Nothing Special   »   [go: up one dir, main page]

JP2011000509A - Hollow fiber filtration membrane - Google Patents

Hollow fiber filtration membrane Download PDF

Info

Publication number
JP2011000509A
JP2011000509A JP2009143765A JP2009143765A JP2011000509A JP 2011000509 A JP2011000509 A JP 2011000509A JP 2009143765 A JP2009143765 A JP 2009143765A JP 2009143765 A JP2009143765 A JP 2009143765A JP 2011000509 A JP2011000509 A JP 2011000509A
Authority
JP
Japan
Prior art keywords
hollow fiber
filtration
filtration membrane
water permeability
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009143765A
Other languages
Japanese (ja)
Inventor
Michi Sato
美智 佐藤
Masakazu Yamada
雅一 山田
Teruhiko Oishi
輝彦 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Medical Co Ltd
Original Assignee
Asahi Kasei Medical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Medical Co Ltd filed Critical Asahi Kasei Medical Co Ltd
Priority to JP2009143765A priority Critical patent/JP2011000509A/en
Publication of JP2011000509A publication Critical patent/JP2011000509A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Artificial Filaments (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hollow fiber filtration membrane capable of mitigating the non-uniformity of the filtration performance thereof in the longitudinal direction caused when being actually used, thereby more stabilizing the separation performance thereof, to provide a hollow fiber filter capable of mitigating the non-uniformity of the filtration performance by packing the hollow fiber filtration membrane, and to provide a method for filtering a liquid to be treated by using the hollow fiber filter.SOLUTION: The porous hollow fiber filtration membrane is characterized in that when the hollow fiber filtration membrane is divided into three equal portions in the longitudinal direction and the water permeability of each of cut fibers in the three equal portions is measured, the cut fiber in the central portion C has the intrinsic water permeability higher than those of both of the cut fiber in the end portion A and the cut fiber in the end portion B.

Description

本発明は多孔質の中空糸濾過膜に関する。より詳しくは、その長さ方向において、中央部が両端部よりも高い透水量を有する中空糸濾過膜に関する。
また、本発明は、該中空糸濾過膜を組み込んだ中空糸濾過器および該中空糸濾過器を用いた被処理液の濾過方法にも関する。
The present invention relates to a porous hollow fiber filtration membrane. More specifically, the present invention relates to a hollow fiber filtration membrane having a central portion having a higher water permeability than both ends.
The present invention also relates to a hollow fiber filter incorporating the hollow fiber filter membrane and a method for filtering a liquid to be treated using the hollow fiber filter.

中空糸濾過膜は、工業用プロセスフィルター、浄水用フィルター、理化学・検査用フィルターおよび血液浄化器等において、被処理液または被処理気体から目的物を分離・濃縮・精製するための機能素子として組み込まれ、様々な分野において広範囲な用途に利用されている。
これらの中空糸濾過膜において、機能素子としての能力を高めるために、様々な観点から検討が成されている。特に、透過性能については、優れた透過性能(単位時間や単位面積あたりの濾過速度等)、優れた選択分離性(シャープな分子量分画性等)あるいは経時的安定性(ライフタイム等)を改善するために、膜の素材・組成・物性・形状・構造といった要素因子、さらには各要素因子を随意に組み合わせたり、制御することにより目的の膜を得る方法(例えば、製膜方法、後処理方法あるいは改質方法等)についても検討されている。
Hollow fiber filtration membranes are incorporated as functional elements for separating, concentrating, and purifying target products from liquids or gases to be processed in industrial process filters, water filters, physics / test filters, blood purifiers, etc. It is used for a wide range of applications in various fields.
In these hollow fiber filtration membranes, studies have been made from various viewpoints in order to enhance the capability as a functional element. Especially for permeation performance, improved permeation performance (unit time, filtration rate per unit area, etc.), excellent selective separation (sharp molecular weight fractionation, etc.) or stability over time (lifetime, etc.) In order to achieve this, element factors such as the material, composition, physical properties, shape, and structure of the film, as well as methods for obtaining the desired film by arbitrarily combining or controlling each element factor (for example, film forming method, post-processing method) Alternatively, reforming methods, etc.) are also being studied.

中空糸濾過膜の透過性能については、通常、複数本〜数万本の中空糸濾過膜の束が筒状容器に充填され、中空糸型濾過器として用いられる使用形態を考慮すると、束を構成する個々の中空糸濾過膜の均一性が重要となる。具体的には、束内の各中空糸濾過膜間に透過性能のバラつきがないことと、各中空糸濾過膜が長さ方向全体において過不足なく濾過に寄与できることが夫々重要である。
前者の束内の均一性については、例えば、束の乾燥時に、束の中心部と周縁部の膜に生じる透過性能の差異を小さくする技術(特許文献1)や、中空糸濾過膜を束の状態で表面改質する際に生じるグラフト重合ムラ、すなわち親水化の不均一性を改善する技術が開示されている(特許文献2および3)。
Regarding the permeation performance of the hollow fiber filtration membrane, usually, bundles of a plurality of to tens of thousands of hollow fiber filtration membranes are filled into a cylindrical container, and the bundle is configured in consideration of the usage form used as a hollow fiber filter. The uniformity of the individual hollow fiber filtration membranes is important. Specifically, it is important that there is no variation in permeation performance between the hollow fiber filtration membranes in the bundle, and that each hollow fiber filtration membrane can contribute to filtration without excess or deficiency in the entire length direction.
Regarding the uniformity in the former bundle, for example, when the bundle is dried, a technique (Patent Document 1) for reducing the difference in permeation performance generated in the membrane at the center portion and the peripheral portion of the bundle, or a hollow fiber filtration membrane is used. Techniques for improving graft polymerization unevenness that occurs when the surface is modified in a state, that is, non-uniformity of hydrophilicity are disclosed (Patent Documents 2 and 3).

一方、後者の長さ方向の均一性については、中空糸濾過膜を表面改質して透過性を改善する際、反応ガスを束の一方向から吸引することにより、長さ方向に不足なく反応させる技術が開示されている(特許文献4)。また、特に引用はしないが、製膜から乾燥までを途中で切断することなく連続処理される工程を経た膜は、途中で切断してバッチ処理される膜に比べて、長さ方向および束内の何れにおいても均一性が高いことは周知である。
このように、中空糸濾過膜においては、膜の透過性能を最大限発揮するために、束内の膜間や膜の長さ方向において均一化するという観点が重視されており、専ら、どの部位においても均一な透過性能を有する中空糸濾過膜を得ることに注意が払われていた。
On the other hand, with regard to the uniformity in the length direction of the latter, when the hollow fiber filtration membrane is surface-modified to improve the permeability, the reaction gas is sucked from one direction of the bundle, so that the reaction can be performed in the length direction. The technique to make is disclosed (patent document 4). In addition, although not specifically cited, a film that has undergone a continuous process without being cut in the middle from film formation to drying is longer in the length direction and in the bundle than a film that is cut in the middle and batch-processed. It is well known that the uniformity is high.
Thus, in the hollow fiber filtration membrane, in order to maximize the permeation performance of the membrane, the viewpoint of homogenization between the membranes in the bundle and in the length direction of the membrane has been emphasized, Attention has been paid to obtaining a hollow fiber filtration membrane having uniform permeation performance.

ところが、中空糸濾過器を用いて実際に濾過を行う際には、中空糸濾過膜に特有の現象が起こる。すなわち、一般的に、内直径が数百μm〜数mmの中空部を有し、かつ数十cm以上の長さの中空糸膜に通水すると、中空部を流れる液体の流動抵抗によって中空部の長さ方向に圧力損失が生じる。その結果、長さ方向において膜間圧力差も減少するため、実際の濾過量は中空糸の長さ方向に向かって減少する。
従来技術のように、中空糸濾過膜または中空糸濾過器全体で測定して得られる濾過量は長さ方向の平均値を見ているだけであり、実際には、長さ方向に濾過が過剰の部分と不足の部分が生じていることになる。この不均一性のパターンは、上記の他に、内圧濾過や外圧濾過あるいはデッドエンド濾過やクロスフロー濾過によって異なるが、何れにおいても、実際に濾過を行う際には長さ方向に一定の濾過量が得られていないことになる。この現象により、濾過が過剰の部位では、目詰まりにより局所的なライフタイムの低下を招いたり、本来は透過し難い対象物が大きな濾過流束に伴って一部透過してしまうことがある。一方、濾過が不足の部位では、透過すべき対象物が十分に透過しないこともある。
However, when the filtration is actually performed using a hollow fiber filter, a phenomenon peculiar to the hollow fiber filtration membrane occurs. That is, generally, when water is passed through a hollow fiber membrane having an inner diameter of several hundred μm to several mm and a length of several tens of centimeters or more, the hollow portion is caused by the flow resistance of the liquid flowing through the hollow portion. Pressure loss occurs in the length direction. As a result, since the transmembrane pressure difference also decreases in the length direction, the actual filtration amount decreases in the length direction of the hollow fiber.
As in the prior art, the amount of filtration obtained by measuring the entire hollow fiber filtration membrane or hollow fiber filter is merely looking at the average value in the length direction. This means that there is a shortage and a shortage. In addition to the above, this non-uniformity pattern varies depending on internal pressure filtration, external pressure filtration, dead-end filtration, and crossflow filtration. Is not obtained. Due to this phenomenon, in a region where filtration is excessive, clogging may cause a local decrease in the lifetime, or an object that is originally difficult to permeate may partially permeate with a large filtration flux. On the other hand, in a region where filtration is insufficient, an object to be permeated may not sufficiently permeate.

特開2002−239348号公報JP 2002-239348 A 特開2004−244501号公報JP 2004-244501 A 特開平4−293939号公報JP-A-4-293939 特開平05−209071号公報Japanese Patent Laid-Open No. 05-209071

本発明者らは、従来技術のように、中空糸濾過膜を設計・製造する段階においてのみ透過性能の均一化を追求しても、実際に使用する際にはその均一性が十分活かされていない点が問題だと気付き、これを解決しようと考えた。
したがって、本発明は、中空糸濾過膜を実使用する際、長さ方向に生じる濾過性能の不均一性を緩和することにより、分離性能をより安定化できる中空糸濾過膜を得ることを目的とする。
また、本発明は、そのような中空糸濾過膜を充填することにより、濾過性能の不均一性を緩和できる中空糸濾過器、および該中空糸濾過器を用いた被処理液の濾過方法を提供することも目的とする。
Even if the inventors pursued uniform permeation performance only at the stage of designing and manufacturing a hollow fiber filtration membrane as in the prior art, the uniformity is sufficiently utilized in actual use. I realized that there was no problem, so I decided to solve it.
Accordingly, an object of the present invention is to obtain a hollow fiber filtration membrane that can further stabilize the separation performance by alleviating the non-uniformity of the filtration performance that occurs in the length direction when the hollow fiber filtration membrane is actually used. To do.
In addition, the present invention provides a hollow fiber filter that can alleviate non-uniformity in filtration performance by filling such a hollow fiber filtration membrane, and a method for filtering a liquid to be treated using the hollow fiber filter. The purpose is to do.

本発明者らは前記課題を解決するために鋭意検討した結果、多孔質の中空糸濾過膜において、長さ方向に3等分割したときの中央部の固有透水量が、両端部の固有透水量より高い中空糸濾過膜を用いることによって前記課題を解決することを見出し、以って本発明を完成した。   As a result of intensive studies to solve the above problems, the inventors of the present invention have determined that the intrinsic water permeability at the center when the porous hollow fiber membrane is divided into three equal parts in the length direction is the intrinsic water permeability at both ends. The present inventors have found that the above-mentioned problems can be solved by using a higher hollow fiber filtration membrane, thereby completing the present invention.

すなわち、本発明は以下のとおりである。
多孔質の中空糸濾過膜であって、該中空糸濾過膜を長さ方向に3等分割したときの中央部の固有透水量が、両端部の固有透水量よりも高い中空糸濾過膜。
That is, the present invention is as follows.
A porous hollow fiber filtration membrane, wherein the intrinsic water permeability at the center when the hollow fiber filtration membrane is divided into three equal parts in the length direction is higher than the intrinsic water permeability at both ends.

本発明によって課題が解決される理由は明らかではないが、本発明の中空糸濾過膜においては、固有透水量を長さ方向で「低→高→低」となるように設計することにより、膜間圧力の不均一性の影響を打ち消して、濾過性能の不均一性を緩和するものと推測されるが、これに限定されない。   The reason why the problem is solved by the present invention is not clear, but in the hollow fiber filtration membrane of the present invention, by designing the inherent water permeation amount to be “low → high → low” in the length direction, the membrane Although it is estimated that the influence of non-uniformity of the intermediate pressure is canceled and the non-uniformity of the filtration performance is mitigated, it is not limited to this.

本発明によれば、中空糸濾過膜において濾過が過剰の部位が生じるのを防ぎ、目詰まりによる局所的なライフタイムの低下や、本来は透過し難い対象物が大きな濾過流束に伴って一部透過してしまうことを防止できる。   According to the present invention, it is possible to prevent the occurrence of excessive filtration in the hollow fiber filtration membrane, to reduce the local lifetime due to clogging, and to prevent an object that is originally difficult to permeate with a large filtration flux. It is possible to prevent partial transmission.

本発明の中空糸濾過器の一例を示す断面図である。It is sectional drawing which shows an example of the hollow fiber filter of this invention. 中空糸濾過膜の実効透水量を測定する中空糸濾過器の一例を示す断面図である。It is sectional drawing which shows an example of the hollow fiber filter which measures the effective water permeability of a hollow fiber filtration membrane. 実効透水量測定用中空糸濾過器の仕切手段の一例を示す断面図である。It is sectional drawing which shows an example of the partition means of the hollow fiber filter for effective water permeability measurement. 本発明の濾過方法を行う濾過装置の流路構成の一例を示す図である。It is a figure which shows an example of the flow-path structure of the filtration apparatus which performs the filtration method of this invention. 中空糸濾過器をデッドエンド内圧濾過するときの圧力と透水量の分布を示す模式図である。It is a schematic diagram which shows distribution when a hollow fiber filter filters dead-end internal pressure, and a water permeability. 中空糸濾過器をクロスフロー外圧濾過するときの圧力と透水量の分布を示す模式図である。It is a mimetic diagram showing distribution of a pressure and water permeability when carrying out cross flow external pressure filtration of a hollow fiber filter. 中空糸濾過膜の固有透水量を示すグラフである。It is a graph which shows the natural water permeability of a hollow fiber filtration membrane.

本発明の中空糸濾過膜は、多孔質構造を形成し、かつ、限外濾過や精密濾過膜の孔径サイズを形成し得る得る高分子材料を素材するものであれば、いかなる素材でも用いることができる。例えば、ポリエチレンやポリプロピレン等のオレフィン樹脂、ポリエチレンテレフタレート、ポリエチレンテレナフタレート等のポリエステル樹脂、ナイロン6、ナイロン66等のポリアミド樹脂、ポリフッ化ビニリデン、ポリクロロトリフルオロエチレン等の含フッ素樹脂、ポリスチレン、ポリスルホン、ポリエーテルスルホン、ポリカーボネート等の非結晶性樹脂等が使用できる。   As the hollow fiber filtration membrane of the present invention, any material can be used as long as it is made of a polymer material that forms a porous structure and can form the pore size of ultrafiltration or microfiltration membrane. it can. For example, olefin resins such as polyethylene and polypropylene, polyester resins such as polyethylene terephthalate and polyethylene terephthalate, polyamide resins such as nylon 6 and nylon 66, fluorine-containing resins such as polyvinylidene fluoride and polychlorotrifluoroethylene, polystyrene, polysulfone, Amorphous resins such as polyethersulfone and polycarbonate can be used.

本発明の中空糸濾過膜は、最大孔径が10〜100nmであることが好ましく、より好ましくは10〜70nm、最も好ましくは10〜50nmである。最大孔径が10nm未満では、グロブリン等の生理活性物質の透過性や濾過速度が低くなる傾向がある。反対に、100nmを越えると、膜透過阻止によりウイルス等の除去したい微粒子を実用的なレベルで除去することができない。ここで言う最大孔径とは、ASTM F316−86に準拠したバブルポイント法で測定した値である。   The hollow fiber filtration membrane of the present invention preferably has a maximum pore size of 10 to 100 nm, more preferably 10 to 70 nm, and most preferably 10 to 50 nm. If the maximum pore size is less than 10 nm, the permeability and filtration rate of physiologically active substances such as globulins tend to be low. On the other hand, when the thickness exceeds 100 nm, it is not possible to remove the fine particles to be removed such as viruses at a practical level by blocking membrane permeation. The maximum pore diameter referred to here is a value measured by a bubble point method based on ASTM F316-86.

本発明の中空糸濾過膜は、長さが0.1〜0.7mであることが好ましく、より好ましくは0.15〜0.5mであり、特に好ましくは0.2〜0.4mである。中空糸濾過膜の長さが0.1m未満の場合は、濾過時に長さ方向の透水量分布が生じ難いか無視し得る程の僅かなレベルとなるため、本発明の効果を発揮できない。また、中空糸型濾過器に成型する際の取り扱い性が悪く、生産効率も良くない。反対に、長さが0.7mを超える場合は、後述する実効透水量を制御することが困難となる。   The hollow fiber filtration membrane of the present invention preferably has a length of 0.1 to 0.7 m, more preferably 0.15 to 0.5 m, and particularly preferably 0.2 to 0.4 m. . When the length of the hollow fiber filtration membrane is less than 0.1 m, the water permeability distribution in the length direction is difficult to occur during filtration or becomes a negligible level so that the effect of the present invention cannot be exhibited. Moreover, the handleability at the time of shape | molding to a hollow fiber type filter is bad, and production efficiency is also not good. On the other hand, when the length exceeds 0.7 m, it becomes difficult to control the effective water permeability described later.

本発明の中空糸濾過膜は、限外濾過膜や精密濾過膜において一般的である内径を有していれば良い。製造時や濾過時の中空部の圧力損失の大きさを考慮すると、内径が100μmより大きければいかなる内径でも構わない。好ましくは100〜2000μmであり、より好ましくは200〜1000μm、特に好ましくは300〜500μmである。内径が2000μmよりも大きくなると、同じ膜面積の中空糸型濾過器を成型する場合に、濾過器の嵩が大きくなるため実用性の面から好ましくない。   The hollow fiber filtration membrane of the present invention may have an inner diameter that is common in ultrafiltration membranes and microfiltration membranes. Considering the magnitude of pressure loss in the hollow part during production or filtration, any inner diameter may be used as long as the inner diameter is larger than 100 μm. Preferably it is 100-2000 micrometers, More preferably, it is 200-1000 micrometers, Especially preferably, it is 300-500 micrometers. When the inner diameter is larger than 2000 μm, the bulk of the filter increases when molding a hollow fiber filter having the same membrane area, which is not preferable from the viewpoint of practicality.

以上の説明から、本発明の中空糸濾過膜は、内径D(mm)に対する長さL(mm)の比であるL/D(−)が50〜7000であることが好ましい。この程度に細長い形状であれば、数千〜数万本を糸束として中空糸型濾過器に組み立てた際、大きな膜面積の割にはコンパクトな大きさとなり、使い勝手が非常によい。また、濾過する際に高い線速度を確保できる傾向にあるため、特にクロスフロー濾過においてはファウリングを抑制できて濾過効率に優れる。L/Dのより好ましい範囲は150〜2500であり、特に好ましくは400〜1333である。   From the above description, in the hollow fiber filtration membrane of the present invention, L / D (−), which is the ratio of the length L (mm) to the inner diameter D (mm), is preferably 50 to 7000. If it is an elongated shape like this, when it is assembled into a hollow fiber filter as a bundle of thousands to tens of thousands, it becomes a compact size for a large membrane area and is very convenient to use. Moreover, since there exists a tendency which can ensure a high linear velocity when filtering, especially in crossflow filtration, fouling can be suppressed and it is excellent in filtration efficiency. A more preferable range of L / D is 150 to 2500, and particularly preferably 400 to 1333.

本発明の中空糸濾過膜は、長さ方向に3等分割したときの、中央部が両端部よりも高い固有透水量を有することが必要である。従来技術では、中空糸濾過膜の透過性能を均一化するために、長さ方向においても均一であること(=透水量がほぼ一定であること)が求められていたが、本発明では敢えて不均一としている。   The hollow fiber filtration membrane of the present invention needs to have a higher intrinsic water permeability at the center than at both ends when it is divided into three equal parts in the length direction. In the prior art, in order to make the permeation performance of the hollow fiber filtration membrane uniform, it has been required to be uniform in the length direction (= water permeability is almost constant). It is assumed to be uniform.

前記固有透水量とは、従来技術のように、中空糸濾過膜全体を用いて測定される「長さ方向の概念を持たず、平均化された透水量」(中空糸濾過膜全体の透水量)ではなく、「長さ方向の概念を導入し、部分的に見た透水量」(中空糸濾過膜の長さ方向の特定部位の透水量)のことである。
中央部及び端部の固有透水量は、具体的には以下のように測定される。先ず、中空糸濾過膜を長さ方向に3等分割し、濾液排出口を有する筒状容器に充填した後、両端部をポッティング加工する。次に、中空糸濾過膜の中空内部に連通する被処理液の導入(出)口を有するヘッダーキャップを筒状容器の両側に取り付けて、中空糸濾過膜の両端部及び中央部を充填した3種類のミニモジュールを作成する。該ミニモジュールの構造は、第1図に示す本発明の中空糸濾過器の構造と同様である。次に、各ミニモジュールの両側に取り付けたヘッダーキャップのうち、一方の口を閉止した状態で、他端から純水を導入して定圧デッドエンド内圧濾過を行う。得られた純水の透過量から、次式(1)に基づいて、長さ方向における3箇所の固有透水量を算出する。
固有透水量(m3/m2・s・Pa)
= 透過量(m3)/(膜面積(m2)×濾過時間(m2)×濾過圧(Pa)) (1)
The inherent water permeation amount is measured by using the entire hollow fiber filtration membrane as in the prior art, and the average water permeation amount without the concept of the length direction (the water permeation amount of the entire hollow fiber filtration membrane). ) Rather than “the water permeability permeated partially by introducing the concept of the length direction” (water permeability of a specific portion in the length direction of the hollow fiber filtration membrane).
Specifically, the intrinsic water permeability of the center part and the end part is measured as follows. First, the hollow fiber filtration membrane is divided into three equal parts in the length direction, filled into a cylindrical container having a filtrate outlet, and then both ends are potted. Next, header caps having inlets (outlets) for the liquid to be treated communicating with the hollow interior of the hollow fiber filtration membrane were attached to both sides of the cylindrical container, and both ends and the center of the hollow fiber filtration membrane were filled. Create different types of mini-modules. The structure of the mini module is the same as the structure of the hollow fiber filter of the present invention shown in FIG. Next, in a state where one of the header caps attached to both sides of each mini-module is closed, pure water is introduced from the other end to perform constant pressure dead-end internal pressure filtration. Based on the permeation amount of the obtained pure water, the inherent water permeation amounts at three locations in the length direction are calculated based on the following equation (1).
Specific water permeability (m 3 / m 2 · s · Pa)
= Permeation amount (m 3 ) / (membrane area (m 2 ) × filtration time (m 2 ) × filtration pressure (Pa)) (1)

本発明においては、中央部が両端部よりも高い固有透水量を有することが必要である。限外濾過や精密濾過に適した孔径・透水量を有する中空糸濾過膜においては、固有透水量を、長さ方向に「低→高→低」となるように予め設計しておくことにより、以下の利点(イ)〜(ハ)を生み出す。
(イ)中空糸濾過膜を内圧濾過に用いた場合、通常、中空糸濾過膜の被処理液の入口側で高い膜間圧力差が生じて濾過が過剰となるが(第5図(A)を参照)、固有透水量を本発明のように設計しておくと、入口側では膜間圧力差は高いが透水量は低いので、両者の影響が相殺され、入口側端部と中央部の濾過量を同等に揃えることができる(第5図(B)を参照)。そうすることにより、従来、濾過が過剰の部位で生じていた目詰まりにより局所的なライフタイムの低下が改善される。
(ロ)中空糸濾過膜を外圧濾過に用いた場合、通常、中空糸濾過膜の濾液の出口側(中空糸濾過膜の両端部側)で高い膜間圧力差が生じて濾過が過剰となるが(第5図(A)を参照)、固有透水量を本発明のように設計しておくと、出口側では膜間圧力差は高いが透水量は低いので、両者の影響が相殺され、出口側端部と中央部の濾過量を同等に揃えることができる(第6図(B)を参照)。そうすることにより、従来、濾過が過剰の部位で生じていた目詰まりにより局所的なライフタイムの低下が改善される。
(ハ)内圧濾過と外圧濾過の何れの場合においても、透過率が小さく、本来は膜透過が殆ど阻止されるはずの対象物が、局所的に大きな濾過流束に伴って一部透過してしまう懸念が払拭される。
In the present invention, it is necessary that the central portion has a higher intrinsic water permeability than both end portions. In the hollow fiber filtration membrane having a pore size and water permeability suitable for ultrafiltration and microfiltration, by designing the inherent water permeability so that it becomes `` low → high → low '' in the length direction in advance, The following advantages (a) to (c) are produced.
(A) When a hollow fiber filtration membrane is used for internal pressure filtration, a high transmembrane pressure difference is usually generated on the inlet side of the liquid to be treated of the hollow fiber filtration membrane, resulting in excessive filtration (FIG. 5A). If the specific water permeability is designed as in the present invention, the pressure difference between the membranes is high on the inlet side but the water permeability is low. The amount of filtration can be made equal (see FIG. 5 (B)). By doing so, the fall of local lifetime is improved by the clogging which has conventionally occurred at a site where filtration is excessive.
(B) When a hollow fiber filtration membrane is used for external pressure filtration, usually a high transmembrane pressure difference is generated on the filtrate outlet side of the hollow fiber filtration membrane (both ends of the hollow fiber filtration membrane), resulting in excessive filtration. (See FIG. 5 (A)), if the inherent water permeability is designed as in the present invention, the pressure difference between the membranes is high on the outlet side, but the water permeability is low. The amount of filtration at the outlet side end portion and the central portion can be made equal (see FIG. 6 (B)). By doing so, the fall of local lifetime is improved by the clogging which has conventionally occurred at a site where filtration is excessive.
(C) In both cases of the internal pressure filtration and the external pressure filtration, the permeation rate is small, and an object that should be almost prevented from permeating the membrane partially permeates with a large filtration flux locally. The fear of end will be dispelled.

中央部の固有透水量が少なくとも一方の端部の固有透水量よりも10%を越えて高いことが好ましい(すなわち、中央部の固有透水量>少なくとも一方の端部の固有透水量×110/100)。この程度に差を設けておくと、実際に濾過する際に、ポンプの流量や流量調整バルブ類により調整を行い易い。より好ましくは15%を越えて高いことであり、特に好ましくは20%を越えて高いことである。上限については特に制限しないが、必要以上に差が大きいと、実使用時に被処理液や膜間圧力差を極端に高めることになり、濾過膜や被処理液中の溶質に影響を与えかねない。したがって、中央部の固有透水量は、端部の固有透水量の200%程度とすることを上限の目安としておけばよい。   It is preferable that the intrinsic water permeability of the central portion is higher than the intrinsic water permeability of at least one end by more than 10% (that is, the intrinsic water permeability of the central portion> the intrinsic water permeability of at least one end × 110/100 ). If a difference is provided in this degree, it is easy to adjust the flow rate of the pump and the flow rate adjusting valves when actually filtering. More preferably, it is higher than 15%, particularly preferably higher than 20%. The upper limit is not particularly limited, but if the difference is larger than necessary, the pressure difference between the liquid to be treated and the membrane during actual use will be extremely increased, which may affect the solute in the filtration membrane and liquid to be treated. . Therefore, the upper limit of the intrinsic water permeability at the center may be about 200% of the intrinsic water permeability at the end.

本発明においては、中央部が両端部よりも高い固有透水量を有していればよく、端部どうしの高低関係は限定されない。しかしながら、両端部の固有透水量が同等(統計的に有意差なし)であると、中空糸濾過膜が長さ方向に対称となるので、取扱性に優れる利点がある。例えば、該膜を用いた中空糸濾過器の製造工程においては、中空糸濾過膜(の糸束)を筒状容器に充填する際に端部の方向性を確認する手間が省かれるため、生産性に優れている。また、中空糸濾過器に充填した後も、該濾過器の方向性を確認する必要がないため、取扱性に優れる。したがって、両端部の固有透水量が同等であることがより好ましい。   In the present invention, it is only necessary that the central portion has a higher intrinsic water permeability than both end portions, and the height relationship between the end portions is not limited. However, if the intrinsic water permeation amount at both ends is equal (no statistically significant difference), the hollow fiber filtration membrane is symmetrical in the length direction, so that there is an advantage of excellent handleability. For example, in the manufacturing process of a hollow fiber filter using the membrane, the labor of confirming the directionality of the end portion when filling the hollow container with a hollow fiber filtration membrane (yarn bundle) is saved. Excellent in properties. Moreover, since it is not necessary to confirm the directionality of the filter even after filling the hollow fiber filter, the handleability is excellent. Therefore, it is more preferable that the natural water permeation amounts at both ends are equal.

本発明の中空糸濾過膜は、筒状容器に充填してデッドエンド内圧濾過を行ったときの端部A、端部Bおよび中央部Cの各実効透水量FAE、FBEおよびFCEの関係が以下の(a)FAE≧FCE>FBEまたは(b)FCE>FAE>FBEであることが好ましい(ただし、中央部Cとは、中空糸濾過膜の濾過有効部を長さ方向に3等分した場合の中央部に相当する部分をいい、端部A、Bとは、それぞれ、中空糸濾過膜の前記中央部Cより被処理液導入側に位置する端部、中空糸濾過膜の前記中央部Cより被処理液導入側とは反対側に位置する端部をいうものとする。)。
なお、濾過有効部とは、中空糸濾過膜の表面が露出している部分をいう。
The hollow fiber filtration membrane according to the present invention has an effective water permeation amount F AE , F BE, and F CE at the end A, the end B, and the center C when the cylindrical container is filled and subjected to dead end internal pressure filtration. It is preferable that the relationship is as follows: (a) F AE ≧ F CE > F BE or (b) F CE > F AE > F BE (however, the central part C is the effective filtration part of the hollow fiber filtration membrane. The portion corresponding to the central portion in the case of being equally divided into three in the length direction, and the end portions A and B are respectively the end portions located on the treatment liquid introduction side from the central portion C of the hollow fiber filtration membrane, (It shall mean the end portion located on the opposite side of the treated liquid introduction side from the central portion C of the hollow fiber filtration membrane).
The effective filtration part means a part where the surface of the hollow fiber filtration membrane is exposed.

前記実効透水量とは、実使用されている状態における中空糸濾過膜の長さ方向の特定部位の透水量である。すなわち、従来技術のように、実使用されている状態の中空糸濾過膜全体を用いて測定される「長さ方向の概念を持たず、平均化された透水量」ではなく、「実使用されている状態で、長さ方向の概念を導入し、部分的に見た透水量」のことである。
端部A、中央部C及び端部Bの実効透水量は、具体的には以下のように測定される。先ず、第2図および第3図に示すような、内部を3室に区画された、分割式の実効透水量測定容器2に中空糸濾過膜(の糸束)3を充填し、液漏れなく濾過ができるように中空糸濾過膜の両端部をポッティング加工した後、中空糸濾過膜の中空内部に連通する被処理液の導入(出)口を有するヘッダーキャップを筒状容器の両側に取り付けて実効透水量測定用の中空糸濾過器1を作成する。この容器2は分割式の外筒2Aと外筒2Bからなっており、外筒2Aと外筒2Bはその間に糸束3を挟み込みながら互いに係合して一体の容器となる。該容器には、夫々の小室に連通する濾液排出口(5A、5Cおよび5B)が取り付けられている。外筒2Aと外筒2Bの内壁には中空糸濾過膜の端部Aと中央部C、中央部Cと端部Bそれぞれの境界部に相当する位置に仕切り手段4が設けられ、これにより容器内が3室に区画されている。仕切り手段4は、糸束外周部と容器内周部との隙間を塞ぐものであれば特に限定されず、板状体、紐状物、膨潤性樹脂等を用いるとよい。
次に、実効透水量測定用中空糸濾過器の両側に取り付けたヘッダーキャップのうち、一方の口を閉止した状態で、他端から純水を導入して定圧デッドエンド内圧濾過を行なう。このとき、被処理液の導入圧力を一定にするために、導入口の最小内径を4.0mmとする。3本の濾液排出口5A,5Cおよび5Bから得られた純水の各透過量から、次式(2)に基づいて、長さ方向における3箇所の実効透水量を算出する。
実効透水量(m3/m2・s・Pa)
= 透過量(m3)/(膜面積(m2)×濾過時間(s)×濾過圧(Pa)) (2)
The effective water permeability is the water permeability of a specific portion in the length direction of the hollow fiber filtration membrane in a state where it is actually used. That is, as in the prior art, it is measured by using the entire hollow fiber filtration membrane in actual use, not “the concept of length direction, averaged water permeability”, but “actually used”. In this state, the concept of the length direction is introduced and the water permeability is seen partially.
Specifically, the effective water permeability of the end A, the center C, and the end B is measured as follows. First, as shown in FIGS. 2 and 3, a hollow fiber filtration membrane (yarn bundle) 3 is filled into a split-type effective water permeability measuring container 2, which is partitioned into three chambers, without liquid leakage. After potting both ends of the hollow fiber filtration membrane so that it can be filtered, header caps with inlets (outlets) for the liquid to be treated communicating with the hollow interior of the hollow fiber filtration membrane are attached to both sides of the cylindrical container. The hollow fiber filter 1 for measuring the effective water permeability is created. The container 2 includes a split-type outer cylinder 2A and an outer cylinder 2B. The outer cylinder 2A and the outer cylinder 2B are engaged with each other while sandwiching the yarn bundle 3 therebetween to form an integral container. The container is fitted with filtrate outlets (5A, 5C and 5B) communicating with the respective chambers. On the inner walls of the outer cylinder 2A and the outer cylinder 2B, partition means 4 are provided at positions corresponding to the boundary portions of the end portion A and the center portion C of the hollow fiber filtration membrane and the center portion C and the end portion B, respectively. The interior is divided into three rooms. The partition means 4 is not particularly limited as long as it closes the gap between the outer peripheral portion of the yarn bundle and the inner peripheral portion of the container, and a plate-like body, a string-like object, a swellable resin or the like may be used.
Next, of the header caps attached to both sides of the hollow fiber filter for measuring effective water permeability, pure water is introduced from the other end with one end closed, and constant pressure dead end internal pressure filtration is performed. At this time, in order to make the introduction pressure of the liquid to be treated constant, the minimum inner diameter of the introduction port is set to 4.0 mm. Based on the permeation amount of pure water obtained from the three filtrate outlets 5A, 5C and 5B, the effective water permeation amount at three locations in the length direction is calculated based on the following equation (2).
Effective water permeability (m 3 / m 2 · s · Pa)
= Permeation amount (m 3 ) / (membrane area (m 2 ) × filtration time (s) × filtration pressure (Pa)) (2)

なお、中空糸濾過膜が既に通常の中空糸型濾過器に組み立てられている場合は、その外筒部分を慎重に切除し、両端の樹脂層部が付いた状態の中空糸濾過膜(の束)を取り出す。しかる後、該中空糸濾過膜(の束)を実効透水量測定容器に充填し、隙間を液密にシールして測定する。   In addition, when the hollow fiber filtration membrane has already been assembled into a normal hollow fiber filter, the outer tube portion is carefully cut off, and the hollow fiber filtration membrane with the resin layer portions at both ends attached (bundle of ). Thereafter, the hollow fiber filtration membrane (bundle) is filled into an effective water permeability measuring container, and the gap is liquid-tightly sealed and measured.

中空糸濾過膜の前記実効透水量は、定圧デッドエンド内圧濾過を行うときには、端部A、端部Bおよび中央部Cの各実効透水量FAE、FBEおよびFCEの関係が、「FAE≧FCE>FBE」であることが好ましい。各実効透水量がこの関係にあると、被処理液の入口側における高い膜間圧力差に起因する濾過過剰が軽減された状態になっているといえる。
また、各実効透水量FAE、FBEおよびFCEの関係は、「FCE>FAE>FBE」であってもよい。各実効透水量がこの関係にあると、被処理液の入口側における高い膜間圧力差に起因する濾過過剰が不足なく相殺された状態になっているといえる。
上記何れの場合も、FAEとFCEとの差が±10%以内であればより好ましい。中空糸濾過膜がこのような実効透水量の分布を有することにより、従来、濾過が過剰の部位で生じていた目詰まりによる局所的なライフタイムの低下が改善される。特に好ましくは、各実効透水量の関係が「FAE=FCE>FBE」の場合である。
ここで、FCEとFAEとの差とは、{(FCE−FAE)/FCE}×100をいう。
The effective water permeation amount of the hollow fiber filtration membrane is determined by the relationship between the effective water permeation amounts F AE , F BE, and F CE of the end A, the end B, and the center C when performing constant pressure dead end internal pressure filtration. It is preferable that “ AE ≧ F CE > F BE ”. If each effective water permeation amount is in this relationship, it can be said that excessive filtration due to a high transmembrane pressure difference on the inlet side of the liquid to be treated is reduced.
Further, the relationship between the effective water permeability F AE , F BE and F CE may be “F CE > F AE > F BE ”. If each effective water permeation amount has this relationship, it can be said that the excess filtration due to the high transmembrane pressure difference on the inlet side of the liquid to be treated is offset without being insufficient.
In any of the above cases, it is more preferable if the difference between F AE and F CE is within ± 10%. When the hollow fiber filtration membrane has such a distribution of the effective water permeability, the local lifetime reduction due to clogging that has conventionally occurred at a site where filtration is excessive is improved. It is particularly preferable that the relationship between the effective water permeabilities is “F AE = F CE > F BE ”.
Here, the difference between F CE and F AE is {(F CE −F AE ) / F CE } × 100.

前記固有透水量を有する中空糸濾過膜を得る方法は特に限定されないが、例えば、製膜工程で処理する方法や、製膜後に表面改質する方法が挙げられる。
前者の一例としては、中空糸濾過膜を複数本まとめて糸束とし、これを離散しないようにフィルム等で巻いた状態でマイクロ波乾燥させる方法が挙げられる。このとき、両端部が過剰乾燥となって膜収縮が進むようにすると、長さ方向の中央部Cが端部Aおよび端部Bよりも高い固有透水量を有するようにできる。
後者の一例としては、基材膜の透過性能を低下させる物質(例えば、親水性物質(モノマー、ポリマー))を両端部にコーティングする、共有結合させる、モノマーをグラフト重合する等の方法がある。その際、反応槽に縦方向に中空糸濾過膜を浸漬して反応させた後、該膜を上下反転させて再度浸漬することにより、両端部付近の固有透水量を低下させることができる。あるいは、反応槽に水平方向に中空糸濾過膜を浸漬すると、両端から中央に向かって反応が進むので、両端部付近の固有透水量を低下させることができる。例えば、親水性モノマーを用いて、ラジカル開始型のグラフト重合により疎水性膜を親水化する場合は、反応速度が速い結果、両端部から中央部に向って親水性の勾配を付け易い(=固有透水量に勾配を付け易い)ので、この方法が特に好ましい。
The method for obtaining the hollow fiber filtration membrane having the inherent water permeation amount is not particularly limited, and examples thereof include a treatment method in a membrane formation step and a surface modification method after the membrane formation.
As an example of the former, there is a method in which a plurality of hollow fiber filtration membranes are combined into a yarn bundle, and microwave-dried in a state of being wound with a film or the like so as not to be separated. At this time, if both ends are excessively dried and film shrinkage proceeds, the central portion C in the length direction can have a higher intrinsic water permeability than the end A and the end B.
As an example of the latter, there are methods such as coating a material that lowers the permeation performance of the substrate membrane (for example, a hydrophilic material (monomer, polymer)) on both ends, covalent bonding, or graft polymerization of the monomer. At that time, after the hollow fiber filtration membrane is immersed in the reaction tank in the vertical direction and reacted, the membrane is turned upside down and immersed again to reduce the intrinsic water permeability in the vicinity of both ends. Alternatively, when the hollow fiber filtration membrane is immersed in the reaction tank in the horizontal direction, the reaction proceeds from both ends toward the center, so that the inherent water permeability near both ends can be reduced. For example, when a hydrophilic monomer is hydrophilized by radical-initiated graft polymerization using a hydrophilic monomer, the reaction rate is high, and as a result, it is easy to create a hydrophilic gradient from both ends to the center. This method is particularly preferable because it is easy to give a gradient to the water permeability.

本発明の中空糸濾過器は、前記中空糸濾過膜を筒状容器内に一本以上充填してなるものである。このような中空糸濾過器の一例を第1図に示す。具体例としては、一本以上の中空糸濾過膜(複数本の場合は、「糸束」とも称する)3と、該中空糸濾過膜を充填した、容器外部へ濾液を排出するための濾液排出口5(ノズルと称することもある)を有する筒状容器6と、該筒状容器の両端部に該中空糸濾過膜の両端部を液密に固定すると共に中空糸濾過膜の開口部7を有し、かつ中空内部と中空外部を隔離しているポッティング部8と、該ポッティング部に被冠された、中空内部に連通する被処理液の導入(出)口(ノズルと称することもある)を有するヘッダーキャップ9を含んでなるものが挙げられる。
なお、第1図では両端に中空糸濾過膜3の中空内部に連通する被処理液の導入(出)口を有するクロスフロー用濾過器の一例を示しているが、デッドエンド濾過用濾過器とするときは、予め連通口の一方を盲端に成型しておくとよい。
The hollow fiber filter of the present invention is formed by filling one or more hollow fiber filtration membranes in a cylindrical container. An example of such a hollow fiber filter is shown in FIG. As a specific example, one or more hollow fiber filtration membranes (in the case of a plurality of hollow fiber filtration membranes, also referred to as “yarn bundle”) 3 and a filtrate drain for discharging the filtrate to the outside of the container filled with the hollow fiber filtration membranes. A cylindrical container 6 having an outlet 5 (sometimes referred to as a nozzle), and both ends of the hollow fiber filtration membrane are liquid-tightly fixed to both ends of the cylindrical container, and an opening 7 of the hollow fiber filtration membrane is provided. And a potting portion 8 that separates the hollow interior and the hollow exterior, and an inlet (outlet) of the liquid to be treated that is covered by the potting portion and communicates with the hollow interior (sometimes referred to as a nozzle) And a header cap 9 having
In addition, although FIG. 1 shows an example of a crossflow filter having an inlet (outlet) for the liquid to be treated communicating with the hollow interior of the hollow fiber filtration membrane 3 at both ends, When doing so, it is better to mold one end of the communication port into a blind end in advance.

前記中空糸濾過器の詳細構造や製造方法については特に限定はなく、公知の中空糸型工業用フィルターや中空糸型人工透析器等の構造や製造方法を採用することができる。但し、中空糸濾過器の長さは、充填された中空糸濾過膜の濾過有効部の長さが0.1〜0.7mとなるように成型されていることが好ましい。また、中空糸濾過膜の充填状態は、膜がU字型に曲げられているよりも、直線状に充填されている方が好ましい。   The detailed structure and manufacturing method of the hollow fiber filter are not particularly limited, and the structure and manufacturing method of a known hollow fiber type industrial filter or hollow fiber type artificial dialyzer can be employed. However, the length of the hollow fiber filter is preferably molded so that the length of the filtration effective portion of the filled hollow fiber filtration membrane is 0.1 to 0.7 m. Moreover, it is more preferable that the filling state of the hollow fiber filtration membrane is filled linearly than the membrane is bent in a U shape.

次に、前記中空糸濾過器を用いて被処理液を濾過する方法について、図面を参照しながら説明する。
第4図は、濾過装置10の流路構成および付属部品の配置の一例を示す図面である。第4図において、被処理液貯留部12は、入口側流路20によって中空糸型濾過器11の被処理液導入側に接続されており、入口側流路20には、液体移送手段23、入口側圧力計22および入口側圧力調整手段21が設けられている。一方、中空糸型濾過器11の濾液排出口は、濾過側流路30によって濾液貯留部13に接続されており、濾過側流路30には、濾過側圧力計32および濾過側圧力調整手段31が設けられている。
ここで、液体移送手段23は送液ポンプであれば何れでもよく、送液量や日処理液の種類に応じて適宜選択すればよい。また、入口側圧力調整手段22とは、入口側流路の一部において、内部抵抗を連続的に加減できる開閉バルブであれば何れでもよく、適宜選択すればよい。入口側圧力計21としては、ブルドン管圧力計やディジタルマノメータ等を例示できる。他の圧力調整手段も同様である。
Next, a method for filtering the liquid to be treated using the hollow fiber filter will be described with reference to the drawings.
FIG. 4 is a drawing showing an example of the flow path configuration of the filtration device 10 and the arrangement of accessory parts. In FIG. 4, the to-be-processed liquid storage part 12 is connected to the to-be-processed liquid introduction | transduction side of the hollow fiber type filter 11 by the inlet side flow path 20, The liquid transfer means 23, An inlet side pressure gauge 22 and an inlet side pressure adjusting means 21 are provided. On the other hand, the filtrate outlet of the hollow fiber type filter 11 is connected to the filtrate storage part 13 by a filtration side flow path 30, and the filtration side pressure gauge 32 and the filtration side pressure adjusting means 31 are connected to the filtration side flow path 30. Is provided.
Here, the liquid transfer means 23 may be any liquid feed pump, and may be appropriately selected according to the liquid feed amount and the type of daily treatment liquid. The inlet side pressure adjusting means 22 may be any open / close valve capable of continuously adjusting the internal resistance in a part of the inlet side flow path, and may be appropriately selected. Examples of the inlet-side pressure gauge 21 include a Bourdon tube pressure gauge and a digital manometer. The same applies to the other pressure adjusting means.

第4図において、実線で示す流路部分はデッドエンド濾過を行う場合の流路の一例である。デッドエンド濾過においては、被処理液貯留部12の被処理液を液体移送手段23によって移送し、中空糸濾過器11の被処理液導入側に導入する。このとき、中空糸濾過器11は、導入した被処理液が全量濾過されるように、被処理液導入側とは反対側の端部が盲端あるいは遮断されている。導入された被処理液は濾過され、中空糸濾過器11の濾液排出口から濾過側流路30を通って濾液貯留部13に回収される。導入する被処理液の流量や濾過量は、液体移送手段23、入口側圧力調整手段22および濾過側圧力調整手段32の何れか一つ以上によって適宜設定される。
一方、クロスフロー濾過を行う場合は、点線で示す流路を追加して被処理液を循環させる。その場合、中空糸濾過器11の被処理液導出側は、出口側流路40によって被処理貯留部12に接続されており、出口側流路40には、出口側圧力計41および出口側圧力調整手段42が設けられている。クロスフロー濾過においては、被処理液貯留部12の被処理液を液体移送手段23によって移送し、中空糸濾過器11の被処理液導入側に導入する。このとき、中空糸濾過器11に導入した被処理液の一部が濾液排出口から濾過側流路30へ濾過され、残りが被処理液導出側から出口側流路40の方へ導出されるように、濾過側圧力調整手段32と出口側圧力調整手段42のバランスによって調整される。導出された被処理液の一部は、出口側流路40を通って被処理液貯留部12に回収され、循環しながら濾過が行われる。導入・導出する流量や濾過量は、液体移送手段23、入口側圧力調整手段22、出口側圧力調整手段42および濾過側圧力調整手段32の何れか一つ以上によって適宜設定される。
なお、図示はしないが、中空糸濾過膜の一端から、その中空内部へ被処理液を直接導入する方法が内圧濾過であり、中空糸濾過膜の外周面から中空内部へ被処理液を透過させて導入する方法が外圧濾過である。
In FIG. 4, a flow path portion indicated by a solid line is an example of a flow path when dead-end filtration is performed. In dead-end filtration, the liquid to be processed in the liquid storage section 12 is transferred by the liquid transfer means 23 and introduced into the liquid to be processed introduction side of the hollow fiber filter 11. At this time, the end of the hollow fiber filter 11 opposite to the treatment liquid introduction side is blinded or blocked so that the entire amount of the introduced treatment liquid is filtered. The introduced liquid to be treated is filtered, and collected from the filtrate discharge port of the hollow fiber filter 11 through the filtration side channel 30 to the filtrate storage unit 13. The flow rate and the filtration amount of the liquid to be introduced are appropriately set by any one or more of the liquid transfer means 23, the inlet side pressure adjustment means 22 and the filtration side pressure adjustment means 32.
On the other hand, when cross-flow filtration is performed, a flow path indicated by a dotted line is added to circulate the liquid to be processed. In that case, the treated liquid outlet side of the hollow fiber filter 11 is connected to the treated storage section 12 by the outlet side flow path 40, and the outlet side pressure gauge 41 and the outlet side pressure are connected to the outlet side flow path 40. Adjustment means 42 is provided. In the cross-flow filtration, the liquid to be processed in the liquid storage section 12 is transferred by the liquid transfer means 23 and introduced to the liquid to be processed introduction side of the hollow fiber filter 11. At this time, a part of the liquid to be treated introduced into the hollow fiber filter 11 is filtered from the filtrate discharge port to the filtration side flow path 30, and the rest is led out from the liquid to be treated to the outlet side flow path 40. Thus, it is adjusted by the balance of the filtration side pressure adjusting means 32 and the outlet side pressure adjusting means 42. A part of the derived liquid to be processed passes through the outlet side flow path 40 and is collected in the liquid to be processed storing section 12, and is filtered while being circulated. The flow rate and the filtration amount to be introduced / derived are appropriately set by any one or more of the liquid transfer means 23, the inlet side pressure adjusting means 22, the outlet side pressure adjusting means 42, and the filtration side pressure adjusting means 32.
Although not shown, the method of directly introducing the liquid to be treated into the hollow interior from one end of the hollow fiber filtration membrane is internal pressure filtration, and the liquid to be treated is permeated into the hollow interior from the outer peripheral surface of the hollow fiber filtration membrane. The method introduced in this way is external pressure filtration.

本発明の濾過方法を実施する際は、液体移送手段23の流量、入口側圧力調整手段21の開閉度及び濾過側圧力調整手段32の開閉度のいずれか一つ以上を調整することにより、中空糸濾過膜の中央部Cの実効透水量FCEと、端部Aおよび/または端部Bの実効透水量FAE、FBEとの差を±10%以内になるように設定することができる。その際、流量と圧力については、何れか一方で実効透水量を十分調節できる場合はそれでもよく、必要に応じて流量と圧力の双方で実効透水量を調節するとよい。クロスフロー濾過の場合は、出口側圧力調整手段42の開閉度を調整することもある。
なお、各実効透水量を調節するにあたっては、実使用するものと同じ中空糸濾過膜を調節用にもう一本準備する。そして、この中空糸濾過膜を実効透水量測定用容器に充填して、各実効透水量を測定しながら流量と圧力の最適値を確認し、予めそれぞれの設定値を定めておくとよい。
When carrying out the filtration method of the present invention, the flow rate of the liquid transfer means 23, the opening / closing degree of the inlet side pressure adjusting means 21 and the opening degree of the filtration side pressure adjusting means 32 are adjusted to adjust the hollowness. The difference between the effective water flow rate F CE at the center C of the yarn filtration membrane and the effective water flow rates F AE and F BE at the end A and / or the end B can be set to be within ± 10%. . At that time, either the flow rate or the pressure may be sufficient if the effective water permeability can be sufficiently adjusted, and the effective water flow rate may be adjusted by both the flow rate and the pressure as necessary. In the case of cross flow filtration, the opening / closing degree of the outlet side pressure adjusting means 42 may be adjusted.
In addition, in adjusting each effective water permeability, another hollow fiber filtration membrane same as what is actually used is prepared for adjustment. And it is good to fill this hollow fiber filtration membrane in the container for measuring the effective water permeability, check the optimum values of the flow rate and the pressure while measuring each effective water permeability, and set the respective set values in advance.

第5図は、中空糸濾過器を用いてデッドエンド内圧濾過するときの圧力と透水量の分布を示す模式図である。
第5図の(A)は従来技術を示している。固有透水量を長さ方向に均一化した中空糸濾過膜を用いると、中空糸濾過膜の被処理液の導入口側端部で膜間圧力差が最も高くなる結果、被処理液の導入口側端部の実効透水量が中央部の実効透水量に比して高くなる。このことは、被処理液の導入口側端部で目詰まりによるライフタイムの低下や、透過阻止すべき物質の透過を引き起こす懸念があることを意味する。
FIG. 5 is a schematic diagram showing the distribution of pressure and water permeability when dead-end internal pressure filtration is performed using a hollow fiber filter.
FIG. 5A shows the prior art. When a hollow fiber filtration membrane having a uniform water permeation rate in the length direction is used, the pressure difference between the membranes becomes the highest at the inlet side end of the liquid to be treated of the hollow fiber filtration membrane. The effective water permeability at the side end is higher than the effective water permeability at the center. This means that there is a concern that a lifetime is reduced due to clogging at the inlet side end portion of the liquid to be treated and that a substance to be permeated is caused to permeate.

一方、第5図の(B)は本発明の中空糸濾過膜を用いた場合を示している。中央部の固有透水量が両端部に比して高い中空糸濾過膜を用いると、中空糸濾過膜の被処理液の導入口側端部で膜間圧力差が高くなっても、被処理液の導入口側端部の固有透水量の低さが実効透水量の増加分を相殺する結果、被処理液の導入口側端部の実効透水量Fを中央部の実効透水量と同等にできる。このことは、被処理液の導入口側端部で目詰まりによるライフタイムの低下や、透過阻止すべき物質の透過を抑制することを意味する。
被処理液の導入口側端部での目詰まりによるライフタイムの低下や、透過阻止すべき物質の透過を抑制するためには、中空糸濾過膜の中央部Cの実効透水量FCEと、端部Aまたは端部Bの実効透水量FAE、FBEとの差を±10%以内に設定することが好ましい。
なお、本図面では、デッドエンド濾過の場合を図示したが、クロスフロー濾過を行う場合も、この場合と同じ傾向を示す。
On the other hand, FIG. 5B shows a case where the hollow fiber filtration membrane of the present invention is used. When a hollow fiber filtration membrane having a higher intrinsic water permeability at the center than at both ends is used, the liquid to be treated can be treated even if the pressure difference between the membranes at the inlet side end of the liquid to be treated of the hollow fiber filtration membrane is high. As a result of the low intrinsic water permeability at the inlet side end of the liquid offsetting the increase in effective water permeability, the effective water permeability F at the inlet side end of the liquid to be treated can be made equal to the effective water permeability at the center. . This means that a lifetime is reduced due to clogging at the inlet side end of the liquid to be treated, and a permeation of a substance to be prevented from permeating is suppressed.
In order to reduce the lifetime due to clogging at the inlet side end of the liquid to be treated and to suppress the permeation of the substance to be permeated, the effective water permeation amount F CE in the center C of the hollow fiber filtration membrane, It is preferable to set the difference between the effective water permeability F AE and F BE of the end A or the end B within ± 10%.
In addition, in this drawing, although the case of dead end filtration was illustrated, the same tendency as this case is shown also when performing cross flow filtration.

第6図は、中空糸濾過器を用いて外圧濾過し、中空糸濾過膜の両端部から濾液を導出するときの圧力と透水量の分布を示す模式図である。
第6図の(A)は従来技術を示している。固有透水量を長さ方向に均一化した中空糸濾過膜を用いると、中空糸濾過膜の両端部(濾液の出口側)で膜間圧力差が最も高くなる結果、両端部の実効透水量が中央部の実効透水量に比して高くなる。このことは、両端部付近で目詰まりによるライフタイムの低下や、透過阻止すべき物質の透過を引き起こす懸念があることを意味する。
FIG. 6 is a schematic diagram showing the distribution of pressure and water permeability when external pressure filtration is performed using a hollow fiber filter and the filtrate is led out from both ends of the hollow fiber filtration membrane.
FIG. 6A shows the prior art. When a hollow fiber filtration membrane with a uniform water permeability in the length direction is used, the pressure difference between the membranes is the highest at both ends of the hollow fiber filtration membrane (at the outlet side of the filtrate), resulting in an effective water permeability at both ends. It becomes higher than the effective water permeability in the center. This means that there is a concern that the lifetime is reduced due to clogging in the vicinity of both end portions, or that the substance to be permeated is permeated.

一方、第6図の(B)は本発明の中空糸濾過膜を用いた場合を示している。長さ方向の中央部の固有透水量が両端部に比して高い中空糸濾過膜を用いると、中空糸濾過膜の両端部(濾液の出口側)で膜間圧力差が高くなっても、両端部の固有透水量の低さが実効透水量の増加分を相殺する結果、両端部の実効透水量を中央部の実効透水量と同等にできる。このことは、両端部付近で目詰まりによるライフタイムの低下や、透過阻止すべき物質の透過を抑制することを意味する。
両端部における目詰まりによるライフタイムの低下や、透過阻止すべき物質の透過を抑制するためには、中空糸濾過膜の中央部Cの実効透水量FCEと、端部Aおよび端部Bの実効透水量FAE、FBEとの差を±10%以内に設定することが好ましい。
On the other hand, FIG. 6B shows a case where the hollow fiber filtration membrane of the present invention is used. When a hollow fiber filtration membrane having a higher intrinsic water permeability at the center in the length direction is used than at both ends, even if the pressure difference between the membranes is higher at both ends (filtrate outlet side) of the hollow fiber filtration membrane, As a result of the low intrinsic water permeability at both ends offsetting the increase in effective water permeability, the effective water permeability at both ends can be made equal to the effective water permeability at the center. This means that the lifetime is reduced due to clogging in the vicinity of both ends, and the permeation of the substance to be prevented from permeating is suppressed.
In order to suppress the lifetime decrease due to clogging at both ends and the permeation of the material to be prevented from permeating, the effective water permeability F CE at the center C of the hollow fiber filtration membrane and the end A and the end B It is preferable to set the difference between the effective water permeability F AE and F BE within ± 10%.

第6図から明らかなとおり、本発明の中空糸濾過膜を用いて外圧濾過により中空糸濾過膜の両端部から濾液を導出する場合は、中空糸濾過膜の長さ方向全体にわたって均一に濾過できることになる。したがって、本発明の中空糸濾過膜は外圧濾過に用いるのに特に適している。
なお、第6図は中空糸濾過膜の両端部から濾液を導出する場合を示しているが、外圧濾過により中空糸濾過膜の一端(例えば、端部A)から濾液を導出する場合は、図面左側の端部のみから濾液が排出される。
As is apparent from FIG. 6, when the filtrate is led out from both ends of the hollow fiber filtration membrane by external pressure filtration using the hollow fiber filtration membrane of the present invention, it can be uniformly filtered over the entire length of the hollow fiber filtration membrane. become. Therefore, the hollow fiber filtration membrane of the present invention is particularly suitable for use in external pressure filtration.
FIG. 6 shows the case where the filtrate is led out from both ends of the hollow fiber filtration membrane. However, when the filtrate is led out from one end (for example, the end A) of the hollow fiber filtration membrane by external pressure filtration, FIG. The filtrate is drained only from the left end.

以上説明したとおり、本発明の中空糸濾過膜、中空糸型濾過器および濾過方法は、工業用プロセスフィルター、浄水用フィルター、理化学・検査用フィルターおよび血液浄化器等において、被処理液から目的物を分離・濃縮・精製する様々な分野において、広範囲な用途に利用できる。   As described above, the hollow fiber filtration membrane, the hollow fiber filter, and the filtration method of the present invention are used in an industrial process filter, a water purification filter, a physicochemical / inspection filter, a blood purifier, and the like from a liquid to be treated. It can be used for a wide range of applications in various fields for separating, concentrating and purifying sucrose.

以下、実施例により本発明を詳細に説明する。実施例は本発明を限定するものではない。実施例および比較例にて用いた測定方法は次の通りである。   Hereinafter, the present invention will be described in detail by way of examples. The examples do not limit the invention. The measurement methods used in the examples and comparative examples are as follows.

(1)固有透水量
中空糸濾過膜25本を長さ方向に3等分割し、両端部をポッティング加工して濾過有効部6.5cm×25本のミニモジュールを3種類作成する(夫々を端部A、端部Bおよび中央部Cとする)。このとき、被処理液の導入圧力を一定にするために、被処理液の導入口の最小内径を4.0mmとする。
各ミニモジュールの両側に取り付けたヘッダーキャップのうち、一方の口を閉止した状態で、他端から温度25℃の純水を導入し、濾過圧力0.294MPaの定圧デッドエンド内圧濾過を行う。得られた純水の透過量から、前出の式(1)に基づいて、長さ方向における3箇所の固有透水量を算出する。
(1) Inherent water permeability 25 hollow fiber filtration membranes are divided into three equal parts in the length direction, and both ends are potted to create three types of mini modules of 6.5 cm × 25 effective filtration portions (each end Part A, end B and center C). At this time, in order to make the introduction pressure of the liquid to be processed constant, the minimum inner diameter of the inlet of the liquid to be processed is set to 4.0 mm.
Of the header caps attached to both sides of each mini-module, with one port closed, pure water with a temperature of 25 ° C. is introduced from the other end, and constant-pressure dead-end internal pressure filtration with a filtration pressure of 0.294 MPa is performed. Based on the permeation amount of the obtained pure water, the inherent water permeation amounts at three locations in the length direction are calculated based on the above formula (1).

(2)実効透水量
第2図に示すような分割式かつ内部を3室に区画できる実効透水量測定容器に中空糸濾過膜1100本を充填し、両端部をポッティング加工して実効透水量測定用の中空糸濾過器を作成する。このとき、被処理液の導入圧力を一定にするために、被処理液の導入口の最小内径を4.0mmとする。
該中空糸濾過器に1L以上の純水を通水して膜を十分に湿潤化した後、両側に取り付けたヘッダーキャップのうち、一方の口を閉止した状態で、他端から温度25℃の純水を導入し、濾過圧力0.1MPaの定圧デッドエンド内圧濾過を行なう。このとき、濾液側のノズルが全て下向きになるように濾過器を固定しておく。得られた純水の透過量から、前出の式(2)に基づいて、中空糸濾過膜の長さ方向における3箇所の実効透水量を算出する。
(2) Effective water permeability The effective water permeability measurement is carried out by filling 1100 hollow fiber filtration membranes into a split-type container with three compartments as shown in Fig. 2 and potting both ends. A hollow fiber filter is prepared. At this time, in order to make the introduction pressure of the liquid to be processed constant, the minimum inner diameter of the inlet of the liquid to be processed is set to 4.0 mm.
After the membrane was sufficiently wetted by passing 1 L or more of pure water through the hollow fiber filter, one of the header caps attached to both sides was closed and the temperature was 25 ° C. from the other end. Pure water is introduced and constant-pressure dead-end internal pressure filtration with a filtration pressure of 0.1 MPa is performed. At this time, the filter is fixed so that all the nozzles on the filtrate side face downward. Based on the permeation amount of the obtained pure water, the effective water permeation amount at three locations in the length direction of the hollow fiber filtration membrane is calculated based on the above formula (2).

<中空糸基材膜の製造>
[製造例1]
ポリフッ化ビニリデン樹脂(SOLVAY社製、SOFEF1012、結晶融点173℃)49wt%、フタル酸ジシクロヘキシル(大阪有機化学工業(株)製工業品)53wt%からなる組成物を、ヘンシェルミキサーを用いて70℃で攪拌混合した後、冷却して粉体状としたものをホッパーより投入し、二軸押出機(東洋精機(株)製 ラボプラストミル MODEL 50C 150)を用いて210℃で溶融混合し均一溶解した。
続いて、中空内部に温度が130℃のフタル酸ジブチル(三建化工(株)製)を11ml/分の速度で流しつつ、内直径0.8mm、外直径1.05mmの環状オリフィスからなる紡口より吐出速度17m/分で中空糸状に押し出し、40℃に温調された水浴中で冷却固化させて、50m/分の速度でカセに巻き取った。
その後、99%メタノール変性エタノール(今津薬品工業(株)製工業品)でフタル酸ジシクロヘキシル及びフタル酸ジブチルを抽出除去し、付着したエタノールを水で置換した後、水中に浸漬した状態で高圧蒸気滅菌装置(平山製作所(株)製 HV−85)を用いて125℃の熱処理を1時間施した。熱処理時、収縮を防ぐために膜を定長状態に固定した。その後、オーブン中で60℃の温度で乾燥することにより多孔質中空糸膜を得た。
得られた多孔質中空糸膜は長さ32.5cm、内径330μm、膜厚49μmであった(何れの数値も15本の平均値)。この膜を基材膜として、後述するグラフト重合による表面改質を行った。
<Manufacture of hollow fiber substrate membrane>
[Production Example 1]
A composition comprising 49% by weight of a polyvinylidene fluoride resin (manufactured by SOLVAY, SOFEF1012, crystal melting point 173 ° C.) and 53% by weight of dicyclohexyl phthalate (industrial product manufactured by Osaka Organic Chemical Industry Co., Ltd.) at 70 ° C. using a Henschel mixer. After stirring and mixing, the cooled and powdered product was charged from the hopper, and melted and mixed uniformly at 210 ° C. using a twin screw extruder (Toyo Seiki Co., Ltd., Laboplast Mill MODEL 50C 150). .
Subsequently, while spinning, dibutyl phthalate (manufactured by Sanken Chemical Co., Ltd.) having a temperature of 130 ° C. is flowed into the hollow at a rate of 11 ml / min. It was extruded in the form of a hollow fiber at a discharge speed of 17 m / min from the mouth, cooled and solidified in a water bath adjusted to 40 ° C., and wound around a cassette at a speed of 50 m / min.
After that, dicyclohexyl phthalate and dibutyl phthalate were extracted and removed with 99% methanol-modified ethanol (industrial product of Imazu Pharmaceutical Co., Ltd.), and the adhering ethanol was replaced with water, followed by high-pressure steam sterilization while immersed in water. Heat treatment at 125 ° C. was performed for 1 hour using an apparatus (HV-85 manufactured by Hirayama Seisakusho Co., Ltd.). During the heat treatment, the film was fixed in a constant length state to prevent shrinkage. Then, the porous hollow fiber membrane was obtained by drying at the temperature of 60 degreeC in oven.
The obtained porous hollow fiber membrane had a length of 32.5 cm, an inner diameter of 330 μm, and a film thickness of 49 μm (all numerical values are average values of 15). Using this film as a base film, surface modification by graft polymerization described later was performed.

[製造例2]
中空内部に流すフタル酸ジブチルの流速を12ml/分としたこと以外は、製造例1と同様の方法で多孔質中空糸膜を製造した。得られた中空糸膜は、長さ32.5cm、内径350μm、膜厚47μmであった(何れの数値も15本の平均値)。この膜を基材膜として、後述するグラフト重合による表面改質を行った。
[Production Example 2]
A porous hollow fiber membrane was produced in the same manner as in Production Example 1 except that the flow rate of dibutyl phthalate flowing into the hollow interior was 12 ml / min. The obtained hollow fiber membrane had a length of 32.5 cm, an inner diameter of 350 μm, and a film thickness of 47 μm (all values are average values of 15). Using this film as a base film, surface modification by graft polymerization described later was performed.

<中空糸濾過膜の製造>
製造例において製造した中空糸基材膜にグラフト重合による表面改質を行って、中空糸濾過膜を製造した。
[実施例1]
製造例1で得られた中空糸濾過膜に対し、グラフト法による親水化処理を行った。
反応液として、ヒドロキシプロピルアクリレートを8.2容量%となるように、t−ブタノールの25容量%水溶液に溶解させ、45℃に保持した状態で、窒素バブリングを20分間行ったものを準備した。
まず、製造例1で得られた中空糸濾過膜1100本を、離散しないように端部を固定して糸束とした。次に、窒素雰囲気下において、該糸束をドライアイスで−60℃に冷却しながら、Co60を線源としてγ線を、25kGy照射した。
γ線照射後の糸束を容量35Lの反応容器中に充填した後、気泡管水平器を用いて該糸束が水平状態であることを確認した。反応容器内部を真空度100Pa以下で10分間静置した後、糸束の水平状態を崩さず、かつ、糸束が完全に浸漬するように、反応液30Lを貯留容器から反応容器内に導入することにより、反応液を該糸束の両端から同時に中空部内に導入させた。反応液を導入する際、貯留容器側を0.1MPaに加圧した。その後、糸束が反応液に完全に浸漬された状態で、45℃、60分間グラフト重合を行った。
重合後の糸束をイソプロピルアルコールで洗浄し、水に浸漬した状態で高圧蒸気滅菌装置を用いて125℃の熱処理を1時間施した。その後、60℃真空乾燥を8時間行い、糸束の固定部を外して、中央部が適度に親水性化されると共に、端部が過度に親水性化された親水性の中空糸濾過膜を得た。なお、適度に親水性化された中空糸濾過膜の透水性能は向上する一方、過度に親水性化された中空糸濾過膜の透水性能は低下する。
得られた中空糸濾過膜を長さ方向に3等分割し、端部1、端部2および中央部のミニモジュールを作成して各々の固有透水量を測定した。表1に示すとおり、この中空糸濾過膜は、中央部が両端部よりも高い固有透水量を有していた。固有透水量のこのような分布状態を、比較例1および2も含めて第7図にグラフで示す。
<Production of hollow fiber filtration membrane>
The hollow fiber membrane was produced by subjecting the hollow fiber membrane produced in the production example to surface modification by graft polymerization.
[Example 1]
The hollow fiber filtration membrane obtained in Production Example 1 was subjected to a hydrophilic treatment by a graft method.
As a reaction solution, a solution in which hydroxypropyl acrylate was dissolved in a 25% by volume aqueous solution of t-butanol so as to be 8.2% by volume and maintained at 45 ° C. was subjected to nitrogen bubbling for 20 minutes.
First, 1100 hollow fiber filtration membranes obtained in Production Example 1 were end bundles fixed so as not to be separated into yarn bundles. Next, under a nitrogen atmosphere, the yarn bundle was irradiated with 25 kGy using Co60 as a radiation source while cooling the yarn bundle to −60 ° C. with dry ice.
After filling the yarn bundle after γ-ray irradiation into a reaction vessel having a capacity of 35 L, it was confirmed that the yarn bundle was in a horizontal state using a bubble tube leveler. After leaving the reaction vessel inside at a vacuum degree of 100 Pa or less for 10 minutes, the reaction solution 30L is introduced from the storage vessel into the reaction vessel so that the horizontal state of the yarn bundle is not destroyed and the yarn bundle is completely immersed. As a result, the reaction solution was simultaneously introduced into the hollow portion from both ends of the yarn bundle. When introducing the reaction liquid, the storage container side was pressurized to 0.1 MPa. Thereafter, graft polymerization was carried out at 45 ° C. for 60 minutes with the yarn bundle completely immersed in the reaction solution.
After the polymerization, the yarn bundle was washed with isopropyl alcohol and subjected to heat treatment at 125 ° C. for 1 hour using a high-pressure steam sterilizer while immersed in water. Thereafter, vacuum drying at 60 ° C. is performed for 8 hours, and the fixed portion of the yarn bundle is removed, and a hydrophilic hollow fiber filtration membrane having a moderately hydrophilic center portion and an excessively hydrophilic end portion is obtained. Obtained. In addition, while the water permeability of the hollow fiber filtration membrane moderately made hydrophilic is improved, the water permeability of the hollow fiber filtration membrane made excessively hydrophilic is lowered.
The obtained hollow fiber filtration membrane was divided into three equal parts in the length direction, mini-modules of the end part 1, the end part 2 and the central part were prepared, and the respective intrinsic water permeability was measured. As shown in Table 1, the hollow fiber filtration membrane had a higher intrinsic water permeability at the center than at both ends. Such a distribution state of the intrinsic water permeability is shown by a graph in FIG. 7 including Comparative Examples 1 and 2.

[比較例1]
製造例1と同様に、基材膜として、長さ70cm、内径330μm、膜厚49μmの多孔質中空糸濾過膜を作成した。この中空糸濾過膜を、実施例1と同様にグラフト法により親水化処理を行って真空乾燥した後、一端から10.0cm、他端から27.5cmそれぞれ切除し、長さ32.5cmの中空糸濾過膜を得た。
得られた中空糸濾過膜を長さ方向に3等分割し、端部1(10.0cm切除した側)、端部2(27.5cm切除した側)および中央部のミニモジュールを作成して各々の固有透水量を測定した。表1に示すとおり、この中空糸濾過膜は、右側端部が中央部より僅かに高い固有透水量を有していたが、長さ方向で実質的に固有透水量に差異はなかった)。
[Comparative Example 1]
In the same manner as in Production Example 1, a porous hollow fiber filtration membrane having a length of 70 cm, an inner diameter of 330 μm, and a film thickness of 49 μm was prepared as the base material membrane. This hollow fiber filtration membrane was hydrophilized by the grafting method in the same manner as in Example 1 and vacuum-dried, then cut from 10.0 cm from one end and 27.5 cm from the other end, and a hollow 32.5 cm long A yarn filtration membrane was obtained.
The obtained hollow fiber filtration membrane was divided into three equal parts in the length direction, and end part 1 (side cut by 10.0 cm), end part 2 (side cut by 27.5 cm), and a mini module at the center were prepared. Each intrinsic water permeability was measured. As shown in Table 1, this hollow fiber filtration membrane had an intrinsic water permeability slightly higher at the right end than at the center, but there was no substantial difference in intrinsic water permeability in the length direction).

[比較例2]
製造例1で得られた中空糸濾過膜に対し、反応容器内部を真空度100Pa以下で10分間静置するかわりに、反応容器内部に窒素を大気圧化で10分間ブローした後、そのまま大気圧下で糸束が完全に浸漬するように、反応液30Lを貯留容器から反応容器内に導入する以外は、実施例1と同様のグラフト処理を行い、端部のみが適度に親水性化された中空糸濾過膜を得た。
得られた中空糸濾過膜を長さ方向に3等分割し、端部1、端部2および中央部のミニモジュールを作成して各々の固有透水量を測定した。表1に示すとおり、この中空糸濾過膜は、端部1および端部2が、中央部よりも明らかに高い固有透水量を有していた。
[Comparative Example 2]
For the hollow fiber filtration membrane obtained in Production Example 1, instead of leaving the inside of the reaction vessel at a vacuum of 100 Pa or less for 10 minutes, nitrogen was blown into the reaction vessel at atmospheric pressure for 10 minutes, and then the atmospheric pressure was maintained. The grafting treatment was carried out in the same manner as in Example 1 except that 30 L of the reaction solution was introduced from the storage container into the reaction container so that the yarn bundle was completely immersed, and only the end portion was appropriately made hydrophilic. A hollow fiber filtration membrane was obtained.
The obtained hollow fiber filtration membrane was divided into three equal parts in the length direction, mini-modules of the end part 1, the end part 2 and the central part were prepared, and the respective intrinsic water permeability was measured. As shown in Table 1, in the hollow fiber filtration membrane, the end portion 1 and the end portion 2 had an intrinsic water permeability that was clearly higher than that of the central portion.

[実施例2]
実施例1で得られた中空糸濾過膜1100本を筒状容器に(端部1が端部A、端部2が端部Bに、それぞれ位置するように)充填して図3に示す中空糸濾過器を作成した。このとき濾過有効部長は30cmであった。中空糸濾過膜を十分に湿潤させた後、この濾過器に被処理液の注入側から0.1MPaの圧力で純水を濾過し、濾過有効部を長さ方向に3等分したときの各部位での実効透水量を測定した。但し、透過側のノズル(濾液排出口)は下向きにして測定した。濾過有効部を長さ方向に3等分したときの各部位での実効透水量を表2に示す。
なお、端部1と中央部の固有透水量の関係[(F端部1−F中央部)/F中央部×100(%)]は-14.7%であるところ、実効透水量の関係についてみると[(FAE−FCE)/FCE×100(%)]=-9.87%と、その絶対値が小さくなっており、このことから、中空糸濾過膜の固有透水量を本発明のように設計しておくことによって、その実効透水量を長さ方向に均一に近づけることができることが確認できた。
[Example 2]
The hollow fiber filtration membrane shown in FIG. 3 is filled with 1100 hollow fiber filtration membranes obtained in Example 1 (with the end 1 positioned at the end A and the end 2 at the end B, respectively). A yarn filter was created. At this time, the effective length of the filtration was 30 cm. After the hollow fiber filtration membrane is sufficiently wetted, pure water is filtered into the filter from the injection side of the liquid to be treated at a pressure of 0.1 MPa, and the effective filtration part is divided into three equal parts in the length direction. The effective water permeability at the site was measured. However, the measurement was carried out with the permeation side nozzle (filtrate outlet) facing downward. Table 2 shows the effective water permeability at each site when the effective filtration part is divided into three equal parts in the length direction.
It should be noted that the relationship between the intrinsic water permeability at the end 1 and the central part [(F edge 1 -F central part ) / F central part × 100 (%)] is -14.7%. And [(F AE −F CE ) / F CE × 100 (%)] = − 9.87%, and the absolute value thereof is small. From this, the intrinsic water permeability of the hollow fiber filtration membrane is set as in the present invention. It was confirmed that the effective water permeation amount can be made uniform in the length direction by designing it in the length direction.

[実施例3]
製造例1で得られた中空糸濾過膜500本を、離散しないように端部を固定して糸束とした。次に、窒素雰囲気下において、該糸束をドライアイスで−60℃に冷却しながら、Co60を線源としてγ線を、25kGy照射した以外は実施例1と同様のグラフト処理を行った。ここで、端部1、端部2および中央部の各固有透水量は、それぞれ3.40×10-11、3.32×10-11、3.93×10-11[m3/m2・s・Pa]であった。
次いで、この中空糸濾過膜を用いた以外は、実施例2と同様にして中空糸濾過器を作成し、濾過有効部を長さ方向に3等分したときの各部位での実効透水量を測定した。濾過有効部を長さ方向に3等分したときの各部位での実効透水量を表2に示す。
なお、端部1と中央部の固有透水量の関係[(F端部1−F中央部)/F中央部×100(%)]は-13.49%であるところ、実効透水量の関係についてみると[(FAE−FCE)/FCE×100(%)]=9.70%と、その正負が逆になっており、このことから、中空糸濾過膜の固有透水量を本発明のように設計しておくことによって、その実効透水量を長さ方向に均一に近づけることができることが確認できた
[Example 3]
The end portions of the 500 hollow fiber filtration membranes obtained in Production Example 1 were fixed so as not to be separated into a yarn bundle. Next, the same grafting treatment as in Example 1 was performed except that the yarn bundle was irradiated with 25 kGy using Co60 as a radiation source while the yarn bundle was cooled to −60 ° C. with dry ice in a nitrogen atmosphere. Here, the intrinsic water permeability of the end part 1, the end part 2 and the central part is 3.40 × 10 −11 , 3.32 × 10 −11 and 3.93 × 10 −11 [m 3 / m 2 · s · Pa], respectively. there were.
Next, a hollow fiber filter was prepared in the same manner as in Example 2 except that this hollow fiber filtration membrane was used, and the effective water permeability at each part when the effective filtration part was divided into three equal parts in the length direction was determined. It was measured. Table 2 shows the effective water permeability at each site when the effective filtration part is divided into three equal parts in the length direction.
It should be noted that the relationship between the intrinsic water permeability at the end 1 and the central part [(F edge 1 -F central part ) / F central part × 100 (%)] is -13.49%. And [(F AE −F CE ) / F CE × 100 (%)] = 9.70%, and the sign is reversed. From this, the inherent water permeability of the hollow fiber filtration membrane is set as in the present invention. By designing, it was confirmed that the effective water permeability can be made uniform in the length direction.

[実施例4]
製造例1で得られた中空糸濾過膜1250本を、離散しないように端部を固定して糸束とした。次に、窒素雰囲気下において、該糸束をドライアイスで−60℃に冷却しながら、Co60を線源としてγ線を、25kGy照射した以外は実施例1と同様のグラフト処理を行った。ここで、端部1、端部2および中央部の各固有透水量は、それぞれ8.30×10-11、7.85×10-11、9.60×10-11[m3/m2・s・Pa]であった。
次いで、この中空糸濾過膜を用いた以外は、実施例2と同様にして中空糸濾過器を作成し、濾過有効部を長さ方向に3等分したときの各部位での実効透水量を測定した。濾過有効部を長さ方向に3等分したときの各部位での実効透水量を表2に示す。
なお、端部1と中央部の固有透水量の関係[(F端部1−F中央部)/F中央部×100(%)]は-13.54%であるところ、実効透水量の関係についてみると[(FAE−FCE)/FCE×100(%)]=4.77%と、その正負が逆になっており、このことから、中空糸濾過膜の固有透水量を本発明のように設計しておくことによって、その実効透水量を長さ方向に均一に近づけることができることが確認できた。
[Example 4]
The end portions of the 1250 hollow fiber filtration membranes obtained in Production Example 1 were fixed so as not to be separated into a yarn bundle. Next, the same grafting treatment as in Example 1 was performed except that the yarn bundle was irradiated with 25 kGy using Co60 as a radiation source while the yarn bundle was cooled to −60 ° C. with dry ice in a nitrogen atmosphere. Here, the intrinsic water permeability of the end part 1, the end part 2 and the central part is 8.30 × 10 −11 , 7.85 × 10 −11 and 9.60 × 10 −11 [m 3 / m 2 · s · Pa], respectively. there were.
Next, a hollow fiber filter was prepared in the same manner as in Example 2 except that this hollow fiber filtration membrane was used, and the effective water permeability at each part when the effective filtration part was divided into three equal parts in the length direction was determined. It was measured. Table 2 shows the effective water permeability at each site when the effective filtration part is divided into three equal parts in the length direction.
It should be noted that the relationship between the intrinsic water permeability at the end 1 and the central part [(F edge 1 -F central part ) / F central part × 100 (%)] is -13.54%. And [(F AE −F CE ) / F CE × 100 (%)] = 4.77%, and the sign is reversed, and from this, the intrinsic water permeability of the hollow fiber filtration membrane is set as in the present invention. It was confirmed that the effective water permeability can be made uniform in the length direction by designing.

[実施例5]
製造例1で得られた中空糸濾過膜1200本を、離散しないように端部を固定して糸束とした。次に、窒素雰囲気下において、該糸束をドライアイスで−60℃に冷却しながら、Co60を線源としてγ線を、25kGy照射した以外は実施例1と同様のグラフト処理を行った。ここで、端部1、端部2および中央部の各固有透水量は、それぞれ7.60×10-11、7.22×10-11、8.85×10-11[m3/m2・s・Pa]であった。
この中空糸濾過膜を用いた以外は、実施例2と同様にして中空糸濾過器を作成し、濾過有効部を長さ方向に3等分したときの各部位での実効透水量を測定した。濾過有効部を長さ方向に3等分したときの各部位での実効透水量を表2に示す。
[Example 5]
The ends of the 1200 hollow fiber filtration membranes obtained in Production Example 1 were fixed so as not to be separated into a yarn bundle. Next, the same grafting treatment as in Example 1 was performed except that the yarn bundle was irradiated with 25 kGy using Co60 as a radiation source while the yarn bundle was cooled to −60 ° C. with dry ice in a nitrogen atmosphere. Here, the intrinsic water permeability of the end part 1, the end part 2 and the central part is 7.60 × 10 −11 , 7.22 × 10 −11 and 8.85 × 10 −11 [m 3 / m 2 · s · Pa], respectively. there were.
A hollow fiber filter was prepared in the same manner as in Example 2 except that this hollow fiber filtration membrane was used, and the effective water permeability at each part when the effective filtration part was divided into three equal parts in the length direction was measured. . Table 2 shows the effective water permeability at each site when the effective filtration part is divided into three equal parts in the length direction.

[比較例3]
比較例1で得られた中空糸濾過膜1100本を筒状容器に充填した以外は、実施例2と同様にして中空糸濾過器を作成し、濾過有効部を長さ方向に3等分したときの各部位での実効透水量を測定した。濾過有効部を長さ方向に3等分したときの各部位での実効透水量を表2に示す。
[Comparative Example 3]
A hollow fiber filter was prepared in the same manner as in Example 2 except that 1100 hollow fiber filtration membranes obtained in Comparative Example 1 were filled in a cylindrical container, and the effective filtration part was divided into three equal parts in the length direction. The effective water permeability at each part was measured. Table 2 shows the effective water permeability at each site when the effective filtration part is divided into three equal parts in the length direction.

[比較例4]
比較例2で得られた中空糸濾過膜1100本を筒状容器に充填した以外は、実施例2と同様にして中空糸濾過器を作成し、濾過有効部を長さ方向に3等分したときの各部位での実効透水量を測定した。濾過有効部を長さ方向に3等分したときの各部位での実効透水量を表2に示す。
[Comparative Example 4]
A hollow fiber filter was prepared in the same manner as in Example 2 except that 1100 hollow fiber filtration membranes obtained in Comparative Example 2 were filled in a cylindrical container, and the effective filtration part was divided into three equal parts in the length direction. The effective water permeability at each part was measured. Table 2 shows the effective water permeability at each site when the effective filtration part is divided into three equal parts in the length direction.

本発明の中空糸濾過膜は、工業用プロセスフィルター、浄水用フィルター、理化学・検査用フィルターおよび血液浄化器等において、被処理液から目的物を分離・濃縮・精製する等の様々な分野において、広範囲な用途に利用できる。   The hollow fiber filtration membrane of the present invention is an industrial process filter, a water purification filter, a physicochemical / inspection filter, a blood purifier, etc., in various fields such as separating, concentrating, and purifying a target product from a liquid to be treated. It can be used for a wide range of applications.

2 実効透水量測定容器
2A 外筒
2B 外筒
3 中空糸濾過膜
4 仕切り手段
5 濾液排出口
5A 濾液排出口
5B 濾液排出口
5C 濾液排出口
6 筒状容器
8 ポッティング部
9 ヘッダーキャップ
10 濾過装置
11 中空糸型濾過器
12 被処理液貯留部
13 濾液貯留部
20 入口側流路
21 入口側圧力調整手段
22 入口側圧力計
23 液体移送手段
30 濾過側流路
31 濾過側圧力調整手段
32 濾過側圧力計
40 出口側流路
41 出口側圧力計
42 出口側圧力調整手段
2 Effective water permeability measurement container 2A Outer cylinder 2B Outer cylinder 3 Hollow fiber filtration membrane 4 Partition means 5 Filtrate outlet 5A Filtrate outlet 5B Filtrate outlet 5C Filtrate outlet 6 Tubular container 8 Potting section 9 Header cap 10 Filtration device 11 Hollow fiber filter 12 Processed liquid storage part 13 Filtrate storage part 20 Inlet side flow path 21 Inlet side pressure adjustment means 22 Inlet side pressure gauge 23 Liquid transfer means 30 Filtration side flow path 31 Filtration side pressure adjustment means 32 Filtration side pressure Total 40 Outlet side channel 41 Outlet side pressure gauge 42 Outlet side pressure adjusting means

Claims (10)

多孔質の中空糸濾過膜であって、該中空糸濾過膜を長さ方向に3等分割したときの中央部の固有透水量が、両端部の固有透水量よりも高い中空糸濾過膜。   A porous hollow fiber filtration membrane, wherein the intrinsic water permeability at the center when the hollow fiber filtration membrane is divided into three equal parts in the length direction is higher than the intrinsic water permeability at both ends. 筒状容器に充填してデッドエンド内圧濾過を行ったときの端部A、端部Bおよび中央部Cの各実効透水量FAE、FBEおよびFCEの関係が以下の(a)または(b)となる、請求項1に記載の中空糸濾過膜。
(a)FAE≧FCE>FBE
(b)FCE>FAE>FBE
ただし、中央部Cとは、中空糸濾過膜の濾過有効部を長さ方向に3等分した場合の中央部に相当する部分をいい、端部A、Bとは、それぞれ、中空糸濾過膜の前記中央部Cより被処理液導入側に位置する端部、中空糸濾過膜の前記中央部Cより被処理液導入側とは反対側に位置する端部をいうものとする。
The relationship between the effective water permeability F AE , F BE, and F CE at the end A, the end B, and the center C when the cylindrical container is filled and dead-end internal pressure filtration is performed is the following (a) or ( The hollow fiber filtration membrane according to claim 1, which is b).
(A) F AE ≧ F CE > F BE
(B) F CE > F AE > F BE
However, the center part C refers to the part corresponding to the center part when the effective filtration part of the hollow fiber filtration membrane is equally divided into three in the length direction, and the end parts A and B are the hollow fiber filtration membranes, respectively. The end portion located on the treatment liquid introduction side from the central portion C of the above, and the end portion located on the opposite side of the treatment liquid introduction side from the central portion C of the hollow fiber filtration membrane.
前記実効透水量FAEとFCEとの差が±10%以内である請求項2に記載の中空糸濾過膜。 The hollow fiber filtration membrane according to claim 2, wherein a difference between the effective water permeability F AE and F CE is within ± 10%. 濾過有効部の長さが0.1〜0.7m、内径が100〜2000μmである請求項1〜3の何れかに記載の中空糸濾過膜。   The hollow fiber filtration membrane according to any one of claims 1 to 3, wherein the effective filtration portion has a length of 0.1 to 0.7 m and an inner diameter of 100 to 2000 µm. 表面改質によって得られたものである請求項1〜4の何れかに記載の中空糸濾過膜。   The hollow fiber filtration membrane according to any one of claims 1 to 4, which is obtained by surface modification. 前記請求項1〜5の何れかに記載の中空糸濾過膜を、筒状容器内に一本以上充填してなる中空糸濾過器。   A hollow fiber filter formed by filling one or more hollow fiber filtration membranes according to any one of claims 1 to 5 in a cylindrical container. 被処理液貯留部、
被処理液貯留部と濾過器の被処理液導入側を接続する入口側流路、
入口側流路に設けた液体移送手段および入口側圧力調整手段、
濾過器の濾液排出口と濾液貯留部を接続する濾過側流路、
濾過側流路に設けた濾過側圧力計および濾過側圧力調整手段、
を含んでなる濾過装置を用いた被処理液の濾過方法において、
濾過器として前記請求項6に記載の中空糸濾過器を用い、
液体移送手段の流量、入口側圧力調整手段の開閉度及び濾過側圧力調整手段の開閉度のいずれか一つ以上を調整して、前記中空糸濾過膜の中央部Cの実効透水量FCEと、端部A、端部Bの実効透水量FAE、FBEの少なくとも一方との差を±10%以内に設定する、濾過方法。
ただし、中央部Cとは、中空糸濾過膜の濾過有効部を長さ方向に3等分した場合の中央部に相当する部分をいい、端部A、Bとは、それぞれ、中空糸濾過膜の前記中央部Cより被処理液導入側に位置する端部、中空糸濾過膜の前記中央部Cより被処理液導入側とは反対側に位置する端部をいうものとする。
Liquid storage part to be processed,
An inlet-side flow path that connects the liquid storage part to be processed and the liquid-introducing side of the filter to be processed;
Liquid transfer means and inlet side pressure adjusting means provided in the inlet side flow path;
A filtration-side flow path connecting the filtrate outlet of the filter and the filtrate reservoir,
A filtration side pressure gauge and filtration side pressure adjusting means provided in the filtration side flow path;
In a method for filtering a liquid to be treated using a filtration device comprising:
Using the hollow fiber filter according to claim 6 as a filter,
By adjusting one or more of the flow rate of the liquid transfer means, the opening / closing degree of the inlet side pressure adjusting means, and the opening degree of the filtration side pressure adjusting means, the effective water permeability F CE in the central portion C of the hollow fiber filtration membrane A filtration method in which the difference between at least one of the effective water permeability F AE and F BE at the end A and the end B is set within ± 10%.
However, the center part C refers to the part corresponding to the center part when the effective filtration part of the hollow fiber filtration membrane is equally divided into three in the length direction, and the end parts A and B are the hollow fiber filtration membranes, respectively. The end portion located on the treatment liquid introduction side from the central portion C of the above, and the end portion located on the opposite side of the treatment liquid introduction side from the central portion C of the hollow fiber filtration membrane.
被処理液貯留部、
被処理液貯留部と濾過器の被処理液導入側を接続する入口側流路、
入口側流路に設けた液体移送手段および入口側圧力調整手段、
濾過器の濾液排出口と濾液貯留部を接続する濾過側流路、
濾過側流路に設けた濾過側圧力計および濾過側圧力調整手段、
被処理液貯留部と濾過器の被処理液導出側を接続する出口側流路、
出口側流路に設けた液体移送手段および出口側圧力調整手段、
を含んでなる濾過装置を用いた被処理液の濾過方法において、
濾過器として前記請求項6に記載の中空糸濾過器を用い、
液体移送手段の流量、入口側圧力調整手段の開閉度、出口側圧力調整手段の開閉度、及び濾過側圧力調整手段の開閉度のいずれか一つ以上を調整して、前記中空糸濾過膜の中央部Cの実効透水量FCEと、端部A、端部Bの実効透水量FAE、FBEの少なくとも一方との差を±10%以内に設定する、濾過方法。
ただし、中央部Cとは、中空糸濾過膜の濾過有効部を長さ方向に3等分した場合の中央部に相当する部分をいい、端部A、Bとは、それぞれ、中空糸濾過膜の前記中央部Cより被処理液導入側に位置する端部、中空糸濾過膜の前記中央部Cより被処理液導入側とは反対側に位置する端部をいうものとする。
Liquid storage part to be processed,
An inlet-side flow path that connects the liquid storage part to be processed and the liquid-introducing side of the filter to be processed;
Liquid transfer means and inlet side pressure adjusting means provided in the inlet side flow path;
A filtration-side flow path connecting the filtrate outlet of the filter and the filtrate reservoir,
A filtration side pressure gauge and filtration side pressure adjusting means provided in the filtration side flow path;
An outlet-side flow path for connecting the liquid to be processed and the liquid discharge side of the filter;
Liquid transfer means and outlet side pressure adjustment means provided in the outlet side flow path,
In a method for filtering a liquid to be treated using a filtration device comprising:
Using the hollow fiber filter according to claim 6 as a filter,
Adjusting one or more of the flow rate of the liquid transfer means, the opening / closing degree of the inlet side pressure adjusting means, the opening degree of the outlet side pressure adjusting means, and the opening degree of the filtration side pressure adjusting means, A filtration method in which the difference between the effective water permeability F CE of the central portion C and at least one of the effective water permeability F AE and F BE of the end A and the end B is set within ± 10%.
However, the center part C refers to the part corresponding to the center part when the effective filtration part of the hollow fiber filtration membrane is equally divided into three in the length direction, and the end parts A and B are the hollow fiber filtration membranes, respectively. The end portion located on the treatment liquid introduction side from the central portion C of the above, and the end portion located on the opposite side of the treatment liquid introduction side from the central portion C of the hollow fiber filtration membrane.
濾過方式が内圧濾過方式である請求項7又は8に記載の濾過方法。   The filtration method according to claim 7 or 8, wherein the filtration method is an internal pressure filtration method. 濾過方式が外圧濾過方式である請求項7又は8に記載の濾過方法。   The filtration method according to claim 7 or 8, wherein the filtration method is an external pressure filtration method.
JP2009143765A 2009-06-16 2009-06-16 Hollow fiber filtration membrane Pending JP2011000509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009143765A JP2011000509A (en) 2009-06-16 2009-06-16 Hollow fiber filtration membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009143765A JP2011000509A (en) 2009-06-16 2009-06-16 Hollow fiber filtration membrane

Publications (1)

Publication Number Publication Date
JP2011000509A true JP2011000509A (en) 2011-01-06

Family

ID=43558940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009143765A Pending JP2011000509A (en) 2009-06-16 2009-06-16 Hollow fiber filtration membrane

Country Status (1)

Country Link
JP (1) JP2011000509A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012214966A (en) * 2011-03-31 2012-11-08 Japan Atomic Energy Agency Method for producing graft polymerization polymer fiber in which polymerizable monomer is graft-polymerized, functional material, and metal-trapping material
CN107206323A (en) * 2014-09-22 2017-09-26 费森尤斯医药用品德国有限公司 Point of use water purifier with polysulfone hollow fibre
WO2020145401A1 (en) * 2019-01-11 2020-07-16 旭化成株式会社 Membrane distillation module and membrane distillation apparatus using same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5528728A (en) * 1978-08-21 1980-02-29 Nippon Zeon Co Ltd Hollow fiber type material moving device
JPS63119802A (en) * 1986-11-06 1988-05-24 Mitsubishi Rayon Co Ltd Polyolefin-based porous hollow yarn membrane partially imparted with hydrophilicity
JPH0338231A (en) * 1989-07-05 1991-02-19 Toray Ind Inc Hydrophilic-hydrophobic separation unit membranes and separation membrane and its preparation
JPH0623240A (en) * 1992-07-10 1994-02-01 Japan Organo Co Ltd Operation method of hollow fiber membrane filter
JPH11394A (en) * 1997-06-13 1999-01-06 Terumo Corp Hollow yarn film type dialytic filter and dialytic filtration device
JP2002136846A (en) * 2000-11-06 2002-05-14 Maezawa Ind Inc Membrane module
JP2002336659A (en) * 2001-05-17 2002-11-26 Mitsubishi Heavy Ind Ltd Hollow fiber membrane module, water treating method and method for prolonging service life of the module
JP2005007004A (en) * 2003-06-20 2005-01-13 Asahi Medical Co Ltd Hollow fiber type body fluid treatment apparatus, hollow fiber bundle used therefor, and method for producing them

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5528728A (en) * 1978-08-21 1980-02-29 Nippon Zeon Co Ltd Hollow fiber type material moving device
JPS63119802A (en) * 1986-11-06 1988-05-24 Mitsubishi Rayon Co Ltd Polyolefin-based porous hollow yarn membrane partially imparted with hydrophilicity
JPH0338231A (en) * 1989-07-05 1991-02-19 Toray Ind Inc Hydrophilic-hydrophobic separation unit membranes and separation membrane and its preparation
JPH0623240A (en) * 1992-07-10 1994-02-01 Japan Organo Co Ltd Operation method of hollow fiber membrane filter
JPH11394A (en) * 1997-06-13 1999-01-06 Terumo Corp Hollow yarn film type dialytic filter and dialytic filtration device
JP2002136846A (en) * 2000-11-06 2002-05-14 Maezawa Ind Inc Membrane module
JP2002336659A (en) * 2001-05-17 2002-11-26 Mitsubishi Heavy Ind Ltd Hollow fiber membrane module, water treating method and method for prolonging service life of the module
JP2005007004A (en) * 2003-06-20 2005-01-13 Asahi Medical Co Ltd Hollow fiber type body fluid treatment apparatus, hollow fiber bundle used therefor, and method for producing them

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012214966A (en) * 2011-03-31 2012-11-08 Japan Atomic Energy Agency Method for producing graft polymerization polymer fiber in which polymerizable monomer is graft-polymerized, functional material, and metal-trapping material
CN107206323A (en) * 2014-09-22 2017-09-26 费森尤斯医药用品德国有限公司 Point of use water purifier with polysulfone hollow fibre
JP2017529238A (en) * 2014-09-22 2017-10-05 フレセニウス メディカル ケア ドイチェランド ゲーエムベーハー Use place water purifier with polysulfone hollow fiber
WO2020145401A1 (en) * 2019-01-11 2020-07-16 旭化成株式会社 Membrane distillation module and membrane distillation apparatus using same
CN113286648A (en) * 2019-01-11 2021-08-20 旭化成株式会社 Module for membrane distillation and membrane distillation apparatus using the same
JPWO2020145401A1 (en) * 2019-01-11 2021-09-27 旭化成株式会社 Membrane distillation module and membrane distillation equipment using it
AU2020206280B2 (en) * 2019-01-11 2022-07-21 Asahi Kasei Kabushiki Kaisha Membrane distillation module and membrane distillation apparatus using same
JP7159353B2 (en) 2019-01-11 2022-10-24 旭化成株式会社 Membrane distillation module and membrane distillation apparatus using the same
CN113286648B (en) * 2019-01-11 2023-03-10 旭化成株式会社 Module for membrane distillation and membrane distillation apparatus using the same

Similar Documents

Publication Publication Date Title
CN110290858B (en) Hollow fiber membrane with improved separation efficiency and manufacture of hollow fiber membrane with improved separation efficiency
US8758625B2 (en) Use of porous hollow-fiber membrane for producing clarified biomedical culture medium
EP3349886A1 (en) Process for making membranes
KR101470263B1 (en) Hollow fiber membrane module, and filtration method and ultrapure water production system using same
EP2377599B1 (en) Porous hollow fiber membrane
KR102551102B1 (en) Hollow fiber membrane module and manufacturing method of the hollow fiber membrane module
WO2011111679A1 (en) Porous, hollow fiber membrane for liquid treatment containing protein
JP5720249B2 (en) Hollow fiber membrane, method for producing the same, and blood purification module
JP2017515662A (en) Porous asymmetric polyphenylene ether membrane and related separation modules and methods
JP2017521230A (en) Poly (phenylene ether) copolymer asymmetric membrane, separation module thereof, and production method
KR20140082532A (en) Method for composite membrane module
KR20160065047A (en) Porous membrane, blood purifying module incorporating porous membrane, and method for producing porous membrane
KR101790174B1 (en) A PVA coated hollow fiber mambrane and a preparation method thereof
JP2011000509A (en) Hollow fiber filtration membrane
JP6374291B2 (en) Hollow fiber membrane module
JPH05208120A (en) Spiral separation membrane element
CN115315306A (en) Hydrophilic membrane
KR20120077011A (en) Water treatment membrane of poly(ethylenechlorotrifluoroethylene) and manufacturing method thereof
GB2192149A (en) Hollow cellulose ester fibre and its use for plasma separation
WO2016182015A1 (en) Porous hollow fiber membrane and manufacturing method therefor
WO2019172077A1 (en) Hollow-fiber membrane and method for producing hollow-fiber membrane
Nakatsuka et al. High flux ultrafiltration membrane for drinking water production
JP2023008851A (en) Separation membrane module
JP7490867B1 (en) Hollow fiber membrane module
CN118019573A (en) Method for operating hollow fiber membrane module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121017

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130305