JP2011000625A - Widefield epi-illumination type beam machine - Google Patents
Widefield epi-illumination type beam machine Download PDFInfo
- Publication number
- JP2011000625A JP2011000625A JP2009147099A JP2009147099A JP2011000625A JP 2011000625 A JP2011000625 A JP 2011000625A JP 2009147099 A JP2009147099 A JP 2009147099A JP 2009147099 A JP2009147099 A JP 2009147099A JP 2011000625 A JP2011000625 A JP 2011000625A
- Authority
- JP
- Japan
- Prior art keywords
- optical path
- mirror
- objective lens
- control
- image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Laser Beam Processing (AREA)
Abstract
Description
本発明は、帯状の任意箇所に精密に光路焦点を移動させる装置で、鏡面を使いワーク面の位置を高速に動いて加工と検査する装置に関する。 The present invention relates to an apparatus for accurately moving an optical path focal point to an arbitrary portion of a belt shape, and relates to an apparatus that uses a mirror surface to move and position a work surface at high speed for processing and inspection.
現在レーザービーム加工機の発達で、レーザーマーカーやレーザー切断機、レーザー溶接機などの加工機がある。また鉛フリー半田で必要とさせるレーザー半田溶接機や太陽電池などのガラス封し機が開発されている。特にガルバノミラーを使用したレーザーマーカーは、世界中で量産使用されている。 With the development of laser beam processing machines, there are processing machines such as laser markers, laser cutting machines, and laser welding machines. Also, glass sealers such as laser solder welders and solar cells that are required for lead-free solder have been developed. In particular, laser markers using galvanometer mirrors are used in mass production all over the world.
従来のレーザーマーカーやレーザー加工機では、大別して次の2種類の方法が取られている。ビームを広範囲に焦点を絞って照射する場合、Fθレンズにより焦点距離を調整するか、ミラーで振る前に焦点調節機構を設けガルバノミラー等を用いてビームを振る方法(以下、振り法とする)と照射ヘッドかワークをロボットやステージで動かす方法(以下、移動法とする)がある。 Conventional laser markers and laser processing machines are roughly divided into the following two methods. When irradiating a focused beam over a wide range, adjust the focal length with an Fθ lens, or provide a focus adjustment mechanism before shaking with a mirror and shake the beam with a galvanometer mirror (hereinafter referred to as the shaking method) There is a method of moving the irradiation head or workpiece with a robot or stage (hereinafter referred to as a moving method).
振り法では、ビームが扇形に広がる為に、端に広がるほど対象平面に対して垂直に照射できない。照射範囲は、Fθレンズの大きさと性能で制限を受けて通常100mm〜300mmであり生産ライン幅やワークの大きさに合わせて大きく出来ない。移動法は、加工点の移動速度が振り法に比べて遅く、加工点毎に移動が必要でレーザーの焦点距離や向きを制御する為に複雑な機構とエネルギーが必要である In the swing method, since the beam spreads in a fan shape, it cannot be irradiated perpendicularly to the target plane as it spreads to the end. The irradiation range is usually 100 mm to 300 mm, limited by the size and performance of the Fθ lens, and cannot be increased in accordance with the production line width and the size of the workpiece. In the moving method, the moving speed of the processing point is slower than that of the swing method, and it is necessary to move at each processing point, and a complicated mechanism and energy are required to control the focal length and direction of the laser.
振り法で広い範囲の加工を垂直に近い角度で行うには、長焦点で微細な角度制御を行い、大きな対物レンズで集光するので現実的には困難である。例えば、加工範囲を300mmとすると±4度にビームを振った場合、照射範囲の約15倍の距離で4500mmの距離からビームを振り、焦点を1mm動かす角度は、約0.0127度である。
In order to perform a wide range of processing with a swing method at an angle close to vertical, it is practically difficult because fine angle control is performed with a long focal point and light is condensed with a large objective lens. For example, when the processing range is 300 mm, when the beam is swung to ± 4 degrees, the angle at which the beam is swung from a distance of 4500 mm at a distance about 15 times the irradiation range and the focal point is moved by 1 mm is about 0.0127 degrees.
この発明の装置は、上記の問題を解決する手段として、任意の照射範囲に対して平面鏡を弧上に取り付け、弧の中心からビームを配り、ワークに対する照射幅より少ない焦点距離で、ワーク面に水平分割落射を行う事を特徴とする。各々の平面鏡の位置は各焦点距離が等しくなる位置で、中心からのビームをワークに対して垂直に反射する角度である。制御は、ビームと同軸にカメラの画像撮影軸を置き、その画像から対象の位置や種別情報を得てビームを照射し、その状況の画像から判断してビームの位置と出力操作を行う。またカメラを使わずに予め位置情報をプログラムする方法と上記の画像による制御とプログラム制御の組合せがある。 As a means for solving the above problems, the apparatus of the present invention attaches a plane mirror on an arc for an arbitrary irradiation range, distributes a beam from the center of the arc, and has a focal length less than the irradiation width on the workpiece, with a focal length less It is characterized by horizontal split epi-illumination. The position of each plane mirror is an angle at which each focal length is equal, and the angle from which the beam from the center is reflected perpendicularly to the workpiece. In the control, the image capturing axis of the camera is placed coaxially with the beam, the target position and type information are obtained from the image, the beam is irradiated, and the position and output operation of the beam are performed as judged from the image of the situation. Further, there is a combination of a method of previously programming position information without using a camera and the above-described image control and program control.
ワーク上の落射範囲に対物レンズやマスクを翳すことで多彩な加工手段を得る。ここで述べるマスクは、ワークに対して光路の遮断、屈曲、集光、散乱、バンドパスフィルターの機能を選んで有するものとする。 A variety of processing methods can be obtained by placing an objective lens and mask in the incident range on the workpiece. The mask described here has an optical path blocking function, a bending function, a condensing function, a scattering function, and a bandpass filter function selected for the workpiece.
本発明により、従来ある振り法のビーム照射範囲の制限を取り除き、移動法の移動点毎に動作するステージやロボットを無くし、降り法の速度で広範囲にビームの移動を行う。このシステムはビーム動作軸と同軸にカメラを置くことで画像処理による精密な位置制御と照射状況の認識から適切なビーム制御、画像記録による品質管理など精度の高い加工と確認が出来る効果を奏する。 According to the present invention, the limitation of the beam irradiation range of the conventional swing method is removed, the stage or robot that operates at each moving point of the movement method is eliminated, and the beam is moved over a wide range at the speed of the descending method. This system has the effect that precise processing such as precise beam control by image processing and quality control by image recording can be confirmed and confirmed by placing the camera coaxially with the beam operation axis.
本発明によるビーム落射は、ワークに翳すマスク操作が容易になる。マスクの種類により焦点の形状と強弱や集光を操作する事で半田付けや穿孔や切断や過熱など応用範囲が広い。装置に付随する画像処理は、ラインからの信号と画像認識によるプログラム判断で工程の段取り替えを改善し、自由な位置決めにより混載ラインの設定が出来る。 The beam epi-illumination according to the present invention facilitates the mask operation on the workpiece. Depending on the type of mask, the scope of application, such as soldering, drilling, cutting, and overheating, is wide by controlling the focus shape, intensity, and focusing. In the image processing associated with the apparatus, the step change of the process is improved by the signal judgment from the line and the program judgment by the image recognition, and the mixed loading line can be set by the free positioning.
以下に本発明を実施するシステムと装置形態を述べる。本システムは、図1以降で示すワークに達した焦点と光路(以下、照射点とする)FPの位置を細かく移動制御する為に図2以降で表す形態で等しい光路長でワーク面に分配照射を行う。但し図18の光路長は等しくない。図2と図5で示す通りワークの上に弧状に平面鏡を並べ(以下、外周鏡とする)その外周鏡は、焦点を決める機構からワーク照射点までの光路距離(以下、光路長とする)を同じとする位置に配置し、外周鏡の各々の角度はワークに対してビームが落射になる角度にする。照射点の位置変更は、外周鏡の下に光路角度を変える機器(以下ミラーヘッドとする)を置き制御して行う形態と図6と図7で示す様にミラーヘッドで変更された光路を外周鏡の下の分配鏡面に当てて外周鏡に反射させる形態がある。この発明は、照射点で必要な効果を得る為にワークと外周鏡の間に対物レンズやマスクを置く形態を含む。 A system and apparatus configuration for carrying out the present invention will be described below. This system distributes and irradiates the work surface with the same optical path length in the form shown in FIG. 2 and subsequent figures in order to finely control the movement of the focal point and the optical path (hereinafter referred to as the irradiation point) FP that has reached the work shown in FIG. I do. However, the optical path lengths in FIG. 18 are not equal. As shown in FIGS. 2 and 5, plane mirrors are arranged in an arc shape on the workpiece (hereinafter referred to as an outer peripheral mirror). The outer peripheral mirror has an optical path distance (hereinafter referred to as an optical path length) from the focal point determining mechanism to the workpiece irradiation point. Are arranged at the same position, and the angle of each of the peripheral mirrors is an angle at which the beam is incident on the workpiece. The position of the irradiation point is changed by placing and controlling a device (hereinafter referred to as a mirror head) that changes the optical path angle under the outer mirror and the optical path changed by the mirror head as shown in FIGS. There is a form in which it is reflected on the outer peripheral mirror by hitting the distribution mirror surface under the mirror. The present invention includes a form in which an objective lens and a mask are placed between a workpiece and a peripheral mirror in order to obtain a necessary effect at an irradiation point.
本装置は、説明の為に各機能や各種図が単純化されているが、マスク板、対レンズ、ポイントミラー、分配鏡面、画像処理、制御方法で説明する機能と機器を選んで有するものとする。ここで述べる分配落射とは、ワークの帯域をその上の平面鏡毎に分配してその鏡から分割域に落射することをさす。
本発明は、実施例として鉛直方向の装置で説明されるが、対象物に対する放射向きとし上向きや横向きなど鉛直以外を含む。外周鏡の下とは、外周鏡からワーク方向を指す。
In this device, each function and various diagrams are simplified for the sake of explanation, but the functions and equipment described in the mask plate, counter lens, point mirror, distribution mirror surface, image processing, and control method are selected. To do. Distributive reflection described here refers to distributing a work band to each plane mirror above it and reflecting it from the mirror onto the divided area.
Although the present invention will be described with an apparatus in a vertical direction as an embodiment, the present invention includes directions other than vertical such as an upward direction and a lateral direction as a radiation direction with respect to an object. Under the peripheral mirror refers to the work direction from the peripheral mirror.
ここで「光路長を同じとする」は、照射点で必要とされるに焦点径に収まる光路長を指す。焦点径の許容範囲の比率を一定とすると、焦点径が小さい場合の光路長の誤差は、その径に比例した小ささになる。但し、対物レンズを置く場合の光路長は、対物レンズに対する必要焦点径範囲内とする。カメラの光路長は、撮影画角サイズを焦点径とする。ここで対物レンズに対する光路長の誤差が必要焦点径範囲内ということは、収束しない並行ビームを用いた場合に外周鏡は、弧状に配置する必要はなく自由な位置に置く事が出来る。 Here, “the same optical path length” refers to an optical path length that falls within the focal diameter as required at the irradiation point. When the ratio of the allowable range of the focal diameter is constant, the optical path length error when the focal diameter is small is small in proportion to the diameter. However, the optical path length when the objective lens is placed is within the required focal diameter range for the objective lens. The optical path length of the camera is the focal angle that is the angle of view of the image. Here, the error of the optical path length with respect to the objective lens is within the required focal diameter range. When a parallel beam that does not converge is used, the outer peripheral mirror does not need to be arranged in an arc shape and can be placed at a free position.
本発明で、ミラーヘッドの光路変更前の光路位置に置く機器を元光路器とする。元光路器は、放射器としてレーザービーム、放射光、照明、電子ビーム、電波、受光器としてカメラ、検波器、感光器、受信機を選んで複数の設置が出来る。但し、図6と図7で示す様に分配鏡面に当てる場合の元光路器の置く光路範囲は、分配鏡面までとする。また、元光路器に液晶マスクやデジタルミラーデバイス(以下、DLP)を加えることが出来る。 In the present invention, the device placed at the optical path position before the optical path change of the mirror head is the original optical path device. A plurality of original optical path devices can be installed by selecting a laser beam, radiated light, illumination, electron beam, radio wave, and a camera, detector, photosensor, and receiver as a receiver. However, as shown in FIGS. 6 and 7, the optical path range placed by the original optical path device when applied to the distribution mirror surface is limited to the distribution mirror surface. In addition, a liquid crystal mask or a digital mirror device (hereinafter referred to as DLP) can be added to the original optical path device.
元光路器に受光器がある場合は、照射点の位置と状況を把握し制御と操作を容易にしている。受光器からのデータを画像化して画像処理を行い、ワークに対しての精度の高い位置決めと位置確認から照射点の位置修正を行う事ができ、対象の認識を行いビームの出力制御を行うことが出来る。照射点の位置修正の他に周囲画像に合わせて液晶マスクやDLPのマスク画像を変えて照射できる。 When the original optical path device has a light receiver, the position and status of the irradiation point are grasped to facilitate control and operation. The data from the photoreceiver is converted into an image and processed, and the position of the irradiation point can be corrected through highly accurate positioning and position confirmation with respect to the workpiece. The target is recognized and the beam output is controlled. I can do it. In addition to correcting the position of the irradiation point, irradiation can be performed by changing the liquid crystal mask or DLP mask image in accordance with the surrounding image.
水平分割落射の光路を利用して、図1と図4に示す位置に図10に例示するマスクをワークの上に翳して、照射点位置毎にビーム形状の変更とビーム照度の部分的な強弱をマスクパターンで設定できる。焦点は、図1と図4で示すところに図9で例示する対物レンズを照射点上に翳すことで、集光で長焦点による収束不足を補う方法と光路の分割で多数焦点の同時処理に変えることが出来る。 Using the optical path of horizontal split epi-illumination, the mask illustrated in FIG. 10 is placed on the workpiece at the position shown in FIG. 1 and FIG. 4, and the beam shape is changed at each irradiation point position and the beam intensity is partially increased or decreased. Can be set with a mask pattern. The focus is shown in FIGS. 1 and 4 by placing the objective lens illustrated in FIG. 9 on the irradiation point, thereby condensing insufficient convergence due to the long focus by condensing, and simultaneous processing of multiple focal points by dividing the optical path. Can be changed to
本発明の装置は垂直落射が基本だが、図8で示す様に弧鏡面の角度と位置を変えて任意の角度でビームを照射出来る。ワークに応じてボトルや鋼管などの湾曲面や実装に応じて対象に斜めにビームを照射できる。 The apparatus of the present invention is based on vertical epi-illumination, but can irradiate the beam at an arbitrary angle by changing the angle and position of the arc mirror surface as shown in FIG. Depending on the workpiece, it is possible to irradiate the beam obliquely to the object according to the curved surface of the bottle or steel pipe or according to the mounting.
本発明の装置は、予め決めた焦点座標位置での照射の他にカメラ画像によるインテリジェントな操作として画像から位置合わせ情報や種別情報を得て、ビームを照射しその状況の画像から判断してビームの位置と出力操作を行う為に、図3で示す通りビームと同軸にカメラの画像撮影軸を置く。さらに、図11や図12で示す画像の効果を得る為に照明をカメラ同軸に置く。上記の制御は、図14と図15を例とする。
The apparatus of the present invention obtains alignment information and type information from an image as an intelligent operation by a camera image in addition to irradiation at a predetermined focal coordinate position, and irradiates the beam and judges from the image of the situation to determine the beam In order to perform the position and output operation, the camera's imaging axis is placed coaxially with the beam as shown in FIG. Furthermore, in order to obtain the effect of the image shown in FIG. 11 or FIG. The above control is exemplified in FIGS. 14 and 15.
本装置は、図1に示すビーム光路の経路を有し、図2に示す通り想定する加工領域に合わせて、ワークの上に弧状に平面鏡を並べ、元光路器として図3を含むことが出来る。但し、HF、FL、SQの順は自由である。また対物レンズは、ビーム焦点の大きさによって必要ならば入れる。ビーム径拡大機の直後に付く長焦点レンズは、反射経路の前に置かれるので対物レンズと呼称しない。YMとXMは、ミラーヘッドにあり光路をYMでY方向を制御しXMでX方向を制御する。この装置でX方向は、長手照射方向をさしY方向は、短い照射方向をさす。
実施例で外周鏡面を12枚で説明しているのは、光路長が300mm〜400mmでビーム径が外周鏡上で10mm以上ある場合で光路長誤差を1mm以内とした最適値である。よって違う条件になれば外周鏡面は12枚でなく4枚や1000枚、或いは、図8の(1)の2枚など色々考えられる。
This apparatus has the path of the beam optical path shown in FIG. 1, and a plane mirror is arranged on the workpiece in an arc shape in accordance with the assumed processing region as shown in FIG. 2, and can include FIG. 3 as the original optical path device. . However, the order of HF, FL, and SQ is arbitrary. The objective lens is inserted if necessary depending on the size of the beam focus. The long focus lens attached immediately after the beam diameter expander is not called an objective lens because it is placed in front of the reflection path. YM and XM are in the mirror head, and the Y direction of the optical path is controlled by YM, and the X direction is controlled by XM. In this apparatus, the X direction indicates the longitudinal irradiation direction, and the Y direction indicates the short irradiation direction.
In the embodiment, the description of twelve outer peripheral mirror surfaces is an optimum value in which the optical path length error is within 1 mm when the optical path length is 300 mm to 400 mm and the beam diameter is 10 mm or more on the outer peripheral mirror. Therefore, under different conditions, the outer peripheral mirror surface can be considered variously, such as 4 or 1000 instead of 12, or 2 of (1) in FIG.
弧上に配置する各々の平面鏡は、図5に示す通りワークまでの焦点距離が等しくなる様に配置し、角度はワークに対して平面鏡の中心から垂直にビームが照射される角度にする。それぞれの鏡面の長さは、回転鏡面中心CXPから各外周鏡面の角度Laでビームが振られ鏡面にビーム径φLBを加算したの長さになる。各外周鏡面の幅は、Mw、長さLwは、数1で示される。外周鏡の各々の位置は、光路長の関係と各々の落射の幅を示す数2を満たす位置である。取り付け角度は、数3に示す。光路長と半射座標の計算は、CXPの位置が図4と図5から照射点を遮らない様に奥に置いているのでミラーXMから反射して各外周鏡面LMからワークの照射点までの距離と3次元的な計算で光路長を示す座標をコンピューターシュミレーションで計算するか図学上から幾何演算しても良い。
図18を除き、図1〜図8まで特に光路長の表示は無いが、あると仮定して下記の数1と数2と数3が成り立つものとする。
As shown in FIG. 5, the plane mirrors arranged on the arc are arranged so that the focal lengths to the workpiece are equal, and the angle is set so that the beam is irradiated perpendicularly from the center of the plane mirror to the workpiece. The length of each mirror surface is the length obtained by adding the beam diameter φLB to the mirror surface after the beam is swung from the rotating mirror surface center CXP at the angle La of each outer peripheral mirror surface. The width of each outer peripheral mirror surface is Mw, and the length Lw is expressed by
Except for FIG. 18, there is no particular indication of the optical path length from FIG. 1 to FIG. 8, but it is assumed that the following formulas (1), (2), and (3) hold.
本装置でワーク面に光路を振る方法は、図2と図3で示す通り弧中央下で縦軸鏡面YMを回すモーターYSと横軸鏡面XMを回すモーターXSを制御して光路の反射角度を変えて行う。本装置は、モーターに運動性のよいガルバノモーターを例とする電磁気モーター使用と停止精度の高い超音波モーターを使用する2種類がある。焦点位置の調整を回転ミラーの制御をより細かく行う場合は、落射位置に対物レンズを置き倍率に応じて精度を高める方法がある。 As shown in FIG. 2 and FIG. 3, the method of swinging the optical path on the work surface with this apparatus controls the motor YS that rotates the vertical mirror YM and the motor XS that rotates the horizontal mirror XM below the center of the arc to control the reflection angle of the optical path. Change and do. There are two types of this device, using an electromagnetic motor, such as a galvano motor with good mobility, and an ultrasonic motor with high stopping accuracy. When adjusting the focal position more precisely by controlling the rotary mirror, there is a method in which the objective lens is placed at the incident position and the accuracy is increased according to the magnification.
本装置は、図3に示すビームLBは、ビームのみ反射する透過ミラーHFとカメラCAMに反射画像を送るミラーEMと照明LEDによりカメラとビームと照明が同軸に置かれる。
この軸線は、モーターYS で動くミラーYM に反射し縦方向に動き、次にモーターXSで動くミラーXMに反射し横方向動く。画像によりビーム位置と照射点状況を把握し制御と操作を容易にしている。従来のティーチング制御に加えてこの画像処理により、精度の高い位置決めと位置確認と位置修正が出来る。
In the present apparatus, the beam LB shown in FIG. 3 is arranged such that the camera, the beam, and the illumination are coaxially provided by a transmission mirror HF that reflects only the beam, a mirror EM that sends a reflected image to the camera CAM, and an illumination LED.
This axis is reflected by the mirror YM moved by the motor YS and moved in the vertical direction, and then reflected by the mirror XM moved by the motor XS and moved laterally. The image grasps the beam position and irradiation point status to facilitate control and operation. With this image processing in addition to the conventional teaching control, highly accurate positioning, position confirmation, and position correction can be performed.
また、照射状況の変化を観察しながらビームの出力制御を行うことが出来る。図3の右のEMは、カメラ用同軸ミラーで照明を点光源とする為に、同軸上に透過出来るように鏡面コーティングを楕円状に剥離させる。剥離形状は、45度傾けたときの透過光が円になる楕円とし面積は、受光画像を防げない様にカメラ光路面積の1/25以内とする。また、EMに穴を開けて光ファイバーを貫通させても良い。 Further, it is possible to control the beam output while observing the change in the irradiation state. The EM on the right in FIG. 3 peels off the mirror coating in an elliptical shape so that it can be transmitted coaxially in order to use the coaxial mirror for the camera as a point light source. The peeled shape is an ellipse in which the transmitted light is circular when tilted by 45 degrees, and the area is within 1/25 of the camera optical path area so that the received light image cannot be prevented. Moreover, you may make a hole in EM and let an optical fiber penetrate.
本装置は、対物レンズをワーク上に翳して焦点の大きさを変更する事が出来る。ワークに翳す対物レンズを位置毎に設定しワーク上に翳して収束が足りない場合を補える。また、対物レンズを動かすことで装置照射範囲内を隙間無く照射できる。図9は、ビームの落射位置に合わせて対物レンズ範囲内でビーム位置を動かす場合と対物レンズによりビーム焦点位置を規定する場合を示している。対物レンズ内で落射位置を調整する場合、対物レンズの拡大率に比例してワークに対する焦点位置が細かく調整できる。例えば10倍拡大率がある場合、対物レンズ上面の落射位置を100μ単位で行うとワーク上で10μ単位になる。本装置は、対物レンズで拡大操作する場合、ミラーの制御と画像処理カメラ画像も同様に拡大されるので、モーターとカメラのスペックを変えずにそのまま制御できる。 This device can change the size of the focal point by placing the objective lens on the workpiece. An objective lens for the workpiece can be set for each position, and it can be compensated for insufficient convergence by entering the workpiece on the workpiece. Further, by moving the objective lens, it is possible to irradiate the apparatus irradiation range without any gap. FIG. 9 shows a case where the beam position is moved within the objective lens range in accordance with the incident position of the beam and a case where the beam focal position is defined by the objective lens. When adjusting the incident position within the objective lens, the focal position with respect to the workpiece can be finely adjusted in proportion to the magnification of the objective lens. For example, when there is a 10-fold magnification, if the incident position on the top surface of the objective lens is set in units of 100 μ, it becomes 10 μ units on the workpiece. When the enlargement operation is performed with the objective lens, the control of the mirror and the image processing camera image are similarly enlarged, so that the apparatus can be directly controlled without changing the specifications of the motor and the camera.
対物レンズは、図9に示すように本装置下部の防護ガラスの上に置かれる。対物レンズは、半球状で防護ガラスに平らな面を接して置く。防護ガラスは、ミラーヘッドにビームが戻らない範囲に傾ける。実施例の装置では、ミラーヘッド方向か反対側に2度以上傾け、対物レンズの平面と防護ガラスの反射から元光路機器を守る。防護ガラスと対物レンズを無半射コーティングして傾けない場合もある。対物レンズを光路焦点に合わせて移動させる場合は、ミラーヘッドのモーターで動かすことが出来る。焦点位置の移動量は、図5の通り位置に寄らず角度変化に比例するので、焦点移動方向に合わせて焦点移動分移動する。対物レンズの焦点と照射点の位置は、ずれると図9の(1)に示すように焦点方向に照射点がずれるのでティーチングした座標とずれてしまうので焦点位置修正処理を行う。 The objective lens is placed on a protective glass at the bottom of the apparatus as shown in FIG. The objective lens is hemispherical and placed on a protective glass with a flat surface in contact. Tilt the protective glass so that the beam does not return to the mirror head. In the apparatus of the embodiment, the original optical path device is protected from reflection of the plane of the objective lens and the protective glass by tilting it by 2 degrees or more in the direction of the mirror head or the opposite side. In some cases, the protective glass and objective lens are semi-reflective and cannot be tilted. When the objective lens is moved in accordance with the optical path focus, it can be moved by a mirror head motor. Since the movement amount of the focal position is proportional to the angle change regardless of the position as shown in FIG. 5, the focal position is moved by the focal movement according to the focal movement direction. If the focal point of the objective lens and the position of the irradiation point are shifted, the irradiation point is shifted in the focal direction as shown in (1) of FIG.
図15を例に説明すると、対物レンズに支持アームをつけてミラーヘッドモーターから、ギアとベルトでX方向に対物レンズを動かし、Y方向は、伸縮しないチューブにワイヤーを通して対物レンズを動かす。対物レンズの焦点位置は、焦点位置修正処理により照射点の位置と正確に一致の必要はなくベルトやワイヤーなど誤差が生じやすい物を使用しても良い。例えば10μ単位で照射点を制御する場合であっても対物レンズの位置精度は1mm単位でよい。図15の説明では、対物レンズの移動をミラーヘッドのモーターで行うが、別のモーターと2次元ステージを使用しても良い。 Referring to FIG. 15 as an example, a support arm is attached to the objective lens, and the objective lens is moved in the X direction by a gear and a belt from the mirror head motor. In the Y direction, the objective lens is moved through a wire that does not expand and contract. The focal position of the objective lens does not need to be exactly coincident with the position of the irradiation point by the focal position correction process, and an object that easily causes an error, such as a belt or a wire, may be used. For example, even when the irradiation point is controlled in units of 10 μm, the positional accuracy of the objective lens may be in units of 1 mm. In the description of FIG. 15, the objective lens is moved by the motor of the mirror head, but another motor and a two-dimensional stage may be used.
図15で、照射点が照射範囲の左右の端から端に動く場合などに合わせて対物レンズを高速に動かすのは難しいので、そのような制御がある場合は、多数の対物レンズを使用する。図16は、6角形の対物レンズを敷き詰めて移動幅をその個々のレンズの大きさに縮めた場合と等間隔に並べて移動量をレンズ間隔幅に縮めた例である。この場合は、ミラーヘッドのモーターとは別に動かす。また照射点位置が予め決まっているならば、その範囲に対物レンズを置いて必要な範囲を動かすか固定したまま使用する。図15と図16を組み合わせても良い。 In FIG. 15, it is difficult to move the objective lens at high speed according to the case where the irradiation point moves from the left and right ends of the irradiation range. If there is such control, a large number of objective lenses are used. FIG. 16 shows an example in which hexagonal objective lenses are laid down and the movement width is reduced to the size of each individual lens, and the movement amount is reduced to the lens interval width by arranging them at equal intervals. In this case, move it separately from the mirror head motor. If the irradiation point position is determined in advance, the objective lens is placed in that range and the necessary range is moved or fixed. You may combine FIG. 15 and FIG.
本装置は垂直落射が基本だが、図8で示す様に弧鏡面の角度と位置を変えて任意の角度でビームを照射出来る。図8の(1)は、ワークに応じてガラス瓶やボトルや鋼管などの湾曲面に対して光路長を同じとする位置にワーク面に落射する角度で外周鏡を取り付けた図である。図8の(2)は、実装に応じて対象に斜めにビームを照射位置で光路長を同じとする位置に外周鏡の一部分としてPMを設置した図である。 Although this apparatus is basically based on vertical incident light, the beam can be irradiated at an arbitrary angle by changing the angle and position of the arc mirror surface as shown in FIG. (1) in FIG. 8 is a diagram in which an outer peripheral mirror is attached at an angle that is incident on the work surface at a position where the optical path length is the same with respect to a curved surface such as a glass bottle, a bottle, or a steel pipe depending on the work. (2) of FIG. 8 is a diagram in which PM is installed as a part of the outer peripheral mirror at a position where an optical beam length is the same at the irradiation position of the target beam obliquely according to mounting.
本装置は、図10で示すようにマスク板をワークの上に翳して、照射点位置毎にビームのマスク照射ができる。マスク照射とは、マスク板のマスクパターンの射影で照射点のビーム面形状の変更と透過の強弱でビーム照度の部分的な明暗を制御する事である。マスク板は、クリーム半田マスク板を写すと、基盤の半田が乗っている箇所でその形状に照射する事になる。マスクによるビーム照度の部分的な明暗とは、図10にあるマスクパターンのドットの表現は、ビームの透過率を表す。ドットの濃さに比例してビームが透過する場合、ビームエネルギーは、ビームの照度が一定の場合その濃さに比例して直下に当る。マスクパターンには、用途に応じてドーナツ型や矩形、十字型など色々ある。例えばピンホールでリードを避けて照射する場合は、ドーナツ型がよく、矩形パッドの照射は、矩形パッドを用いてはみ出ずに出来る。 As shown in FIG. 10, this apparatus can irradiate a mask with a beam for each irradiation point position by placing a mask plate on a workpiece. The mask irradiation is to control the partial brightness and darkness of the beam illuminance by changing the shape of the beam surface at the irradiation point by projecting the mask pattern of the mask plate and by the intensity of transmission. When the cream solder mask plate is copied, the mask plate irradiates the shape at the place where the base solder is placed. The partial brightness and darkness of the beam illuminance by the mask means that the dot expression of the mask pattern in FIG. 10 represents the transmittance of the beam. When the beam is transmitted in proportion to the density of the dots, the beam energy is directly below in proportion to the density when the illuminance of the beam is constant. There are various mask patterns such as a donut shape, a rectangle shape, and a cross shape depending on the application. For example, when irradiating with a pinhole avoiding a lead, a donut shape is preferable, and irradiation of a rectangular pad can be performed without protruding using the rectangular pad.
またマスクは、レンズやガラス器による屈折でもよい。図9の(3)を例にプリズム型のガラスを乗せて、照射点を2分割している。マスク板はステンレス板のほかに次の材質が良い。ビームの波長と照明の波長が通るガラス板の上面をすりガラス状にして散乱屈折させてワークに焦点を結ばせない。照明光は通すがビームのみ反射する膜をコーティングしてマスクパターンを作る。 The mask may be refracted by a lens or glassware. In FIG. 9 (3) as an example, a prism type glass is placed and the irradiation point is divided into two. The mask plate should be made of the following materials in addition to the stainless plate. The upper surface of the glass plate through which the wavelength of the beam and the wavelength of the illumination pass is frosted and scattered and refracted so that the work is not focused. A mask pattern is formed by coating a film that passes illumination light but reflects only the beam.
本発明の装置は、図3で示す通り元光路器にビームと同軸にカメラの画像撮影軸を同軸に置く事で画像によるインテリジェントな操作が出来る。その操作は、画像から位置合わせ情報や種別情報を得て、ビームを照射しその状況の画像から判断してビームの位置と出力操作を行う。図11や図12で示す画像は、撮影と同軸に照明を置いた場合、光軸に垂直な面が反射して明るく見える性質を利用している。電気回路のパッドとリード、半田ボールは、鏡面であるので特にこの性質が顕著に出て垂直面が輝いて見える。 As shown in FIG. 3, the apparatus of the present invention can perform intelligent operation by image by placing the image capturing axis of the camera coaxially with the beam in the original optical path device. In this operation, alignment information and type information are obtained from the image, the beam is irradiated, and the position and output operation of the beam are performed by judging from the image of the situation. The images shown in FIG. 11 and FIG. 12 utilize the property that when the illumination is placed coaxially with the photographing, the surface perpendicular to the optical axis is reflected and looks bright. Since the pads, leads, and solder balls of the electric circuit are mirror surfaces, this property is particularly prominent and the vertical surface appears to shine.
半田ボールとリードの溶解による変形は、上記の性質を利用して変形による僅かな傾きで輝点が大きく変化して見えるので画像処理による認識と判断がしやすい。図11のビーム制御フローと輝点の上絵から下絵の遷移はそれを示している。上記の制御は、図14と図15を例とする Deformation due to melting of the solder ball and the lead is easy to be recognized and judged by image processing because the bright spot appears to change greatly with a slight inclination due to deformation using the above-mentioned properties. The beam control flow in FIG. 11 and the transition from the upper picture to the lower picture of the bright spot show this. The above control is exemplified in FIG. 14 and FIG.
図6で示す様にレーザーマーカーなどのミラーヘッドで変更された光路を外周鏡の下の分配鏡面に当てて外周鏡に反射させる形態を説明する。この考えは、図6の(3)に図示するようにレーザーマーカーの描画エリアを5枚の鏡で分配して対とする外周鏡に反射させて同じ光路長で落射させる方法である。図4と図5と計算の違いは、CPXの位置に分配鏡面が入る事と実際の光路長はFθレンズから光路長を計算することである。Fθレンズの使用でビームの振り角度に応じて光路長が伸びても同じ焦点径になるのでその伸び分を加算する。
図6の(1)と(2)で鏡面の傾きは、対応する分配鏡面と外周鏡面は同じ傾きになる。つまりLMaとmaは、同じ傾きであり同様にLMbとmb、LMcとmcが同じ傾きである。図6は、左片面で説明しているが、本装置は、5枚の分配鏡面と5枚の外周鏡で構成される。実施例の図6の(1)と(2)と(3)の通りの位置構成で、最小光路長で出来る。さらにこの位置構成を分割できるが、ビーム径が太いと分配鏡面で分割された領域に沿ってビームの無効エリアが増えるので非効率になる。
A mode in which an optical path changed by a mirror head such as a laser marker as shown in FIG. 6 is applied to the distribution mirror surface below the outer mirror and reflected by the outer mirror will be described. This idea is a method in which the drawing area of the laser marker is distributed by five mirrors and reflected by a pair of outer peripheral mirrors and reflected on the same optical path length as shown in (3) of FIG. The difference between FIG. 4 and FIG. 5 is that the distribution mirror surface enters the position of CPX and that the actual optical path length is calculated from the Fθ lens. Even if the optical path length is extended according to the beam swing angle by using the Fθ lens, the same focal diameter is obtained, so the extension is added.
In (1) and (2) in FIG. 6, the inclination of the mirror surface is the same between the corresponding distribution mirror surface and the outer peripheral mirror surface. That is, LMa and ma have the same inclination, and similarly, LMb and mb, and LMc and mc have the same inclination. Although FIG. 6 is described on the left side, the apparatus is composed of five distribution mirror surfaces and five outer peripheral mirrors. With the positional configuration as shown in (1), (2), and (3) in FIG. 6 of the embodiment, the minimum optical path length can be achieved. Furthermore, this position configuration can be divided, but if the beam diameter is large, the ineffective area of the beam increases along the area divided by the distribution mirror surface, which is inefficient.
図7で示す様にレーザーマーカーなどのミラーヘッドで変更された光路を外周鏡の下の分配鏡面に当てて外周鏡に反射させる形態を説明する。図7の構成は、上記図6の説明で分配鏡面による分割が少ないと効率がよいとしているのでこの考えを発展させてFθレンズを取り分配鏡面に対する描画領域を広く取り、光路長調整を外周鏡面の多数分割で調整する例である。実施例の図7の(1)と(2)と(3)の通りの位置構成で、最小光路長で出来る。 A mode in which an optical path changed by a mirror head such as a laser marker as shown in FIG. 7 is applied to a distribution mirror surface under the outer mirror and reflected by the outer mirror will be described. The configuration of FIG. 7 explains that the efficiency is better when there is little division by the distribution mirror surface in the explanation of FIG. 6 above, so this idea was developed to take a Fθ lens and take a wider drawing area for the distribution mirror surface, and adjust the optical path length to the outer peripheral mirror surface. It is an example which adjusts by multiple division of. With the position configuration as shown in FIGS. 7A, 7B and 7C of the embodiment, the minimum optical path length can be achieved.
図18で示される収束しないビームを用いた場合の外周鏡は、弧状に配置する必要はなく自由な位置に置く事が出来る。収束しないビームで加工は出来ないので、対物レンズやマスクを置いて収束させる。外周鏡を弧状に置かないので前述した数2の条件が崩れ、角度と照射点位置の比例関係が成り立たたず外周鏡個々の位置で光路距離が変わる。図15の対物レンズの動作は成り立たないので、ミラーヘッドのモーターとは別に動かす。装置の制御を適切に行う為に、各々の外周鏡に対応する照射点位置とミラーヘッドの制御ミラー角度と光路距離の相関テーブル(以下、座標角度距離相関テーブルとする)を作成する。これに基づいて制御コマンドから座標を算出しマイコン等で対物レンズの位置と画像の縮小拡大と焦点位置修正処理を行う。
The peripheral mirror shown in FIG. 18 when the non-converging beam is used does not need to be arranged in an arc shape and can be placed at a free position. Since processing cannot be performed with a beam that does not converge, an objective lens or mask is placed to converge. Since the peripheral mirror is not placed in an arc shape, the condition of
座標角度距離相関テーブルの作成は、外周鏡とカメラとミラーヘッドの取り付け誤差があるので、元光路器に測長機器を加えて必要とする照射点位置毎にカメラ画像を元にミラーヘッドの角度と光路距離を記録して相関テーブルを作成する。この相関テーブルの作成は、図18以外の装置でも上記の制御精度を求める場合に作成し使用する。 The creation of the coordinate angle / distance correlation table involves mounting errors between the peripheral mirror, camera, and mirror head, so add a length measuring device to the original optical path device and set the mirror head angle based on the camera image for each required irradiation point position. The optical path distance is recorded and a correlation table is created. The creation of this correlation table is also created and used in the case of obtaining the above control accuracy even in apparatuses other than FIG.
本発明の装置とシステムは、図1のSQの手前からHFの間に、液晶マスクやデジタルミラーデバイス(通称DLP)を置いて照射点に画像や文字、パターンを露光したり焼いたりすることが出来る。これによりレーザーマーカーで描画するのに比べて一度に文字列やパターン、マーク、暗号模様のマーキングが広範囲に高速に出来る。また焦点径に応じて高精細に微小回路の露光がパネル上に出来る。これも、照射点とその周りが画像に取れるので描画模様を確認しながら焦点位置に応じて変更しつなげる事が出来る。これにより連続した照射点位置で組み合わせた照射点位置毎に異なる回路や画像パターンの露光ができ、例えば1000×1000画素で描画される回路や画像が100つながって10000×10000画素の大画面が露光できる。
In the apparatus and system of the present invention, a liquid crystal mask or a digital mirror device (commonly called DLP) is placed between HF and before HF in FIG. 1 to expose or burn images, characters, or patterns at the irradiation point. I can do it. As a result, compared with drawing with a laser marker, marking of a character string, a pattern, a mark, and a cipher pattern can be performed at a high speed over a wide range. In addition, a fine circuit can be exposed on the panel with high definition according to the focal diameter. This can also be changed according to the focal position while confirming the drawing pattern since the irradiation point and the surrounding area can be taken as an image. As a result, different circuits and image patterns can be exposed for each irradiation point position combined at successive irradiation point positions. For example, a circuit or image drawn with 1000 × 1000 pixels is connected 100 times to expose a large screen of 10,000 × 10000 pixels. it can.
本装置の特徴は、多数位置の高速処理にあるので以下に利用可能性を述べる。本装置は、電機メーカーの実装ラインでのレーザー半田付けを高効率によりクリーム半田システムに置き換えることが出来る。手作業の半田付けや半田ロボットによる飛び出しピンの多いLED電極の多数点の量産加工が出来る。 Since the feature of this apparatus is high-speed processing at a large number of positions, the availability will be described below. This device can replace the laser soldering on the mounting line of an electric manufacturer with a cream solder system with high efficiency. Mass production of many LED electrodes with many jumping pins can be performed by manual soldering or soldering robots.
本装置は、従来の様に個々の狭い範囲で処理をせず広い幅で処理が行えるので、太陽電基盤や300mm幅以上のシート、パネルの穿孔や溶接、封し、検査に向く。 Since this apparatus can perform processing in a wide width without processing in a narrow range as in the prior art, it is suitable for drilling, welding, sealing, and inspection of solar power boards, sheets having a width of 300 mm or more, and panels.
ステージ移動を減らす或いは無くす事で、面積の大きな液体を載せた容器やフイルム、培養プレートや液浸物の検査や加工処理とに向く。固定して任意位置に細かく動かすことが難しい人体や動物、植物にある多数位置の高速処理に向く。 By reducing or eliminating the movement of the stage, it is suitable for inspection and processing of containers, films, culture plates, and immersion liquids with large liquids. Suitable for high-speed processing at many positions in the human body, animals, and plants that are difficult to fix and move to any position.
本装置は、フレキシブルシート回路加工で、露光からエッチング後のままのロールシートをカットせずに多数の穿孔、溶接、切断、半田付けが高速にできる。 With this flexible sheet circuit processing, a large number of drilling, welding, cutting, and soldering can be performed at high speed without cutting the roll sheet as it is after the etching.
本装置は、気体や液体の流れの上や中に設置し幅広く通過する物体の計測や加工に向く。例えば河川の漂流物の計測、魚の計測を行い、それについて選択消去を行う。 This device is suitable for measurement and processing of objects that are installed on and in the flow of gas or liquid and that pass widely. For example, the measurement of drifting objects in the river and the measurement of fish are performed, and selective deletion is performed.
本装置は、元光路器にマスクを使い大きな面積に必要に応じてビーム露光できるので、液晶パネルや太陽電池パネルやシート、パネル、洋服生地、食品、包装容器にパターンや文字の露光が出来る。
This device uses a mask for the original optical path device and can perform beam exposure over a large area as required, so that patterns and characters can be exposed on liquid crystal panels, solar cell panels, sheets, panels, clothes fabrics, foods, and packaging containers.
CAM カメラ
CXP 横軸鏡面回転中心
CYP 縦軸鏡面回転中心
DG 防護ガラス板
EL ビームエキスパンダ
EM カメラ用同軸ミラー
FP ビーム焦点位置かワーク上の光路焦点位置
FL ビーム焦点レンズ
H 高さ
HF ビームのみ反射鏡
LA 弧状に鏡面を支えるアーム
LB ビームと出力機
LM 外周鏡
LED ワークを照らす照明
MB マスク板
MP マスクパターン
OL 対物レンズ
PM ポイントミラー
R 回転ミラーからLMまでの距離
SQ ビーム絞り
SW 照射領域
W ワーク
XM 横軸可動鏡
XS 横軸モーター
XW X方向移動幅(長手方向)
YM 縦軸可動鏡
YW Y方向移動幅(短手方向)
YS 縦軸モーター
Ma 弧状に配置する鏡の傾き角度
La ビームの傾き角度
Lw ビームの振り幅
Ra ビームの振り角度
bp ワークに対する弧の鏡面が持つ分割幅
ΦLB そこに当るビーム径
mc 分配鏡中央鏡
mb 分配鏡左右中鏡
ma 分配鏡左右端鏡
LMc 分配鏡mcに対応した中央外周鏡
LMb 分配鏡mbに対応した左右中外周鏡
LMa 分配鏡maに対応した左右端外周鏡
CAM camera
CXP Horizontal axis mirror rotation center
CYP vertical axis mirror rotation center
DG protective glass plate
EL beam expander
Coaxial mirror for EM camera
FP beam focal position or optical path focal position on the workpiece
FL beam focus lens
H height
HF beam only reflector
LA Arc-shaped mirror support arm
LB beam and output machine
LM Peripheral mirror
LED work lighting
MB mask board
MP mask pattern
OL objective lens
PM point mirror
R Distance from rotating mirror to LM
SQ beam aperture
SW irradiation area
W Work
XM Horizontal movable mirror
XS horizontal motor
XW X direction movement width (longitudinal direction)
YM vertical axis movable mirror
YW Y direction travel width (short direction)
YS vertical axis motor
Ma Tilt angle of mirror arranged in arc
La beam tilt angle
Lw beam swing
Ra Beam swing angle bp Divided width ΦLB of arc mirror surface with respect to workpiece Beam diameter mc hitting it Distributing mirror central mirror mb Distributing mirror left and right middle mirror ma Distributing mirror left and right end mirror LMc Distributing mirror mc Central outer peripheral mirror LMb Distributing Left and right middle outer peripheral mirror LMa corresponding to the mirror mb Left and right end outer peripheral mirror corresponding to the distribution mirror ma
Claims (10)
The apparatus which has the method of moving and measuring the arbitrary range on a workpiece | work by moving an objective lens in Claim 5 and Claim 9.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009147099A JP2011000625A (en) | 2009-06-20 | 2009-06-20 | Widefield epi-illumination type beam machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009147099A JP2011000625A (en) | 2009-06-20 | 2009-06-20 | Widefield epi-illumination type beam machine |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011000625A true JP2011000625A (en) | 2011-01-06 |
Family
ID=43559034
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009147099A Pending JP2011000625A (en) | 2009-06-20 | 2009-06-20 | Widefield epi-illumination type beam machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011000625A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012120892A1 (en) | 2011-03-08 | 2012-09-13 | 川崎重工業株式会社 | Optical scanning device and laser machining device |
JP2013116488A (en) * | 2011-12-04 | 2013-06-13 | Kiyoyuki Kondo | Beam machining apparatus and method for machining substrate using the same |
KR20140124426A (en) | 2012-03-29 | 2014-10-24 | 카와사키 주코교 카부시키 카이샤 | Optical scanning device and laser processing device |
JP2018066969A (en) * | 2016-10-21 | 2018-04-26 | 川崎重工業株式会社 | Light radiation device and light reading device |
CN109420843A (en) * | 2017-08-23 | 2019-03-05 | 通用汽车环球科技运作有限责任公司 | The method for laser welding of curved surface |
US10384307B2 (en) | 2014-07-23 | 2019-08-20 | Panasonic Intellectual Property Management Co., Ltd. | Laser machining system and laser machining method |
-
2009
- 2009-06-20 JP JP2009147099A patent/JP2011000625A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012120892A1 (en) | 2011-03-08 | 2012-09-13 | 川崎重工業株式会社 | Optical scanning device and laser machining device |
EP2684636A4 (en) * | 2011-03-08 | 2015-08-26 | Kawasaki Heavy Ind Ltd | Optical scanning device and laser machining device |
US9604309B2 (en) | 2011-03-08 | 2017-03-28 | Kawasaki Jukogyo Kabushiki Kaisha | Optical scanning device and laser machining device having pluralities of flat reflective surfaces corresponding to divided virtual arcs |
JP2013116488A (en) * | 2011-12-04 | 2013-06-13 | Kiyoyuki Kondo | Beam machining apparatus and method for machining substrate using the same |
KR20140124426A (en) | 2012-03-29 | 2014-10-24 | 카와사키 주코교 카부시키 카이샤 | Optical scanning device and laser processing device |
US9529190B2 (en) | 2012-03-29 | 2016-12-27 | Kawasaki Jukogyo Kabushiki Kaisha | Optical scanning device and laser machining device |
US10384307B2 (en) | 2014-07-23 | 2019-08-20 | Panasonic Intellectual Property Management Co., Ltd. | Laser machining system and laser machining method |
JP2018066969A (en) * | 2016-10-21 | 2018-04-26 | 川崎重工業株式会社 | Light radiation device and light reading device |
CN109420843A (en) * | 2017-08-23 | 2019-03-05 | 通用汽车环球科技运作有限责任公司 | The method for laser welding of curved surface |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5727518B2 (en) | Beam processing equipment | |
TWI629573B (en) | Exposure system, exposure device and exposure method | |
JP5135672B2 (en) | Laser irradiation state detection method and laser irradiation state detection system | |
US6278078B1 (en) | Laser soldering method | |
JP2011000625A (en) | Widefield epi-illumination type beam machine | |
JPH07325036A (en) | Optical system for inspection, and inspection apparatus | |
US20090097126A1 (en) | Method of laser marking, laser marking apparatus and method and apparatus for detecting a mark | |
CN110524109A (en) | A kind of scanning galvanometer formula laser welding system | |
JP5807772B2 (en) | Defect detection apparatus and method | |
US20200089121A1 (en) | Method and device for exposure of photosensitive layer | |
KR20170080631A (en) | Illumination system, inspection tool with illumination system, and method of operating an illumination system | |
JP2007029959A (en) | Laser beam machining apparatus | |
JP5268749B2 (en) | Substrate condition inspection method, laser processing apparatus, and solar panel manufacturing method | |
CN111983896B (en) | High-precision alignment method for 3D exposure machine | |
JP7225756B2 (en) | Inspection device, inspection method | |
KR20120092990A (en) | Marking image leading device and reading method of laser marking system | |
JP2000097864A (en) | Floodlight device for visual inspection | |
JP7318190B2 (en) | Shape measuring device, shape measuring method and shape measuring program | |
KR20150126810A (en) | Apparatus for Laser Marking with Function of Automatic Regulation of Focus | |
TWI517924B (en) | Beam processing apparatus | |
JP2008123275A (en) | Nesting device and method | |
JP7443042B2 (en) | Optical spot image irradiation device and transfer device | |
JP7406393B2 (en) | Chip transfer device | |
JP6633925B2 (en) | Exposure apparatus and exposure method | |
TW202317298A (en) | Illumination optical system and laser processing device independently adjusting the size of a laser beam in different directions |