obtain a plurality of optical semiconductor devices 100 at a time. Therefore, the molded body 70 is divided satisfactorily, and an optical semiconductor device can be obtained more efficiently than a conventional method for manufacturing an optical semiconductor device, and productivity can be significantly improved. In particular, the thermosetting resin composition includes (A) an epoxy resin, (B) a curing agent, (C) a curing accelerator, (D) an inorganic filler, and (E) a white pigment. When the light reflectance at a wavelength of 420 to 800 nm of the cured product is 80% or more, the thermosetting resin composition is easily adjusted according to the shape of the resin injection port (material input port) of the mold 60 Therefore, productivity can be further improved.

また、本実施形態に係る光半導体装置100の製造方法では、封止樹脂を介在させることにより、光反射層30の表面30bから離間させた状態で凹部32を覆うレンズ50を配置しているため、温度サイクル試験等において応力が緩和され、レンズ50や光反射層30に剥離やクラック等が生じることを抑制することが可能であり、光半導体装置100の信頼性を向上させることができる。更に、凹部32を覆うレンズ50を配置することにより、光半導体装置100の輝度を向上させることが可能であり、更には、封止体40への異物の付着が抑制できると共にハンドリング性を向上させることもできる。   Further, in the method for manufacturing the optical semiconductor device 100 according to the present embodiment, the lens 50 that covers the concave portion 32 is disposed in a state of being separated from the surface 30 b of the light reflecting layer 30 by interposing a sealing resin. In the temperature cycle test or the like, the stress is relieved, and it is possible to prevent the lens 50 or the light reflecting layer 30 from being peeled or cracked, and the reliability of the optical semiconductor device 100 can be improved. Furthermore, by arranging the lens 50 that covers the concave portion 32, it is possible to improve the luminance of the optical semiconductor device 100. Further, it is possible to suppress the adhesion of foreign matter to the sealing body 40 and improve the handling property. You can also

以下、本発明を実施例により詳述するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example explains this invention in full detail, this invention is not limited to these Examples.

(実施例1)
[光反射層用の熱硬化性樹脂組成物の調製]
各成分を下記の配合比(質量部)で混合し、混錬温度20〜50℃、混錬時間10分の条件でロール混錬を行うことによって、熱硬化性樹脂組成物を調製した。
(A)エポキシ樹脂:トリスグリシジルイソシアヌレート、43質量部
(B)硬化剤:ヘキサヒドロフタル酸無水物、53質量部
(C)硬化促進剤:テトラ−n−ブチルホスホニウム−o,o−ジエチルホスホロジチオエート、3質量部
(D)無機充填剤:溶融球状シリカ(中心粒径:25μm)(電気化学工業社製、商品名:FB-950)、418質量部
(D)無機充填剤:溶融球状シリカ(中心粒径:0.5μm)(アドマテックス社製、商品名:SO25R)、29質量部
(E)白色顔料:酸化チタン(中心粒径:0.21μm)(石原産業社製、商品名:CR-63)、222質量部
(F)カップリング剤:トリメトキシエポキシシラン(東レダウコーニング社製、商品名:A−187)、1.2質量部
なお、(E)白色顔料の充填量は、熱硬化性樹脂組成物全体に対して、37.7体積%であった。
Example 1
[Preparation of thermosetting resin composition for light reflecting layer]
The thermosetting resin composition was prepared by mixing each component by the following compounding ratio (mass part), and performing roll kneading on the conditions of kneading | mixing temperature 20-50 degreeC and kneading | mixing time 10 minutes.
(A) Epoxy resin: trisglycidyl isocyanurate, 43 parts by mass (B) Curing agent: hexahydrophthalic anhydride, 53 parts by mass (C) Curing accelerator: tetra-n-butylphosphonium-o, o-diethylphospho Rosithioate, 3 parts by mass (D) Inorganic filler: fused spherical silica (center particle size: 25 μm) (manufactured by Denki Kagaku Kogyo Co., Ltd., trade name: FB-950), 418 parts by mass (D) Inorganic filler: molten Spherical silica (center particle size: 0.5 μm) (manufactured by Admatechs, trade name: SO25R), 29 parts by mass (E) White pigment: titanium oxide (center particle size: 0.21 μm) (manufactured by Ishihara Sangyo Co., Ltd., product) Name: CR-63), 222 parts by mass (F) Coupling agent: Trimethoxyepoxysilane (manufactured by Toray Dow Corning, trade name: A-187), 1.2 parts by mass (E) Filling with white pigment The amount is thermosetting wood Of the total composition, it was 37.7% by volume.

[光半導体装置の作製]
まず、Cu−Fe合金C194にフォトエッチングにより銅の回路を形成した後、回路にNi/Agめっきを施すことにより、厚み0.15mmのリードフレームを得た。
[Fabrication of optical semiconductor device]
First, after a copper circuit was formed on the Cu—Fe alloy C194 by photoetching, Ni / Ag plating was applied to the circuit to obtain a lead frame having a thickness of 0.15 mm.

次いで、トランスファ成形機(エムテックスマツムラ株式会社製、商品名:MF−FS01)を使用し、上記のように調製した熱硬化性樹脂組成物を金型温度180℃、硬化時間90秒、成形圧力6.9MPaの条件でMAP成形法により成形し、光反射層を上記リードフレーム上に作製し光半導体装置搭載用基板を得た。金型としては、縦10個×横16個のマトリックス状に配置された160個の凹部(キャビティ部)を有する一括成形用金型を用いた。キャビティサイズは、1個当たり3mm×3mm、深さ0.5mmとした。   Next, using a transfer molding machine (manufactured by M-Tex Matsumura Co., Ltd., trade name: MF-FS01), the thermosetting resin composition prepared as described above was molded at a mold temperature of 180 ° C., a curing time of 90 seconds, and a molding pressure. Molding was performed by a MAP molding method under a condition of 6.9 MPa, and a light reflecting layer was formed on the lead frame to obtain a substrate for mounting an optical semiconductor device. As the mold, a collective mold having 160 concave portions (cavities) arranged in a matrix of 10 vertical × 16 horizontal is used. The cavity size was 3 mm × 3 mm per unit and the depth was 0.5 mm.

上記光半導体装置搭載用基板の各凹部に露出したリードフレームの中央の接続端子(導体部材)上に、ダイボンド剤(日立化成工業株式会社製、商品名:EN4620K)をスタンピング法にて印刷した。次いで、光半導体素子(青色素子、Cree社製、商品名:EZ700)をダイボンド剤の上に配置した。そして、ダイボンド剤を加熱硬化(150℃、1時間)し、光半導体素子を接続端子上に固着させた。そして、金線を用いて光半導体素子の表面と、リードフレームの側面側に配置された接続端子(導体部材)とを電気的に接続した。   A die bond agent (manufactured by Hitachi Chemical Co., Ltd., trade name: EN4620K) was printed on the connection terminal (conductor member) at the center of the lead frame exposed in each recess of the substrate for mounting an optical semiconductor device by a stamping method. Next, an optical semiconductor element (blue element, manufactured by Cree, trade name: EZ700) was placed on the die bond agent. Then, the die bond agent was heat-cured (150 ° C., 1 hour), and the optical semiconductor element was fixed on the connection terminal. And the surface of the optical semiconductor element and the connection terminal (conductor member) arrange | positioned at the side surface side of a lead frame were electrically connected using the gold wire.

続いて、ディスペンサを用いて上記光半導体装置搭載用基板上にゲル状のシリコーン透明封止樹脂(モメンティブ・パフォーマンス・マテリアルズ社製、商品名:XE−14−C2042、弾性率(室温):0.03MPa)をポッティング法により供給した。これにより、各凹部に封止樹脂を充填すると共に、凹部内及び光反射層の表面上に厚さ200μmの封止樹脂層を形成した。その後、減圧にして脱泡を行なった。   Subsequently, a gel-like silicone transparent sealing resin (manufactured by Momentive Performance Materials, trade name: XE-14-C2042, elastic modulus (room temperature): 0 on the optical semiconductor device mounting substrate using a dispenser. 0.03 MPa) was supplied by the potting method. As a result, each recess was filled with a sealing resin, and a 200 μm thick sealing resin layer was formed in the recess and on the surface of the light reflecting layer. Thereafter, degassing was performed under reduced pressure.

封止樹脂層上における各凹部上の位置にそれぞれレンズ成形体を配置し、封止樹脂層にレンズ成形体を接着した。その後、加熱加圧(150℃、0.05MPa、5時間)して封止樹脂を硬化し、光半導体装置搭載用基板にレンズ成形体を搭載した。なお、レンズ成形体は、脂環式オレフィン樹脂(日本ゼオン株式会社製、商品名:ZEONEX480)を射出成形することにより作製した。   The lens molded body was disposed at a position on each concave portion on the sealing resin layer, and the lens molded body was bonded to the sealing resin layer. Thereafter, the sealing resin was cured by heating and pressing (150 ° C., 0.05 MPa, 5 hours), and the lens molded body was mounted on the substrate for mounting an optical semiconductor device. In addition, the lens molded object was produced by injection-molding alicyclic olefin resin (Nippon ZEON Co., Ltd. make, brand name: ZEONEX480).

上記封止樹脂を硬化させた後、マトリックス状に連続した光半導体装置を、ダイシング装置((株)ディスコ製、商品名:DAD381)を使用して個片化し、光半導体素子を1つ有する単体の光半導体装置(SMD型LED)を複数製造した。マトリックス状に連続した光半導体装置は、硬質の光半導体搭載用基板と硬質のレンズ成形体との間に軟質の透明樹脂が形成されているため、光半導体搭載用基板やレンズ成形体の欠けや、光半導体搭載用基板又はレンズ成形体と透明樹脂との剥離が抑制されていた。そのため、マトリックス状に連続した光半導体装置が良好にダイシングされ、複数の光半導体装置を生産性良く得ることができた。   After the sealing resin is cured, the optical semiconductor device continuous in a matrix is separated into pieces using a dicing device (trade name: DAD381 manufactured by DISCO Corporation), and a single optical semiconductor device is provided. A plurality of optical semiconductor devices (SMD type LEDs) were manufactured. An optical semiconductor device that is continuous in a matrix form has a soft transparent resin formed between a hard optical semiconductor mounting substrate and a hard lens molded body. Further, peeling between the optical semiconductor mounting substrate or lens molded body and the transparent resin was suppressed. For this reason, the optical semiconductor devices continuous in a matrix are diced well, and a plurality of optical semiconductor devices can be obtained with high productivity.

なお、光反射層(カル部)の波長460nmにおける光反射率は、94%であった。光反射率は、ミノルタ社製、CM−508d(商品名)を用いて測定した。   In addition, the light reflectivity in wavelength 460nm of the light reflection layer (cull part) was 94%. The light reflectance was measured using CM-508d (trade name) manufactured by Minolta.

(実施例2)
封止樹脂の種類を変更した以外は、実施例1と同じようにして光半導体装置を作製した。封止樹脂には、黄色蛍光体(化成オプトニクス社製、商品名:P46−Y1)を分散させたゲル状のシリコーン透明封止樹脂(東レ・ダウコーニング社製、商品名:JCR6110、弾性率:0.03MPa)を用いた。マトリックス状に連続した光半導体装置は、硬質の光半導体搭載用基板と硬質のレンズ成形体との間に軟質の透明樹脂が形成されているため、実施例1と同様に良好にダイシングされ、複数の光半導体装置を生産性良く得ることができた。
(Example 2)
An optical semiconductor device was produced in the same manner as in Example 1 except that the type of the sealing resin was changed. As the sealing resin, a gel-like silicone transparent sealing resin (trade name: JCR6110, manufactured by Toray Dow Corning Co., Ltd.) in which a yellow phosphor (product name: P46-Y1) is dispersed is used. : 0.03 MPa). The optical semiconductor device continuous in a matrix form is diced satisfactorily as in Example 1 because a soft transparent resin is formed between a hard optical semiconductor mounting substrate and a hard lens molded body. The optical semiconductor device can be obtained with high productivity.

(実施例3)
凹部内及び光反射層の表面上に厚さ3μmの封止樹脂層を形成した以外は、実施例1と同様にして光半導体装置を作製した。マトリックス状に連続した光半導体装置は、硬質の光半導体搭載用基板と硬質のレンズ成形体との間に軟質の透明樹脂が形成されているため、実施例1と同様に良好にダイシングされ、複数の光半導体装置を生産性良く得ることができた。
(Example 3)
An optical semiconductor device was fabricated in the same manner as in Example 1 except that a sealing resin layer having a thickness of 3 μm was formed in the recess and on the surface of the light reflecting layer. The optical semiconductor device continuous in a matrix form is diced satisfactorily as in Example 1 because a soft transparent resin is formed between a hard optical semiconductor mounting substrate and a hard lens molded body. The optical semiconductor device can be obtained with high productivity.

(比較例1)
凹部内及び光反射層の表面上に封止樹脂層を形成しなかったこと以外は、実施例1と同様にして光半導体装置を作製した。マトリックス状に連続した光半導体装置は、ダイシングの際に光半導体搭載用基板やレンズ成形体の欠けや、光半導体搭載用基板又はレンズ成形体と透明樹脂との剥離が発生しやすくなる傾向にあり、複数の光半導体装置を生産性良く得ることができなかった。
(Comparative Example 1)
An optical semiconductor device was fabricated in the same manner as in Example 1 except that the sealing resin layer was not formed in the recess and on the surface of the light reflecting layer. Optical semiconductor devices that are continuous in a matrix form tend to be susceptible to chipping of the optical semiconductor mounting substrate and lens molded body and peeling between the optical semiconductor mounting substrate or lens molded body and the transparent resin during dicing. A plurality of optical semiconductor devices could not be obtained with high productivity.

(光半導体装置の信頼性評価)
実施例1〜3及び比較例1の光半導体装置について以下の項目を評価した。各評価結果を表1に示す。
(Reliability evaluation of optical semiconductor devices)
The following items were evaluated for the optical semiconductor devices of Examples 1 to 3 and Comparative Example 1. Each evaluation result is shown in Table 1.

[光半導体装置の外観評価]
実施例及び比較例で得られた各パッケージの外観を目視にて観察した。製造後のレンズとパッケージ凹部に充填した透明封止樹脂とにボイド等の欠陥が発生していない場合を「A」とし、ボイドの発生がキャビティ全体の10%以下である場合を「B」とし、ボイドの発生がキャビティ全体の10%を越える場合を「C」として評価した。
[Appearance evaluation of optical semiconductor devices]
The appearance of each package obtained in the examples and comparative examples was visually observed. “A” indicates that no defects such as voids have occurred in the lens after manufacturing and the transparent sealing resin filled in the package recess, and “B” indicates that the generation of voids is 10% or less of the entire cavity. The case where void generation exceeded 10% of the entire cavity was evaluated as “C”.

[エージング試験]
光半導体素子に250mAの電流を流し、光半導体装置を100℃のオーブン中で1000時間保持した後の光束を測定し、試験開始時(初期)の光束に対する1000時間後の光束の保持率を以下の基準で評価した。
A:初期光束の70%以上、B:初期光束の70%未満50%以上、C:初期光束の50%未満
[Aging test]
A current of 250 mA was passed through the optical semiconductor element, the optical flux after the optical semiconductor device was held in an oven at 100 ° C. for 1000 hours was measured, and the retention rate of the luminous flux after 1000 hours with respect to the initial luminous flux was as follows: Evaluation based on the criteria.
A: 70% or more of the initial luminous flux, B: less than 70% of the initial luminous flux, 50% or more, C: less than 50% of the initial luminous flux

[温度サイクル試験]
光半導体装置を−55℃/15分から125℃/15分までを1サイクルとする温度サイクルを1000サイクル繰り返した後の光反射層及びレンズのクラックの発生の有無を以下の基準で評価した。
A:クラック無し、C:クラック発生
[Temperature cycle test]
The occurrence of cracks in the light reflecting layer and the lens after 1000 cycles of a temperature cycle in which the optical semiconductor device was cycled from −55 ° C./15 minutes to 125 ° C./15 minutes was evaluated according to the following criteria.
A: No crack, C: Crack generation

[リフロー試験]
光半導体装置を85℃,85%RHの環境下に7時間保持した後、光半導体装置を260℃のリフロー炉(古河電気工業社製、商品名:サラマンダXNA)に収容し、光半導体装置の内部における剥離やクラックの発生の有無を以下の基準で評価した。
A:剥離やクラック無し、C:剥離やクラックが発生
[Reflow test]
After holding the optical semiconductor device in an environment of 85 ° C. and 85% RH for 7 hours, the optical semiconductor device is housed in a 260 ° C. reflow furnace (made by Furukawa Electric Co., Ltd., trade name: Salamanda XNA). The presence or absence of internal peeling or cracking was evaluated according to the following criteria.
A: No peeling or cracking, C: Peeling or cracking occurred

Figure 2011009519
Figure 2011009519

表1に示されるように、凹部内及び光反射層の表面上に封止樹脂層が形成された実施例1〜3では、光半導体装置を生産性良く得ることができたのに対し、封止樹脂層が形成されていない比較例1では、光半導体装置を生産性良く得ることができないことが確認された。また、封止樹脂層の厚さが5〜500μmの範囲内である実施例1,2では、封止樹脂層の厚さが3μmである実施例3に対して、エージング試験、温度サイクル試験及びリフロー試験の結果が優れていることが確認された。   As shown in Table 1, in Examples 1 to 3 in which the sealing resin layer was formed in the recess and on the surface of the light reflecting layer, the optical semiconductor device could be obtained with high productivity, whereas the sealing was performed. In Comparative Example 1 in which the stop resin layer was not formed, it was confirmed that the optical semiconductor device could not be obtained with high productivity. In Examples 1 and 2 in which the thickness of the sealing resin layer is in the range of 5 to 500 μm, the aging test, the temperature cycle test, and the example 3 in which the thickness of the sealing resin layer is 3 μm It was confirmed that the result of the reflow test was excellent.

10…配線部材、20…光半導体素子、30…光反射層、30a…貫通孔、30b…表面、32…凹部、40…封止体、50…レンズ、70…成形体、100…光半導体装置。   DESCRIPTION OF SYMBOLS 10 ... Wiring member, 20 ... Optical semiconductor element, 30 ... Light reflection layer, 30a ... Through-hole, 30b ... Surface, 32 ... Recessed part, 40 ... Sealing body, 50 ... Lens, 70 ... Molded body, 100 ... Optical semiconductor device .

Claims (10)

熱硬化性樹脂組成物を用いたトランスファ成形によって貫通孔が複数形成された光反射層を配線部材上に形成し、前記貫通孔の一方の開口部を前記配線部材で塞いでなる複数の凹部が形成された成形体を得る工程と、
光半導体素子を前記凹部内にそれぞれ配置する工程と、
前記光反射層の表面を覆うように前記半導体素子が配置された前記凹部に封止樹脂を供給する工程と、
前記封止樹脂を介在させることにより、前記光反射層の前記表面から離間させた状態で前記凹部を覆うレンズを配置した後、前記封止樹脂を硬化させる工程と、
前記成形体を前記凹部ごとに分割して複数の光半導体装置を得る工程と、を備えることを特徴とする光半導体装置の製造方法。
A light reflecting layer in which a plurality of through holes are formed by transfer molding using a thermosetting resin composition is formed on a wiring member, and a plurality of recesses formed by closing one opening of the through hole with the wiring member. Obtaining a formed molded body; and
Placing each of the optical semiconductor elements in the recess,
Supplying a sealing resin to the recess in which the semiconductor element is disposed so as to cover the surface of the light reflecting layer;
A step of curing the sealing resin after disposing a lens covering the recess in a state of being spaced from the surface of the light reflecting layer by interposing the sealing resin;
Dividing the molded body into the recesses to obtain a plurality of optical semiconductor devices, and a method for manufacturing an optical semiconductor device.
前記熱硬化性樹脂組成物は、(A)エポキシ樹脂、(B)硬化剤、(C)硬化促進剤、(D)無機充填剤、及び、(E)白色顔料を含み、前記熱硬化性樹脂組成物の硬化物の波長420〜800nmにおける光反射率が80%以上であることを特徴とする、請求項1に記載の光半導体装置の製造方法。   The thermosetting resin composition includes (A) an epoxy resin, (B) a curing agent, (C) a curing accelerator, (D) an inorganic filler, and (E) a white pigment, and the thermosetting resin 2. The method of manufacturing an optical semiconductor device according to claim 1, wherein the light reflectance of the cured product of the composition at a wavelength of 420 to 800 nm is 80% or more. 前記(D)無機充填剤は、シリカ、アルミナ、酸化マグネシウム、酸化アンチモン、水酸化アルミニウム、水酸化マグネシウム、硫酸バリウム、炭酸マグネシウム及び炭酸バリウムからなる群より選ばれる少なくとも1種であることを特徴とする、請求項2に記載の光半導体装置の製造方法。   The (D) inorganic filler is at least one selected from the group consisting of silica, alumina, magnesium oxide, antimony oxide, aluminum hydroxide, magnesium hydroxide, barium sulfate, magnesium carbonate and barium carbonate. A method for manufacturing an optical semiconductor device according to claim 2. 前記(E)白色顔料は、無機中空粒子であることを特徴とする、請求項2又は3に記載の光半導体装置の製造方法。   The method for manufacturing an optical semiconductor device according to claim 2, wherein the white pigment (E) is an inorganic hollow particle. 前記(E)白色顔料は、酸化チタンであることを特徴とする、請求項2又は3に記載の光半導体装置の製造方法。   The method for manufacturing an optical semiconductor device according to claim 2, wherein the (E) white pigment is titanium oxide. 前記(E)白色顔料の中心粒径は、0.1〜50μmであることを特徴とする、請求項2〜5のいずれか一項に記載の光半導体装置の製造方法。   6. The method of manufacturing an optical semiconductor device according to claim 2, wherein a center particle diameter of the (E) white pigment is 0.1 to 50 μm. 前記(D)無機充填剤と前記(E)白色顔料との合計量は、前記熱硬化性樹脂組成物全体に対して10〜85体積%であることを特徴とする、請求項2〜6のいずれか一項に記載の光半導体装置の製造方法。   The total amount of the (D) inorganic filler and the (E) white pigment is 10 to 85% by volume with respect to the entire thermosetting resin composition. The manufacturing method of the optical semiconductor device as described in any one. 前記封止樹脂の弾性率は、0.001〜10MPaであることを特徴とする、請求項1〜7のいずれか一項に記載の光半導体装置の製造方法。   The method of manufacturing an optical semiconductor device according to claim 1, wherein the sealing resin has an elastic modulus of 0.001 to 10 MPa. 前記レンズは、アクリル樹脂、ウレタン樹脂、シリコーン樹脂、フッ素樹脂、エポキシ樹脂及び脂環式オレフィン樹脂からなる群より選ばれる少なくとも1種を含むことを特徴とする、請求項1〜8のいずれか一項に記載の光半導体装置の製造方法。   The said lens contains at least 1 sort (s) chosen from the group which consists of an acrylic resin, a urethane resin, a silicone resin, a fluororesin, an epoxy resin, and an alicyclic olefin resin, The any one of Claims 1-8 characterized by the above-mentioned. A method for manufacturing the optical semiconductor device according to the item. 請求項1〜9のいずれか一項に記載の製造方法を用いて製造されることを特徴とする、光半導体装置。   An optical semiconductor device manufactured using the manufacturing method according to claim 1.
JP2009152284A 2009-06-26 2009-06-26 Optical semiconductor device and method for manufacturing the optical semiconductor device Pending JP2011009519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009152284A JP2011009519A (en) 2009-06-26 2009-06-26 Optical semiconductor device and method for manufacturing the optical semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009152284A JP2011009519A (en) 2009-06-26 2009-06-26 Optical semiconductor device and method for manufacturing the optical semiconductor device

Publications (1)

Publication Number Publication Date
JP2011009519A true JP2011009519A (en) 2011-01-13

Family

ID=43565825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009152284A Pending JP2011009519A (en) 2009-06-26 2009-06-26 Optical semiconductor device and method for manufacturing the optical semiconductor device

Country Status (1)

Country Link
JP (1) JP2011009519A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011060819A (en) * 2009-09-07 2011-03-24 Nitto Denko Corp Resin composition for optical semiconductor element housing package, and optical semiconductor light emitting device obtained using the same
JP4991957B1 (en) * 2011-07-14 2012-08-08 積水化学工業株式会社 White curable composition for optical semiconductor device and molded article for optical semiconductor device
JP2012175030A (en) * 2011-02-24 2012-09-10 Nitto Denko Corp Resin composition for optical semiconductor element housing package and optical semiconductor light-emitting device obtained by using the same
CN102911478A (en) * 2011-08-02 2013-02-06 日东电工株式会社 Epoxy resin composition for optical semiconductor device, lead frame for optical semiconductor device and substrate for optical semiconductor device obtained using the same, and optical semiconductor device
JP5167424B1 (en) * 2012-04-18 2013-03-21 積水化学工業株式会社 White curable composition for optical semiconductor device and molded article for optical semiconductor device
JP2013076053A (en) * 2011-09-16 2013-04-25 Sekisui Chem Co Ltd Method for producing white curable composition for optical semiconductor device and method for producing molded body for optical semiconductor device
JP2013084863A (en) * 2011-10-12 2013-05-09 Apic Yamada Corp Substrate for led package, led package, manufacturing method of substrate for led package, and manufacturing method of led package
WO2013146404A1 (en) * 2012-03-30 2013-10-03 積水化学工業株式会社 White curable composition for optical semiconductor device, molded article for optical semiconductor device and optical semiconductor device
JPWO2012147611A1 (en) * 2011-04-26 2014-07-28 サンユレック株式会社 Opto device manufacturing method and manufacturing apparatus
JP2015041689A (en) * 2013-08-21 2015-03-02 キヤノン株式会社 Optical device and manufacturing method of the same
JP2019117905A (en) * 2017-12-27 2019-07-18 ローム株式会社 Semiconductor light-emitting device
JP2023009160A (en) * 2016-12-15 2023-01-19 ルミレッズ ホールディング ベーフェー LED module with high near-field contrast ratio

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004186488A (en) * 2002-12-04 2004-07-02 Nichia Chem Ind Ltd Light emitting device, manufacturing method thereof, and chromaticity adjusting method thereof
JP2007509505A (en) * 2003-10-22 2007-04-12 クリー インコーポレイテッド Power surface mounted light emitting die package
JP2007235085A (en) * 2006-02-03 2007-09-13 Hitachi Chem Co Ltd Method of manufacturing package substrate for packaging optical semiconductor element and method of manufacturing optical semiconductor device using the same
JP2007311674A (en) * 2006-05-22 2007-11-29 Stanley Electric Co Ltd Semiconductor light-emitting device
JP2008016797A (en) * 2006-07-07 2008-01-24 Lg Electronics Inc Packaging sub-mount for light-emitting element and light emitting element package
JP2008034806A (en) * 2006-07-31 2008-02-14 Cree Inc Light emitting diode package element provided with internal meniscus for disposing lens without forming bubbles
JP2008306151A (en) * 2007-05-09 2008-12-18 Hitachi Chem Co Ltd Epoxy resin composition for optical semiconductor, and substrate for loading optical semiconductor element using the same, and optical semiconductor device
JP2009135484A (en) * 2007-11-09 2009-06-18 Hitachi Chem Co Ltd Optical semiconductor device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004186488A (en) * 2002-12-04 2004-07-02 Nichia Chem Ind Ltd Light emitting device, manufacturing method thereof, and chromaticity adjusting method thereof
JP2007509505A (en) * 2003-10-22 2007-04-12 クリー インコーポレイテッド Power surface mounted light emitting die package
JP2007235085A (en) * 2006-02-03 2007-09-13 Hitachi Chem Co Ltd Method of manufacturing package substrate for packaging optical semiconductor element and method of manufacturing optical semiconductor device using the same
JP2007311674A (en) * 2006-05-22 2007-11-29 Stanley Electric Co Ltd Semiconductor light-emitting device
JP2008016797A (en) * 2006-07-07 2008-01-24 Lg Electronics Inc Packaging sub-mount for light-emitting element and light emitting element package
JP2008034806A (en) * 2006-07-31 2008-02-14 Cree Inc Light emitting diode package element provided with internal meniscus for disposing lens without forming bubbles
JP2008306151A (en) * 2007-05-09 2008-12-18 Hitachi Chem Co Ltd Epoxy resin composition for optical semiconductor, and substrate for loading optical semiconductor element using the same, and optical semiconductor device
JP2009135484A (en) * 2007-11-09 2009-06-18 Hitachi Chem Co Ltd Optical semiconductor device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011060819A (en) * 2009-09-07 2011-03-24 Nitto Denko Corp Resin composition for optical semiconductor element housing package, and optical semiconductor light emitting device obtained using the same
US8664685B2 (en) 2009-09-07 2014-03-04 Nitto Denko Corporation Resin composition for optical semiconductor element housing package, and optical semiconductor light-emitting device obtained using the same
JP2012175030A (en) * 2011-02-24 2012-09-10 Nitto Denko Corp Resin composition for optical semiconductor element housing package and optical semiconductor light-emitting device obtained by using the same
JPWO2012147611A1 (en) * 2011-04-26 2014-07-28 サンユレック株式会社 Opto device manufacturing method and manufacturing apparatus
CN103635532A (en) * 2011-07-14 2014-03-12 积水化学工业株式会社 White curable composition for optical semiconductor device, molded object for optical semiconductor device, and optical semiconductor device
JP4991957B1 (en) * 2011-07-14 2012-08-08 積水化学工業株式会社 White curable composition for optical semiconductor device and molded article for optical semiconductor device
WO2013008841A1 (en) * 2011-07-14 2013-01-17 積水化学工業株式会社 White curable composition for optical semiconductor device, molded object for optical semiconductor device, and optical semiconductor device
CN102911478A (en) * 2011-08-02 2013-02-06 日东电工株式会社 Epoxy resin composition for optical semiconductor device, lead frame for optical semiconductor device and substrate for optical semiconductor device obtained using the same, and optical semiconductor device
JP2013032442A (en) * 2011-08-02 2013-02-14 Nitto Denko Corp Epoxy resin composition for optical semiconductor device and lead frame for optical semiconductor device or substrate for optical semiconductor device obtained by using the same, and optical semiconductor device
TWI555790B (en) * 2011-08-02 2016-11-01 日東電工股份有限公司 Epoxy resin composition for optical semiconductor device, lead frame for optical semiconductor device and substrate for optical semiconductor device obtained using the same, and optical semiconductor device
JP2013076053A (en) * 2011-09-16 2013-04-25 Sekisui Chem Co Ltd Method for producing white curable composition for optical semiconductor device and method for producing molded body for optical semiconductor device
JP2013084863A (en) * 2011-10-12 2013-05-09 Apic Yamada Corp Substrate for led package, led package, manufacturing method of substrate for led package, and manufacturing method of led package
CN103890936A (en) * 2012-03-30 2014-06-25 积水化学工业株式会社 White curable composition for optical semiconductor device, molded article for optical semiconductor device and optical semiconductor device
WO2013146404A1 (en) * 2012-03-30 2013-10-03 積水化学工業株式会社 White curable composition for optical semiconductor device, molded article for optical semiconductor device and optical semiconductor device
JP5167424B1 (en) * 2012-04-18 2013-03-21 積水化学工業株式会社 White curable composition for optical semiconductor device and molded article for optical semiconductor device
JP2015041689A (en) * 2013-08-21 2015-03-02 キヤノン株式会社 Optical device and manufacturing method of the same
JP2023009160A (en) * 2016-12-15 2023-01-19 ルミレッズ ホールディング ベーフェー LED module with high near-field contrast ratio
JP2019117905A (en) * 2017-12-27 2019-07-18 ローム株式会社 Semiconductor light-emitting device
JP7010692B2 (en) 2017-12-27 2022-01-26 ローム株式会社 Semiconductor light emitting device

Similar Documents

Publication Publication Date Title
JP2011009519A (en) Optical semiconductor device and method for manufacturing the optical semiconductor device
US11984545B2 (en) Method of manufacturing a light emitting device
JP5232369B2 (en) Manufacturing method of package substrate for mounting optical semiconductor element and manufacturing method of optical semiconductor device using the same
JP5565477B2 (en) Method for manufacturing package substrate for mounting optical semiconductor element and method for manufacturing optical semiconductor device using the package substrate
EP2704223B1 (en) Light emitting device and method for manufacturing the same
JP5440096B2 (en) Optical semiconductor device manufacturing method, optical semiconductor element mounting substrate manufacturing method, and optical semiconductor device
JP2007297601A (en) Thermosetting resin composition for light reflection, substrate for loading photosemiconductor device using the same, method for producing the same, and photosemiconductor device
JP2010021507A (en) Substrate for loading optical semiconductor element, its manufacturing method, optical semiconductor device, and its manufacturing method
JP5397195B2 (en) Manufacturing method of substrate for mounting optical semiconductor element and manufacturing method of optical semiconductor device
JP2017214599A (en) Resin composition for thermosetting light reflection and manufacturing method therefor
JP5423475B2 (en) Manufacturing method of optical semiconductor device
JP5303097B2 (en) Thermosetting light reflecting resin composition, optical semiconductor mounting substrate using the same, manufacturing method thereof, and optical semiconductor device.
JP5233186B2 (en) Thermosetting light reflecting resin composition, substrate for mounting optical semiconductor element using the same, method for manufacturing the same, and optical semiconductor device
JP6021416B2 (en) Lead frame with reflector for optical semiconductor device, optical semiconductor device using the same, and manufacturing method thereof
JP2009135484A (en) Optical semiconductor device
JP2009272616A (en) Surface mount type light-emitting device and method for manufacturing thereof
JP5956937B2 (en) Method for manufacturing package substrate for mounting optical semiconductor element
JP5967135B2 (en) Thermosetting light reflecting resin composition, optical semiconductor mounting substrate using the same, manufacturing method thereof, and optical semiconductor device.
JP2012178567A (en) Thermosetting resin composition for reflecting light, substrate for mounting optical semiconductor element using the same and method for manufacturing the same, and optical semiconductor device
KR101049480B1 (en) Light emitting diode package and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131016

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140212