Nothing Special   »   [go: up one dir, main page]

JP2011002522A - Optical modulation element and spatial light modulator using the same, display, holography device, hologram-recording device, and imaging apparatus - Google Patents

Optical modulation element and spatial light modulator using the same, display, holography device, hologram-recording device, and imaging apparatus Download PDF

Info

Publication number
JP2011002522A
JP2011002522A JP2009143757A JP2009143757A JP2011002522A JP 2011002522 A JP2011002522 A JP 2011002522A JP 2009143757 A JP2009143757 A JP 2009143757A JP 2009143757 A JP2009143757 A JP 2009143757A JP 2011002522 A JP2011002522 A JP 2011002522A
Authority
JP
Japan
Prior art keywords
light
layer
magnetization
modulation element
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009143757A
Other languages
Japanese (ja)
Inventor
Kenji Machida
賢司 町田
Atsushi Kuga
淳 久我
Kenichi Aoshima
賢一 青島
Nobuhiko Funabashi
信彦 船橋
Naoki Shimizu
直樹 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Nippon Hoso Kyokai NHK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hoso Kyokai NHK filed Critical Nippon Hoso Kyokai NHK
Priority to JP2009143757A priority Critical patent/JP2011002522A/en
Publication of JP2011002522A publication Critical patent/JP2011002522A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Holo Graphy (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical modulation element, with the degree of optical modulation enhanced by a spin injection magnetization reversal element of high definition and high-speed response.SOLUTION: In the optical modulation element 5, the magnetization direction of a magnetization reversal layer 53 is reversed by current from electrodes 2 and 3 connected to upper and lower parts of the optical modulation element 5, respectively and thereby an incident light is emitted so that the direction of the light is changed and the light is rotated. A pinned magnetic layer 51 and the magnetization reversal layer 53 layered on the same via an intermediate layer 52 are formed as Co/Pd multilayer films, formed by alternately layering Pd films and Co films to have intensive perpendicular magnetic anisotropy and the degree of optical modulation is enhanced by polar Kerr effect and by the fact that the magnetization reversal layer 53 is constituted of the Co/Pd multilayer film having a large Kerr rotation angle. In the magnetization reversal layer 53, the film thickness tf of the Co film is made thicker than the film thickness tp of the Co film of the magnetization pinned layer 51 or the film thickness tf of the Pd film is made smaller than the film thickness tp of the Pd film of the pinned magnetic layer 51; and thereby the coercive force Hcf of the magnetization reversal layer is made lower than coercive force Hcp of the magnetization pinned layer 51 and a magnetization reversal current is suppressed.

Description

本発明は、入射した光を磁気光学効果により光の位相や振幅等を空間的に変調して出射する空間光変調器とそれに用いる光変調素子、またこの空間光変調器を利用した表示装置、ホログラフィ装置、ホログラム記録装置、撮像装置に関する。   The present invention relates to a spatial light modulator that spatially modulates the phase and amplitude of light by magneto-optic effect and emits the incident light, a light modulation element used therefor, and a display device using the spatial light modulator, The present invention relates to a holography device, a hologram recording device, and an imaging device.

空間光変調器は、画素として光学素子(光変調素子)を用い、これを2次元アレイ状に配列して光の位相や振幅等を空間的に変調するものであって、ホログラフィ装置等の露光装置、ディスプレイ技術、記録技術等の分野で広く利用されている。また、2次元で並列に光情報を処理することができることから光情報処理技術への応用も研究されている。空間光変調器として、従来より液晶が用いられ、表示装置として広く利用されているが、ホログラフィや光情報処理用としては、応答速度や画素の高精細性が不十分であるため、近年では、高速処理かつ画素の微細化の可能性が期待される磁気光学材料を用いた磁気光学式空間光変調器の開発が進められている(例えば、特許文献1〜3)。   A spatial light modulator uses an optical element (light modulation element) as a pixel and arranges it in a two-dimensional array to spatially modulate the phase and amplitude of light. Widely used in fields such as equipment, display technology, and recording technology. In addition, since optical information can be processed in two dimensions in parallel, its application to optical information processing technology is also being studied. As a spatial light modulator, liquid crystal has been conventionally used and widely used as a display device, but for holography and optical information processing, since response speed and high definition of pixels are insufficient, in recent years, Development of a magneto-optical spatial light modulator using a magneto-optical material that is expected to be capable of high-speed processing and pixel miniaturization (for example, Patent Documents 1 to 3).

磁気光学式空間光変調器(以下、空間光変調器)においては、磁気光学材料すなわち磁性体に入射した光が透過または反射する際にその偏光の向きを変化(旋光)させて出射する、ファラデー効果(反射の場合はカー効果)を利用している。すなわち、選択された画素(選択画素)における光変調素子の磁化方向とそれ以外の画素(非選択画素)における光変調素子の磁化方向を異なるものとして、選択画素から出射した光と非選択画素から出射した光で、その偏光の回転角(旋光角)に差を生じさせる。光変調素子の磁化方向を変化させる方法として、光変調素子に磁界を印加する方法(特許文献1,2)の他に、近年では光変調素子にスピンを注入する方法(特許文献3)がある。   In a magneto-optical spatial light modulator (hereinafter referred to as a spatial light modulator), when light incident on a magneto-optical material, that is, a magnetic material is transmitted or reflected, the direction of polarization is changed (rotation) and emitted. The effect (Kerr effect in the case of reflection) is used. That is, assuming that the magnetization direction of the light modulation element in the selected pixel (selected pixel) is different from the magnetization direction of the light modulation element in the other pixel (non-selected pixel), the light emitted from the selected pixel and the non-selected pixel The emitted light causes a difference in the rotation angle (rotation angle) of the polarized light. As a method of changing the magnetization direction of the light modulation element, in addition to a method of applying a magnetic field to the light modulation element (Patent Documents 1 and 2), there is a method of injecting spin into the light modulation element (Patent Document 3) in recent years. .

画素毎の光変調素子に磁界を印加するために、特許文献1,2では、電極配線を各画素の周縁に張り巡らせて光変調素子の周囲に電流を供給している。また、このように画素間に配線を配置することで、光変調素子への入射光および出射光が金属配線に遮られることがない。一方、スピンを注入する場合は、CPP−GMR(Current Perpendicular to the Plane Giant MagnetoResistance:垂直通電型巨大磁気抵抗効果)素子等のスピン注入磁化反転素子(非特許文献1)を光変調素子として、この光変調素子の上下に一対の電極を接続して膜面に垂直に電流を供給する。なお、このような光変調素子(スピン注入磁化反転素子)は、一旦、所定の大きさおよび向きの電流を供給されれば、逆向きの電流が供給されるまで磁化方向は保持されるため、特許文献3のように、上側と下側にそれぞれ縦、横に帯状の電極を格子状に配置することで、画素毎の光変調素子に個別に磁化方向を変化させる電流を供給することができる。また、このように、スピン注入による磁気光学式の空間光変調器においては、光変調素子の上および下に電極を配置するため、インジウム亜鉛酸化物(Indium Zinc Oxide:IZO)等の透明電極材料を使用して、光が電極を透過して光変調素子に入射するように構成される。   In order to apply a magnetic field to the light modulation element for each pixel, in Patent Documents 1 and 2, current is supplied to the periphery of the light modulation element by extending electrode wiring around the periphery of each pixel. Further, by arranging the wiring between the pixels in this way, incident light and outgoing light to the light modulation element are not blocked by the metal wiring. On the other hand, when spin is injected, a spin injection magnetization reversal element (Non-Patent Document 1) such as a CPP-GMR (Current Perpendicular to the Plane MagnetoResistance) element is used as a light modulation element. A pair of electrodes are connected to the top and bottom of the light modulation element to supply current perpendicular to the film surface. In addition, since such a light modulation element (spin injection magnetization reversal element) is once supplied with a current having a predetermined magnitude and direction, the magnetization direction is maintained until a reverse current is supplied. As in Patent Document 3, by arranging strip-like electrodes vertically and horizontally on the upper side and the lower side, respectively, a current that changes the magnetization direction can be supplied to the light modulation element for each pixel. . Further, in this way, in the magneto-optic spatial light modulator by spin injection, since the electrodes are arranged above and below the light modulation element, a transparent electrode material such as indium zinc oxide (IZO) is used. The light is transmitted through the electrode and is incident on the light modulation element.

また、撮像装置(固体撮像装置)は、画素として撮像素子を用い、これを空間光変調器と同様に2次元アレイ状に配列している。この撮像素子としては、従来よりCCD(Charge Coupled Device:電荷結合素子)やCMOS等が用いられているが、高精細な画像を得るために、空間光変調器と同様に、磁気光学材料を用いた光変調素子を適用することができる。   In addition, the imaging device (solid-state imaging device) uses imaging elements as pixels and arranges them in a two-dimensional array like the spatial light modulator. Conventionally, CCD (Charge Coupled Device), CMOS, etc. are used as this image sensor, but in order to obtain a high-definition image, a magneto-optical material is used like a spatial light modulator. The light modulation element that has been used can be applied.

特開2005−70101号公報(請求項2、図5)Japanese Patent Laying-Open No. 2005-70101 (Claim 2, FIG. 5) 特開2005−221841号公報(請求項1、図6)JP 2005-221841 A (Claim 1, FIG. 6) 特開2008−145748号公報(請求項7、図4)JP 2008-145748 A (Claim 7, FIG. 4)

K. Aoshima et. al, “Spin transfer switching in current-perpendicular-to-plane spin valve observed by magneto-optical Kerr effect using visible light”, Appl. Phys. Lett. 91, 052507 (2007)K. Aoshima et. Al, “Spin transfer switching in current-perpendicular-to-plane spin valve observed by magneto-optical Kerr effect using visible light”, Appl. Phys. Lett. 91, 052507 (2007)

特許文献1,2に記載された空間光変調器では、XY駆動ラインをピクセルの外周に沿って配する構造となっているために、数μm以下の微細な画素を形成することが困難であり、また、電流による合成磁界を利用するために、画素のいっそうの微細化を行うと隣接画素へのクロストークが大きくなるという問題がある。   The spatial light modulators described in Patent Documents 1 and 2 have a structure in which the XY drive lines are arranged along the outer periphery of the pixel, so that it is difficult to form a fine pixel of several μm or less. In addition, if the pixels are further miniaturized in order to use a combined magnetic field by current, there is a problem that crosstalk to adjacent pixels increases.

これに対して、特許文献3に記載された空間光変調器は、光変調素子の膜面に垂直に電流を供給するため、画素の微細化に対応できるものである。しかしながら、スピン注入磁化反転素子において磁化方向の変化する層(磁化反転層)は一般的に十数nm以下に制限されているため、スピン注入磁化反転素子を光変調素子とすると偏光の向きの変化が極めて小さく(非特許文献1)、選択画素からの出射偏光の取り出し効率すなわち画素の選択性に改良の余地があった。   On the other hand, since the spatial light modulator described in Patent Document 3 supplies current perpendicularly to the film surface of the light modulation element, it can cope with pixel miniaturization. However, since the layer (magnetization reversal layer) in which the magnetization direction changes in the spin injection magnetization reversal element is generally limited to tens of nanometers or less, if the spin injection magnetization reversal element is a light modulation element, the change in polarization direction Is extremely small (Non-patent Document 1), and there is room for improvement in the extraction efficiency of the polarized light from the selected pixel, that is, the pixel selectivity.

本発明は前記問題点に鑑み創案されたもので、高精細かつ高速応答の可能なスピン注入磁化反転素子による光変調度を向上させた光変調素子、ならびに画素の選択性を向上させた空間光変調器および撮像装置、さらに前記空間光変調器を用いた表示装置、ホログラフィ装置、ホログラム記録装置を提供することを目的とする。   The present invention was devised in view of the above-mentioned problems, and is a light modulation element with an improved degree of light modulation by a spin-injection magnetization reversal element capable of high-definition and high-speed response, and spatial light with improved pixel selectivity. It is an object of the present invention to provide a modulator, an imaging device, and a display device, a holography device, and a hologram recording device using the spatial light modulator.

前記課題を解決するために、本発明者らは、Co/Pd多層膜が膜面に垂直な磁気異方性を強く有して、極カー効果により旋光角が大きく動作ばらつきの小さいことに知見し、これをスピン注入磁化反転素子に適用することに至った。   In order to solve the above-mentioned problems, the present inventors have found that the Co / Pd multilayer film has a strong magnetic anisotropy perpendicular to the film surface, and has a large optical rotation angle due to the polar Kerr effect and a small operation variation. This has been applied to a spin-injection magnetization reversal element.

すなわち、本発明に係る光変調素子は、磁化固定層、中間層、および前記磁化固定層の保磁力より小さい保磁力を有する磁化反転層の順に積層してなり、上下に接続された電極から電流を供給されることにより前記磁化反転層の磁化方向を変化させて、入射した光をその偏光方向を変化させて出射する光変調素子であって、前記磁化固定層および前記磁化反転層の少なくとも一方は、Pd膜とCo膜とを交互に積層した多層膜であることを特徴とする。   That is, the light modulation element according to the present invention is formed by laminating a magnetization fixed layer, an intermediate layer, and a magnetization reversal layer having a coercive force smaller than the coercive force of the magnetization fixed layer in this order. Is a light modulation element that changes the magnetization direction of the magnetization switching layer and emits the incident light by changing the polarization direction of the magnetization switching layer, and at least one of the magnetization fixed layer and the magnetization switching layer Is a multilayer film in which Pd films and Co films are alternately stacked.

かかる構成により、光変調素子は、磁化固定層および磁化反転層の少なくとも一方が強い垂直磁気異方性を有するので、垂直磁気異方性を有してかつ動作ばらつきの小さい光変調素子となって、その磁化方向に平行に光を入射することができ、出射した光の偏光方向を大きく変化させることができる。さらに耐プロセス性がよく、製造時の磁気的特性の劣化が小さい。また、磁化反転層の保磁力を磁化固定層の保磁力より小さくすることで、電流供給により磁化反転層の磁化を反転させることができる。   With this configuration, the light modulation element has a perpendicular magnetic anisotropy and at least one of the magnetization fixed layer and the magnetization inversion layer has a perpendicular magnetic anisotropy and has a small operation variation. The light can be incident parallel to the magnetization direction, and the polarization direction of the emitted light can be greatly changed. Furthermore, the process resistance is good, and the deterioration of the magnetic characteristics during manufacturing is small. Further, by making the coercive force of the magnetization switching layer smaller than the coercivity of the magnetization fixed layer, the magnetization of the magnetization switching layer can be reversed by supplying current.

さらに、本発明に係る光変調素子は、磁化固定層および磁化反転層の両方がPd膜とCo膜とを交互に積層した多層膜であることが好ましい。このとき、磁化反転層は、そのCo膜の1層の膜厚は磁化固定層のCo膜より厚く、またはPd膜の1層の膜厚は磁化固定層のPd膜より薄くするようにする。   Further, in the light modulation element according to the present invention, it is preferable that both the magnetization fixed layer and the magnetization switching layer are multilayer films in which Pd films and Co films are alternately laminated. At this time, in the magnetization switching layer, the thickness of one layer of the Co film is made thicker than the Co film of the magnetization fixed layer, or the thickness of one layer of the Pd film is made thinner than the Pd film of the magnetization fixed layer.

かかる構成により、光変調素子は、磁化固定層および磁化反転層の両方が多層膜であるので、さらに強い垂直磁気異方性を有してかつ動作ばらつきの小さい光変調素子となり、さらに耐プロセス性のよい光変調素子となる。そしてPd膜およびCo膜の膜厚を制御することで、容易に磁化反転層の保磁力を磁化固定層の保磁力より小さくすることができる。また、磁化反転層を多層膜とすることで、カー回転角またはファラデー回転角を大きくして光変調素子の光変調度を向上させることができる。   With this configuration, since both the magnetization fixed layer and the magnetization reversal layer are multilayer films, the light modulation element has a stronger perpendicular magnetic anisotropy and a small variation in operation, and further has process resistance. It becomes a good light modulation element. By controlling the film thicknesses of the Pd film and the Co film, the coercivity of the magnetization switching layer can be easily made smaller than the coercivity of the magnetization fixed layer. Further, by forming the magnetization switching layer as a multilayer film, the Kerr rotation angle or the Faraday rotation angle can be increased to improve the light modulation degree of the light modulation element.

また、本発明に係る光変調素子は、磁化固定層または磁化反転層の一方がPd膜とCo膜とを交互に積層した多層膜であり、他方はFe,Co,Niから選択される遷移金属とSm,Eu,Gd,Tbから選択される希土類金属との合金からなる構成としてもよい。   In the light modulation element according to the present invention, one of the magnetization fixed layer and the magnetization inversion layer is a multilayer film in which Pd films and Co films are alternately stacked, and the other is a transition metal selected from Fe, Co, and Ni. And a rare earth metal alloy selected from Sm, Eu, Gd, and Tb.

かかる構成により、光変調素子は、磁化固定層または磁化反転層の一方を遷移金属と希土類金属との合金とすることにより飽和磁化を低くして、磁化固定層においては正と負のそれぞれに磁化反転させる電流をほぼ同じ大きさとして安定した動作を得ることができ、磁化反転層においてはさらに低電流で磁化反転させることができる。   With this configuration, the light modulation element uses one of the magnetization fixed layer or the magnetization reversal layer as an alloy of a transition metal and a rare earth metal to lower the saturation magnetization, and in the magnetization fixed layer, the magnetization is positive and negative. Stable operation can be obtained by setting the currents to be reversed to substantially the same magnitude, and the magnetization can be reversed at a lower current in the magnetization switching layer.

さらに、本発明に係る光変調素子は、磁化固定層および磁化反転層の少なくとも一方がPd膜とCo膜とを交互に積層した多層膜であって、中間層との界面にCo膜を積層することが好ましい。また、本発明に係る光変調素子は、磁化固定層および磁化反転層の少なくとも一方が、中間層との界面にFe,Co,Niから選択される少なくとも1種の遷移金属またはこの遷移金属を含む合金からなる金属膜をさらに備えることが好ましい。   Furthermore, in the light modulation element according to the present invention, at least one of the magnetization fixed layer and the magnetization switching layer is a multilayer film in which Pd films and Co films are alternately stacked, and the Co film is stacked at the interface with the intermediate layer. It is preferable. In the light modulation element according to the present invention, at least one of the magnetization fixed layer and the magnetization switching layer includes at least one transition metal selected from Fe, Co, and Ni at the interface with the intermediate layer or the transition metal. It is preferable to further include a metal film made of an alloy.

かかる構成により、光変調素子は、磁化固定層または磁化反転層と中間層との界面でのスピン偏極率を高くして、磁化固定層から中間層を介して磁化反転層に注入するスピンによるスピントルクが増大するため、さらに低電流で磁化反転させることができる。   With this configuration, the light modulation element increases the spin polarization at the interface between the magnetization fixed layer or the magnetization reversal layer and the intermediate layer, and uses the spin injected from the magnetization fixed layer to the magnetization reversal layer via the intermediate layer. Since the spin torque increases, the magnetization can be reversed at a lower current.

また、前記光変調素子とこの光変調素子に電流を供給する上部電極および下部電極とを備えて画素とすることにより、画素の選択性に優れて動作ばらつきの少ない空間光変調器とすることができる。すなわち本発明に係る空間光変調器は、2次元配列された複数の前記画素と、前記複数の画素から1つ以上の画素を選択する画素選択手段と、この画素選択手段が選択した画素に所定の電流を供給する電流供給手段と、を備えて、前記画素選択手段が選択した画素に入射した光の偏光方向を特定の方向に変化させて出射することを特徴とする。さらに前記上部電極および前記下部電極の一方は、透明電極材料を備えて当該画素に入射した光および前記光変調素子から出射した光を透過させ、他方は金属電極からなるものである。かかる構成により、反射型の空間光変調器となる。   In addition, by forming a pixel including the light modulation element and an upper electrode and a lower electrode that supply current to the light modulation element, a spatial light modulator having excellent pixel selectivity and less operation variation can be obtained. it can. That is, the spatial light modulator according to the present invention includes a plurality of the two-dimensionally arranged pixels, a pixel selecting unit that selects one or more pixels from the plurality of pixels, and a predetermined pixel for the pixel selected by the pixel selecting unit. Current supply means for supplying the current, and the polarization direction of the light incident on the pixel selected by the pixel selection means is changed in a specific direction and emitted. Further, one of the upper electrode and the lower electrode is provided with a transparent electrode material and transmits light incident on the pixel and light emitted from the light modulation element, and the other is formed of a metal electrode. With this configuration, a reflective spatial light modulator is obtained.

また、本発明に係る空間光変調器は、前記上部電極および前記下部電極が透明電極材料を備えて、一方は当該画素に入射した光を透過させ、他方は前記光変調素子から出射した光を透過させる構成としてもよい。かかる構成により、透過型の空間光変調器となる。   In the spatial light modulator according to the present invention, the upper electrode and the lower electrode include a transparent electrode material, one of which transmits light incident on the pixel, and the other of which transmits light emitted from the light modulation element. It is good also as a structure which permeate | transmits. With this configuration, a transmissive spatial light modulator is obtained.

そして、本発明に係る表示装置は、前記空間光変調器に、さらにこの空間光変調器から出射した光を投影する画像表示手段を備える構成である。かかる構成により、より鮮明でばらつきの少ない画像を表示する表示装置となる。   The display device according to the present invention has a configuration in which the spatial light modulator further includes image display means for projecting light emitted from the spatial light modulator. With this configuration, a display device that displays a clearer image with less variation is obtained.

また、本発明に係るホログラフィ装置は、前記空間光変調器に、さらに物体光と参照光とにより形成された干渉縞を撮像して画像信号に変換する撮像手段を備え、前記空間光変調器に前記画像信号を入力されて出射した光を再生画像とする構成である。かかる構成により、より鮮明でばらつきの少ない立体画像を表示するホログラフィ装置となる。   The holography apparatus according to the present invention further includes an imaging unit that images the interference fringes formed by the object light and the reference light and converts the interference fringes into an image signal, and the spatial light modulator includes: The light output from the image signal is used as a reproduced image. With this configuration, a holographic device that displays a clearer and less uneven stereoscopic image is obtained.

また、本発明に係るホログラム記録装置は信号光および参照光を用いて情報を記録媒体に記録するものであって、前記空間光変調器に、さらに信号光および参照光が記録媒体に入射する際の当該記録媒体での状態変化を位相情報として検出する撮像手段を備え、前記空間光変調器は位相情報に基づいて信号光および参照光の少なくとも一方の光変調を行う構成である。かかる構成により、記録の多重度を向上させたホログラム記録装置となる。   The hologram recording apparatus according to the present invention records information on a recording medium using signal light and reference light. When the signal light and reference light are further incident on the recording medium. The spatial light modulator is configured to modulate at least one of the signal light and the reference light based on the phase information. With this configuration, a hologram recording apparatus with improved recording multiplicity is obtained.

また、本発明に係る撮像装置は、前記空間光変調器に、さらに前記画素選択手段が選択した画素から出射した光を透過させる偏光子と、この偏光子を透過した光を電荷に変換する光電変換手段と、前記電荷を蓄積する電荷蓄積手段と、を備え、前記上部電極側から入射した被写体光を撮像する構成である。かかる構成により、選択された画素のみからの出射光を的確に電荷として得られる画素の選択性に優れた撮像装置となる。   The imaging apparatus according to the present invention further includes a polarizer that transmits light emitted from the pixel selected by the pixel selection unit to the spatial light modulator, and a photoelectric that converts light transmitted through the polarizer into an electric charge. The image forming apparatus includes a conversion unit and a charge storage unit that stores the charge, and images subject light incident from the upper electrode side. With such a configuration, an imaging apparatus having excellent pixel selectivity, in which light emitted only from the selected pixel is accurately obtained as a charge, is obtained.

本発明に係る光変調素子によれば、数μm以下からさらに可視光波長サイズ(青色:400nm)の高精細と、原理的に数ps程度となる高速応答とを同時に可能とし、さらに選択性に優れて動作ばらつきが小さく、また製造時における劣化が小さいため磁気的特性の好ましい空間光変調器または撮像装置の画素とすることができる。そして、本発明に係る空間光変調器、表示装置、ホログラフィ装置、ホログラム記録装置、または撮像装置によれば、前記高精細かつ高速応答で画素選択性に優れたものとすることができる。   According to the light modulation element of the present invention, it is possible to simultaneously achieve high definition with a visible light wavelength size (blue: 400 nm) from several μm or less and a high-speed response of about several ps in principle, and further to selectivity. Since the operation variation is excellent and the deterioration at the time of manufacture is small, a spatial light modulator having favorable magnetic characteristics or a pixel of an imaging device can be obtained. According to the spatial light modulator, the display device, the holography device, the hologram recording device, or the imaging device according to the present invention, the high-definition, high-speed response and excellent pixel selectivity can be achieved.

第1実施形態に係る光変調素子の構成を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the light modulation element which concerns on 1st Embodiment. 本発明に係る光変調素子の動作を模式的に説明する断面図である。It is sectional drawing explaining typically operation | movement of the light modulation element which concerns on this invention. 光変調素子の構成を模式的に示す断面図であり、(a)は第2実施形態に係る光変調素子、(b)は第3実施形態に係る光変調素子である。It is sectional drawing which shows the structure of a light modulation element typically, (a) is the light modulation element which concerns on 2nd Embodiment, (b) is the light modulation element which concerns on 3rd Embodiment. 第4実施形態に係る光変調素子の構成を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the light modulation element which concerns on 4th Embodiment. 本発明の第1実施形態に係る空間光変調器の構成を模式的に示す平面図である。1 is a plan view schematically showing a configuration of a spatial light modulator according to a first embodiment of the present invention. 本発明の第1実施形態に係る空間光変調器を用いた表示装置の構成および画素選択の動作を説明する模式図で、図5のA−A断面図に対応する図である。FIG. 6 is a schematic diagram for explaining a configuration of a display device using a spatial light modulator and a pixel selection operation according to the first embodiment of the present invention, and corresponds to a cross-sectional view taken along line AA of FIG. 5. 本発明の第3実施形態に係る空間光変調器を用いた表示装置の構成および画素選択の動作を説明する模式図で、図5のA−A断面図に対応する図である。It is a schematic diagram explaining the structure of the display apparatus using the spatial light modulator which concerns on 3rd Embodiment of this invention, and the operation | movement of pixel selection, and is a figure corresponding to AA sectional drawing of FIG. 本発明の一実施形態に係るホログラフィ装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the holography apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係るホログラム記録装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the hologram recording apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る撮像装置の構成を示すブロック図である。1 is a block diagram illustrating a configuration of an imaging apparatus according to an embodiment of the present invention. 図10に示す撮像装置の構成および画素選択の動作を説明する模式図で、図5のA−A断面図に対応する図である。FIG. 11 is a schematic diagram for explaining the configuration of the imaging apparatus and the pixel selection operation shown in FIG. 実施例の光変調素子による、磁化反転層における保磁力の膜厚依存性を示すグラフであり、(a)はCo膜、(b)はPd膜の膜厚による。It is a graph which shows the film thickness dependence of the coercive force in the magnetization inversion layer by the light modulation element of an Example, (a) is Co film, (b) is based on the film thickness of Pd film. 実施例の光変調素子による、磁化反転層におけるカー回転角の膜厚依存性を示すグラフであり、(a)はCo膜、(b)はPd膜の膜厚による。It is a graph which shows the film thickness dependence of the Kerr rotation angle in the magnetization inversion layer by the light modulation element of an Example, (a) is Co film, (b) is based on the film thickness of Pd film.

以下、本発明に係る光変調素子、空間光変調器、および撮像装置を実現するための形態について、図を参照して説明する。   Hereinafter, embodiments for realizing a light modulation element, a spatial light modulator, and an imaging apparatus according to the present invention will be described with reference to the drawings.

[光変調素子]
(第1実施形態)
本発明の第1実施形態に係る光変調素子5は、図1に示すように、磁化固定層51、中間層52、磁化反転層53、保護層54の順に積層された構成であり、一対の電極である上部電極2と下部電極3に上下で接続されて、膜面に垂直に電流を供給される。光変調素子5は、磁化が一方向に固定された磁化固定層51および磁化の方向が回転可能な磁化反転層53を、非磁性または絶縁体である中間層52を挟んで備えたCPP−GMR(Current Perpendicular to the Plane Giant MagnetoResistance:垂直通電型巨大磁気抵抗効果)素子やTMR(Tunnel MagnetoResistance:トンネル磁気抵抗効果)素子等のスピン注入磁化反転素子であり、製造工程におけるダメージからこれらの層を保護するために、最上層に保護層54が設けられている。光変調素子5を構成する各層は、例えばスパッタリング法や分子線エピタキシー(MBE)法等の公知の方法で連続的に成膜されて積層され、電子線リソグラフィおよびイオンビームミリング法等で所望の平面視形状に加工される。
[Light modulation element]
(First embodiment)
As shown in FIG. 1, the light modulation element 5 according to the first embodiment of the present invention has a configuration in which a magnetization fixed layer 51, an intermediate layer 52, a magnetization inversion layer 53, and a protective layer 54 are laminated in this order. The upper electrode 2 and the lower electrode 3 that are electrodes are connected in the vertical direction, and current is supplied perpendicular to the film surface. The light modulation element 5 includes a magnetization fixed layer 51 in which magnetization is fixed in one direction and a magnetization inversion layer 53 in which the magnetization direction can be rotated, with a nonmagnetic or insulating intermediate layer 52 interposed therebetween, CPP-GMR Spin injection magnetization reversal elements such as (Current Perpendicular to the Plane Giant MagnetoResistance) elements and TMR (Tunnel MagnetoResistance) elements, which protect these layers from damage in the manufacturing process For this purpose, a protective layer 54 is provided as the uppermost layer. Each layer constituting the light modulation element 5 is continuously formed and laminated by a known method such as a sputtering method or a molecular beam epitaxy (MBE) method, and a desired plane is formed by an electron beam lithography or an ion beam milling method. Processed into a visual shape.

ここで、光変調素子5の磁化反転の動作を、図2を参照して説明する。なお、図2において保護層54は図示を省略する。スピン注入磁化反転素子である光変調素子5は、逆方向のスピンを持つ電子を注入することにより、すなわち電流を反対向きに供給することにより、磁化反転層53の磁化方向を反転(スピン注入磁化反転、以下、適宜磁化反転という)させて、磁化固定層51の磁化方向と同じ方向または180°異なる方向にする。具体的には、図2(a)に示すように、上部電極2を「+」、下部電極3を「−」にして、磁化反転層53側から磁化固定層51へ電流を供給すると、磁化反転層53の磁化は磁化固定層51の磁化方向と同じ方向になる。以下、この状態を光変調素子5の磁化が平行である(P:Parallel)という。反対に、図2(b)に示すように、上部電極2を「−」、下部電極3を「+」にして、磁化固定層51側から磁化反転層53へ電流を供給すると、磁化反転層53の磁化は磁化固定層51の磁化方向と逆方向になる。以下、この状態を光変調素子5の磁化が反平行である(AP:Anti-Parallel)という。   Here, the magnetization reversal operation of the light modulation element 5 will be described with reference to FIG. In FIG. 2, the protective layer 54 is not shown. The light modulation element 5, which is a spin-injection magnetization reversal element, inverts the magnetization direction of the magnetization reversal layer 53 by injecting electrons having spins in the opposite direction, that is, by supplying current in the opposite direction (spin-injection magnetization). Reversal, hereinafter referred to as magnetization reversal as appropriate), so that the magnetization direction of the magnetization fixed layer 51 is the same or 180 ° different. Specifically, as shown in FIG. 2A, when a current is supplied from the magnetization switching layer 53 side to the magnetization fixed layer 51 with the upper electrode 2 set to “+” and the lower electrode 3 set to “−”, the magnetization is changed. The magnetization of the inversion layer 53 is the same as the magnetization direction of the magnetization fixed layer 51. Hereinafter, this state is referred to as that the magnetization of the light modulation element 5 is parallel (P: Parallel). On the other hand, as shown in FIG. 2B, when the upper electrode 2 is set to “−” and the lower electrode 3 is set to “+” and a current is supplied from the magnetization fixed layer 51 side to the magnetization switching layer 53, the magnetization switching layer The magnetization of 53 is opposite to the magnetization direction of the magnetization fixed layer 51. Hereinafter, this state is referred to as anti-parallel (AP) where the magnetization of the light modulation element 5 is antiparallel.

光変調素子5の磁化が平行、反平行いずれかの磁化を示していれば、その磁化を反転させる電流が供給されるまでは、磁化反転層53の保磁力Hcfにより磁化が保持される。このように、光変調素子5において磁化は保持されるため、光変調素子5に供給する電流としては、パルス電流のように、磁化方向を反転させる電流値に一時的に到達する電流を用いることができる。ただし、磁化反転層53の保磁力Hcfが大きくなって磁化固定層51の保磁力Hcpに近付くと、磁化反転に要する電流(磁化反転電流)が大きくなり、さらに磁化固定層51の保磁力Hcp以上になると、電流供給による磁化反転動作ができなくなる。そのため、保磁力Hcf,HcpがHcf<Hcpとなるように、好ましくはその差が500Oe以上となるように、磁化固定層51および磁化反転層53をそれぞれ後記するように構成する。   If the light modulation element 5 exhibits either parallel or antiparallel magnetization, the magnetization is retained by the coercive force Hcf of the magnetization reversal layer 53 until a current for reversing the magnetization is supplied. As described above, since the magnetization is held in the light modulation element 5, the current supplied to the light modulation element 5 is a current that temporarily reaches a current value that reverses the magnetization direction, such as a pulse current. Can do. However, when the coercive force Hcf of the magnetization reversal layer 53 increases and approaches the coercive force Hcp of the magnetization fixed layer 51, the current required for magnetization reversal (magnetization reversal current) increases, and more than the coercive force Hcp of the magnetization fixed layer 51 Then, the magnetization reversal operation by current supply cannot be performed. Therefore, the magnetization fixed layer 51 and the magnetization inversion layer 53 are configured as described later so that the coercive forces Hcf and Hcp satisfy Hcf <Hcp, and preferably the difference is 500 Oe or more.

光変調素子5に入射した光が磁性体である磁化反転層53で反射して出射すると、カー効果(磁気カー効果)により、入射光はその偏光の向きが変化(旋光)する。さらに、図2(a)、(b)にそれぞれ示すように、磁化が平行、反平行な光変調素子5にそれぞれ入射した光は、磁化反転層53の磁化方向が180°異なるため、同じ大きさの旋光角すなわち磁化反転層53のカー回転角+θk、−θk(以下、「θk」は向きを示さず大きさのみを示す。)で互いに逆方向に回転して出射する。そして、光変調素子5からの出射光は、その偏光の向きを供給される電流の向きに応じて変化させることで後記の空間光変調器等の画素として機能するため、偏光の変化すなわち旋光角の差となる磁化反転層53のカー回転角θkが大きいことが望まれる。   When light incident on the light modulation element 5 is reflected by the magnetization reversal layer 53 that is a magnetic material and emitted, the direction of polarization of the incident light changes (rotation) due to the Kerr effect (magnetic Kerr effect). Further, as shown in FIGS. 2 (a) and 2 (b), the lights incident on the light modulation elements 5 having the parallel and antiparallel magnetizations have the same magnitude because the magnetization direction of the magnetization reversal layer 53 differs by 180 °. The optical rotation angle, that is, the Kerr rotation angles + θk and −θk of the magnetization reversal layer 53 (hereinafter, “θk” indicates only the size but does not indicate the direction) are rotated in opposite directions and emitted. The emitted light from the light modulation element 5 functions as a pixel of a later-described spatial light modulator or the like by changing the polarization direction according to the direction of the supplied current. It is desirable that the Kerr rotation angle θk of the magnetization reversal layer 53 that is the difference between the two is large.

カー効果の大きさは、入射光の波数ベクトルと磁性体の磁化ベクトルとのスカラー積に比例する。すなわち磁化反転層53のカー回転角θkは、光の入射角が磁化反転層53の磁化方向に平行に近いほど大きくなる。ここで、磁化反転層53(および磁化固定層51)が、膜面方向の磁化を有する(面内磁気異方性)と、光変調素子5の構造上、磁化方向に平行に近付けて光を入射させることが困難である。一方、磁化反転層53が膜面に垂直な方向の磁化を有する、すなわち垂直磁気異方性であれば、容易に磁化方向に平行に光を入射することができ、極カー効果により、大きなカー回転角θkが得られる。本実施形態に係る光変調素子5は、磁化固定層51および磁化反転層53を以下のように構成することで、垂直磁気異方性を有して大きなカー回転角θkとするものである。以下、図1を参照して、光変調素子5を構成する各層の詳細を説明する。   The magnitude of the Kerr effect is proportional to the scalar product of the wave number vector of incident light and the magnetization vector of the magnetic material. That is, the Kerr rotation angle θk of the magnetization switching layer 53 becomes larger as the incident angle of light is closer to the magnetization direction of the magnetization switching layer 53. Here, if the magnetization reversal layer 53 (and the magnetization fixed layer 51) has magnetization in the film plane direction (in-plane magnetic anisotropy), the light modulation element 5 has a structure that approaches the magnetization direction in parallel with the light. It is difficult to make it incident. On the other hand, if the magnetization switching layer 53 has magnetization in a direction perpendicular to the film surface, that is, perpendicular magnetic anisotropy, light can be easily incident in parallel to the magnetization direction, and a large Kerr effect can be applied. A rotation angle θk is obtained. In the light modulation element 5 according to this embodiment, the magnetization fixed layer 51 and the magnetization reversal layer 53 are configured as follows, thereby having perpendicular magnetic anisotropy and a large Kerr rotation angle θk. Hereinafter, with reference to FIG. 1, the detail of each layer which comprises the light modulation element 5 is demonstrated.

図1に示すように、本実施形態に係る光変調素子5において、磁化固定層51および磁化反転層53は、それぞれがPd膜とCo膜とを交互に積層した多層膜で構成される(図中、Pd膜は「Pd」、Co膜は「Co」と示す。)。Coは強磁性体であり、単独で磁化固定層および磁化反転層を構成できるが、非磁性のPdと交互に積層した多層膜(以下、Co/Pd多層膜という)とすることで、磁性体として一体的に動作し、また保磁力を大きなものとする。さらに、Co/Pd多層膜は垂直磁気異方性エネルギーKuが強いため、垂直磁気異方性を有し、かつ磁化反転動作が安定してばらつきが小さい光変調素子5が得られる。また、Co/Pd多層膜は、耐プロセス性、具体的には耐酸化性、耐熱性、耐酸性、耐アルカリ性、耐薬品性等がよく、例えば光変調素子5の製造時において、イオンビームミリング法等で所望形状に成形加工された際に、側面(端面)が露出して大気に晒されてもほとんど酸化せず、磁気的特性等の劣化が小さい。また、磁化固定層51および磁化反転層53を共通の材料(PdおよびCo)で構成することにより、光変調素子5の生産性がよくなり、また、後記するように保磁力Hcp,Hcfの相関を制御し易くなる。さらに、Co/Pd多層膜はCoを含むことでカー回転角およびファラデー回転角が大きいため、磁化反転層53を構成することで、光変調素子5の磁化反転による旋光角の差を大きなものとすることができる。なお、Co/Pd多層膜は、DCマグネトロンスパッタリング法やイオンビームスパッタリング法等の公知の方法で成膜できる。   As shown in FIG. 1, in the light modulation element 5 according to the present embodiment, the magnetization fixed layer 51 and the magnetization inversion layer 53 are each composed of a multilayer film in which Pd films and Co films are alternately stacked (see FIG. 1). (The Pd film is indicated as “Pd”, and the Co film is indicated as “Co”.) Co is a ferromagnetic material, and can constitute a magnetization fixed layer and a magnetization reversal layer independently. However, by forming a multilayer film alternately laminated with nonmagnetic Pd (hereinafter referred to as a Co / Pd multilayer film), As a single unit, the coercive force is increased. Furthermore, since the Co / Pd multilayer film has a strong perpendicular magnetic anisotropy energy Ku, the light modulation element 5 having a perpendicular magnetic anisotropy, a stable magnetization reversal operation, and a small variation can be obtained. In addition, the Co / Pd multilayer film has good process resistance, specifically oxidation resistance, heat resistance, acid resistance, alkali resistance, chemical resistance, and the like. For example, when the light modulation element 5 is manufactured, ion beam milling is performed. When it is molded into a desired shape by a method or the like, even if the side surface (end surface) is exposed and exposed to the atmosphere, it hardly oxidizes, and the deterioration of magnetic properties and the like is small. Further, by configuring the magnetization fixed layer 51 and the magnetization inversion layer 53 with a common material (Pd and Co), the productivity of the light modulation element 5 is improved, and the correlation between the coercive forces Hcp and Hcf is described later. It becomes easy to control. Furthermore, since the Co / Pd multilayer film contains Co, the Kerr rotation angle and the Faraday rotation angle are large. Therefore, by forming the magnetization reversal layer 53, the difference in optical rotation angle due to the magnetization reversal of the light modulation element 5 is increased. can do. The Co / Pd multilayer film can be formed by a known method such as a DC magnetron sputtering method or an ion beam sputtering method.

ここで、本明細書においては、図2に示すように、磁化反転層53(光変調素子5)の上方から入射して再び上方へ出射した光が、磁化反転層53(Co/Pd多層膜)の表面および層内(最も深くて中間層52との界面)のみに到達した光である場合を「磁化反転層53で反射する」と表す。これに対して、例えば磁化反転層53の上方から入射した光が磁化反転層53の下方へ出射して、中間層52の層内を透過してさらに磁化固定層51の少なくとも表面に入射するような場合を「磁化反転層53を透過する」と表す。   Here, in the present specification, as shown in FIG. 2, the light that has entered from the upper side of the magnetization switching layer 53 (light modulation element 5) and exited again is reflected by the magnetization switching layer 53 (Co / Pd multilayer film). ) And the light that has reached only the inside of the layer (the deepest and the interface with the intermediate layer 52) is expressed as “reflected by the magnetization switching layer 53”. On the other hand, for example, light incident from above the magnetization switching layer 53 is emitted below the magnetization switching layer 53, passes through the intermediate layer 52, and further enters at least the surface of the magnetization fixed layer 51. This case is expressed as “transmitting through the magnetization switching layer 53”.

磁化固定層51は、その全体の厚さを3〜20nmとすることが好ましい。また、Co膜単層(1層)の膜厚tCopは0.1〜1nmの範囲とすることが好ましく、Pd膜単層の膜厚tPdpは0.1〜2nmの範囲とすることが好ましい。また、Co膜とPd膜の膜数は特に規定されず、前記の全体の厚さとなるようにCo膜とPd膜を交互に繰り返し積層すればよい。また、Co/Pd多層膜の最上層および最下層は、それぞれCo膜およびPd膜のいずれでもよいが、中間層52との界面となる最上層にCo膜を積層することが好ましい。中間層52との界面にCo膜を配置することで当該界面でのスピン偏極率を高くして、中間層52を介して磁化反転層53へ注入するスピンによるスピントルクが増大するため、磁化反転に要する電流を低減することができ、特に光変調素子5がTMR素子である場合に効果が大きい。 The magnetization fixed layer 51 preferably has a total thickness of 3 to 20 nm. The film thickness t Co p of the single Co film layer (one layer) is preferably in the range of 0.1 to 1 nm, and the film thickness t Pd p of the single Pd film layer is in the range of 0.1 to 2 nm. It is preferable. Further, the number of Co films and Pd films is not particularly limited, and the Co films and the Pd films may be alternately and repeatedly stacked so as to have the entire thickness. In addition, the uppermost layer and the lowermost layer of the Co / Pd multilayer film may be either a Co film or a Pd film, respectively, but it is preferable to stack a Co film on the uppermost layer serving as an interface with the intermediate layer 52. Since the Co film is disposed at the interface with the intermediate layer 52, the spin polarization at the interface is increased, and the spin torque caused by the spin injected into the magnetization switching layer 53 through the intermediate layer 52 is increased. The current required for inversion can be reduced, and the effect is particularly great when the light modulation element 5 is a TMR element.

磁化反転層53は、その全体の厚さを1.5〜10nmとすることが好ましい。また、Co膜単層(1層)の膜厚tCofは0.1〜1nmの範囲とすることが好ましく、さらに厚くするほど磁化反転層53のカー回転角θkを大きくすることができて好ましい。一方、Pd膜単層の膜厚tPdfは0.1〜2nmの範囲とすることが好ましい。また、磁化固定層51におけるCo/Pd多層膜と同様に、Co膜とPd膜の膜数は特に規定されず、前記の全体の厚さとなるようにCo膜とPd膜を交互に繰り返し積層すればよい。さらに、Co/Pd多層膜の最上層および最下層は、それぞれCo膜およびPd膜のいずれでもよいが、中間層52との界面となる最下層にCo膜を積層することが好ましい。中間層52との界面にCo膜を配置することで当該界面でのスピン偏極率を高くして、中間層52を介して磁化反転層53に注入されるスピンによるスピントルクが増大するため、光変調素子5の磁化反転に要する電流を低減することができ、特に光変調素子5がTMR素子である場合に効果が大きい。 The entire thickness of the magnetization switching layer 53 is preferably 1.5 to 10 nm. Further, the thickness t Cof of the single Co film layer (one layer) is preferably in the range of 0.1 to 1 nm, and the Kerr rotation angle θk of the magnetization switching layer 53 can be increased as the film thickness is further increased. preferable. On the other hand, the thickness t Pd f Pd film single layer is preferably in a range of 0.1 to 2 nm. Further, like the Co / Pd multilayer film in the magnetization fixed layer 51, the number of Co films and Pd films is not particularly defined, and the Co film and the Pd film are alternately and repeatedly stacked so as to have the total thickness described above. That's fine. Further, the uppermost layer and the lowermost layer of the Co / Pd multilayer film may be either a Co film or a Pd film, respectively, but it is preferable to stack a Co film on the lowermost layer that becomes an interface with the intermediate layer 52. By arranging the Co film at the interface with the intermediate layer 52, the spin polarization rate at the interface is increased, and the spin torque due to the spin injected into the magnetization switching layer 53 through the intermediate layer 52 is increased. The current required for the magnetization reversal of the light modulation element 5 can be reduced, and the effect is particularly great when the light modulation element 5 is a TMR element.

また、光変調素子5においては、磁化反転電流を低減するために、前記したように磁化反転層53の保磁力Hcfを磁化固定層51の保磁力Hcpより小さくする。そのため、それぞれの全体の厚さとして、磁化固定層51より磁化反転層53を薄くすることが好ましい。また、前記した通り、Co/Pd多層膜は保磁力が大きいが、前記単層の膜厚の範囲内で、Co膜単層の膜厚を厚くするほど、またPd膜単層の膜厚を薄くするほど、Co/Pd多層膜の保磁力はそれぞれ小さくなる。したがって、磁化反転層53のCo膜単層の膜厚tCofは磁化固定層51のCo膜単層の膜厚tCopより厚くする(tCof>tCop)か、磁化反転層53のPd膜単層の膜厚tPdfは磁化固定層51のPd膜単層の膜厚tPdpより薄くする(tPdf<tPdp)、またはその両方(tCof>tCop,tPdf<tPdp)とする。このように、本実施形態に係る光変調素子5は、Co膜、Pd膜の、磁化固定層51と磁化反転層53におけるそれぞれの膜厚の相関を制御することで、容易に磁化反転層53の保磁力Hcfを磁化固定層51の保磁力Hcpより小さくすることができる。 In the light modulation element 5, the coercive force Hcf of the magnetization reversal layer 53 is made smaller than the coercive force Hcp of the magnetization fixed layer 51 as described above in order to reduce the magnetization reversal current. Therefore, it is preferable to make the magnetization switching layer 53 thinner than the magnetization fixed layer 51 as the total thickness of each. Further, as described above, the Co / Pd multilayer film has a large coercive force, but within the range of the thickness of the single layer, the thickness of the single layer of Co film increases as the thickness of the single layer of Co film increases. The thinner the Co / Pd multilayer film, the smaller the coercivity. Therefore, the film thickness t Cof of the Co film single layer of the magnetization switching layer 53 is made larger than the film thickness t Cop of the Co film single layer of the magnetization fixed layer 51 (t Cof > t Co p), or the magnetization switching layer The film thickness t Pd f of the Pd film single layer 53 is made smaller than the film thickness t Pd p of the Pd film single layer of the magnetization fixed layer 51 (t Pd f <t Pd p), or both (t Cof > t Co p, t Pd f <t Pd p). As described above, the light modulation element 5 according to the present embodiment can easily control the correlation between the film thicknesses of the Co film and the Pd film in the magnetization fixed layer 51 and the magnetization switching layer 53, thereby easily changing the magnetization switching layer 53. Can be made smaller than the coercive force Hcp of the magnetization fixed layer 51.

中間層52は、磁化固定層51と磁化反転層53との間に設けられる。光変調素子5がTMR素子であれば、中間層52は、MgO,Al23,HfO2のような絶縁体や、Mg/MgO/Mgのような絶縁体を含む積層膜からなり、その厚さは0.5〜2nmとすることが好ましい。また、光変調素子5がCPP−GMR素子であれば、中間層52は、Cu,Au,Agのような非磁性金属からなり、その厚さは2〜6nmとすることが好ましい。 The intermediate layer 52 is provided between the magnetization fixed layer 51 and the magnetization switching layer 53. If the light modulation element 5 is a TMR element, the intermediate layer 52 is made of an insulator such as MgO, Al 2 O 3 , HfO 2 or a laminated film containing an insulator such as Mg / MgO / Mg. The thickness is preferably 0.5 to 2 nm. If the light modulation element 5 is a CPP-GMR element, the intermediate layer 52 is preferably made of a nonmagnetic metal such as Cu, Au, or Ag, and its thickness is preferably 2 to 6 nm.

保護層54は、Ta,Ru,Cuの単層、または、Cu/Ta,Cu/Ruの2層等から構成される。なお、前記の2層構造とする場合は、いずれもCuを内側(下層)とする。保護層54の厚さは、1nm未満であると連続した膜を形成し難く、一方、10nmを超えて厚くしても、製造工程において磁化反転層53等を保護する効果がそれ以上には向上せず、その上、光変調素子5の上方からの入射光の透過光量を減衰させる。したがって、保護層54の厚さは1〜10nmとすることが好ましい。   The protective layer 54 is composed of a single layer of Ta, Ru, Cu, or two layers of Cu / Ta, Cu / Ru. In addition, when setting it as the said 2 layer structure, all make Cu inside (lower layer). If the thickness of the protective layer 54 is less than 1 nm, it is difficult to form a continuous film. On the other hand, even if the thickness exceeds 10 nm, the effect of protecting the magnetization switching layer 53 and the like in the manufacturing process is further improved. In addition, the transmitted light amount of incident light from above the light modulation element 5 is attenuated. Therefore, the thickness of the protective layer 54 is preferably 1 to 10 nm.

第1実施形態に係る光変調素子5を構成する各層をこのような構成にすることで、図2(a)、(b)に示すように、磁化反転層53(および磁化固定層51)の磁化が膜面垂直方向となって、この磁化方向に平行またはそれに近い入射角で光(入射偏光)を入射することが容易となる。これにより、磁化反転層53で反射した光は極カー効果で大きく旋光し、さらにこの磁化反転層53をカー回転角およびファラデー回転角の大きいCo/Pd多層膜としたことでいっそう大きく旋光する。したがって、磁化反転層53の磁化が180°異なる図2(a)、(b)間で、それぞれの出射光(出射偏光)の偏光の向きの差(2θk)が大きく、光変調度に優れた光変調素子5となる。また、磁化固定層51と磁化反転層53の保磁力差を容易に制御でき、これにより磁化反転電流を低減することができる。なお、光変調素子5は、後記するように磁化固定層51と磁化反転層53の位置を入れ替えて、磁化反転層53、中間層52、磁化固定層51、保護層54の順に積層することもできるが、この場合は、磁化固定層51の最下層、磁化反転層53の最上層がそれぞれ中間層52との界面になるので、この位置にCo膜を配置することが好ましい。   By configuring each layer constituting the light modulation element 5 according to the first embodiment in such a configuration, as shown in FIGS. 2A and 2B, the magnetization reversal layer 53 (and the magnetization fixed layer 51) The magnetization becomes perpendicular to the film surface, and light (incident polarized light) can be easily incident at an incident angle parallel to or close to the magnetization direction. Thereby, the light reflected by the magnetization reversal layer 53 is optically rotated by the polar Kerr effect. Further, the magnetization reversal layer 53 is further rotated by making it a Co / Pd multilayer film having a large Kerr rotation angle and Faraday rotation angle. Therefore, the difference in the polarization direction (2θk) of each outgoing light (outgoing polarized light) is large between FIGS. 2A and 2B where the magnetization of the magnetization switching layer 53 differs by 180 °, and the degree of light modulation is excellent. The light modulation element 5 is obtained. In addition, the difference in coercive force between the magnetization fixed layer 51 and the magnetization switching layer 53 can be easily controlled, whereby the magnetization switching current can be reduced. The light modulation element 5 may be stacked in the order of the magnetization reversal layer 53, the intermediate layer 52, the magnetization fixed layer 51, and the protective layer 54 by switching the positions of the magnetization fixed layer 51 and the magnetization reversal layer 53 as described later. In this case, however, since the lowermost layer of the magnetization fixed layer 51 and the uppermost layer of the magnetization switching layer 53 are interfaces with the intermediate layer 52, a Co film is preferably disposed at this position.

以上のように、第1実施形態に係る光変調素子によれば、高精細かつ高速応答とすることが可能なスピン注入磁化反転素子を、Co/Pd多層膜を適用することにより光変調度を向上させた光変調素子とすることができる。   As described above, according to the light modulation element according to the first embodiment, the spin modulation magnetization reversal element capable of high-definition and high-speed response is applied to the light modulation degree by applying the Co / Pd multilayer film. An improved light modulation element can be obtained.

(第2実施形態)
次に、図3(a)を参照して、本発明の第2実施形態に係る光変調素子について説明する。第1実施形態(図1参照)と同一の要素については同じ符号を付し、説明を省略する。図3(a)に示すように、本発明の第2実施形態に係る光変調素子5Aは、磁化固定層51A、中間層52、磁化反転層53、保護層54の順に積層され、単層構造の磁化固定層51Aを備えること以外は第1実施形態に係る光変調素子5と同じ構成のスピン注入磁化反転素子であり、磁化反転動作および入射光の旋光も同様である。したがって、光変調素子5Aは、磁化反転層53のみがCo/Pd多層膜で構成される。前記した通りCo/Pd多層膜は強い垂直磁気異方性を有するため、このように磁化固定層および磁化反転層の一方のみをCo/Pd多層膜で構成しても、十分に垂直磁気異方性を示し動作ばらつきが小さい光変調素子が得られる。特に第2実施形態においては、磁化反転層53をカー回転角θkの大きいCo/Pd多層膜で構成したため、第1実施形態に係る光変調素子5と同様に、磁化反転による旋光角の差の大きい光変調素子5Aとなる。
(Second Embodiment)
Next, an optical modulation element according to the second embodiment of the present invention will be described with reference to FIG. The same elements as those in the first embodiment (see FIG. 1) are denoted by the same reference numerals, and description thereof is omitted. As shown in FIG. 3A, the light modulation element 5A according to the second embodiment of the present invention is laminated in the order of a magnetization fixed layer 51A, an intermediate layer 52, a magnetization inversion layer 53, and a protective layer 54, and has a single layer structure. The spin-injection magnetization reversal element has the same configuration as that of the light modulation element 5 according to the first embodiment except that the magnetization fixed layer 51A is provided, and the magnetization reversal operation and the rotation of incident light are the same. Therefore, in the light modulation element 5A, only the magnetization switching layer 53 is formed of a Co / Pd multilayer film. As described above, since the Co / Pd multilayer film has strong perpendicular magnetic anisotropy, even if only one of the magnetization fixed layer and the magnetization inversion layer is formed of the Co / Pd multilayer film as described above, it is sufficiently perpendicular magnetic anisotropic. Thus, an optical modulation element that exhibits high performance and small operational variation can be obtained. Particularly in the second embodiment, since the magnetization reversal layer 53 is formed of a Co / Pd multilayer film having a large Kerr rotation angle θk, the difference in optical rotation angle due to magnetization reversal is similar to that of the light modulation element 5 according to the first embodiment. A large light modulation element 5A is obtained.

磁化反転層53のみをCo/Pd多層膜で構成した場合、磁化固定層51AはCo/Pd多層膜以外の垂直磁気異方性を有するCPP−GMR素子やTMR素子等の磁化固定層として公知の磁性材料にて単層で構成することができ、その厚さは2〜20nmとすることが好ましい。具体的にはFe,Co,Ni等の遷移金属およびそれらを含む合金が挙げられ、特にFe,Co,Niから選択される遷移金属とSm,Eu,Gd,Tbから選択される希土類金属との合金が好ましい。このような合金は飽和磁化Msが低く、磁化固定層51Aから磁化反転層53へ漏れる磁界が減少して、スピン注入磁化反転特性が電流軸方向の一方にシフトする現象を抑制することができ、光変調素子5Aにおいて、正の磁化反転電流と負の磁化反転電流をほぼ同じ大きさとして安定したスピン注入磁化反転動作を得ることができる。   When only the magnetization switching layer 53 is formed of a Co / Pd multilayer film, the magnetization pinned layer 51A is known as a magnetization pinned layer such as a CPP-GMR element or a TMR element having perpendicular magnetic anisotropy other than the Co / Pd multilayer film. The magnetic material can be a single layer, and the thickness is preferably 2 to 20 nm. Specific examples include transition metals such as Fe, Co, Ni and alloys containing them, and in particular, transition metals selected from Fe, Co, Ni and rare earth metals selected from Sm, Eu, Gd, Tb. Alloys are preferred. Such an alloy has a low saturation magnetization Ms, a magnetic field leaking from the magnetization fixed layer 51A to the magnetization reversal layer 53 is reduced, and the phenomenon that the spin injection magnetization reversal characteristic shifts in one direction of the current axis direction can be suppressed. In the light modulation element 5A, a stable spin injection magnetization reversal operation can be obtained with the positive magnetization reversal current and the negative magnetization reversal current substantially equal to each other.

磁化反転層53を構成するCo/Pd多層膜の厚さ等のパラメータは、第1実施形態と同様である。ここで、前記したように、Co膜単層の膜厚を厚くするほど、またPd膜単層の膜厚を薄くするほど、Co/Pd多層膜の保磁力が小さくなる。さらにCo膜単層の膜厚を厚くすることでカー回転角θkを大きくすることができる。したがって、磁化反転層53の保磁力Hcfが磁化固定層51Aの保磁力Hcpより小さくなるように、また十分なカー回転角θkを示すように、Co膜単層の膜厚tCofおよびPd膜単層の膜厚tPdfを設計する。 Parameters such as the thickness of the Co / Pd multilayer film constituting the magnetization switching layer 53 are the same as those in the first embodiment. Here, as described above, the coercive force of the Co / Pd multilayer film decreases as the thickness of the Co film single layer increases or as the Pd film single layer decreases. Furthermore, the Kerr rotation angle θk can be increased by increasing the thickness of the single Co film. Therefore, the film thickness t Cof and the Pd film of the single Co film are set so that the coercive force Hcf of the magnetization reversal layer 53 is smaller than the coercive force Hcp of the magnetization fixed layer 51A and exhibits a sufficient Kerr rotation angle θk. The film thickness t Pd f of the single layer is designed.

以上のように、第2実施形態に係る光変調素子によれば、高精細かつ高速応答とすることが可能なスピン注入磁化反転素子を、第1実施形態に係る光変調素子と同等に光変調度を向上させ、さらに安定した磁化反転動作の光変調素子とすることができる。   As described above, according to the light modulation element according to the second embodiment, the spin injection magnetization reversal element capable of high-definition and high-speed response is optically modulated in the same manner as the light modulation element according to the first embodiment. Therefore, the light modulation element can be further improved in the magnetization reversal operation.

(第3実施形態)
次に、図3(b)を参照して、本発明の第3実施形態に係る光変調素子について説明する。第1実施形態(図1参照)と同一の要素については同じ符号を付し、説明を省略する。図3(b)に示すように、本発明の第3実施形態に係る光変調素子5Bは、磁化固定層51、中間層52、磁化反転層53A、保護層54の順に積層され、単層構造の磁化反転層53Aを備えること以外は第1実施形態に係る光変調素子5と同じ構成のスピン注入磁化反転素子であり、磁化反転動作および入射光の旋光も同様である。したがって、光変調素子5Bは、磁化反転層53をCo/Pd多層膜で構成した第2実施形態(図3(a)参照)に対して、磁化固定層51のみがCo/Pd多層膜で構成される。
(Third embodiment)
Next, with reference to FIG.3 (b), the light modulation element which concerns on 3rd Embodiment of this invention is demonstrated. The same elements as those in the first embodiment (see FIG. 1) are denoted by the same reference numerals, and description thereof is omitted. As shown in FIG. 3B, the light modulation element 5B according to the third embodiment of the present invention is laminated in the order of the magnetization fixed layer 51, the intermediate layer 52, the magnetization inversion layer 53A, and the protective layer 54, and has a single layer structure. The spin reversal magnetization reversal element has the same configuration as that of the light modulation element 5 according to the first embodiment except that the magnetization reversal layer 53A is provided. Therefore, in the light modulation element 5B, only the magnetization fixed layer 51 is configured by a Co / Pd multilayer film, compared to the second embodiment (see FIG. 3A) in which the magnetization switching layer 53 is configured by a Co / Pd multilayer film. Is done.

磁化固定層51を構成するCo/Pd多層膜の厚さ等のパラメータは、第1実施形態と同様である。ここで、磁化反転層53Aの保磁力Hcfが磁化固定層51の保磁力Hcpより小さくなるようにする必要がある。すなわち磁化固定層51の保磁力Hcpが磁化反転層53Aの保磁力Hcfより大きくなるように、Co膜単層の膜厚tCopを薄く、またPd膜単層の膜厚tPdpを厚く設計する。 Parameters such as the thickness of the Co / Pd multilayer film constituting the magnetization fixed layer 51 are the same as those in the first embodiment. Here, it is necessary to make the coercive force Hcf of the magnetization switching layer 53 </ b> A smaller than the coercive force Hcp of the magnetization fixed layer 51. That is, the film thickness t Co p of the Co film single layer is made thin and the film thickness t Pd p of the Pd film single layer is made thick so that the coercive force Hcp of the magnetization fixed layer 51 is larger than the coercivity Hcf of the magnetization switching layer 53A. design.

磁化固定層51のみをCo/Pd多層膜で構成した場合、磁化反転層53AはCo/Pd多層膜以外の垂直磁気異方性を有するCPP−GMR素子やTMR素子等の磁化反転層として公知の磁性材料にて単層で構成することができ、その厚さは1.5〜15nmとすることが好ましい。具体的には、第2実施形態の磁化固定層51Aと同様に、Fe,Co,Ni等の遷移金属およびそれらを含む合金が挙げられ、特にFe,Co,Niから選択される遷移金属とSm,Eu,Gd,Tbから選択される希土類金属との合金が好ましい。前記したように、このような合金は飽和磁化Msが低いため、光変調素子5Bの磁化反転電流密度Jcを低減して磁化反転電流を低減することができる。また、磁化反転層53Aは、Co膜とPt膜とを交互に積層したCo/Pt多層膜や、Fe膜とPt膜とを交互に積層したFe/Pt多層膜で構成してもよい。これらの多層膜もカー回転角およびファラデー回転角が大きい上、Co/Pd多層膜より保磁力が小さいため、磁化反転層53Aの保磁力Hcfを磁化固定層51の保磁力Hcpより小さくすることが容易である。   When only the magnetization fixed layer 51 is formed of a Co / Pd multilayer film, the magnetization switching layer 53A is known as a magnetization switching layer such as a CPP-GMR element or a TMR element having perpendicular magnetic anisotropy other than the Co / Pd multilayer film. The magnetic material can be a single layer, and the thickness is preferably 1.5 to 15 nm. Specifically, similarly to the magnetization fixed layer 51A of the second embodiment, transition metals such as Fe, Co, Ni, and alloys containing them are mentioned, and in particular, transition metals selected from Fe, Co, Ni and Sm Alloys with rare earth metals selected from Eu, Gd, Tb are preferred. As described above, since such an alloy has a low saturation magnetization Ms, it is possible to reduce the magnetization reversal current by reducing the magnetization reversal current density Jc of the light modulation element 5B. Further, the magnetization switching layer 53A may be formed of a Co / Pt multilayer film in which Co films and Pt films are alternately stacked, or an Fe / Pt multilayer film in which Fe films and Pt films are alternately stacked. Since these multilayer films also have a Kerr rotation angle and a Faraday rotation angle and a coercive force smaller than that of the Co / Pd multilayer film, the coercive force Hcf of the magnetization reversal layer 53A can be made smaller than the coercive force Hcp of the magnetization fixed layer 51. Easy.

以上のように、第3実施形態に係る光変調素子によれば、高精細かつ高速応答とすることが可能なスピン注入磁化反転素子を、極カー効果により光変調度を向上させ、さらに磁化反転電流を低減した光変調素子とすることができる。   As described above, according to the light modulation element according to the third embodiment, the spin modulation magnetization reversal element capable of high-definition and high-speed response is improved in the degree of light modulation by the polar Kerr effect, and further the magnetization reversal. A light modulation element with reduced current can be obtained.

(第4実施形態)
次に、図4を参照して、本発明の第4実施形態に係る光変調素子について説明する。第1実施形態(図1参照)と同一の要素については同じ符号を付し、説明を省略する。図4に示すように、本発明の第4実施形態に係る光変調素子5Cは、磁化固定層51B、中間層52、磁化反転層53B、保護層54の順に積層されている。さらに磁化固定層51BはCo/Pd多層膜と、中間層52との界面に積層された遷移金属膜(金属膜)511とからなり、磁化反転層53Bは、Co/Pd多層膜と、中間層52との界面に積層された遷移金属膜(金属膜)531とからなる。磁化固定層51B、磁化反転層53Bがそれぞれ備えるCo/Pd多層膜は、光変調素子5における磁化固定層51、磁化反転層53と同じ構成であり、その厚さ等のパラメータも、第1実施形態と同様であるので説明を省略する。したがって、光変調素子5Cは、第1実施形態に係る光変調素子5において、磁化固定層51−中間層52間、磁化反転層53−中間層52間に、それぞれ遷移金属膜511,531を挿入した構成のスピン注入磁化反転素子であり、磁化反転動作および入射光の旋光も第1実施形態と同様である。
(Fourth embodiment)
Next, with reference to FIG. 4, a light modulation element according to the fourth embodiment of the present invention will be described. The same elements as those in the first embodiment (see FIG. 1) are denoted by the same reference numerals, and description thereof is omitted. As illustrated in FIG. 4, the light modulation element 5 </ b> C according to the fourth embodiment of the present invention includes a magnetization fixed layer 51 </ b> B, an intermediate layer 52, a magnetization inversion layer 53 </ b> B, and a protective layer 54 stacked in this order. Further, the magnetization fixed layer 51B includes a Co / Pd multilayer film and a transition metal film (metal film) 511 laminated at the interface with the intermediate layer 52. The magnetization switching layer 53B includes a Co / Pd multilayer film and an intermediate layer. And a transition metal film (metal film) 531 laminated at the interface with 52. The Co / Pd multilayer film provided in each of the magnetization fixed layer 51B and the magnetization reversal layer 53B has the same configuration as the magnetization fixed layer 51 and the magnetization reversal layer 53 in the light modulation element 5, and parameters such as the thickness thereof are the same as those in the first embodiment. Since it is the same as that of a form, description is abbreviate | omitted. Therefore, in the light modulation element 5C, in the light modulation element 5 according to the first embodiment, the transition metal films 511 and 531 are inserted between the magnetization fixed layer 51 and the intermediate layer 52 and between the magnetization switching layer 53 and the intermediate layer 52, respectively. The spin injection magnetization reversal element having the above-described configuration is the same as that of the first embodiment in the magnetization reversal operation and the rotation of incident light.

遷移金属膜511,531は、それぞれFe,Co,Niから選択される少なくとも1種の遷移金属またはこの遷移金属を含む合金からなり、膜厚は0.1〜1nmの範囲とすることが好ましい。遷移金属を含む合金としては、例えばCoFe,CoFeB,NiFe,CoFeSiが挙げられる。磁化固定層51Bおよび磁化反転層53Bのいずれにおいても、金属膜の中間層52との界面にこのような遷移金属を含む膜を備えることで当該界面でのスピン偏極率を高くして、中間層52を介して磁化反転層53に注入されるスピンによるスピントルクが増大するため、光変調素子5Cの磁化反転に要する電流を低減することができる。この効果は、特に光変調素子5CがTMR素子である場合に大きく、さらに中間層52にMgOを適用する場合には、このMgOと組み合わせてコヒーレントなトンネル電流を流すことによって磁化反転電流を低減できるCoFeB,Fe,Coを遷移金属膜511,531に適用することが好ましい。また、Co/Pd多層膜において、遷移金属膜511,531を積層されて接触する層は、それぞれCo膜およびPd膜のいずれでもよいが、Pd膜とすることが好ましい。なお、遷移金属膜511,531にCoを用いた場合、その膜厚は前記0.1〜1nmの範囲であればよく、Co/Pd多層膜におけるCo膜と必ずしも同じ膜厚(tCop,tCof)でなくてもよい。 The transition metal films 511 and 531 are each made of at least one transition metal selected from Fe, Co, and Ni or an alloy containing the transition metal, and preferably have a thickness in the range of 0.1 to 1 nm. Examples of the alloy containing a transition metal include CoFe, CoFeB, NiFe, and CoFeSi. In both of the magnetization fixed layer 51B and the magnetization switching layer 53B, a film containing such a transition metal is provided at the interface between the metal film and the intermediate layer 52, thereby increasing the spin polarization at the interface, Since the spin torque due to the spins injected into the magnetization switching layer 53 via the layer 52 increases, the current required for the magnetization switching of the light modulation element 5C can be reduced. This effect is particularly great when the light modulation element 5C is a TMR element. Further, when MgO is applied to the intermediate layer 52, the magnetization reversal current can be reduced by flowing a coherent tunnel current in combination with this MgO. CoFeB, Fe, and Co are preferably applied to the transition metal films 511 and 531. In the Co / Pd multilayer film, the layers in which the transition metal films 511 and 531 are stacked and in contact with each other may be either a Co film or a Pd film, but is preferably a Pd film. In the case of using the Co in the transition metal layer 511 and 531, its thickness may be in the range of the 0.1 to 1 nm, Co / Pd necessarily the same thickness as the Co film in the multilayer film (t Co p, t Co f) is not necessary.

第4実施形態に係る光変調素子5Cは、磁化固定層51Bおよび磁化反転層53Bの両方に遷移金属膜511,531を備える構成としているが、一方のみに備えてもその効果が得られる。したがって、第4実施形態の変形例として、遷移金属膜531を備えた磁化反転層53Bに、Co/Pd多層膜のみで構成された磁化固定層51と組み合わせた光変調素子(図示せず)としてもよい。また、遷移金属膜511,531は、Co/Pd多層膜以外で構成された磁化固定層および磁化反転層に積層してもその効果が得られる。例えば第2実施形態の変形例として、光変調素子5A(図3(a)参照)に遷移金属膜531を加えた、すなわち磁化固定層51Aに磁化反転層53Bを組み合わせた光変調素子としてもよいし、さらに磁化固定層51Aにも遷移金属膜511を積層してもよい(図示せず)。一方、第3実施形態の変形例として、光変調素子5B(図3(b)参照)に遷移金属膜511を加えた、すなわち磁化反転層53Aに磁化固定層51Bを組み合わせた光変調素子としてもよいし、さらに磁化反転層53Aにも遷移金属膜531を積層してもよい(図示せず)。   The light modulation element 5C according to the fourth embodiment is configured to include the transition metal films 511 and 531 in both the magnetization fixed layer 51B and the magnetization switching layer 53B. However, the effect can be obtained even if only one of them is provided. Therefore, as a modification of the fourth embodiment, as a light modulation element (not shown) in which the magnetization switching layer 53B provided with the transition metal film 531 is combined with the magnetization fixed layer 51 composed only of the Co / Pd multilayer film. Also good. The effects can be obtained even when the transition metal films 511 and 531 are stacked on the magnetization fixed layer and the magnetization inversion layer formed of other than the Co / Pd multilayer film. For example, as a modification of the second embodiment, a light modulation element in which the transition metal film 531 is added to the light modulation element 5A (see FIG. 3A), that is, the magnetization reversal layer 53B is combined with the magnetization fixed layer 51A. Further, the transition metal film 511 may be laminated on the magnetization fixed layer 51A (not shown). On the other hand, as a modification of the third embodiment, a light modulation element in which the transition metal film 511 is added to the light modulation element 5B (see FIG. 3B), that is, the magnetization fixed layer 51B is combined with the magnetization switching layer 53A. Further, a transition metal film 531 may be stacked on the magnetization switching layer 53A (not shown).

以上のように、第4実施形態に係る光変調素子によれば、高精細かつ高速応答とすることが可能なスピン注入磁化反転素子を、第1〜3実施形態に係る光変調素子と同等に光変調度を向上させ、さらに磁化反転電流を低減した光変調素子とすることができる。   As described above, according to the light modulation element according to the fourth embodiment, the spin injection magnetization reversal element capable of high definition and high-speed response is equivalent to the light modulation element according to the first to third embodiments. It is possible to obtain a light modulation element that improves the degree of light modulation and further reduces the magnetization reversal current.

[空間光変調器、表示装置]
(空間光変調器の第1実施形態)
次に、前記の本発明の第1〜4実施形態およびその変形例に係る光変調素子を画素に備える空間光変調器、およびこれを用いた表示装置について、その実施形態を説明する。これらの光変調素子は、前記したように磁化反転動作および入射光の旋光がいずれも同様であるため、本明細書では第1実施形態に係る光変調素子5(図1参照)を画素に備えるとして説明する。なお、本明細書における画素とは、空間光変調器による表示の最小単位での情報(明/暗)を表示する手段を指す。
[Spatial light modulator, display device]
(First Embodiment of Spatial Light Modulator)
Next, embodiments of the spatial light modulator including the light modulation element according to the first to fourth embodiments of the present invention and the modification thereof in a pixel, and a display device using the spatial light modulator will be described. Since these light modulation elements have the same magnetization reversal operation and rotation of incident light as described above, in this specification, the light modulation element 5 (see FIG. 1) according to the first embodiment is provided in a pixel. Will be described. In addition, the pixel in this specification refers to a means for displaying information (bright / dark) in the minimum unit of display by the spatial light modulator.

本発明の第1実施形態に係る空間光変調器1は、基板7(図6参照)上に、図5に示すように2次元アレイ状に配列された画素4からなる画素アレイ40と、画素アレイ40から1つ以上の画素4を選択して駆動する電流制御部80を備える。なお、本明細書における平面(上面)は空間光変調器の光の入射面であり、空間光変調器1は画素4(画素アレイ40)に上方から入射した光を反射してその光を変調して上方へ出射する反射型の空間光変調器である。   The spatial light modulator 1 according to the first embodiment of the present invention includes a pixel array 40 including pixels 4 arranged in a two-dimensional array on a substrate 7 (see FIG. 6), as shown in FIG. A current control unit 80 that selects and drives one or more pixels 4 from the array 40 is provided. The plane (upper surface) in this specification is a light incident surface of the spatial light modulator, and the spatial light modulator 1 reflects light incident on the pixel 4 (pixel array 40) from above and modulates the light. Thus, the reflective spatial light modulator is emitted upward.

図5に示すように、画素アレイ40は、平面視でストライプ状の複数の上部電極2,2,…と、同じくストライプ状で、平面視で上部電極2と直交する複数の下部電極3,3,…と、を備え、上部電極2と下部電極3との交点毎に1つの画素4を設ける。したがって、画素4は、空間光変調器1の光の入射面に、2次元アレイ状に配列されて画素アレイ40を構成する。本実施形態では、画素アレイ40は、5行×5列の25個の画素4からなる構成で例示される。なお、上部電極2と下部電極3は、適宜、両者をまとめて電極2,3と称する。そして、図5および図6に示すように、画素4は、当該画素4における一対の電極としての上部電極2および下部電極3と、これらの電極2,3に上下から挟まれた光変調素子5を備える。また、図6において、光変調素子5の保護層54(図1参照)は図示を省略する。また、隣り合う上部電極2,2間、光変調素子5,5間、および下部電極3,3間は、絶縁部材6で埋められている。   As shown in FIG. 5, the pixel array 40 includes a plurality of upper electrodes 2, 2... Striped in plan view, and a plurality of lower electrodes 3, 3 that are also striped and orthogonal to the upper electrode 2 in plan view. ,..., And one pixel 4 is provided at each intersection of the upper electrode 2 and the lower electrode 3. Therefore, the pixels 4 are arranged in a two-dimensional array on the light incident surface of the spatial light modulator 1 to form the pixel array 40. In the present embodiment, the pixel array 40 is exemplified by a configuration including 25 pixels 4 of 5 rows × 5 columns. The upper electrode 2 and the lower electrode 3 are collectively referred to as electrodes 2 and 3 as appropriate. As shown in FIGS. 5 and 6, the pixel 4 includes an upper electrode 2 and a lower electrode 3 as a pair of electrodes in the pixel 4, and a light modulation element 5 sandwiched between the electrodes 2 and 3 from above and below. Is provided. In FIG. 6, the protective layer 54 (see FIG. 1) of the light modulation element 5 is not shown. Further, the insulating members 6 are buried between the adjacent upper electrodes 2 and 2, between the light modulation elements 5 and 5, and between the lower electrodes 3 and 3.

図5に示すように、電流制御部80は、上部電極2を選択する上部電極選択部82と、下部電極3を選択する下部電極選択部83と、これらの電極選択部82,83を制御する画素選択部(画素選択手段)84と、電極2,3に電流を供給する電源(電流供給手段)81と、を備える。これらはそれぞれ公知のものでよく、光変調素子5を磁化反転させるために適正な電圧・電流を供給するものとする。   As shown in FIG. 5, the current control unit 80 controls the upper electrode selection unit 82 that selects the upper electrode 2, the lower electrode selection unit 83 that selects the lower electrode 3, and the electrode selection units 82 and 83. A pixel selection section (pixel selection means) 84 and a power supply (current supply means) 81 that supplies current to the electrodes 2 and 3 are provided. These may be known ones, and appropriate voltages and currents are supplied to reverse the magnetization of the light modulation element 5.

上部電極選択部82は、上部電極2の1つ以上を選択し、下部電極選択部83は、下部電極3の1つ以上を選択し、それぞれに電源81から所定の電流を供給させる。画素選択部84は、例えば図示しない外部からの信号に基づいて画素アレイ40の特定の1つ以上の画素4を選択し、選択した画素4に接続する電極2,3を電極選択部82,83に選択させる。電源81は、選択した画素4に備えられる光変調素子5を磁化反転させるために適正な電圧・電流を供給する。このような構成により、特定の画素4が選択され、この画素4の光変調素子5に、所定の電流が供給されて磁化反転させる。なお、図5において、電源81は、電極2,3のそれぞれ一端に電極選択部82,83を介して接続されているが、両端に接続されていてもよい。両端に接続されることにより、応答速度を上げ、画素間の動作ばらつきも低減できる。   The upper electrode selection unit 82 selects one or more of the upper electrodes 2, and the lower electrode selection unit 83 selects one or more of the lower electrodes 3, and each supplies a predetermined current from the power source 81. The pixel selection unit 84 selects one or more specific pixels 4 of the pixel array 40 based on, for example, an external signal (not shown), and connects the electrodes 2 and 3 connected to the selected pixel 4 to the electrode selection units 82 and 83. To select. The power supply 81 supplies an appropriate voltage / current to reverse the magnetization of the light modulation element 5 provided in the selected pixel 4. With such a configuration, a specific pixel 4 is selected, and a predetermined current is supplied to the light modulation element 5 of this pixel 4 to reverse the magnetization. In FIG. 5, the power supply 81 is connected to one end of each of the electrodes 2 and 3 via the electrode selection units 82 and 83, but may be connected to both ends. By connecting to both ends, the response speed can be increased and the operation variation between pixels can be reduced.

空間光変調器1の画素4の構成の詳細を図5および図6を参照して説明する。上部電極2は、図6に示すように光変調素子5の上に配され、図5に示すように横方向に帯状に延設される。1つの上部電極2は、横1行に配置された複数の画素4,4,…のそれぞれの光変調素子5に電流を供給する。一方、下部電極3は、光変調素子5の下に配され、縦方向に帯状に延設される。1つの下部電極3は、縦1列に配置された複数の画素4,4,…のそれぞれの光変調素子5に電流を供給する。上部電極2は、光変調素子5の入射光および出射光を遮らないように透明電極材料で構成される。一方、下部電極3は導電性の優れた電極用金属材料で構成される。   Details of the configuration of the pixel 4 of the spatial light modulator 1 will be described with reference to FIGS. The upper electrode 2 is disposed on the light modulation element 5 as shown in FIG. 6 and extends in a strip shape in the lateral direction as shown in FIG. One upper electrode 2 supplies current to each of the light modulation elements 5 of the plurality of pixels 4, 4,... Arranged in one horizontal row. On the other hand, the lower electrode 3 is arranged under the light modulation element 5 and extends in a strip shape in the vertical direction. One lower electrode 3 supplies a current to each of the light modulation elements 5 of the plurality of pixels 4, 4,... Arranged in one vertical column. The upper electrode 2 is made of a transparent electrode material so as not to block incident light and outgoing light of the light modulation element 5. On the other hand, the lower electrode 3 is made of an electrode metal material having excellent conductivity.

光変調素子5は、図5に示すように、平面視で上部電極2と下部電極3の重なる部分に配され、この電極2,3に上下から挟まれて接続されている。光変調素子5の平面視形状は、本実施形態においては正方形であるが、これに限定されるものではない。また、1個の画素4につき1個の光変調素子5が配されているが、例えば1つの画素4に面方向で(1×3)個、(2×2)個等の複数の光変調素子5を備えてもよい。   As shown in FIG. 5, the light modulation element 5 is arranged in a portion where the upper electrode 2 and the lower electrode 3 overlap in a plan view, and is sandwiched and connected to the electrodes 2 and 3 from above and below. The planar view shape of the light modulation element 5 is a square in the present embodiment, but is not limited to this. In addition, one light modulation element 5 is arranged for one pixel 4. For example, a plurality of light modulation elements such as (1 × 3), (2 × 2), and the like are provided in one pixel 4 in the surface direction. An element 5 may be provided.

上部電極2は、光が透過するように透明電極材料で構成される。透明電極材料は、例えば、インジウム亜鉛酸化物(Indium Zinc Oxide:IZO)、インジウム−スズ酸化物(Indium Tin Oxide:ITO)、酸化スズ(SnO2)、酸化アンチモン−酸化スズ系(ATO)、酸化亜鉛(ZnO)、フッ素ドープ酸化スズ(FTO)、酸化インジウム(In23)等の公知の透明電極材料からなる。特に、比抵抗と成膜の容易さとの点からIZOが最も好ましい。これらの透明電極材料は、スパッタリング法、真空蒸着法、塗布法等の公知の方法により成膜される。 The upper electrode 2 is made of a transparent electrode material so that light can pass therethrough. Transparent electrode materials include, for example, indium zinc oxide (IZO), indium tin oxide (ITO), tin oxide (SnO 2 ), antimony oxide-tin oxide system (ATO), oxidation zinc (ZnO), fluorine-doped tin oxide (FTO), consisting of a known transparent electrode material such as indium oxide (in 2 O 3). In particular, IZO is most preferable in terms of specific resistance and ease of film formation. These transparent electrode materials are formed into a film by a known method such as a sputtering method, a vacuum deposition method, or a coating method.

電極(配線)を透明電極材料で構成する場合、電極とこの電極に接続する光変調素子5との間に金属膜を設けることが好ましい。すなわち透明電極材料で構成された上部電極2においては、光変調素子5との間の下地層として金属膜を積層することが好ましい(図示せず)。光変調素子5との間に金属膜を介在させることで、電極用金属材料より抵抗が大きい透明電極材料からなる上部電極2においても、上部電極2−光変調素子5間の接触抵抗を低減させて応答速度を上げることができる。   When the electrode (wiring) is made of a transparent electrode material, it is preferable to provide a metal film between the electrode and the light modulation element 5 connected to the electrode. That is, in the upper electrode 2 made of a transparent electrode material, it is preferable to laminate a metal film as a base layer between the light modulation element 5 (not shown). By interposing a metal film between the light modulation element 5 and the upper electrode 2 made of a transparent electrode material having a resistance higher than that of the electrode metal material, the contact resistance between the upper electrode 2 and the light modulation element 5 is reduced. To increase the response speed.

下地層を構成する金属としては、例えば、Au,Ru,Ta、またはそれらの金属の2種以上からなる合金等を用いることができ、これらの金属はスパッタリング法等の公知の方法により成膜される。そして、下地層とその上の層すなわち透明電極との密着性をよくして接触抵抗をさらに低減するため、下地層となる金属膜は、透明電極材料と連続的に真空処理室にて成膜されることが好ましい。下地層の厚さは、1nm未満であると連続した膜を形成し難く、一方、10nmを超えると光の透過量を低下させる。したがって、下地層の好ましい厚さは1〜10nmである。   As the metal constituting the underlayer, for example, Au, Ru, Ta, or an alloy composed of two or more of these metals can be used, and these metals are formed by a known method such as a sputtering method. The Then, in order to further reduce the contact resistance by improving the adhesion between the underlayer and the layer above it, that is, the transparent electrode, the metal film serving as the underlayer is continuously formed in the vacuum processing chamber with the transparent electrode material. It is preferred that If the thickness of the underlayer is less than 1 nm, it is difficult to form a continuous film, while if it exceeds 10 nm, the amount of transmitted light is reduced. Therefore, the preferable thickness of the underlayer is 1 to 10 nm.

下部電極3は、例えば、Cu,Al,Au,Ag,Ta,Cr等の金属やその合金のような一般的な電極用金属材料からなる。そして、スパッタリング法等の公知の方法により成膜、フォトリソグラフィ、およびエッチングまたはリフトオフ法等によりストライプ状に加工される。   The lower electrode 3 is made of a general electrode metal material such as a metal such as Cu, Al, Au, Ag, Ta, Cr, or an alloy thereof. Then, it is processed into a stripe shape by a known method such as a sputtering method, by film formation, photolithography, etching, lift-off method, or the like.

基板7は、例えば表面を熱酸化したSi基板等の公知の基板が適用できる。絶縁部材6は、隣り合う上部電極2,2間(図6不図示)、光変調素子5,5間、および下部電極3,3間に配され、例えば、SiO2やAl23等からなる。 As the substrate 7, for example, a known substrate such as a Si substrate whose surface is thermally oxidized can be applied. The insulating member 6 is disposed between the adjacent upper electrodes 2 and 2 (not shown in FIG. 6), between the light modulation elements 5 and 5, and between the lower electrodes 3 and 3, and is made of, for example, SiO 2 or Al 2 O 3. Become.

(空間光変調器の製造方法)
次に、図5および図6に示す空間光変調器1の画素4(画素アレイ40)の製造方法について、その一例を説明する。
まず、下部電極3を形成する。基板7の表面に、金属電極材料をスパッタリング法等により成膜し、フォトリソグラフィ等によりストライプ状に形成して下部電極3とする。そして、下部電極3,3間にSiO2等の絶縁膜(絶縁部材6となる)を堆積させる。
(Spatial light modulator manufacturing method)
Next, an example of a method for manufacturing the pixel 4 (pixel array 40) of the spatial light modulator 1 shown in FIGS. 5 and 6 will be described.
First, the lower electrode 3 is formed. A metal electrode material is formed on the surface of the substrate 7 by a sputtering method or the like, and formed into a stripe shape by photolithography or the like to form the lower electrode 3. Then, an insulating film such as SiO 2 (which becomes the insulating member 6) is deposited between the lower electrodes 3 and 3.

次に、光変調素子5を形成する。下部電極3(および絶縁部材6)の上面に、連続して、磁化固定層51、中間層52、磁化反転層53、保護層54を、例えばスパッタリング法や分子線エピタキシー(MBE)法等の公知の方法で、連続的に成膜、積層する。これらの層を電子線リソグラフィおよびイオンビームミリング法等により前記平面視形状に成形加工して、光変調素子5とする。前記成形加工においてマスクとしたレジストを残した状態で、絶縁膜を成膜して、光変調素子5,5間(隣り合う画素4,4間におけるものを含む)に堆積させ、レジストをその上の絶縁膜ごと除去して(リフトオフ)絶縁部材6とする。あるいは、光変調素子5に成形加工した後レジストを除去して、絶縁膜を成膜して光変調素子5,5間に堆積させ、エッチングやCMP(Chemical Mechanical Polishing:化学機械研磨)等により光変調素子5の上の絶縁膜を除去してもよい。   Next, the light modulation element 5 is formed. A magnetization fixed layer 51, an intermediate layer 52, a magnetization switching layer 53, and a protective layer 54 are continuously formed on the upper surface of the lower electrode 3 (and the insulating member 6), for example, a known method such as sputtering or molecular beam epitaxy (MBE). In this way, the film is continuously formed and laminated. These layers are formed and processed into the shape in plan view by electron beam lithography, ion beam milling, or the like to obtain the light modulation element 5. With the resist used as a mask in the molding process left, an insulating film is formed and deposited between the light modulation elements 5 and 5 (including those between adjacent pixels 4 and 4). The insulating film 6 is removed (lifted off) to form the insulating member 6. Alternatively, after forming the light modulation element 5, the resist is removed, an insulating film is formed and deposited between the light modulation elements 5 and 5, and light is etched or etched by CMP (Chemical Mechanical Polishing). The insulating film on the modulation element 5 may be removed.

次に、上部電極2を形成する。光変調素子5および絶縁部材6の上面に、下地層としての金属膜、透明電極材料を連続して成膜し、下部電極3と直交するストライプ状に形成して上部電極2とする。最後に、上部電極2,2間に絶縁部材6を堆積して、画素4(画素アレイ40)とする。   Next, the upper electrode 2 is formed. A metal film as a base layer and a transparent electrode material are continuously formed on the upper surfaces of the light modulation element 5 and the insulating member 6 and formed into a stripe shape orthogonal to the lower electrode 3 to form the upper electrode 2. Finally, the insulating member 6 is deposited between the upper electrodes 2 and 2 to form the pixel 4 (pixel array 40).

(表示装置の第1実施形態、空間光変調器の画素選択の動作)
次に、空間光変調器1の画素選択の動作を、この空間光変調器1を用いた表示装置10として、図6を参照して説明する。電極2,3は、前記の通り、電流制御部80に接続される。また、図6に示すように、本実施形態に係る表示装置10においては、空間光変調器1の画素4(画素アレイ40)の上方に、画素アレイ40に向けて光を照射する光源91と、光源91から照射された光を画素アレイ40に入射する前に偏光とする入射偏光フィルタPF1と、画素アレイ40で反射して出射した光から特定の向きの偏光のみを透過する出射偏光フィルタPF2と、出射偏光フィルタPF2を透過した光を検出する検出器(画像表示手段)93とが配置される。
(First embodiment of display device, pixel selection operation of spatial light modulator)
Next, the pixel selection operation of the spatial light modulator 1 will be described as a display device 10 using the spatial light modulator 1 with reference to FIG. The electrodes 2 and 3 are connected to the current control unit 80 as described above. As shown in FIG. 6, in the display device 10 according to the present embodiment, a light source 91 that emits light toward the pixel array 40 above the pixels 4 (pixel array 40) of the spatial light modulator 1 and , An incident polarizing filter PF1 that converts light emitted from the light source 91 into polarized light before entering the pixel array 40, and an outgoing polarizing filter PF2 that transmits only polarized light in a specific direction from the light reflected and emitted from the pixel array 40. And a detector (image display means) 93 for detecting light transmitted through the output polarization filter PF2.

光源91は、例えばレーザー光源、およびこれに光学的に接続されてレーザー光を拡大するビーム拡大器、さらに拡大されたレーザー光を平行光とするレンズで構成される(図8参照)。光源91から照射されたレーザー光は様々な偏光成分を含んでいるので、これを画素アレイ40の手前の入射偏光フィルタPF1を透過させて、1つの偏光成分の光とする。以下、1つの偏光成分の光を偏光と称する。この偏光(入射偏光)は、画素アレイ40のすべての画素4に所定の入射角で入射する。それぞれの画素4において、入射偏光は、上部電極2を透過して光変調素子5に入射し、光変調素子5の磁化反転層53で反射して出射偏光として出射し、再び上部電極2を透過して画素4から出射する。それぞれの画素4から出射したすべての出射偏光は、出射偏光フィルタPF2に到達する。出射偏光フィルタPF2は、特定の偏光、ここでは入射偏光に対して角度θap旋光した偏光のみを透過させ、この透過した出射偏光が検出器93に入射される。偏光フィルタPF1,PF2はそれぞれ偏光板等であり、検出器93はスクリーン等の画像表示手段である。あるいは、検出器93はカメラ等の撮像手段としてもよい。   The light source 91 includes, for example, a laser light source, a beam expander that is optically connected to the laser light source to expand the laser light, and a lens that converts the expanded laser light into parallel light (see FIG. 8). Since the laser light emitted from the light source 91 includes various polarization components, the laser light is transmitted through the incident polarization filter PF1 in front of the pixel array 40 to obtain light of one polarization component. Hereinafter, light of one polarization component is referred to as polarization. This polarized light (incident polarized light) is incident on all the pixels 4 of the pixel array 40 at a predetermined incident angle. In each pixel 4, the incident polarized light passes through the upper electrode 2 and enters the light modulation element 5, is reflected by the magnetization reversal layer 53 of the light modulation element 5, is emitted as outgoing polarization, and is transmitted through the upper electrode 2 again. Then, the light is emitted from the pixel 4. All the outgoing polarized light emitted from each pixel 4 reaches the outgoing polarization filter PF2. The outgoing polarization filter PF2 transmits only specific polarized light, here, polarized light whose angle θap is rotated with respect to the incident polarized light, and this transmitted outgoing polarized light is incident on the detector 93. The polarizing filters PF1 and PF2 are polarizing plates, respectively, and the detector 93 is an image display means such as a screen. Alternatively, the detector 93 may be imaging means such as a camera.

前記したように、光変調素子5はスピン注入磁化反転素子であり、電極2,3から供給される電流の向きに応じて磁化反転して、磁化反転層53で反射した偏光を、互いに反対向きに旋光させる(図2(a)、(b)参照)。磁化が平行、反平行である光変調素子5における旋光角をそれぞれθp,θapと表し、磁化反転層53のカー回転角をθkとすると、θp=+θk、θap=−θkとなり、電極2,3からの電流の向きにより光変調素子5からの出射光の偏光の向きの差すなわち旋光角の差|θp−θap|は2θkとなる。   As described above, the light modulation element 5 is a spin-injection magnetization reversal element, and the polarizations that have undergone magnetization reversal according to the direction of the current supplied from the electrodes 2 and 3 and reflected by the magnetization reversal layer 53 are opposite to each other. (See FIGS. 2A and 2B). If the optical rotation angles in the light modulation element 5 in which the magnetization is parallel and antiparallel are respectively expressed as θp and θap, and the Kerr rotation angle of the magnetization reversal layer 53 is θk, then θp = + θk and θap = −θk. The difference in the polarization direction of the light emitted from the light modulation element 5, that is, the difference in optical rotation angle | θp−θap |

あるいは、光変調素子5に入射した偏光が、磁化反転層53、中間層52、磁化固定層51を透過し、下部電極3の上面で反射して、再び磁化固定層51、中間層52、磁化反転層53を透過して出射する構成であってもよい。この場合は、磁性体である磁化反転層53および磁化固定層51を透過することで、ファラデー効果により、偏光はその向きが、磁化反転層53および磁化固定層51のそれぞれの所定の角度(旋光角)に回転(旋光)する。ただし、磁化固定層51の磁化方向は一定であるので、光変調素子5からの出射光の偏光の変化は磁化反転層53のファラデー回転角θFによって決定される。出射光は磁化反転層53を2回透過しているので、旋光角の差|θp−θap|は4θFとなる。   Alternatively, the polarized light incident on the light modulation element 5 is transmitted through the magnetization switching layer 53, the intermediate layer 52, and the magnetization fixed layer 51, reflected on the upper surface of the lower electrode 3, and again, the magnetization fixed layer 51, the intermediate layer 52, and the magnetization The structure which permeate | transmits and inject | emits the inversion layer 53 may be sufficient. In this case, by passing through the magnetization reversal layer 53 and the magnetization fixed layer 51 which are magnetic materials, the direction of polarized light depends on the respective predetermined angles (optical rotation) of the magnetization reversal layer 53 and the magnetization fixed layer 51 due to the Faraday effect. Rotate (rotate) to (angle). However, since the magnetization direction of the magnetization fixed layer 51 is constant, the change in the polarization of the emitted light from the light modulation element 5 is determined by the Faraday rotation angle θF of the magnetization switching layer 53. Since the emitted light passes through the magnetization switching layer 53 twice, the difference in optical rotation angle | θp−θap | is 4θF.

入射偏光に対して角度θap旋光した図6の左右両端の画素4,4からのそれぞれの出射偏光は、出射偏光フィルタPF2を透過して検出器93に到達するので、この画素4は明るく(白く)検出器93に表示される。一方、中央の画素4からの出射偏光は、出射偏光フィルタPF2で遮られるので、この画素4は暗く(黒く)、検出器93に表示される。このように、画素毎に明/暗(白/黒)を切り分けられ、電流の向きを切り換えれば明/暗が切り換わる。なお、空間光変調器1の初期状態としては、例えば全体が白く表示されるように、すべての画素4の光変調素子5の磁化を反平行にするべく、上部電極2のすべてを「−」、下部電極3のすべてを「+」にして、上向きの電流を供給すればよい。   The respective outgoing polarizations from the pixels 4 and 4 at the left and right ends of FIG. 6 that have been rotated by the angle θap with respect to the incident polarized light pass through the outgoing polarization filter PF2 and reach the detector 93, so that the pixel 4 is bright (white). ) Is displayed on the detector 93. On the other hand, since the outgoing polarized light from the central pixel 4 is blocked by the outgoing polarizing filter PF2, the pixel 4 is dark (black) and displayed on the detector 93. Thus, light / dark (white / black) can be separated for each pixel, and light / dark can be switched by switching the direction of the current. As an initial state of the spatial light modulator 1, for example, all the upper electrodes 2 are “-” so that the magnetizations of the light modulation elements 5 of all the pixels 4 are anti-parallel so that the whole is displayed white. All of the lower electrode 3 may be set to “+” to supply an upward current.

ここで、磁化反転層53のカー回転角θkおよびファラデー回転角θFは、前記したように光の入射角が磁化反転層53の磁化方向に近いほど大きい。したがって、入射角は膜面に垂直すなわち0°とすることが旋光角の差|θp−θap|を最大にする上で望ましいが、このようにすると出射偏光の光路が入射偏光の光路と一致する。そこで、入射角を少し傾斜させて、出射偏光フィルタPF2および検出部93、光源91および入射偏光フィルタPF1が、それぞれ入射偏光および出射偏光の光路を遮らない配置となるようにする。具体的には、偏光の入射角は5°〜30°とすることが好ましい。または、入射角0°として、入射偏光フィルタPF1と画素アレイ40との間にハーフミラーを配置して、出射偏光のみを側方へ反射させてもよい。この場合、出射偏光フィルタPF2および検出器93は画素アレイ40の側方に配置する。   Here, the Kerr rotation angle θk and the Faraday rotation angle θF of the magnetization switching layer 53 are larger as the incident angle of light is closer to the magnetization direction of the magnetization switching layer 53 as described above. Accordingly, it is desirable that the incident angle be perpendicular to the film surface, that is, 0 °, in order to maximize the difference in optical rotation angle | θp−θap |. In this case, the optical path of the outgoing polarized light coincides with the optical path of the incident polarized light. . Therefore, the incident angle is slightly inclined so that the outgoing polarization filter PF2, the detector 93, the light source 91, and the incoming polarization filter PF1 are arranged so as not to block the optical paths of the incident polarized light and the outgoing polarized light, respectively. Specifically, the incident angle of polarized light is preferably 5 ° to 30 °. Alternatively, a half mirror may be disposed between the incident polarizing filter PF1 and the pixel array 40 with an incident angle of 0 °, and only the outgoing polarized light may be reflected to the side. In this case, the output polarization filter PF2 and the detector 93 are arranged on the side of the pixel array 40.

(空間光変調器および表示装置の第2実施形態)
本発明に係る空間光変調器においては、別の実施形態(第2実施形態)として、上下を入れ替えた構成として基板側から入射する反射型の空間光変調器としてもよい(図示せず)。すなわち、下部電極を透明電極材料で、上部電極を電極用金属材料でそれぞれ構成して、下方から入射した光が下部電極を透過して光変調素子5または上部電極で反射して再び下部電極を透過して出射する。この場合、下部電極は上部電極を透明電極材料で構成した場合と同様に、光変調素子5との間に金属膜である下地層を設けて接触抵抗を低減させることが好ましい。また、光変調素子5は磁化固定層51と磁化反転層53の位置を入れ替えて積層する。さらに、基板は、下方から画素4に光を入射させて、再び画素4から出射した光がさらに下方へ照射されるように、透明な基板材料、例えば、SiO2,Al23,MgO等からなる。このような第2実施形態に係る空間光変調器は、画素アレイ40の上下(表裏)を反転させて基板側を光源91等に向けて配置することで、表示装置10(図6参照)に用いることができる。
(Second Embodiment of Spatial Light Modulator and Display Device)
In another embodiment (second embodiment), the spatial light modulator according to the present invention may be a reflective spatial light modulator that is incident from the substrate side as a configuration in which the top and bottom are switched (not shown). That is, the lower electrode is made of a transparent electrode material, and the upper electrode is made of an electrode metal material, so that light incident from below passes through the lower electrode and is reflected by the light modulation element 5 or the upper electrode. Transmits and exits. In this case, as in the case where the upper electrode is made of a transparent electrode material, the lower electrode is preferably provided with a base layer, which is a metal film, between the light modulation element 5 and the contact resistance is reduced. Further, the light modulation element 5 is laminated with the positions of the magnetization fixed layer 51 and the magnetization inversion layer 53 interchanged. Further, the substrate is made of a transparent substrate material such as SiO 2 , Al 2 O 3 , MgO or the like so that light enters the pixel 4 from below and light emitted from the pixel 4 is irradiated again downward. Consists of. The spatial light modulator according to the second embodiment is arranged on the display device 10 (see FIG. 6) by inverting the top and bottom (front and back) of the pixel array 40 and arranging the substrate side facing the light source 91 and the like. Can be used.

(空間光変調器および表示装置の第3実施形態)
本発明に係る空間光変調器においては、さらに別の実施形態(第3実施形態)として、図7に示すように、上部電極2および下部電極3Aを共に透明電極材料で構成して、透過型の空間光変調器1Aとしてもよい。このとき、基板7Aは、上方から画素4Aを透過した光がさらに下方へ照射されるように、第2実施形態で示した前記の透明な基板材料からなる。また、光変調素子5は磁化固定層51と磁化反転層53の位置を入れ替えて積層してもよい。このような空間光変調器1Aを用いた表示装置10Aにおいては、光源91および入射偏光フィルタPF1は画素アレイ40Aの直上に、出射偏光フィルタPF2および検出器93は、画素アレイ40Aの直下にそれぞれ配置し、入射角0°とすることができる。また、空間光変調器1Aは、画素アレイ40Aの上下を反転させて表示装置10Aに配置されてもよい。
(Third embodiment of spatial light modulator and display device)
In the spatial light modulator according to the present invention, as yet another embodiment (third embodiment), as shown in FIG. 7, the upper electrode 2 and the lower electrode 3A are both made of a transparent electrode material, and the transmission type The spatial light modulator 1A may be used. At this time, the substrate 7A is made of the transparent substrate material described in the second embodiment so that light transmitted through the pixel 4A from above is further irradiated downward. Further, the light modulation element 5 may be stacked by switching the positions of the magnetization fixed layer 51 and the magnetization switching layer 53. In the display device 10A using such a spatial light modulator 1A, the light source 91 and the incident polarization filter PF1 are disposed immediately above the pixel array 40A, and the output polarization filter PF2 and the detector 93 are disposed immediately below the pixel array 40A. The incident angle can be 0 °. Further, the spatial light modulator 1A may be arranged in the display device 10A by inverting the top and bottom of the pixel array 40A.

(空間光変調器の実施形態の変形例)
さらに第1〜第3実施形態に係る空間光変調器のそれぞれの変形例として、透明電極材料で構成して光を透過させる上部電極および下部電極について、配線部分は電極用金属材料として光変調素子5と平面視で重なる領域に孔を形成し、この孔の内部のみに透明電極材料を設けてもよい(図示せず)。このような電極とすることで、低抵抗の金属材料を用いて光変調素子5に光を入射させることができるので、配線抵抗による電圧降下を抑えて省電力化および画素間の動作ばらつきを低減できる。
(Modification of Embodiment of Spatial Light Modulator)
Further, as respective modifications of the spatial light modulators according to the first to third embodiments, the upper electrode and the lower electrode that are made of a transparent electrode material and transmit light, and the wiring portion is a light modulation element as an electrode metal material. A hole may be formed in a region overlapping with 5 in plan view, and a transparent electrode material may be provided only inside the hole (not shown). By using such an electrode, light can be incident on the light modulation element 5 using a low-resistance metal material, so that voltage drop due to wiring resistance can be suppressed to save power and reduce variation in operation between pixels. it can.

以上のように、本発明の各実施形態およびその変形例に係る空間光変調器によれば、高精細かつ高速応答とすることが可能なスピン注入磁化反転素子を光変調素子として、画素選択性の優れた空間光変調器となる。そして、このような空間光変調器を用いた本発明の実施形態に係る表示装置は、高精細かつ鮮明な画像を速い表示速度で表示することができる。   As described above, according to the spatial light modulators according to the embodiments of the present invention and the modifications thereof, pixel selectivity can be achieved using a spin-injection magnetization reversal element capable of high-definition and high-speed response as a light modulation element. An excellent spatial light modulator. The display device according to the embodiment of the present invention using such a spatial light modulator can display a high-definition and clear image at a high display speed.

[ホログラフィ装置]
次に、図8を参照して、本発明の一実施形態に係るホログラフィ装置について説明する。本発明の実施形態に係るホログラフィ装置は、本発明の実施形態に係る表示装置10(図6参照)を、ホログラムを投影するように構成の一部を変えたものである。表示装置10と同一の要素については同じ符号を付し、その説明は省略する。
[Holography device]
Next, a holography apparatus according to an embodiment of the present invention will be described with reference to FIG. The holography device according to the embodiment of the present invention is obtained by changing a part of the configuration of the display device 10 (see FIG. 6) according to the embodiment of the present invention so as to project a hologram. The same elements as those of the display device 10 are denoted by the same reference numerals, and the description thereof is omitted.

本発明の一実施形態に係るホログラフィ装置11は、参照光と被写体の物体光とにより形成される干渉縞を撮像して画像信号に変換するCCDカメラ94等の撮像手段を備えた信号生成部と、前記画像信号を入力されて被写体の画像(ホログラム)を再生する本発明の第1実施形態に係る空間光変調器1を備える画像再生部から構成される。画像再生部は、空間光変調器1の画素アレイ40の光の入出射側に光源91および偏光フィルタPF1,PF2をさらに備える。すなわち、画像再生部は、表示装置10から検出器93(画像表示手段)を除いた構成であり、表示装置と同様に、第2、第3実施形態に係る空間光変調器(図7参照)を適用することもできる。一方、信号生成部は、干渉縞を得るための光源92およびハーフミラーHM1,HM2、ならびに光を所定の方向へ反射するためのミラーをさらに備える。光源92は、画像再生部の光源91とともに、表示装置10に用いたものと同様のレーザー光源を用いた構成である。   A holography device 11 according to an embodiment of the present invention includes a signal generation unit including an imaging unit such as a CCD camera 94 that images an interference fringe formed by reference light and object light of a subject and converts the image into an image signal. The image reproduction unit includes the spatial light modulator 1 according to the first embodiment of the present invention, which receives the image signal and reproduces the image (hologram) of the subject. The image reproducing unit further includes a light source 91 and polarizing filters PF1 and PF2 on the light incident / exit side of the pixel array 40 of the spatial light modulator 1. That is, the image reproducing unit has a configuration in which the detector 93 (image display means) is removed from the display device 10, and, similar to the display device, the spatial light modulator according to the second and third embodiments (see FIG. 7). Can also be applied. On the other hand, the signal generation unit further includes a light source 92 for obtaining interference fringes, half mirrors HM1 and HM2, and a mirror for reflecting light in a predetermined direction. The light source 92 is configured using a laser light source similar to that used in the display device 10 together with the light source 91 of the image reproduction unit.

本発明の一実施形態に係るホログラフィ装置11は、信号生成部において、1つの光源92から照射された光をハーフミラーHM1で被写体への照明光と参照光との2系統の光に分割し、照明光の被写体からの反射光である物体光と前記参照光とをハーフミラーHM2により重畳させて干渉縞を形成する。この干渉縞をCCDカメラ94が撮像して干渉縞パターン画像信号(画像信号)に変換して、この画像信号を空間光変調器1の画素選択部84(図5参照)に入力する。画像再生部においては、空間光変調器1が、前記画像信号に基づき、光源91からの入射光(さらに入射偏光フィルタPF1を介した入射偏光)を光変調することによって、出射光(さらに出射偏光フィルタPF2を透過した光)がホログラムとなる。本発明の実施形態に係るホログラフィ装置は、高速応答の可能な本発明の各実施形態に係る空間光変調器を用いることで、干渉縞パターン画像信号に対応した光変調が可能となる。   The holography device 11 according to an embodiment of the present invention divides the light emitted from one light source 92 into two systems of illumination light for the subject and reference light by the half mirror HM1, in the signal generation unit, Interference fringes are formed by superimposing the object light, which is reflected light from the subject of the illumination light, and the reference light on the half mirror HM2. The interference fringes are imaged by the CCD camera 94 and converted into an interference fringe pattern image signal (image signal), and this image signal is input to the pixel selector 84 (see FIG. 5) of the spatial light modulator 1. In the image reproducing unit, the spatial light modulator 1 optically modulates incident light from the light source 91 (further incident polarized light via the incident polarization filter PF1) based on the image signal, thereby outputting outgoing light (further outgoing polarized light). The light transmitted through the filter PF2) becomes a hologram. The holography device according to the embodiment of the present invention can perform light modulation corresponding to the interference fringe pattern image signal by using the spatial light modulator according to each embodiment of the present invention capable of high-speed response.

[ホログラム記録装置]
次に、図9を参照して、本発明の一実施形態に係るホログラム記録装置について説明する。表示装置10(図6参照)およびホログラフィ装置11(図8参照)と同一の要素については同じ符号を付し、その説明は省略する。
[Hologram recording device]
Next, a hologram recording apparatus according to an embodiment of the present invention will be described with reference to FIG. The same elements as those of the display device 10 (see FIG. 6) and the holography device 11 (see FIG. 8) are denoted by the same reference numerals, and the description thereof is omitted.

本発明の一実施形態に係るホログラム記録装置12は、光源92、光源92から照射された光を2系統の光に分割するハーフミラーHM1、2系統の光のそれぞれを光変調する空間光変調器1a,1b、および空間光変調器1a,1bのそれぞれの出射光をホログラム記録媒体(記録媒体)Mに照射された際の波面の乱れを撮像して位相情報を検出するCMOSカメラ(撮像手段)95を備える。本実施形態において、空間光変調器1a,1bは、それぞれ本発明の第1実施形態に係る空間光変調器1と同じ構成であり、あるいは第2、第3実施形態に係る空間光変調器(図7参照)を適用してもよい。ホログラム記録媒体Mは、例えば2枚のガラス板で挟んで担持されたフォトポリマー材料等からなる。   The hologram recording apparatus 12 according to an embodiment of the present invention includes a light source 92, a spatial light modulator that optically modulates each of the half mirror HM1 and the two light beams that divide the light emitted from the light source 92 into two light beams. A CMOS camera (imaging means) that detects phase information by imaging disturbance of the wavefront when the hologram recording medium (recording medium) M is irradiated with the light emitted from the spatial light modulators 1a and 1b and the spatial light modulators 1a and 1b. 95. In the present embodiment, the spatial light modulators 1a and 1b have the same configuration as the spatial light modulator 1 according to the first embodiment of the present invention, respectively, or the spatial light modulators according to the second and third embodiments ( (See FIG. 7). The hologram recording medium M is made of, for example, a photopolymer material that is held between two glass plates.

ホログラム記録装置12においては、ホログラフィ装置11と同様に分割された2系統の光の一方を第1の空間光変調器1aで外部からの2次元ページデータを入力信号として信号光へ光変調し、他方の参照光を第2の空間光変調器1bで位相情報を入力信号として光変調し、この光変調された参照光と信号光とを同時にホログラム記録媒体Mに照射して記録する。さらに、ホログラム記録装置12は、ホログラム記録媒体Mにおける波面の乱れをCMOSカメラ95により位相情報として出力し、この位相情報を第2の空間光変調器1bにリアルタイムに入力して波面の乱れによる影響をキャンセルするフィードバックが可能である。   In the hologram recording device 12, one of the two systems of light divided in the same manner as in the holography device 11 is optically modulated into signal light by using the two-dimensional page data from the outside as an input signal by the first spatial light modulator 1a. The other reference light is optically modulated by the second spatial light modulator 1b using the phase information as an input signal, and the hologram recording medium M is simultaneously irradiated with the light-modulated reference light and the signal light for recording. Further, the hologram recording device 12 outputs the wavefront disturbance in the hologram recording medium M as phase information by the CMOS camera 95, and inputs this phase information to the second spatial light modulator 1b in real time to influence the disturbance of the wavefront. Feedback to cancel is possible.

[撮像装置]
次に、図10を参照して、本発明の一実施形態に係る撮像装置について説明する。本発明の実施形態に係る撮像装置は、本発明の第1実施形態に係る空間光変調器1(図5、図6参照)を撮像装置に適用したものである。空間光変調器1および表示装置10と同一の要素については同じ符号を付し、その説明は省略する。
[Imaging device]
Next, an imaging apparatus according to an embodiment of the present invention will be described with reference to FIG. The imaging apparatus according to the embodiment of the present invention is obtained by applying the spatial light modulator 1 (see FIGS. 5 and 6) according to the first embodiment of the present invention to the imaging apparatus. The same elements as those of the spatial light modulator 1 and the display device 10 are denoted by the same reference numerals, and the description thereof is omitted.

本発明の一実施形態に係る撮像装置13は、図10に示すように、本発明の第1実施形態に係る光変調素子5を備えた複数の画素4からなる画素アレイ40と、画素アレイ40から1つ以上の画素4を選択して駆動する電流制御部80と、特定の方向の偏光を透過する出射偏光フィルタ(偏光子)PF2と、光を電荷に変換する光電変換部(光電変換手段)96と、電荷を蓄積する電荷蓄積部(電荷蓄積手段)97と、電荷を信号に変換する電荷/映像信号変換部98と、を備える。すなわち、撮像装置13は、本発明の第1実施形態に係る空間光変調器1を構成する画素アレイ40と電流制御部80を備え、これらの構成は、図5に示す空間光変調器1の平面模式図を参照できる。   As shown in FIG. 10, the imaging device 13 according to an embodiment of the present invention includes a pixel array 40 including a plurality of pixels 4 including the light modulation elements 5 according to the first embodiment of the present invention, and a pixel array 40. A current control unit 80 that selects and drives one or more pixels 4 from the above, an output polarization filter (polarizer) PF2 that transmits polarized light in a specific direction, and a photoelectric conversion unit (photoelectric conversion means) that converts light into charges ) 96, a charge storage unit (charge storage unit) 97 for storing charges, and a charge / video signal conversion unit 98 for converting charges into signals. That is, the imaging device 13 includes a pixel array 40 and a current control unit 80 that constitute the spatial light modulator 1 according to the first embodiment of the present invention, and these configurations are the same as those of the spatial light modulator 1 shown in FIG. A schematic plan view can be referred to.

画素アレイ40(画素4)および電流制御部80は、それぞれ図5に示す空間光変調器1におけるものと同じ構成であるので説明は省略する。出射偏光フィルタPF2は、画素アレイ40から出射した光を受けて、選択された画素4から出射した光のみを透過させる濾光手段であり、空間光変調器1で使用されるものと同様に偏光板等からなる。光電変換部96は、出射偏光フィルタPF2を透過した光を電荷に変換するもので、フォトダイオード等からなる。電荷蓄積部97は、光電変換部96で変換された電荷を蓄積するもので、コンデンサ等を備える。また、電荷蓄積部97は、電流制御部80の画素選択部84と接続し、蓄積した電荷に対応する画素4を特定する情報を記憶する。電荷/映像信号変換部98は、電荷蓄積部97が放出した電荷を前記の画素4を特定する情報と対応付けて電気信号(映像信号)に変換する。出射偏光フィルタPF2、光電変換部96、電荷蓄積部97、電荷/映像信号変換部98は、それぞれ公知の手段によるものでよい。このように、本発明の一実施形態に係る撮像装置13における画素4は、受光手段のみを備え、CMOS等からなる従来の画素(撮像素子)のように、それぞれに光電変換手段および電荷蓄積手段をさらに備える必要がない。また、撮像装置13における画素選択は、撮像すなわち出射光の光電変換を行う画素4を走査するもので、例えば、画素アレイ40において画素4をシフトさせて選択、選択解除を繰り返す。電流制御部80による画素選択の方法については、第1実施形態に係る空間光変調器1におけるものと同様であるので説明は省略する。   The pixel array 40 (pixel 4) and the current control unit 80 have the same configurations as those in the spatial light modulator 1 shown in FIG. The outgoing polarization filter PF2 is a filtering means that receives light emitted from the pixel array 40 and transmits only the light emitted from the selected pixel 4, and is polarized in the same manner as that used in the spatial light modulator 1. It consists of a plate. The photoelectric conversion unit 96 converts light that has passed through the output polarization filter PF2 into electric charges, and includes a photodiode or the like. The charge storage unit 97 stores the charge converted by the photoelectric conversion unit 96 and includes a capacitor and the like. In addition, the charge storage unit 97 is connected to the pixel selection unit 84 of the current control unit 80 and stores information for specifying the pixel 4 corresponding to the stored charge. The charge / video signal conversion unit 98 converts the charge released by the charge storage unit 97 into an electrical signal (video signal) in association with the information specifying the pixel 4. The outgoing polarization filter PF2, the photoelectric conversion unit 96, the charge storage unit 97, and the charge / video signal conversion unit 98 may be respectively by known means. As described above, the pixel 4 in the imaging device 13 according to the embodiment of the present invention includes only the light receiving unit, and like a conventional pixel (imaging device) made of CMOS or the like, the photoelectric conversion unit and the charge storage unit are respectively provided. It is not necessary to provide further. The pixel selection in the imaging device 13 scans the pixel 4 that performs imaging, that is, photoelectric conversion of the emitted light. For example, the pixel 4 is shifted in the pixel array 40 and selection and deselection are repeated. The pixel selection method performed by the current control unit 80 is the same as that in the spatial light modulator 1 according to the first embodiment, and a description thereof will be omitted.

次に、本発明の一実施形態に係る撮像装置の構成の詳細を、図11を参照して説明する。図11に示すように、撮像装置13は、図10に示したブロック図にさらに、光(入射光)を画素4に入射する前に偏光する入射偏光フィルタPF1、および出射偏光フィルタPF2を透過した光が光電変換部96に入射するように集光する集光レンズ99を備える。撮像装置13は空間光変調器1と同じく反射型であり、これらの要素は画素アレイ40の上方に配置される。また、撮像装置13においては、光の入射面に、表示装置10の光源91に代えて被写体(撮像対象)が配される。なお、図11において、電荷蓄積部97、電荷/映像信号変換部98、および光変調素子5の保護層54(図1参照)は図示を省略する。   Next, details of the configuration of the imaging apparatus according to an embodiment of the present invention will be described with reference to FIG. As illustrated in FIG. 11, the imaging device 13 further transmits the incident polarization filter PF1 that polarizes the light (incident light) before entering the pixel 4 and the output polarization filter PF2 in addition to the block diagram illustrated in FIG. 10. A condensing lens 99 that collects light so as to enter the photoelectric conversion unit 96 is provided. The imaging device 13 is a reflection type like the spatial light modulator 1, and these elements are arranged above the pixel array 40. In the imaging device 13, a subject (imaging target) is arranged on the light incident surface instead of the light source 91 of the display device 10. In FIG. 11, the charge storage unit 97, the charge / video signal conversion unit 98, and the protective layer 54 (see FIG. 1) of the light modulation element 5 are not shown.

撮像装置13の画素選択の動作を、図11を参照して説明する。被写体からの反射光、すなわち被写体光は様々な偏光成分を含んでいるので、これを入射偏光フィルタPF1に透過させて、1つの偏光成分の入射偏光とする。入射偏光は、所定の入射角で画素4に入射し、上部電極2を透過して、光変調素子5または下部電極3表面で反射して、再び上部電極2を透過して、出射偏光フィルタPF2に到達する。出射偏光フィルタPF2は、図11において中央に示す選択された画素4からの出射偏光、すなわち入射偏光に対して角度θap旋光した偏光のみを透過させ、透過した出射偏光は集光レンズ99で集光されて光電変換部96に入射し、電荷に変換される。画素4(光変調素子5)から出射した偏光の旋光については、光変調素子5の第1実施形態において説明した通りである。このように、光電変換部96に入射する光はその時点で選択されている画素4のみから出射した光であるので、光電変換部96は撮像装置13に1つ備えればよく、画素4毎に備える必要はない。なお、入射偏光フィルタPF1は、出射偏光フィルタPF2と同様に偏光板等からなる。また、集光レンズ99は、画素アレイ40のいずれの画素4から出射した光でも光電変換部96に入射するように集光できるものであればよく、複数枚のレンズで構成されてもよい。   The pixel selection operation of the imaging device 13 will be described with reference to FIG. Since the reflected light from the subject, ie, the subject light contains various polarization components, it is transmitted through the incident polarization filter PF1 to be incident polarization of one polarization component. Incident polarized light enters the pixel 4 at a predetermined incident angle, passes through the upper electrode 2, reflects off the surface of the light modulation element 5 or the lower electrode 3, passes through the upper electrode 2 again, and exits the polarization filter PF 2. To reach. The outgoing polarization filter PF2 transmits only the outgoing polarized light from the selected pixel 4 shown in the center in FIG. 11, that is, the polarized light whose angle θap is rotated with respect to the incident polarized light, and the transmitted outgoing polarized light is condensed by the condenser lens 99. Then, it enters the photoelectric conversion unit 96 and is converted into electric charge. The rotation of the polarized light emitted from the pixel 4 (light modulation element 5) is as described in the first embodiment of the light modulation element 5. As described above, since the light incident on the photoelectric conversion unit 96 is light emitted only from the pixel 4 selected at that time, one photoelectric conversion unit 96 may be provided in the imaging device 13. There is no need to prepare for. The incident polarizing filter PF1 is composed of a polarizing plate or the like, like the outgoing polarizing filter PF2. Further, the condensing lens 99 only needs to be able to condense light emitted from any pixel 4 of the pixel array 40 so as to enter the photoelectric conversion unit 96, and may be configured by a plurality of lenses.

本実施形態に係る撮像装置13は、第1実施形態に係る空間光変調器1を備えて上方の被写体光を撮像する反射型の撮像装置として示したが、表示装置の第2実施形態として説明したように、第2実施形態に係る空間光変調器を備える場合は、空間光変調器の画素アレイ40の上下を反転させて配置すればよい。さらに、表示装置の第3実施形態として説明したように、第3実施形態に係る透過型の空間光変調器1Aを備えた透過型の撮像装置とすることもできる。この場合は、表示装置10A(図7参照)と同様に、画素アレイ40Aの直下に出射偏光フィルタPF2を配置し、さらにその直下に集光レンズ99、光電変換部96を配置する(図示せず)。また、撮像装置13は、撮像素子として第1実施形態に係る光変調素子5を備えるが、空間光変調器の画素と同様に、第2〜第4実施形態に係る光変調素子5A,5B,5Cおよびそれらの変形例のいずれも適用できる。   Although the imaging apparatus 13 according to the present embodiment is shown as a reflective imaging apparatus that includes the spatial light modulator 1 according to the first embodiment and captures the upper subject light, it will be described as a second embodiment of the display apparatus. As described above, when the spatial light modulator according to the second embodiment is provided, the pixel array 40 of the spatial light modulator may be arranged upside down. Furthermore, as described in the third embodiment of the display device, a transmissive imaging device including the transmissive spatial light modulator 1A according to the third embodiment may be provided. In this case, similarly to the display device 10A (see FIG. 7), the output polarization filter PF2 is disposed immediately below the pixel array 40A, and further, the condenser lens 99 and the photoelectric conversion unit 96 are disposed immediately below (not shown). ). Moreover, although the imaging device 13 includes the light modulation element 5 according to the first embodiment as an image pickup element, similarly to the pixels of the spatial light modulator, the light modulation elements 5A, 5B, and 5B according to the second to fourth embodiments. Any of 5C and variations thereof can be applied.

以上のように、本発明の実施形態に係る撮像装置によれば、画素の選択−非選択で旋光角の差が大きいため、画素の走査性に優れた撮像装置となる。   As described above, according to the imaging apparatus according to the embodiment of the present invention, since the difference in the optical rotation angle is large between selection and non-selection of the pixel, the imaging apparatus is excellent in pixel scanning performance.

以上、本発明の光変調素子、空間光変調器、表示装置、ホログラフィ装置、ホログラム記録装置、および撮像装置を実施するための各実施形態について述べてきたが、本発明はこれらの実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。   As mentioned above, although each embodiment for implementing the light modulation element, the spatial light modulator, the display device, the holography device, the hologram recording device, and the imaging device of the present invention has been described, the present invention is limited to these embodiments. However, various modifications are possible within the scope of the claims.

本発明の効果を確認するために、表1の実施例1に示す本発明の第1実施形態に係る光変調素子(図1参照)のサンプルを作製し、そのカー回転角θkおよび保磁力Hcf,Hcpを評価した。表1に示す膜厚の単位はnmである。また、磁化反転層の上には保護層(図1参照)としてRuを厚さ3nmで積層し、下部電極はCu、上部電極はIZOを適用した。なお、反射光の旋光角の測定により評価するため、フォトリソグラフィ等による加工は施さず、下部電極から上部電極までをDCマグネトロンスパッタリング法で連続して成膜した。同様に、比較例として、表1に示す構成の光変調素子のサンプルを作製した。比較例1は実施例1と同じ垂直磁気異方性、比較例2は面内磁気異方性を有し、いずれもGMR構造である。   In order to confirm the effect of the present invention, a sample of the light modulation element (see FIG. 1) according to the first embodiment of the present invention shown in Example 1 of Table 1 was prepared, and its Kerr rotation angle θk and coercive force Hcf , Hcp was evaluated. The unit of film thickness shown in Table 1 is nm. On the magnetization reversal layer, Ru was laminated as a protective layer (see FIG. 1) with a thickness of 3 nm, Cu was applied to the lower electrode, and IZO was applied to the upper electrode. In addition, in order to evaluate by measuring the angle of rotation of the reflected light, processing by photolithography or the like was not performed, and a film was continuously formed from the lower electrode to the upper electrode by a DC magnetron sputtering method. Similarly, as a comparative example, a sample of a light modulation element having the configuration shown in Table 1 was produced. Comparative Example 1 has the same perpendicular magnetic anisotropy as Example 1, and Comparative Example 2 has in-plane magnetic anisotropy, both of which have a GMR structure.

作製したサンプルに、外部から一様な磁界を印加することによって、磁化固定層および磁化反転層の磁化方向が一方向となるようにした。そして、波長405nmの青色レーザー光を入射角30°で入射して、サンプルからの反射光の旋光角を、垂直磁界マイクロKerr効果測定装置(ネオアーク株式会社製)で測定した。次に、反射光の旋光角の測定を継続したまま、前記印加磁界と反対方向の磁界をその大きさを漸増させながら印加することによって、磁化反転層の磁化を反転させて、サンプルからの反射光の変化した旋光角を測定した。磁化反転による旋光角の差をカー回転角の変化量2θkとして表1に示す。また、実施例1については、引き続き磁界を漸増させて、反射光の旋光角が再び変化するまで、すなわち磁化固定層の磁化が反転するまで印加した。   By applying a uniform magnetic field from the outside to the manufactured sample, the magnetization direction of the magnetization fixed layer and the magnetization inversion layer was set to one direction. Then, blue laser light having a wavelength of 405 nm was incident at an incident angle of 30 °, and the optical rotation angle of the reflected light from the sample was measured with a vertical magnetic field micro-Kerr effect measuring device (manufactured by Neoarc Corporation). Next, while continuing the measurement of the optical rotation angle of the reflected light, a magnetic field in the direction opposite to the applied magnetic field is applied while increasing the magnitude, thereby reversing the magnetization of the magnetization reversal layer and reflecting from the sample. The optical rotation angle at which the light changed was measured. Table 1 shows the difference in optical rotation angle due to magnetization reversal as the change amount 2θk of the Kerr rotation angle. In Example 1, the magnetic field was continuously increased and applied until the optical rotation angle of the reflected light changed again, that is, until the magnetization of the magnetization fixed layer was reversed.

Figure 2011002522
Figure 2011002522

表1に示すように、本発明の第1実施形態に係る光変調素子5のサンプルである実施例1は、磁化反転層53をCo/Pd多層膜で構成したことにより、面内磁気異方性を有する比較例2はもちろんのこと、同じ垂直磁気異方性を有する比較例1よりも大きなカー回転角θkが得られた。   As shown in Table 1, in Example 1, which is a sample of the light modulation element 5 according to the first embodiment of the present invention, the magnetization reversal layer 53 is formed of a Co / Pd multilayer film, so that in-plane magnetic anisotropy is achieved. As a matter of course, a larger Kerr rotation angle θk than that of Comparative Example 1 having the same perpendicular magnetic anisotropy was obtained.

さらに実施例1について、磁化反転層53および磁化固定層51のそれぞれの磁化が反転したときの印加磁界の大きさから、それぞれの保磁力Hcf:750Oe、Hcp:1700Oeを得た。このように、磁化固定層51より磁化反転層53を、それぞれの全体の厚さとしては薄く、Co膜単層の膜厚は厚く、またPd単層の膜厚は薄く(tCof>tCop,tPdf<tPdp)構成したことで、磁化反転層53の保磁力Hcfが磁化固定層51の保磁力Hcpに対して十分に小さく、低電流で磁化反転させることができる光変調素子5となった。 Further, for Example 1, the coercive forces Hcf: 750 Oe and Hcp: 1700 Oe were obtained from the magnitudes of the applied magnetic fields when the magnetizations of the magnetization switching layer 53 and the magnetization fixed layer 51 were reversed. As described above, the magnetization reversal layer 53 is thinner than the magnetization fixed layer 51 as a whole, the Co film single layer is thick, and the Pd single layer is thin (t Cof > t Co p, t Pd f <t Pd p) is configured so that the coercive force Hcf of the magnetization reversal layer 53 is sufficiently smaller than the coercive force Hcp of the magnetization fixed layer 51, and the light can be reversed in magnetization at a low current. The modulation element 5 was obtained.

さらに本発明の効果をより高いものとする条件を確認するために、表1に示す実施例1のサンプルについて、磁化反転層53を構成するCo/Pd多層膜におけるPd膜とCo膜のそれぞれの単層の膜厚を変化させたサンプルを作製し、その保磁力とカー回転角を測定した。   Furthermore, in order to confirm the conditions for further enhancing the effect of the present invention, with respect to the sample of Example 1 shown in Table 1, each of the Pd film and the Co film in the Co / Pd multilayer film constituting the magnetization switching layer 53 is shown. Samples with different single layer thicknesses were prepared, and their coercive force and Kerr rotation angle were measured.

磁化固定層51および中間層52は表1に示す実施例1と同様とし、磁化反転層53を構成するCo/Pd多層膜は、そのCo膜とPd膜との繰り返しの回数を5回として積層した。なお、Co膜単層の膜厚tCofを変化させたサンプルにおいてはPd膜単層の膜厚tPdf:0.8nmに固定し、Pd膜単層の膜厚tPdfを変化させたサンプルにおいてはCo膜単層の膜厚tCof:0.3nmに固定した。 The magnetization fixed layer 51 and the intermediate layer 52 are the same as those in Example 1 shown in Table 1, and the Co / Pd multilayer film constituting the magnetization switching layer 53 is laminated by repeating the Co film and the Pd film five times. did. Incidentally, Co film single layer of thickness t Co film thickness of f Pd film single layer in the sample with varying t Pd f: 0.8 nm in fixed, by changing the thickness t Pd f Pd film monolayer In the sample, the thickness of the single Co film layer was fixed at t Cof : 0.3 nm.

作製したサンプルについて、実施例1と同様の方法で磁化反転旋光角を測定し、カー回転角θkおよび磁化反転層53の保磁力Hcfを測定した。磁化反転層53の保磁力Hcfおよびカー回転角θkの、Co膜の膜厚tCof依存性およびPd膜の膜厚tPdf依存性のグラフを図12、図13に示す。 With respect to the manufactured sample, the magnetization reversal optical rotation angle was measured in the same manner as in Example 1, and the Kerr rotation angle θk and the coercive force Hcf of the magnetization reversal layer 53 were measured. Coercivity Hcf and Kerr rotation angle θk of the magnetization reversal layer 53, the thickness t Pd f dependency graph thickness t Co f dependence and Pd film of the Co film 12, shown in FIG. 13.

図12(a)、(b)に示すように、磁化反転層53の保磁力Hcfは、Co膜単層の膜厚tCofが厚いほど、またPd膜単層の膜厚tPdfが薄いほど、小さくなった。一方、図13(a)、(b)に示すように、カー回転角θkは、Co膜単層の膜厚tCofが厚いほど、またPd膜単層の膜厚tPdfが薄いほど、大きくなった。なお、Pd膜単層の膜厚tPdfが薄いとカー回転角θkが大きくなるのは、反射率の高いPd膜が薄くなることでより多くの光が透過してその下のCo膜に入射するためと考えられる。このように、本発明の第1実施形態に係る光変調素子5は、Co/Pd多層膜のCo膜およびPd膜のそれぞれの単層の膜厚を制御することにより、磁化反転層53と磁化固定層51との保磁力差を好ましいものとして、かつカー回転角θkを大きくすることが容易となる。 FIG. 12 (a), the (b), the coercive force Hcf of the magnetization reversal layer 53, as the thickness t Co f of the Co film monolayer thick, also has a film thickness t Pd f Pd film monolayer The thinner, the smaller. On the other hand, as shown in FIGS. 13A and 13B, the Kerr rotation angle θk increases as the Co film single layer thickness t Cof increases and the Pd film single layer thickness t Pd f decreases. It ’s bigger. When the film thickness t Pd f of the single Pd film layer is thin, the Kerr rotation angle θk increases because the Pd film having a high reflectivity becomes thin and more light is transmitted to the Co film below it. This is considered to be incident. As described above, the light modulation element 5 according to the first embodiment of the present invention controls the magnetization inversion layer 53 and the magnetization by controlling the thickness of each of the Co film and the Pd film of the Co / Pd multilayer film. It is easy to make the difference in coercive force with the fixed layer 51 preferable and increase the Kerr rotation angle θk.

1,1A 空間光変調器
10,10A 表示装置
11 ホログラフィ装置
12 ホログラム記録装置
13 撮像装置
40,40A 画素アレイ
4,4A 画素
2 上部電極
3,3A 下部電極
5,5A,5B,5C 光変調素子
51,51A,51B 磁化固定層
511 遷移金属膜(金属膜)
52 中間層
53,53A,53B 磁化反転層
531 遷移金属膜(金属膜)
54 保護層
6 絶縁部材
7,7A 基板
80 電流制御部
81 電源(電流供給手段)
84 画素選択部(画素選択手段)
91,92 光源
93 検出器(画像表示手段)
94 CCDカメラ(撮像手段)
95 CMOSカメラ(撮像手段)
96 光電変換部(光電変換手段)
97 電荷蓄積部(電荷蓄積手段)
PF1 入射偏光フィルタ
PF2 出射偏光フィルタ(偏光子)
DESCRIPTION OF SYMBOLS 1,1A Spatial light modulator 10, 10A Display apparatus 11 Holography apparatus 12 Hologram recording apparatus 13 Imaging apparatus 40, 40A Pixel array 4, 4A Pixel 2 Upper electrode 3, 3A Lower electrode 5, 5A, 5B, 5C Light modulation element 51 , 51A, 51B Magnetization fixed layer 511 Transition metal film (metal film)
52 Intermediate layer 53, 53A, 53B Magnetization inversion layer 531 Transition metal film (metal film)
54 Protective layer 6 Insulating member 7, 7A Substrate 80 Current control unit 81 Power supply (current supply means)
84 Pixel selection unit (pixel selection means)
91, 92 Light source 93 Detector (image display means)
94 CCD camera (imaging means)
95 CMOS camera (imaging means)
96 Photoelectric conversion part (photoelectric conversion means)
97 Charge storage unit (charge storage means)
PF1 incident polarizing filter PF2 outgoing polarizing filter (polarizer)

Claims (12)

磁化固定層、中間層、および前記磁化固定層の保磁力より小さい保磁力を有する磁化反転層の順に積層してなり、上下に接続された電極から電流を供給されることにより前記磁化反転層の磁化方向を変化させて、入射した光をその偏光方向を変化させて出射する光変調素子であって、
前記磁化固定層および前記磁化反転層の少なくとも一方は、Pd膜とCo膜とを交互に積層した多層膜であることを特徴とする光変調素子。
A magnetization pinned layer, an intermediate layer, and a magnetization reversal layer having a coercivity smaller than that of the magnetization pinned layer are stacked in this order, and current is supplied from electrodes connected to the top and bottom of the magnetization reversal layer. A light modulation element that changes the magnetization direction and emits incident light by changing its polarization direction,
At least one of the magnetization fixed layer and the magnetization switching layer is a multilayer film in which Pd films and Co films are alternately stacked.
前記磁化固定層および前記磁化反転層が、Pd膜とCo膜とを交互に積層した多層膜であって、
前記磁化反転層におけるCo膜が、前記磁化固定層におけるCo膜よりもその1層の膜厚が厚いことを特徴とする請求項1に記載の光変調素子。
The magnetization fixed layer and the magnetization switching layer are multilayer films in which Pd films and Co films are alternately stacked,
The light modulation element according to claim 1, wherein the Co film in the magnetization switching layer is thicker than the Co film in the magnetization fixed layer.
前記磁化固定層および前記磁化反転層が、Pd膜とCo膜とを交互に積層した多層膜であって、
前記磁化反転層におけるPd膜が、前記磁化固定層におけるPd膜よりもその1層の膜厚が薄いことを特徴とする請求項1または請求項2に記載の光変調素子。
The magnetization fixed layer and the magnetization switching layer are multilayer films in which Pd films and Co films are alternately stacked,
3. The light modulation element according to claim 1, wherein the Pd film in the magnetization switching layer has a smaller thickness than the Pd film in the magnetization fixed layer. 4.
前記磁化固定層または前記磁化反転層の一方はPd膜とCo膜とを交互に積層した多層膜であり、他方は、Fe,Co,Niから選択される遷移金属とSm,Eu,Gd,Tbから選択される希土類金属との合金からなることを特徴とする請求項1に記載の光変調素子。   One of the magnetization fixed layer or the magnetization switching layer is a multilayer film in which Pd films and Co films are alternately stacked, and the other is a transition metal selected from Fe, Co, Ni, and Sm, Eu, Gd, Tb. The light modulation element according to claim 1, wherein the light modulation element is made of an alloy with a rare earth metal selected from the group consisting of: 前記磁化固定層および前記磁化反転層の少なくとも一方は、Pd膜とCo膜とを交互に積層した多層膜であって、前記中間層との界面に前記Co膜を積層することを特徴とする請求項1ないし請求項4のいずれか一項に記載の光変調素子。   At least one of the magnetization fixed layer and the magnetization switching layer is a multilayer film in which Pd films and Co films are alternately stacked, and the Co film is stacked at an interface with the intermediate layer. The light modulation element according to any one of claims 1 to 4. 前記磁化固定層および前記磁化反転層の少なくとも一方は、前記中間層との界面に、Fe,Co,Niから選択される少なくとも1種の遷移金属またはこの遷移金属を含む合金からなる金属膜をさらに備えることを特徴とする請求項1ないし請求項4のいずれか一項に記載の光変調素子。   At least one of the magnetization fixed layer and the magnetization switching layer further includes a metal film made of at least one transition metal selected from Fe, Co, and Ni or an alloy containing the transition metal at an interface with the intermediate layer. The light modulation element according to any one of claims 1 to 4, further comprising: 2次元配列された複数の画素と、前記複数の画素から1つ以上の画素を選択する画素選択手段と、この画素選択手段が選択した画素に所定の電流を供給する電流供給手段と、を備えて、前記画素選択手段が選択した画素に入射した光の偏光方向を特定の方向に変化させて反射する空間光変調器であって、
前記画素は、請求項1ないし請求項6のいずれか一項に記載の光変調素子とこの光変調素子に電流を供給する上部電極および下部電極とを備え、
前記上部電極および前記下部電極の一方は透明電極材料を備えて当該画素に入射した光および前記光変調素子から出射した光を透過させ、他方は金属電極からなることを特徴とする空間光変調器。
A plurality of pixels arranged two-dimensionally, pixel selection means for selecting one or more pixels from the plurality of pixels, and current supply means for supplying a predetermined current to the pixels selected by the pixel selection means. A spatial light modulator that reflects and changes the polarization direction of the light incident on the pixel selected by the pixel selection means in a specific direction,
The pixel includes the light modulation element according to any one of claims 1 to 6, and an upper electrode and a lower electrode that supply current to the light modulation element,
One of the upper electrode and the lower electrode includes a transparent electrode material and transmits light incident on the pixel and light emitted from the light modulation element, and the other is formed of a metal electrode. .
2次元配列された複数の画素と、前記複数の画素から1つ以上の画素を選択する画素選択手段と、この画素選択手段が選択した画素に所定の電流を供給する電流供給手段と、を備えて、前記画素選択手段が選択した画素に入射した光の偏光方向を特定の方向に変化させて透過する空間光変調器であって、
前記画素は、請求項1ないし請求項6のいずれか一項に記載の光変調素子とこの光変調素子に電流を供給する上部電極および下部電極とを備え、
前記上部電極および前記下部電極は透明電極材料を備えて、前記上部電極および前記下部電極の一方は当該画素に入射した光を透過させ、他方は前記光変調素子から出射した光を透過させることを特徴とする空間光変調器。
A plurality of pixels arranged two-dimensionally, pixel selection means for selecting one or more pixels from the plurality of pixels, and current supply means for supplying a predetermined current to the pixels selected by the pixel selection means. A spatial light modulator that changes the polarization direction of light incident on the pixel selected by the pixel selection means to a specific direction and transmits the light;
The pixel includes the light modulation element according to any one of claims 1 to 6, and an upper electrode and a lower electrode that supply current to the light modulation element,
The upper electrode and the lower electrode include a transparent electrode material, and one of the upper electrode and the lower electrode transmits light incident on the pixel, and the other transmits light emitted from the light modulation element. A featured spatial light modulator.
請求項7または請求項8に記載の空間光変調器と、この空間光変調器から出射した光を投影する画像表示手段と、を備える表示装置。   A display device comprising: the spatial light modulator according to claim 7 or 8; and image display means for projecting light emitted from the spatial light modulator. 物体光と参照光とにより形成された干渉縞を撮像して画像信号に変換する撮像手段と、前記画像信号を入力されて出射した光を再生画像とする請求項7または請求項8に記載の空間光変調器と、を備えるホログラフィ装置。   The imaging unit according to claim 7 or 8, wherein an imaging unit that images an interference fringe formed by the object light and the reference light and converts the image into an image signal, and the light that is input and emitted from the image signal is used as a reproduced image. And a spatial light modulator. 信号光および参照光を用いて情報を記録媒体に記録するホログラム記録装置であって、
前記信号光および前記参照光が前記記録媒体に入射する際の当該記録媒体での状態変化を位相情報として検出する撮像手段と、前記位相情報に基づいて前記信号光および前記参照光の少なくとも一方の光変調を行う請求項7または請求項8に記載の空間光変調器と、を備えるホログラム記録装置。
A hologram recording apparatus for recording information on a recording medium using signal light and reference light,
Imaging means for detecting, as phase information, a state change in the recording medium when the signal light and the reference light are incident on the recording medium; and at least one of the signal light and the reference light based on the phase information A hologram recording apparatus comprising: the spatial light modulator according to claim 7, which performs light modulation.
請求項7または請求項8に記載の空間光変調器に、さらに、前記画素選択手段が選択した画素から出射した光を透過させる偏光子と、この偏光子を透過した光を電荷に変換する光電変換手段と、前記電荷を蓄積する電荷蓄積手段と、を備え、前記2次元配列された画素に入射した被写体光を撮像する撮像装置。   The spatial light modulator according to claim 7 or 8, further comprising: a polarizer that transmits light emitted from a pixel selected by the pixel selection unit; and a photoelectric that converts light transmitted through the polarizer into an electric charge. An imaging apparatus comprising: a converting unit; and a charge accumulating unit that accumulates the electric charge, and images subject light incident on the two-dimensionally arranged pixels.
JP2009143757A 2009-06-16 2009-06-16 Optical modulation element and spatial light modulator using the same, display, holography device, hologram-recording device, and imaging apparatus Pending JP2011002522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009143757A JP2011002522A (en) 2009-06-16 2009-06-16 Optical modulation element and spatial light modulator using the same, display, holography device, hologram-recording device, and imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009143757A JP2011002522A (en) 2009-06-16 2009-06-16 Optical modulation element and spatial light modulator using the same, display, holography device, hologram-recording device, and imaging apparatus

Publications (1)

Publication Number Publication Date
JP2011002522A true JP2011002522A (en) 2011-01-06

Family

ID=43560541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009143757A Pending JP2011002522A (en) 2009-06-16 2009-06-16 Optical modulation element and spatial light modulator using the same, display, holography device, hologram-recording device, and imaging apparatus

Country Status (1)

Country Link
JP (1) JP2011002522A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012165556A1 (en) * 2011-05-31 2012-12-06 国立大学法人豊橋技術科学大学 Image photography method, image photography play method, spatial lighting modulator, image play device, and digital hologram forming device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007142364A (en) * 2005-10-19 2007-06-07 Toshiba Corp Magnetoresistance effect element, magnetic random access memory, electronic card and electronic device
JP2008060906A (en) * 2006-08-31 2008-03-13 Nippon Hoso Kyokai <Nhk> Imaging apparatus
JP2008083686A (en) * 2006-08-31 2008-04-10 Nippon Hoso Kyokai <Nhk> Optical modulator, display device, holography device, and hologram recording device
JP2010262190A (en) * 2009-05-11 2010-11-18 Akita Univ Spatial light modulator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007142364A (en) * 2005-10-19 2007-06-07 Toshiba Corp Magnetoresistance effect element, magnetic random access memory, electronic card and electronic device
JP2008060906A (en) * 2006-08-31 2008-03-13 Nippon Hoso Kyokai <Nhk> Imaging apparatus
JP2008083686A (en) * 2006-08-31 2008-04-10 Nippon Hoso Kyokai <Nhk> Optical modulator, display device, holography device, and hologram recording device
JP2010262190A (en) * 2009-05-11 2010-11-18 Akita Univ Spatial light modulator

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6012055238; 青島賢一: '"スピン偏極電流を利用した超高精細光変調素子"' NHK技研R&D No.110, 20080715, p.10-15 *
JPN7012004336; P.F.Carcia: '"Perpendicular magnetic anisotropy in Pd/Co and Pt/Co thin-film layered structures"' Jounal of Applied Physics Vol. 63, No. 10, 19880515, p.5066-5073 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012165556A1 (en) * 2011-05-31 2012-12-06 国立大学法人豊橋技術科学大学 Image photography method, image photography play method, spatial lighting modulator, image play device, and digital hologram forming device
JPWO2012165556A1 (en) * 2011-05-31 2015-02-23 国立大学法人豊橋技術科学大学 Image photographing method, image photographing reproducing method, spatial light modulator, image reproducing device, and digital hologram forming device.
US10108147B2 (en) 2011-05-31 2018-10-23 National University Corporation Toyohashi University Of Technology Image photography method, image photography play method, spatial lighting modulator, image play device, and digital hologram forming device

Similar Documents

Publication Publication Date Title
Aoshima et al. Submicron magneto-optical spatial light modulation device for holographic displays driven by spin-polarized electrons
JP2011060918A (en) Spin injection magnetization reversal element, magnetic random access memory, optical modulator, display apparatus, holography apparatus, hologram recording apparatus, and method of manufacturing optical modulator
JP2008083686A (en) Optical modulator, display device, holography device, and hologram recording device
JP5238619B2 (en) Magneto-optic spatial light modulator and manufacturing method thereof
JP5507894B2 (en) Magneto-optical element, optical modulator, magneto-optical control element, and image display apparatus
JP4939149B2 (en) Multi-element spatial light modulator and video display device having the same
JP5852363B2 (en) Spatial light modulator
JP4939502B2 (en) Magneto-optical spatial light modulator and magneto-optical imaging device
JP2011002522A (en) Optical modulation element and spatial light modulator using the same, display, holography device, hologram-recording device, and imaging apparatus
JP2012230143A (en) Spin injection type magnetization inversion element, optical modulation element and spatial light modulator
JP5249876B2 (en) Reflective spatial light modulator
JP6017165B2 (en) Spatial light modulator
JP4939477B2 (en) Multi-element spatial light modulator
JP2010232374A (en) Magnetoresistive element, and magnetic random access memory and spatial light modulator using the same
JP5054639B2 (en) Light modulator and spatial light modulator
JP5215691B2 (en) Magneto-optical imaging device
JP5238616B2 (en) Light modulation element
JP5054640B2 (en) Light modulation element, light modulator, display device, holography device, and hologram recording device
JP5281522B2 (en) Spatial light modulator
JP2012141402A (en) Spatial light modulator
JP2011180355A (en) Optical modulation element and spatial light modulator
JP6546745B2 (en) Light modulation element and spatial light modulator
JP5054604B2 (en) Light modulation element, light modulator, display device, holography device, and hologram recording device
JP5054636B2 (en) Light modulation element, light modulator, display device, holography device, and hologram recording device
JP2013218142A (en) Spatial light modulator and hologram display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130319