Nothing Special   »   [go: up one dir, main page]

JP2011081201A - Imaging apparatus - Google Patents

Imaging apparatus Download PDF

Info

Publication number
JP2011081201A
JP2011081201A JP2009233552A JP2009233552A JP2011081201A JP 2011081201 A JP2011081201 A JP 2011081201A JP 2009233552 A JP2009233552 A JP 2009233552A JP 2009233552 A JP2009233552 A JP 2009233552A JP 2011081201 A JP2011081201 A JP 2011081201A
Authority
JP
Japan
Prior art keywords
focus detection
focus
detection pixel
pixel group
pixels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009233552A
Other languages
Japanese (ja)
Other versions
JP5118680B2 (en
Inventor
Fumihiro Kajimura
文裕 梶村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2009233552A priority Critical patent/JP5118680B2/en
Publication of JP2011081201A publication Critical patent/JP2011081201A/en
Application granted granted Critical
Publication of JP5118680B2 publication Critical patent/JP5118680B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Automatic Focus Adjustment (AREA)
  • Adjustment Of Camera Lenses (AREA)
  • Studio Devices (AREA)
  • Focusing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To perform accurate focus detection in an imaging apparatus having a camera shake correcting function. <P>SOLUTION: The imaging apparatus includes: a solid-state imaging device that has a first focus detecting pixel group to receive luminous flux passing through a first pupil area of a photographic lens, and a second focus detecting pixel group to receive luminous flux passing through a second pupil area of the photographic lens; a focus detection part that detects a focus state of the photographic lens based on a phase difference between a first image obtained from the first focus detecting pixel group and a second image obtained from the second focus detecting pixel group; a shake correction part that corrects shake of a subject image caused by shake of the imaging apparatus; a calculation part that calculates received light distribution of a first focus detecting pixel and a second focus detecting pixel when the shake is corrected by the shake correction part; and a control part that controls whether or not the shake correction part is operated based on the received light distribution calculated by the calculation part. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、撮像を行うための固体撮像素子から得られる像に基づいて撮影レンズの焦点状態を検出する技術に関するものである。   The present invention relates to a technique for detecting a focus state of a photographic lens based on an image obtained from a solid-state imaging device for imaging.

撮影レンズの焦点状態を検出する方式の一つとして、各画素にマイクロレンズが形成された2次元の撮像素子を用いて瞳分割方式の焦点検出を行う装置が特許文献1に開示されている。特許文献1の装置では、撮像素子を構成する各画素の光電変換部が複数に分割されており、分割された光電変換部がマイクロレンズを介して撮影レンズの瞳の異なる領域を受光するように構成されている。   As one of methods for detecting the focus state of the photographing lens, Patent Document 1 discloses an apparatus that performs pupil division type focus detection using a two-dimensional image sensor in which a microlens is formed in each pixel. In the apparatus of Patent Document 1, the photoelectric conversion unit of each pixel constituting the image sensor is divided into a plurality of parts, and the divided photoelectric conversion unit receives different areas of the pupil of the photographing lens through the microlens. It is configured.

また特許文献2では、マイクロレンズと光電変換部の相対位置を偏位させた画素を2次元的に配置した、イメージセンサを兼ねた固体撮像素子を開示している。特許文献2の固体撮像素子では、撮影レンズの焦点状態を検出する時は、マイクロレンズと光電変換部の相対偏位方向が異なる画素列で生成される像に基づいて撮影レンズの焦点状態を検出してる。一方通常の画像を撮像するときは、マイクロレンズと光電変換部の相対偏位方向が異なる画素を加算することにより、画像を生成している。   Patent Document 2 discloses a solid-state imaging device that also serves as an image sensor in which pixels in which the relative positions of a microlens and a photoelectric conversion unit are displaced are two-dimensionally arranged. In the solid-state imaging device of Patent Document 2, when detecting the focus state of the photographic lens, the focus state of the photographic lens is detected based on an image generated by a pixel array having different relative displacement directions of the microlens and the photoelectric conversion unit. I'm doing it. On the other hand, when a normal image is captured, an image is generated by adding pixels having different relative displacement directions between the microlens and the photoelectric conversion unit.

特許文献3の固体撮像素子は、固体撮像素子を構成する多数の画素のうち一部の画素は撮影レンズの焦点状態を検出するために光電変換部が2つに分割された構成になっている。光電変換部は、マイクロレンズを介して撮影レンズの瞳の所定領域を通過した光を受光するように構成されている。   The solid-state imaging device of Patent Document 3 has a configuration in which some of the many pixels constituting the solid-state imaging device are divided into two photoelectric conversion units in order to detect the focus state of the photographic lens. . The photoelectric conversion unit is configured to receive light that has passed through a predetermined region of the pupil of the photographing lens via the microlens.

図10(a)は、特許文献3に開示されている固体撮像素子の中央に位置する焦点検出を行う画素の受光分布の説明図で、2つに分割された光電変換部がそれぞれ受光可能な撮影レンズの瞳上の領域を示している。図中円内の斜線部は撮影レンズの射出瞳を示し、白抜きされた領域Sα、領域Sβは2つに分割された光電変換部の受光可能な領域で、通常撮影レンズの光軸(図中x軸とy軸の交点)に対して対称になるように設定されている。   FIG. 10A is an explanatory diagram of a light reception distribution of a pixel that performs focus detection located in the center of the solid-state imaging device disclosed in Patent Document 3, and each of the photoelectric conversion units divided into two can receive light. An area on the pupil of the photographing lens is shown. In the figure, the hatched portion in the circle indicates the exit pupil of the photographic lens, and the white area Sα and the area Sβ are areas that can be received by the photoelectric conversion unit divided into two, and the optical axis of the normal photographic lens (see FIG. It is set to be symmetric with respect to the intersection of the middle x axis and the y axis.

カメラにおいては、撮影レンズの瞳上の領域Sαを透過した光束により生成された像と領域Sβを透過した光束により生成される像の相関演算を行って、撮影レンズの焦点状態が検出される。撮影レンズの異なる瞳領域を透過した光束から生成される像の相関演算を行って焦点検出を行う方法は、特許文献4に開示されている。   In the camera, the focal state of the photographic lens is detected by performing a correlation operation between the image generated by the light beam transmitted through the region Sα on the pupil of the photographic lens and the image generated by the light beam transmitted through the region Sβ. A method of performing focus detection by performing correlation calculation of images generated from light beams transmitted through different pupil regions of the photographing lens is disclosed in Patent Document 4.

特開昭58−24105号公報JP-A-58-24105 特許第2959142号公報Japanese Patent No. 2959142 特開2005−106994号公報JP 2005-106994 A 特開平5−127074号公報JP-A-5-127074

しかしながら、撮像装置が手振れ補正駆動機構を有する場合には、上記のような焦点検出方式では、次のような問題が発生する。   However, when the imaging apparatus has a camera shake correction drive mechanism, the following problems occur in the focus detection method as described above.

前述した焦点検出用画素を固体撮像素子の全面に離散的に有するカメラでは、撮影レンズの焦点状態を検出する場合、一般的に、撮影画面の中央に位置する被写体のみならず、撮影画面の周辺に位置する被写体に対しても焦点検出が可能である。   In a camera having the above-described focus detection pixels discretely on the entire surface of the solid-state imaging device, when detecting the focus state of the photographing lens, in general, not only the subject located at the center of the photographing screen but also the periphery of the photographing screen. It is possible to detect the focus even on the subject located at.

しかし、撮影レンズの光学経路の設計によっては、撮影画面の周辺位置において撮影レンズのレンズ枠による光束のケラレ、いわゆる口径蝕が生じることがある。図10(b)は撮影画面周辺に位置する焦点検出用画素で口径蝕が生じている時の焦点検出用画素の受光分布を示す図である。口径蝕のため図中一方の光電変換部の受光領域Sαに比べ、もう一方の受光領域Sβは面積が狭くなってしまう。このため、撮影レンズの瞳上の領域Sαを透過した光束により生成された像と領域Sβを透過した光束により生成される像の一致度は低くなる。その結果、領域Sαを透過した光束により生成された像と領域Sβを透過した光束により生成される像に基づいて相関演算を行っても、精度の高い焦点検出ができないという欠点があった。   However, depending on the design of the optical path of the photographing lens, vignetting of the light beam by the lens frame of the photographing lens, so-called vignetting, may occur at the peripheral position of the photographing screen. FIG. 10B is a diagram showing a light reception distribution of the focus detection pixels when vignetting occurs in the focus detection pixels located around the photographing screen. Due to vignetting, the area of the other light receiving region Sβ is narrower than the light receiving region Sα of one photoelectric conversion portion in the figure. For this reason, the degree of coincidence between the image generated by the light beam transmitted through the region Sα on the pupil of the photographing lens and the image generated by the light beam transmitted through the region Sβ is low. As a result, there is a drawback that accurate focus detection cannot be performed even if correlation calculation is performed based on an image generated by the light beam transmitted through the region Sα and an image generated by the light beam transmitted through the region Sβ.

ここで、手振れ補正駆動機構の動作について説明する。一般に、手振れ補正駆動機構はジャイロセンサ等により検出される手振れ量に対して手振れ補正駆動を行うもので、以下の代表的な2つの方式が知られている。1つめは撮影光学系のうちシフトレンズと呼ばれるレンズを、検出された振れ量に対してシフトさせて、光学経路を調整するレンズシフト方式である。2つ目は被写体像の結像位置にある固体撮像素子を、検出された振れ量に対して動かすことで補正を行うイメージセンサシフト方式である。しかし、いずれの手振れ補正方式においても、光学経路が変化することにより撮影画面の周辺では新たなケラレが生じたり、その結果ケラレによる焦点検出用画素の受光領域の変化が生じてしまう可能性がある。   Here, the operation of the camera shake correction drive mechanism will be described. In general, the camera shake correction drive mechanism performs camera shake correction drive for the camera shake amount detected by a gyro sensor or the like, and the following two typical methods are known. The first is a lens shift system that adjusts the optical path by shifting a lens called a shift lens in the photographing optical system with respect to the detected shake amount. The second is an image sensor shift method in which correction is performed by moving a solid-state imaging device at the imaging position of a subject image with respect to a detected shake amount. However, in any of the camera shake correction methods, there is a possibility that new vignetting may occur around the shooting screen due to the change in the optical path, and as a result, the light receiving area of the focus detection pixel may change due to vignetting. .

図10(c)は手振れ補正駆動により、図10(a)の状態からケラレによる受光領域の変化が生じた場合の説明図である。レンズ枠のケラレによる受光領域の面積が常に一定であるならば、受光領域の面積比を用いて補正を行うことも考えられるが、手振れ補正駆動により受光領域の変化が生じると補正が行えず、精度の高い焦点検出ができない。さらに、レンズシフト方式の場合は手振れ補正用のシフトレンズの枠だけがケラレを加味して余裕を持った直径で設計されていれば良いが、イメージセンサシフト方式の場合はケラレを発生させる全てのレンズ枠の設計を見直さなくてはならない。   FIG. 10C is an explanatory diagram when a change in the light receiving region due to vignetting occurs from the state of FIG. 10A due to the camera shake correction drive. If the area of the light receiving region due to the vignetting of the lens frame is always constant, it may be possible to correct using the area ratio of the light receiving region, but if the light receiving region changes due to camera shake correction driving, the correction cannot be performed, Focus detection with high accuracy is not possible. Furthermore, in the case of the lens shift method, it is sufficient that only the shift lens frame for camera shake correction is designed with a diameter that allows for vignetting, but in the case of the image sensor shift method, all of the vignetting effects are generated. The design of the lens frame must be reviewed.

本発明は上述した課題に鑑みてなされたものであり、その目的は、手振れ補正機能を有する撮像装置においても、精度の高い焦点検出を行えるようにすることである。   The present invention has been made in view of the above-described problems, and an object thereof is to enable highly accurate focus detection even in an imaging apparatus having a camera shake correction function.

本発明に係わる撮像装置は、撮像装置であって、撮影レンズにより結像された被写体像を光電変換する固体撮像素子であって、前記撮影レンズの第1の瞳領域を通過する光束を受光する複数の第1の焦点検出用画素からなる第1の焦点検出用画素群と、前記撮影レンズの前記第1の瞳領域とは異なる第2の瞳領域を通過する光束を受光する複数の第2の焦点検出用画素からなる第2の焦点検出用画素群とを有する固体撮像素子と、前記第1の焦点検出用画素群から得られる第1の像と、前記第2の焦点検出用画素群から得られる第2の像の位相差に基づいて前記撮影レンズの焦点状態を検出する焦点検出手段と、前記撮影レンズを通過して前記固体撮像素子に達する光束の光学経路を調整することにより、前記撮像装置の振れに起因する前記被写体像の振れを補正する振れ補正手段と、前記振れ補正手段により前記光学経路を調整した場合の、前記第1の焦点検出用画素と前記第2の焦点検出用画素の受光分布を算出する演算手段と、前記演算手段により算出された前記受光分布に基づいて、前記振れ補正手段を動作させるか否かを制御する制御手段と、を備えることを特徴とする。   An imaging apparatus according to the present invention is an imaging apparatus, which is a solid-state imaging device that photoelectrically converts a subject image formed by a photographing lens, and receives a light beam that passes through a first pupil region of the photographing lens. A plurality of second focus detection pixels that receive a light beam that passes through a first focus detection pixel group including a plurality of first focus detection pixels and a second pupil region different from the first pupil region of the photographing lens. A solid-state imaging device having a second focus detection pixel group including a plurality of focus detection pixels, a first image obtained from the first focus detection pixel group, and the second focus detection pixel group. By adjusting the optical path of the light beam that passes through the photographing lens and reaches the solid-state image sensor, and detecting the focus state of the photographing lens based on the phase difference of the second image obtained from Said due to shake of the imaging device A shake correction unit that corrects a shake of the subject image, and a light reception distribution of the first focus detection pixel and the second focus detection pixel when the optical path is adjusted by the shake correction unit. Computation means and control means for controlling whether or not to operate the shake correction means based on the received light distribution calculated by the computation means.

本発明によれば、手振れ補正機能を有する撮像装置においても、精度の高い焦点検出を行うことが可能となる。   According to the present invention, it is possible to perform focus detection with high accuracy even in an imaging apparatus having a camera shake correction function.

本発明の撮像装置の一例であるデジタルスチルカメラの構成図。The block diagram of the digital still camera which is an example of the imaging device of this invention. CMOS型固体撮像素子であるイメージセンサの一部平面図。The partial top view of the image sensor which is a CMOS type solid-state image sensor. イメージセンサの一部断面図。The partial cross section figure of an image sensor. 焦点検出用画素の撮影レンズの瞳上での設計上の受光分布図。FIG. 4 is a distribution diagram of received light on a pupil of a photographing lens for focus detection pixels. 手振れ補正駆動により口径蝕が発生しときの受光分布図。The received light distribution diagram when vignetting occurs due to camera shake correction driving. 手振れ補正駆動により口径蝕が発生しときの受光分布図。The received light distribution diagram when vignetting occurs due to camera shake correction driving. 焦点検出動作を含む撮影動作のフローチャート。The flowchart of imaging | photography operation | movement including a focus detection operation | movement. 第2実施形態の撮影動作のフローチャート。The flowchart of the imaging | photography operation | movement of 2nd Embodiment. 第2実施形態の液晶表示画面の説明図。Explanatory drawing of the liquid crystal display screen of 2nd Embodiment. 従来の固体撮像素子の受光分布説明図。Light reception distribution explanatory drawing of the conventional solid-state image sensor.

(第1の実施形態)
図1〜図7は本発明の第1の実施形態を示す図であり、図1は本発明の撮像装置の一例であるデジタルスチルカメラの構成図、図2はCMOS型固体撮像素子であるイメージセンサの一部平面図、図3はイメージセンサの一部断面図である。図4は焦点検出用画素の撮影レンズの瞳上での設計上の受光分布、図5及び図6は手振れ補正駆動により口径蝕が発生しときの受光分布、図7は焦点検出動作を含む撮影動作のフローチャートである。
(First embodiment)
1 to 7 are diagrams showing a first embodiment of the present invention. FIG. 1 is a configuration diagram of a digital still camera which is an example of an imaging apparatus of the present invention. FIG. 2 is an image of a CMOS type solid-state imaging device. FIG. 3 is a partial cross-sectional view of the image sensor. FIG. 4 is a designed light reception distribution on the pupil of the photographing lens of the focus detection pixel, FIGS. 5 and 6 are light reception distributions when vignetting occurs due to camera shake correction driving, and FIG. 7 is a photographing including a focus detection operation. It is a flowchart of operation | movement.

図1において2はイメージセンサ(固体撮像素子)で、デジタルスチルカメラのカメラ本体1に装着された撮影レンズ5の予定結像面に配置されている。カメラ本体1は、カメラ全体を制御するカメラCPU20、イメージセンサ2を駆動制御する制御部であるところのイメージセンサ制御回路21、イメージセンサ2にて撮像した画像信号を画像処理する画像処理部24を備えている。また、画像処理された画像を表示する画像表示部であるところの内部液晶表示素子4及び背面液晶表示素子6と、それぞれを駆動する内部液晶表示素子駆動回路25、背面液晶表示素子駆動回路26も備えている。さらに、内部液晶表示素子4に表示された被写体像を観察するための接眼レンズ3、イメージセンサ2にて撮像された画像を記録するメモリ回路22、画像処理部24にて画像処理された画像をカメラ外部に出力するためのインターフェース回路23も備えている。なお、メモリ回路22では、イメージセンサ2の受光分布も記憶できるようになっている。   In FIG. 1, reference numeral 2 denotes an image sensor (solid-state image sensor), which is disposed on a planned imaging plane of a photographic lens 5 attached to a camera body 1 of a digital still camera. The camera body 1 includes a camera CPU 20 that controls the entire camera, an image sensor control circuit 21 that is a control unit that drives and controls the image sensor 2, and an image processing unit 24 that performs image processing on image signals captured by the image sensor 2. I have. Further, there are an internal liquid crystal display element 4 and a back liquid crystal display element 6 which are image display units for displaying an image processed image, and an internal liquid crystal display element drive circuit 25 and a back liquid crystal display element drive circuit 26 for driving each of them. I have. Further, an eyepiece 3 for observing the subject image displayed on the internal liquid crystal display element 4, a memory circuit 22 for recording an image taken by the image sensor 2, and an image processed by the image processing unit 24. An interface circuit 23 for outputting to the outside of the camera is also provided. The memory circuit 22 can also store the received light distribution of the image sensor 2.

撮影レンズ5はカメラ本体1に対して着脱可能で、便宜上3枚のレンズ5a、5b、5cで図示しているが、実際は多数枚のレンズで構成されている。撮影レンズ5は、カメラ本体1のカメラCPU20から送られてくる焦点調節情報を電気接点26を介してレンズCPU50にて受信する。そして、レンズCPU50は、受信した焦点調節情報に基づき焦点レンズ駆動機構51により焦点レンズ5bを移動させ合焦状態に調節する。また53は撮影レンズ5の瞳近傍に配設された絞り装置で、絞り駆動機構52によって所定の絞り値に絞り込まれる。また、ジャイロを有する手振れ補正駆動機構54では、ジャイロの出力からデジタルカメラを持つユーザの手の振れに起因する手振れ量を算出し、シフトレンズ5cをxy平面上で平行にシフトすることで光学経路を調整し手振れ補正を行う。   The photographic lens 5 is detachable from the camera body 1 and is illustrated with three lenses 5a, 5b, and 5c for convenience, but actually includes a plurality of lenses. The taking lens 5 receives the focus adjustment information sent from the camera CPU 20 of the camera body 1 by the lens CPU 50 via the electrical contact 26. Then, the lens CPU 50 moves the focal lens 5b by the focal lens driving mechanism 51 based on the received focal adjustment information and adjusts it to the in-focus state. Reference numeral 53 denotes an aperture device disposed in the vicinity of the pupil of the photographing lens 5, and is stopped down to a predetermined aperture value by the aperture drive mechanism 52. Further, the camera shake correction drive mechanism 54 having a gyro calculates the camera shake amount resulting from the hand shake of the user having the digital camera from the output of the gyro, and shifts the shift lens 5c in parallel on the xy plane to thereby change the optical path. Adjust to adjust camera shake.

図2はイメージセンサ2の一部平面図である。図2において、131、132は電極である。電極131及び132で区切られた領域が1画素を示しており、1画素中に書かれた「R」「G」「B」の文字は各画素のカラーフィルタの色相を表している。「R」の文字の書かれた画素は赤の成分の光を透過し、「G」の文字の書かれた画素は緑の成分の光を透過し、「B」の文字の書かれた画素は青の成分の光を透過する。また、「R」「G」「B」の文字が書かれた各画素は、撮影レンズ5の全瞳領域を通過した光を受光するように構成されている。   FIG. 2 is a partial plan view of the image sensor 2. In FIG. 2, 131 and 132 are electrodes. The area delimited by the electrodes 131 and 132 represents one pixel, and the letters “R”, “G”, and “B” written in one pixel represent the hue of the color filter of each pixel. Pixels with the letter “R” transmit red component light, pixels with the letter “G” transmit green component light, and pixels with the letter “B” written Transmits blue component light. In addition, each pixel on which the characters “R”, “G”, and “B” are written is configured to receive light that has passed through the entire pupil region of the photographic lens 5.

カラーフィルタの配列がベイヤ配列の場合、1絵素は「R」「B」の画素と2つの「G」の画素から構成されるが、本実施形態のデジタルスチルカメラに配置されたイメージセンサは「R」あるいは「B」であるべき画素の一部に、撮影レンズ5の一部の瞳領域(第1の瞳領域及び第2の瞳領域)を通過した光を受光する焦点検出用画素が割り当てられている。図中、Pα1、Pβ1、Pα2、Pβ2、Pα3、Pβ3は撮影レンズ5の焦点状態を検出するための焦点検出用画素で、電極131にてx方向の開口が制限されている。本実施形態のイメージセンサ2の画面内に離散的に複数配設される焦点検出用画素は、電極131にて制限される開口のx方向の開口中心位置が画素中心に対して異なる6種類が設定されている。   When the color filter array is a Bayer array, one picture element is composed of “R” and “B” pixels and two “G” pixels, but the image sensor arranged in the digital still camera of this embodiment is Focus detection pixels that receive light that has passed through some of the pupil regions (the first pupil region and the second pupil region) of the photographing lens 5 are included in some of the pixels that should be “R” or “B”. Assigned. In the figure, 1, 1, 2, 2, 3, and 3 are focus detection pixels for detecting the focus state of the taking lens 5, and the opening in the x direction is restricted by the electrode 131. The focus detection pixels that are discretely arranged in the screen of the image sensor 2 of the present embodiment include six types in which the opening center position in the x direction of the opening restricted by the electrode 131 is different from the pixel center. Is set.

例えば、電極131_3と電極131_4とで決まる開口が画素中心に対して+x方向に偏位した焦点検出用画素Pα1に対して、x方向に4画素隣接した位置に同様の電極開口を有する焦点検出用画素が配設されている。これら焦点検出用画素Pα1を含む同様の電極開口を有する画素を第1の焦点検出用画素群とする。   For example, a focus detection pixel having a similar electrode opening at a position adjacent to four pixels in the x direction with respect to the focus detection pixel Pα1 in which the opening determined by the electrode 131_3 and the electrode 131_4 is deviated in the + x direction with respect to the pixel center. Pixels are arranged. Pixels having similar electrode openings including these focus detection pixels Pα1 are defined as a first focus detection pixel group.

また、焦点検出用画素Pα1に対して斜めに隣接する位置に、電極131_1と電極131_2とで決まる開口が画素中心と略一致する焦点検出用画素Pβ1が配設されている。さらに、焦点検出用画素Pβ1に対して、x方向に4画素隣接した位置に同様の電極開口を有する焦点検出用画素が配設されている。これら焦点検出用画素Pβ1を含む同様の電極開口を有する画素を第2の焦点検出用画素群とする。同様にPα2、Pβ2、Pα3、Pβ3とそれぞれ同様の電極開口を有する焦点検出用画素群を、それぞれ第3の焦点検出用画素群、第4の焦点検出用画素群、第5の焦点検出用画素群、第6の焦点検出用画素群とする。   In addition, a focus detection pixel Pβ1 in which an opening determined by the electrode 131_1 and the electrode 131_2 substantially coincides with the pixel center is disposed at a position obliquely adjacent to the focus detection pixel Pα1. Further, focus detection pixels having similar electrode openings are disposed at positions adjacent to the focus detection pixel Pβ1 by four pixels in the x direction. A pixel having the same electrode opening including these focus detection pixels Pβ1 is defined as a second focus detection pixel group. Similarly, focus detection pixel groups having the same electrode openings as Pα2, Pβ2, Pα3, and Pβ3 are designated as a third focus detection pixel group, a fourth focus detection pixel group, and a fifth focus detection pixel, respectively. Group, and a sixth focus detection pixel group.

本実施形態のデジタルスチルカメラに備えられた焦点検出演算部(カメラCPU20)は、焦点検出用画素Pα1と同じ電極開口を有する第1の焦点検出用画素群から第1の焦点検出用画像(第1の像)を生成する。また、同様に焦点検出用画素Pβ1と同じ電極開口を有する第2の焦点検出用画素群から第2の焦点検出用画像(第2の像)を生成する。さらに焦点検出演算部(カメラCPU20)は、第1の焦点検出用画像と第2の焦点検出用画像の位相差に基づいて相関演算を行うことにより、焦点検出用画素Pα1とPβ1が位置する領域での撮影レンズ5の焦点状態を検出する。第1の焦点検出用画像と第2の焦点検出用画像に基づいて相関演算を行う焦点検出演算部を第1の焦点検出演算部と定義する。   The focus detection calculation unit (camera CPU 20) provided in the digital still camera of the present embodiment is configured to output a first focus detection image (first image) from the first focus detection pixel group having the same electrode opening as the focus detection pixel Pα1. 1 image). Similarly, a second focus detection image (second image) is generated from the second focus detection pixel group having the same electrode opening as that of the focus detection pixel Pβ1. Further, the focus detection calculation unit (camera CPU 20) performs correlation calculation based on the phase difference between the first focus detection image and the second focus detection image, so that the focus detection pixels Pα1 and Pβ1 are located. The focus state of the taking lens 5 at is detected. A focus detection calculation unit that performs a correlation calculation based on the first focus detection image and the second focus detection image is defined as a first focus detection calculation unit.

同様に焦点検出演算部(カメラCPU20)は、焦点検出用画素Pα2と同じ電極開口を有する第3の焦点検出用画素群から第3の焦点検出用画像を生成する。また、同様に焦点検出用画素Pβ2と同じ電極開口を有する第4の焦点検出用画素群から第4の焦点検出用画像を生成する。さらに焦点検出演算部(カメラCPU20、第2の焦点検出演算部)は、第3の焦点検出用画像と第4の焦点検出用画像に基づいて相関演算を行うことにより、焦点検出用画素Pα2とPβ2が位置する領域での撮影レンズ5の焦点状態を検出する。第3の焦点検出用画像(第3の像)と第4の焦点検出用画像(第4の像)に基づいて相関演算を行う焦点検出演算部を第2の焦点検出演算部と定義する。   Similarly, the focus detection calculation unit (camera CPU 20) generates a third focus detection image from the third focus detection pixel group having the same electrode opening as that of the focus detection pixel Pα2. Similarly, a fourth focus detection image is generated from the fourth focus detection pixel group having the same electrode opening as that of the focus detection pixel Pβ2. Further, the focus detection calculation unit (camera CPU 20, second focus detection calculation unit) performs correlation calculation based on the third focus detection image and the fourth focus detection image, and thereby detects the focus detection pixel Pα 2. The focus state of the taking lens 5 in the region where Pβ2 is located is detected. A focus detection calculation unit that performs correlation calculation based on the third focus detection image (third image) and the fourth focus detection image (fourth image) is defined as a second focus detection calculation unit.

同様に焦点検出演算部(カメラCPU20)は、焦点検出用画素Pα3と同じ電極開口を有する第5の焦点検出用画素群から第5の焦点検出用画像を生成する。また、同様に焦点検出用画素Pβ3と同じ電極開口を有する第6の焦点検出用画素群から第6の焦点検出用画像を生成する。さらに焦点検出演算部(カメラCPU20)は、第5の焦点検出用画像と第6の焦点検出用画像に基づいて相関演算を行うことにより、焦点検出用画素Pα3とPβ3が位置する領域での撮影レンズ5の焦点状態を検出する。第5の焦点検出用画像と第6の焦点検出用画像に基づいて相関演算を行う焦点検出演算部を第3の焦点検出演算部と定義する。なお、上記の第1の焦点検出演算部、第2の焦点検出演算部、第3の焦点検出演算部は、いずれもカメラCPU20により実現される。   Similarly, the focus detection calculation unit (camera CPU 20) generates a fifth focus detection image from the fifth focus detection pixel group having the same electrode opening as the focus detection pixel Pα3. Similarly, a sixth focus detection image is generated from a sixth focus detection pixel group having the same electrode opening as that of the focus detection pixel Pβ3. Further, the focus detection calculation unit (camera CPU 20) performs a correlation calculation based on the fifth focus detection image and the sixth focus detection image, thereby capturing an image in the region where the focus detection pixels Pα3 and Pβ3 are located. The focus state of the lens 5 is detected. A focus detection calculation unit that performs correlation calculation based on the fifth focus detection image and the sixth focus detection image is defined as a third focus detection calculation unit. Note that the first focus detection calculator, the second focus detection calculator, and the third focus detection calculator are all realized by the camera CPU 20.

さらに焦点検出演算部(カメラCPU20)は、焦点検出用画素Pα1とPβ1が位置する領域での撮影レンズ5の焦点状態、焦点検出用画素Pα2とPβ2及びPα3とPβ3が位置する領域での撮影レンズ5のそれぞれの焦点状態を平均する。さらに、焦点検出演算部は焦点検出結果に基づいて焦点レンズ駆動機構51に焦点調節情報を送って、撮影レンズ5の焦点調節を行う。   Further, the focus detection calculation unit (camera CPU 20) is configured to focus the photographing lens 5 in the region where the focus detection pixels Pα1 and Pβ1 are located, and the photographing lens in the region where the focus detection pixels Pα2 and Pβ2 and Pα3 and Pβ3 are located. Average each of the five focus states. Further, the focus detection calculation unit sends focus adjustment information to the focus lens driving mechanism 51 based on the focus detection result to adjust the focus of the photographing lens 5.

一方、通常の画像の撮像時は、画素の電極開口が制限されている焦点検出用画素は欠陥画素として扱い、焦点検出用画素の周辺に位置する画素から補間処理を行って画像信号が生成される。   On the other hand, when capturing a normal image, focus detection pixels whose pixel electrode openings are limited are treated as defective pixels, and image signals are generated by performing interpolation processing from pixels located around the focus detection pixels. The

図3は、図2のイメージセンサ2の一部平面図に示した、A−A’面の断面図である。図3の右側の画素は、撮影レンズ5の全瞳領域を通過した光を受光可能な画素を示し、図中左側の画素は、撮影レンズ5の一部の瞳領域からの光束を受光可能な焦点検出用画素を示している。イメージセンサ2は、シリコン基板110の内部に光電変換部111が形成されている。光電変換部111で発生した信号電荷は、不図示のフローティングディフュージョン部、第1の電極131及び第2の電極132を介して外部に出力される。光電変換部111と電極131との間には層間絶縁膜121が形成され、電極131と電極132との間には層間絶縁膜122が形成されている。また、電極132の光入射側には層間絶縁膜123が形成され、さらにパッシべーション膜140、平坦化層150が形成されている。平坦化層150の光入射側には、カラーフィルタ層151、平坦化層152及びマイクロレンズ153が形成されている。ここで、マイクロレンズ153のパワーは、撮影レンズ5の瞳と光電変換部111が略共役になるように設定されている。また、イメージセンサ2の中央に位置する画素ではマイクロレンズ153は画素の中心に配設され、周辺に位置する画素では、撮影レンズ5の光軸側に偏位して配設される。   3 is a cross-sectional view of the A-A ′ plane shown in the partial plan view of the image sensor 2 in FIG. 2. The right pixel in FIG. 3 shows a pixel that can receive light that has passed through the entire pupil region of the photographic lens 5, and the left pixel in the drawing can receive a light beam from a part of the pupil region of the photographic lens 5. A focus detection pixel is shown. In the image sensor 2, a photoelectric conversion unit 111 is formed inside a silicon substrate 110. The signal charge generated in the photoelectric conversion unit 111 is output to the outside through a floating diffusion unit (not shown), the first electrode 131, and the second electrode 132. An interlayer insulating film 121 is formed between the photoelectric conversion unit 111 and the electrode 131, and an interlayer insulating film 122 is formed between the electrode 131 and the electrode 132. In addition, an interlayer insulating film 123 is formed on the light incident side of the electrode 132, and a passivation film 140 and a planarizing layer 150 are further formed. On the light incident side of the planarization layer 150, a color filter layer 151, a planarization layer 152, and a microlens 153 are formed. Here, the power of the microlens 153 is set so that the pupil of the photographing lens 5 and the photoelectric conversion unit 111 are substantially conjugate. In the pixel located at the center of the image sensor 2, the microlens 153 is disposed at the center of the pixel, and at the pixels located at the periphery, the microlens 153 is disposed deviated toward the optical axis side of the photographing lens 5.

撮影レンズ5を透過した被写体光はイメージセンサ2近傍に集光される。さらにイメージセンサ2の各画素に到達した光は、マイクロレンズ153で屈折され光電変換部111に集光される。通常の撮像に使う図中右側の画素では、入射する光を遮光しないように第1の電極131及び第2の電極132が配設されている。一方、図中左側の撮影レンズ5の焦点検出を行う焦点検出用画素では、電極131の一部が光電変換部111を覆うように構成されている。その結果図中左側の焦点検出用画素では、撮影レンズ5の瞳の一部を透過する光束を受光可能となっている。また、電極131が入射光束の一部を遮光しているために光電変換部111の出力が小さくなることを防ぐために、焦点検出用の画素のカラーフィルタ層154は光を吸収しない透過率の高い樹脂で形成されている。   The subject light transmitted through the photographing lens 5 is condensed near the image sensor 2. Further, the light reaching each pixel of the image sensor 2 is refracted by the microlens 153 and condensed on the photoelectric conversion unit 111. In the pixel on the right side in the drawing used for normal imaging, the first electrode 131 and the second electrode 132 are provided so as not to block incident light. On the other hand, in the focus detection pixel that performs focus detection of the photographic lens 5 on the left side in the drawing, a part of the electrode 131 is configured to cover the photoelectric conversion unit 111. As a result, the focus detection pixel on the left side of the drawing can receive a light beam that passes through a part of the pupil of the photographing lens 5. Further, in order to prevent the output of the photoelectric conversion unit 111 from being reduced because the electrode 131 blocks a part of the incident light beam, the color filter layer 154 of the focus detection pixel has high transmittance that does not absorb light. It is made of resin.

イメージセンサ2の画面内に離散的に配設される焦点検出用の画素は、マイクロレンズ153の位置と電極131の開口中心の相対位置を異ならせることによって、撮影レンズ5を通過した光の受光分布を異ならせるように構成されている。   The focus detection pixels that are discretely arranged in the screen of the image sensor 2 receive light that has passed through the photographing lens 5 by making the relative position of the microlens 153 and the center of the opening of the electrode 131 different. It is comprised so that distribution may differ.

図4は、イメージセンサ2の一部に配設された焦点検出用画素の撮影レンズ5の瞳上での設計上の受光分布を示す図である。図4(a)は、図2のイメージセンサ2の一部平面図に示した焦点検出用画素Pα1の、撮影レンズ5の瞳上での設計上の受光分布を示している。焦点検出用画素Pα1の電極131_3と電極131_4とで決まる開口の中心は画素の中心に対して+x方向に大きく偏位している。そのため、焦点検出用画素Pα1の光電変換部の受光可能な領域Sα1aの中心は、撮影レンズ5の射出瞳上の図中x軸上で光軸(図中x軸とy軸の交点)に対して距離−xα1偏位している。   FIG. 4 is a diagram showing a designed light reception distribution on the pupil of the photographing lens 5 of the focus detection pixels arranged in a part of the image sensor 2. FIG. 4A shows a design light distribution on the pupil of the photographing lens 5 of the focus detection pixel Pα1 shown in the partial plan view of the image sensor 2 in FIG. The center of the aperture determined by the electrode 131_3 and the electrode 131_4 of the focus detection pixel Pα1 is greatly displaced in the + x direction with respect to the center of the pixel. Therefore, the center of the light receiving region Sα1a of the photoelectric conversion unit of the focus detection pixel Pα1 is on the x axis in the drawing on the exit pupil of the photographing lens 5 with respect to the optical axis (intersection of the x axis and the y axis in the drawing). Is shifted by -xα1.

図4(b)は、図2のイメージセンサ2の一部平面図に示した焦点検出用画素Pβ1の、撮影レンズ5の瞳上での設計上の受光分布を示している。焦点検出用画素Pβ1の電極131_1と電極131_2とで決まる開口の中心は画素の中心と略一致している。そのため、焦点検出用画素Pβ1の光電変換部の受光可能な領域Sβ1aの中心は、撮影レンズ5の射出瞳上の図中x軸上で光軸(図中x軸とy軸の交点)と略一致している。   FIG. 4B shows a design light distribution on the pupil of the photographing lens 5 of the focus detection pixel Pβ1 shown in the partial plan view of the image sensor 2 in FIG. The center of the aperture determined by the electrode 131_1 and the electrode 131_2 of the focus detection pixel Pβ1 substantially coincides with the center of the pixel. For this reason, the center of the light receiving region Sβ1a of the photoelectric conversion unit of the focus detection pixel Pβ1 is approximately the optical axis (intersection of the x axis and the y axis in the drawing) on the x axis in the drawing on the exit pupil of the photographing lens 5. Match.

図4(c)は、図2のイメージセンサ2の一部平面図に示した焦点検出用画素Pα2の、撮影レンズ5の瞳上での設計上の受光分布を示している。焦点検出用画素Pα2の電極131_3と電極131_4とで決まる開口の中心は画素の中心に対して+x方向に所定量偏位している。そのため、焦点検出用画素Pα2の光電変換部の受光可能な領域Sα2aの中心は、撮影レンズ5の射出瞳上の図中x軸上で光軸(図中x軸とy軸の交点)に対して距離−xα2偏位している。   FIG. 4C shows a design light distribution on the pupil of the photographing lens 5 of the focus detection pixel Pα2 shown in the partial plan view of the image sensor 2 in FIG. The center of the opening determined by the electrode 131_3 and the electrode 131_4 of the focus detection pixel Pα2 is deviated by a predetermined amount in the + x direction with respect to the center of the pixel. Therefore, the center of the light receiving region Sα2a of the photoelectric conversion unit of the focus detection pixel Pα2 is on the x axis in the drawing on the exit pupil of the photographing lens 5 with respect to the optical axis (the intersection of the x axis and the y axis in the drawing). The distance is -xα2.

図4(d)は、図2のイメージセンサ2の一部平面図に示した焦点検出用画素Pβ2の、撮影レンズ5の瞳上での設計上の受光分布を示している。焦点検出用画素Pβ2の電極131_1と電極131_2とで決まる開口の中心は画素の中心に対して−x方向に所定量偏位している。そのため、焦点検出用画素Pβ2の光電変換部の受光可能な領域Sβ2aの中心は、撮影レンズ5の射出瞳上の図中x軸上で光軸(図中x軸とy軸の交点)に対して距離xβ2偏位している。   FIG. 4D shows a design light distribution on the pupil of the photographing lens 5 of the focus detection pixel Pβ2 shown in the partial plan view of the image sensor 2 in FIG. The center of the aperture determined by the electrode 131_1 and the electrode 131_2 of the focus detection pixel Pβ2 is displaced by a predetermined amount in the −x direction with respect to the center of the pixel. Therefore, the center of the light receiving region Sβ2a of the photoelectric conversion unit of the focus detection pixel Pβ2 is on the x axis in the drawing on the exit pupil of the photographing lens 5 with respect to the optical axis (the intersection of the x axis and the y axis in the drawing). The distance xβ2 is deviated.

図4(e)は、図2のイメージセンサ2の一部平面図に示した焦点検出用画素Pα3の、撮影レンズ5の瞳上での設計上の受光分布を示している。焦点検出用画素Pα3の電極131_3と電極131_4とで決まる開口の中心は画素の中心と略一致している。そのため、焦点検出用画素Pα3の光電変換部の受光可能な領域Sα3aの中心は、撮影レンズ5の射出瞳上の図中x軸上で光軸(図中x軸とy軸の交点)と略一致している。ここで、焦点検出用画素Pα3の撮影レンズ5の瞳上での設計上の受光分布は、焦点検出用画素Pβ1の撮影レンズ5の瞳上での設計上の受光分布と略一致している。   FIG. 4E shows a designed light reception distribution on the pupil of the photographing lens 5 of the focus detection pixel Pα3 shown in the partial plan view of the image sensor 2 in FIG. The center of the aperture determined by the electrode 131_3 and the electrode 131_4 of the focus detection pixel Pα3 is substantially coincident with the center of the pixel. Therefore, the center of the light-receiving area Sα3a of the photoelectric conversion unit of the focus detection pixel Pα3 is substantially the same as the optical axis (intersection of the x axis and the y axis in the drawing) on the x axis in the drawing on the exit pupil of the photographing lens 5. Match. Here, the designed light reception distribution on the pupil of the photographing lens 5 of the focus detection pixel Pα3 is substantially the same as the designed light reception distribution on the pupil of the photographing lens 5 of the focus detection pixel Pβ1.

図4(f)は、図2のイメージセンサ2の一部平面図に示した焦点検出用画素Pβ3の、撮影レンズ5の瞳上での設計上の受光分布を示している。焦点検出用画素Pβ3の電極131_1と電極131_2とで決まる開口の中心は画素の中心に対して−x方向に大きく偏位している。そのため、焦点検出用画素Pβ3の光電変換部の受光可能な領域Sβ3aの中心は、撮影レンズ5の射出瞳上の図中x軸上で光軸(図中x軸とy軸の交点)に対して距離xβ3偏位している。   FIG. 4F shows a design light distribution on the pupil of the photographing lens 5 of the focus detection pixel Pβ3 shown in the partial plan view of the image sensor 2 in FIG. The center of the aperture determined by the electrode 131_1 and the electrode 131_2 of the focus detection pixel Pβ3 is greatly displaced in the −x direction with respect to the center of the pixel. Therefore, the center of the light receiving region Sβ3a of the photoelectric conversion unit of the focus detection pixel Pβ3 is on the x axis in the drawing on the exit pupil of the photographing lens 5 with respect to the optical axis (the intersection of the x axis and the y axis in the drawing). The distance xβ3 is deviated.

図4(g)は、図2のイメージセンサ2の一部平面図に示した通常撮像用画素の、撮影レンズ5の瞳上での設計上の受光分布を示している。通常撮像用画素の電極131は光電変換部を遮光しないように構成されているため、通常撮像用画素の光電変換部は、撮影レンズ5の全瞳領域Sγを受光可能である。このとき通常撮像用画素の受光可能な領域Sγの中心は、撮影レンズ5の射出瞳上の光軸(図中x軸とy軸の交点)と略一致している。 以上のように、本実施形態のイメージセンサ2は、受光分布の中心がx軸上の異なる位置に存在する6種類の焦点検出用画素群から構成されている。   FIG. 4G shows a design light distribution on the pupil of the photographing lens 5 of the normal imaging pixels shown in the partial plan view of the image sensor 2 in FIG. Since the electrode 131 of the normal imaging pixel is configured not to shield the photoelectric conversion unit, the photoelectric conversion unit of the normal imaging pixel can receive the entire pupil region Sγ of the photographing lens 5. At this time, the center of the light-receiving area Sγ of the normal imaging pixel substantially coincides with the optical axis on the exit pupil of the photographing lens 5 (intersection of the x axis and the y axis in the figure). As described above, the image sensor 2 according to the present embodiment includes six types of focus detection pixel groups in which the center of the light reception distribution exists at different positions on the x-axis.

図5は手振れ補正駆動機構54が動作した時の撮影画面の周辺における焦点検出用画素の受光分布の説明図である。図5で示すように撮影画面の周辺では、手振れ補正駆動機構54のレンズ枠における口径蝕(ケラレ)が生じることがあり、ケラレにより図5(a)に示す焦点検出用画素の光電変換部の受光領域Sα1bは狭くなっている。そのため、図5(a)の焦点検出用画素の受光領域Sα1bを透過した光束により生成された像と、図5(b)の受光領域Sβ1bを透過した光束により生成された像の一致度は低下し、相関演算の精度が低下してしまう。しかし、図5(c)及び図5(e)の焦点検出用画素の受光領域の中心は、図5(a)の焦点検出用画素の受光領域に対し+x方向に変位しているため、手振れ補正駆動機構54の動作による口径蝕が受光領域Sα2b及びSα3bに生じていない。そこで、上記のような口径蝕が発生する撮影画面の周辺エリアでは、焦点検出選択部(カメラCPU20)により光電変換部の受光領域に口径蝕の影響があった焦点検出用画素Pα1で代表される第1の焦点検出用画素群とPβ1で代表される第2の焦点検出用画素群で得られる像に基づいた焦点検出の相関演算結果を用いないことが選択される。そして、残りのPα2とPβ2及びPα3とPβ3で代表される、それぞれ第3と第4及び第5と第6の焦点検出用画素群で得られる像に基づいて焦点検出の相関演算を行い、その結果を平均することで、焦点検出を行う。このようにして、レンズ枠による口径蝕が生じても精度の良い焦点検出を行うことが出来る。   FIG. 5 is an explanatory diagram of the light reception distribution of the focus detection pixels around the photographing screen when the camera shake correction drive mechanism 54 is operated. As shown in FIG. 5, vignetting (vignetting) may occur in the lens frame of the image stabilization drive mechanism 54 around the photographing screen, and the vignetting of the photoelectric conversion unit of the focus detection pixel shown in FIG. The light receiving area Sα1b is narrowed. Therefore, the degree of coincidence between the image generated by the light beam transmitted through the light receiving region Sα1b of the focus detection pixel in FIG. 5A and the image generated by the light beam transmitted through the light receiving region Sβ1b in FIG. As a result, the accuracy of the correlation calculation is reduced. However, since the center of the light receiving area of the focus detection pixel in FIGS. 5C and 5E is displaced in the + x direction with respect to the light reception area of the focus detection pixel in FIG. No vignetting due to the operation of the correction drive mechanism 54 occurs in the light receiving regions Sα2b and Sα3b. Therefore, in the peripheral area of the imaging screen where vignetting occurs as described above, the focus detection selection unit (camera CPU 20) is represented by the focus detection pixel Pα1 in which the light receiving area of the photoelectric conversion unit has an effect of vignetting. It is selected not to use the focus detection correlation calculation result based on the images obtained by the first focus detection pixel group and the second focus detection pixel group represented by Pβ1. Then, the correlation calculation of the focus detection is performed based on the images obtained by the third, fourth, fifth and sixth focus detection pixel groups represented by the remaining Pα2 and Pβ2 and Pα3 and Pβ3, respectively. Focus detection is performed by averaging the results. In this way, accurate focus detection can be performed even if vignetting occurs due to the lens frame.

図6は図5で示した撮影レンズとは異なる手振れ補正駆動機構を有した撮影レンズを装着した場合の、手振れ補正駆動機構54が駆動した時の撮影画面の周辺における焦点検出用画素の受光分布の説明図である。各焦点検出用画素の光電変換部において、図5に示す焦点検出用画素よりも口径蝕の影響が大きくなり、図6(a)の焦点検出用画素の受光領域Sα1cは図5(a)の受光領域Sα1bに比べて狭くなっている。また、図6(c)の受光領域Sα2cにおいても手振れ補正駆動機構54のレンズ枠による口径蝕の影響が生じ、図5(c)の受光領域Sα2bに比べて狭くなっている。そこで、光電変換部の受光領域に口径蝕の影響のない焦点検出用画素Pα3及びPβ3で代表される焦点検出用画素群で得られる像に基づいてのみ焦点検出の相関演算を行うことが考えられる。しかし、焦点検出の精度は焦点検出用画素Pα1及びPβ1、Pα2及びPβ2、Pα3及びPβ3で代表される焦点検出用画素群で得られる像に基づいて焦点検出を行う場合よりも、相関演算の算出結果が1/3に減る。そのため、相関演算結果を平均した焦点検出結果のS/Nが悪くなる。そこで、本実施形態では手振れ補正駆動機構54の動作により、焦点検出用画素Pα1及びPβ1、Pα2及びPβ2、Pα3及びPβ3の3組で代表される焦点検出用画素群のうち、2組以上の焦点検出用画素の受光領域に口径蝕が発生すると推測される場合は、手振れ補正駆動機構54の駆動を禁止する。そして、焦点検出動作が終了してから手振れ補正駆動機構54の動作が許可される。   FIG. 6 shows a light reception distribution of focus detection pixels in the periphery of the photographing screen when the photographing correction driving mechanism 54 is driven when a photographing lens having a camera shake correction driving mechanism different from the photographing lens shown in FIG. 5 is attached. It is explanatory drawing of. In the photoelectric conversion unit of each focus detection pixel, the influence of vignetting becomes larger than that of the focus detection pixel shown in FIG. 5, and the light receiving region Sα1c of the focus detection pixel in FIG. It is narrower than the light receiving area Sα1b. Also, in the light receiving area Sα2c of FIG. 6C, the influence of vignetting is caused by the lens frame of the camera shake correction drive mechanism 54, which is narrower than the light receiving area Sα2b of FIG. 5C. Therefore, it is conceivable to perform correlation calculation for focus detection only based on an image obtained by a focus detection pixel group represented by focus detection pixels Pα3 and Pβ3 that are not affected by vignetting in the light receiving region of the photoelectric conversion unit. . However, the accuracy of focus detection is higher than that in the case of performing focus detection based on images obtained from focus detection pixel groups represented by focus detection pixels Pα1 and Pβ1, Pα2 and Pβ2, Pα3 and Pβ3. The result is reduced to 1/3. Therefore, the S / N of the focus detection result obtained by averaging the correlation calculation results is deteriorated. Therefore, in the present embodiment, two or more sets of focus among the focus detection pixel groups represented by the three sets of focus detection pixels Pα1 and Pβ1, Pα2 and Pβ2, Pα3, and Pβ3 by the operation of the camera shake correction drive mechanism 54. When it is estimated that vignetting occurs in the light receiving region of the detection pixel, the driving of the camera shake correction drive mechanism 54 is prohibited. Then, after the focus detection operation is completed, the operation of the camera shake correction drive mechanism 54 is permitted.

図7のフローチャートを使って本実施形態における実際の撮影動作について説明する。撮影動作が開始されるとフローチャートがスタートする。ステップS1001では装着されている撮影レンズ5を認識し、撮影レンズ5の焦点距離情報、レンズ枠情報、手振れ補正駆動機構の駆動量などの光学情報を読み込む。このとき、撮影レンズ5の光学情報は撮影レンズ5側にメモリを設けて記録しておいても良いし、デジタルスチルカメラ1側のメモリに記憶しておき、装着レンズを判断して取得しても良い。   The actual shooting operation in this embodiment will be described using the flowchart of FIG. When the photographing operation is started, the flowchart starts. In step S1001, the mounted photographing lens 5 is recognized, and optical information such as focal length information of the photographing lens 5, lens frame information, and a driving amount of the camera shake correction drive mechanism is read. At this time, the optical information of the photographic lens 5 may be recorded by providing a memory on the photographic lens 5 side, or stored in the memory on the digital still camera 1 side, and obtained by judging the attached lens. Also good.

次に、ステップS1002ではステップS1001で読み込んだ撮影レンズ5の光学情報を用いて、手振れ補正機構54が駆動した際に発生するケラレ量を算出する。そして、図6に示したように、手振れ補正駆動により焦点検出用画素Pα1及びPβ1、Pα2及びPβ2、Pα3及びPβ3の3組で代表される焦点検出用画素群のうち、2組以上の焦点検出用画素群の受光領域に口径蝕が発生すると推測される場合は、ケラレ判定部(カメラCPU20)によってケラレ影響ありのフラグが立てられる。   Next, in step S1002, the amount of vignetting that occurs when the camera shake correction mechanism 54 is driven is calculated using the optical information of the photographing lens 5 read in step S1001. Then, as shown in FIG. 6, two or more sets of focus detection are performed among the focus detection pixel groups represented by the three sets of focus detection pixels Pα1 and Pβ1, Pα2 and Pβ2, Pα3 and Pβ3 by camera shake correction driving. When it is estimated that vignetting occurs in the light receiving area of the pixel group for use, the vignetting determination unit (camera CPU 20) sets a flag indicating that there is an vignetting effect.

次に、ステップS1003ではユーザが不図示の操作ボタンを押すことで焦点検出動作の命令が下され焦点検出動作が開始される。ステップS1004では撮影モードが手振れ補正駆動モードであるかを判定する。手振れ補正駆動モードがOFFと判断されると、焦点検出動作にケラレの影響がないのでステップS1007に進む。ステップS1004で撮影モードが手振れ補正駆動モードONと判断されるとステップS1005に進み、手振れ補正駆動によるケラレの影響ありのフラグが立っているかが判断される。ケラレの影響ありのフラグが立っていない場合はステップS1007に進む。ケラレの影響ありのフラグが立っている場合は、ステップS1006に進み、手振れ補正駆動制御部(カメラCPU20)により手振れ補正駆動が一旦停止される。実際には手振れ補正量によりケラレは左右される。そのため手振れ補正駆動停止後にシフトレンズを中心に戻して前述のケラレを解消する。   In step S1003, when the user presses an operation button (not shown), a focus detection operation command is issued and the focus detection operation is started. In step S1004, it is determined whether the shooting mode is a camera shake correction drive mode. If it is determined that the camera shake correction drive mode is OFF, the focus detection operation is not affected by vignetting, and the process advances to step S1007. If it is determined in step S1004 that the shooting mode is the camera shake correction drive mode ON, the process proceeds to step S1005, and it is determined whether or not a flag indicating the influence of vignetting is caused by the camera shake correction drive. If the flag with vignetting is not set, the process proceeds to step S1007. If the vignetting flag is set, the process proceeds to step S1006, and the camera shake correction drive is temporarily stopped by the camera shake correction drive control unit (camera CPU 20). Actually, the vignetting depends on the amount of camera shake correction. Therefore, after the camera shake correction drive is stopped, the shift lens is returned to the center to eliminate the above-mentioned vignetting.

次に、ステップS1007では焦点検出動作のための演算が行われる。ステップS1007では撮影画面全域において、焦点検出用画素群から得られる像を用いて焦点検出のための相関演算を行う。相関演算の結果より、撮影画面に撮像された各被写体の被写体距離が検出され、ユーザから最も近傍に位置する被写体が目的被写体と判断される。そして、ステップS1008に進み目的被写体が合焦するように焦点検出結果に基づき焦点レンズ駆動機構51を駆動させる。ステップS1008で焦点レンズ5bが目標位置まで駆動されると、ステップS1009において目的被写体に対して合焦状態にあるかを判断するために、焦点検出用画素群からの像を用いて、再び焦点検出のための相関演算が行われる。ステップS1010では相関演算の結果、目的被写体に対し合焦状態であると判断されるまで、ステップS1008に戻って焦点レンズ5bの駆動と焦点検出演算が繰り返される。ステップS1010で目的被写体に対し合焦状態であると判断されると、ステップS1011に進み再度、撮影モードが手振れ補正駆動モードであるかが判断される。ステップS1011で手振れ補正駆動モードでないと判断されればステップS1014に進むが、手振れ補正駆動モードであった場合は、ステップS1012に進み、ステップS1004で手振れ補正駆動が禁止されて停止中かどうかを判断する。ステップS1012で手振れ補正駆動モードであり手振れ補正駆動が駆動している状態だと判断されるとS1014に進み、手振れ補正駆動が停止中であると判断されると、ステップS1013に進み再度手振れ補正駆動が開始される。   Next, in step S1007, calculation for focus detection operation is performed. In step S1007, correlation calculation for focus detection is performed using the image obtained from the focus detection pixel group in the entire shooting screen. The subject distance of each subject imaged on the shooting screen is detected from the correlation calculation result, and the subject located closest to the user is determined as the target subject. In step S1008, the focus lens driving mechanism 51 is driven based on the focus detection result so that the target subject is focused. When the focus lens 5b is driven to the target position in step S1008, focus detection is performed again using the image from the focus detection pixel group in order to determine whether or not the target subject is in focus in step S1009. Correlation calculation for is performed. In step S1010, the process returns to step S1008 and the driving of the focus lens 5b and the focus detection calculation are repeated until it is determined that the target subject is in focus as a result of the correlation calculation. If it is determined in step S1010 that the target subject is in focus, the process proceeds to step S1011 to determine again whether the shooting mode is the camera shake correction drive mode. If it is determined in step S1011 that the camera shake correction drive mode is not selected, the process proceeds to step S1014. If the camera shake correction drive mode is selected, the process proceeds to step S1012, and in step S1004 it is determined whether camera shake correction drive is prohibited and stopped. To do. If it is determined in step S1012 that the camera shake correction drive mode is set and the camera shake correction drive is in operation, the process proceeds to S1014. If it is determined that the camera shake correction drive is stopped, the process proceeds to step S1013 and the camera shake correction drive is performed again. Is started.

次にステップS1014で撮影ボタンONの操作が検出されると、ステップS1015に進みイメージセンサ2の撮像面上において、露光時間等の設定された撮影条件による露光動作、つまり撮影が行われる。ステップS1014で撮影ボタンのONが検出されない時は、一定時間が経過するまでの間ステップS1016とのフローを繰返し、撮影ボタンONの検出を待つ。ステップS1016で一定時間が経過すると、目的被写体に動きがあり非合焦状態になっていることが考えられるので、ステップS1004に戻って再度、焦点検出に伴う動作を繰り返す。ステップS1015で撮影が行われると、フローチャートを終了する。   In step S1014, when an operation of turning on the shooting button is detected, the process proceeds to step S1015, and an exposure operation under shooting conditions such as an exposure time, that is, shooting is performed on the imaging surface of the image sensor 2. If the shooting button ON is not detected in step S1014, the flow with step S1016 is repeated until a predetermined time elapses, and the detection of the shooting button ON is awaited. When a predetermined time elapses in step S1016, it can be considered that the target subject has moved and is out of focus. Therefore, the process returns to step S1004 and the operation associated with focus detection is repeated again. When shooting is performed in step S1015, the flowchart ends.

以上説明したように本実施形態では、まず装着された撮影レンズの手振れ補正駆動により発生するケラレ量を算出し、そのケラレ量の度合いによって焦点検出動作時の手振れ補正駆動を禁止するかを判断する。そして手振れ補正駆動によるケラレの影響が大きいと判断されると、焦点検出動作中は一旦、手振れ補正駆動を停止させ、合焦状態が検出されてから再度手振れ補正駆動を開始し撮影動作を行う。これにより、手振れ補正駆動によってケラレが発生する場合においても、高精度の焦点検出を行うことが出来る。   As described above, in the present embodiment, first, the amount of vignetting generated by the camera shake correction drive of the mounted photographic lens is calculated, and it is determined whether to prohibit the camera shake correction drive during the focus detection operation based on the degree of the vignetting amount. . If it is determined that the influence of vignetting due to the camera shake correction drive is large, the camera shake correction drive is temporarily stopped during the focus detection operation, and after the in-focus state is detected, the camera shake correction drive is started again to perform the photographing operation. Thereby, even when vignetting occurs due to camera shake correction driving, it is possible to perform focus detection with high accuracy.

本実施形態では、電極開口形状の異なる焦点検出用画素群を2つずつ3組で6種類もっていたが、もっと多くの組合せを有していても良い。例えば2つずつ5組で10種類の電極開口形状の焦点検出用画素群を有している場合、手振れ補正駆動によるケラレの影響が5組のうちの過半数である3組以上の焦点検出用画素群に影響を与える時は、焦点検出動作中の手振れ補正駆動を禁止と判断すればよい。また、電極開口形状の異なる焦点検出用画素群を2つずつ2組で4種類でも良い。その場合は、ケラレの影響が1組だけの電極開口形状の焦点検出用画素群のとき又は、ケラレの影響のない時は焦点検出動作中の手振れ補正駆動を可能とし、ケラレの影響が2組の焦点検出用画素群に及ぶときは焦点検出動作中の手振れ補正駆動を禁止とする。   In the present embodiment, there are six types of focus detection pixel groups having different electrode opening shapes, two in three sets, but more combinations may be provided. For example, when there are 10 types of focus detection pixel groups each having 5 types of electrode openings, 3 or more sets of focus detection pixels in which the influence of vignetting due to camera shake correction driving is a majority of the 5 sets When the group is affected, it may be determined that the camera shake correction drive during the focus detection operation is prohibited. In addition, two sets of focus detection pixel groups having different electrode opening shapes may be used in two sets of four types. In such a case, when the focus detection pixel group has an electrode opening shape with only one set of vignetting, or when there is no vignetting, camera shake correction driving during focus detection operation is possible, and two sets of vignetting are affected. Camera shake correction drive during the focus detection operation is prohibited.

本実施形態では、レンズシフト式の手振れ補正駆動機構を有する撮像装置について説明したが、イメージセンサシフト式やその他の駆動によりケラレを発生する手振れ補正駆動機構を有する撮像装置についても本発明は適用可能である。   In the present embodiment, the image pickup apparatus having the lens shift type camera shake correction drive mechanism has been described. However, the present invention can also be applied to an image pickup apparatus having an image sensor shift type or other camera shake correction drive mechanism that generates vignetting. It is.

撮影レンズが変わると撮影画面位置でのケラレの影響が変化すると述べたが、撮影レンズのズーム状態が変わることによってもケラレの影響は変化する。図1の撮影レンズ5では不図示であるが、撮影レンズが光学経路を変更して焦点距離を調整できる場合(ズーミングが可能な場合)は、撮影レンズのズーム状態を検出しケラレ量を算出しなおす必要がある。改めて算出しなおしたケラレ量に応じて、焦点検出動作時の手振れ補正駆動機構の駆動可否を判断する。   Although it has been described that the vignetting effect at the shooting screen position changes when the photographic lens changes, the vignetting effect also changes when the zoom state of the photographic lens changes. Although not shown in the photographic lens 5 of FIG. 1, when the photographic lens can change the optical path and adjust the focal length (when zooming is possible), the zoom state of the photographic lens is detected and the amount of vignetting is calculated. I need to fix it. Whether or not the camera shake correction drive mechanism can be driven during the focus detection operation is determined according to the amount of vignetting calculated again.

(第2の実施形態)
以下、図8、図9を用いて第2の実施形態の撮像装置について説明する。第2の実施形態の撮像装置の構成は第1の実施形態の撮像装置と変わらないので説明を省略する。第1の実施形態では、装着された撮影レンズの光学情報から手振れ補正駆動により発生するケラレ量を算出し、その結果に応じて焦点検出動作時の手振れ補正駆動の禁止を判断していた。第2の実施形態では、装着された撮影レンズの光学情報から手振れ補正駆動により発生する撮影画面内の各位置でのケラレ量を算出し、ケラレの影響がない撮影画面の範囲(画面範囲)のみで焦点検出動作を可能とする。
(Second Embodiment)
Hereinafter, the imaging apparatus according to the second embodiment will be described with reference to FIGS. 8 and 9. Since the configuration of the imaging apparatus of the second embodiment is the same as that of the imaging apparatus of the first embodiment, the description thereof is omitted. In the first embodiment, the amount of vignetting generated by the camera shake correction drive is calculated from the optical information of the mounted photographing lens, and the prohibition of the camera shake correction drive during the focus detection operation is determined according to the result. In the second embodiment, the vignetting amount at each position in the shooting screen generated by the camera shake correction drive is calculated from the optical information of the mounted shooting lens, and only the shooting screen range (screen range) that is not affected by the vignetting is calculated. Enables focus detection operation.

図8は、第2の実施形態における撮像装置の撮影動作を表したフローチャートである。フローがスタートすると、まずステップS2001では装着されている撮影レンズ5を認識し、撮影レンズ5の焦点距離情報、レンズ枠情報、手振れ補正駆動機構の駆動量などの光学情報を読み込む。   FIG. 8 is a flowchart showing the shooting operation of the imaging apparatus according to the second embodiment. When the flow starts, first, in step S2001, the mounted photographing lens 5 is recognized, and optical information such as focal length information of the photographing lens 5, lens frame information, and a driving amount of the camera shake correction drive mechanism is read.

次に、ステップS2002ではステップS2001で読み込んだ撮影レンズ5の光学情報を用いて、手振れ補正駆動機構54が駆動した際に発生するケラレ量を算出する。そして、ステップS2003ではケラレ判定部(カメラCPU20)により撮影画面におけるケラレの影響のある範囲が算出され、焦点検出可能範囲を算出する。まず、手振れ補正駆動により焦点検出用画素Pα1及びPβ1、Pα2及びPβ2、Pα3及びPβ3の3組で代表される焦点検出用画素群のうち、2組以上の焦点検出用画素の受光領域に口径蝕が発生する撮影画面の範囲を算出する。口径蝕は撮影画面の周辺エリアにおいて影響が大きく、撮影画面中央に近づけばケラレの影響は小さくなる、又は口径蝕が発生しなくなる。よって、ケラレの影響の大きい撮影画面の周辺エリアでのみ相関演算の精度が低くなるので焦点検出動作を行わないように設定する。図9は撮影画面の模式図であり、エリア202の外側はケラレの影響が大きいため焦点検出は行わず、エリア202の内側のみを焦点検出可能範囲としていることを表している。   Next, in step S2002, the amount of vignetting that occurs when the camera shake correction drive mechanism 54 is driven is calculated using the optical information of the photographing lens 5 read in step S2001. In step S2003, the vignetting determination unit (camera CPU 20) calculates a range affected by vignetting on the shooting screen, and calculates a focus detectable range. First, vignetting occurs in the light receiving areas of two or more focus detection pixels among the focus detection pixel groups represented by three pairs of focus detection pixels Pα1 and Pβ1, Pα2 and Pβ2, Pα3, and Pβ3. Calculate the range of the shooting screen where the occurs. The vignetting has a large effect in the peripheral area of the shooting screen, and the effect of vignetting is reduced or the vignetting does not occur when the image is close to the center of the shooting screen. Therefore, since the accuracy of the correlation calculation is lowered only in the peripheral area of the shooting screen where the influence of vignetting is large, the focus detection operation is set not to be performed. FIG. 9 is a schematic diagram of a shooting screen. The outside of the area 202 is greatly affected by vignetting, so that focus detection is not performed, and only the inside of the area 202 is set as a focus detectable range.

次に、ステップS2004ではユーザが操作ボタンを押すことで焦点検出動作の命令が下され焦点検出動作が開始される。ステップS2005では撮影モードが手振れ補正駆動モードであるかを判定する。ステップS2005で撮影モードが手振れ補正駆動モードではないと判断された場合はステップS2013に進み、手振れ補正駆動によるケラレの影響がないので撮影画面全域が焦点検出可能範囲に設定される。一方、手振れ補正駆動モードであると判断されると、ステップS2006に進みステップS2003で算出した結果が焦点検出可能範囲決定部(カメラCPU20)により焦点検出可能範囲と設定される。そして、焦点検出可能範囲表示部(カメラCPU20)により焦点検出可能範囲を内部液晶表示素子4又は背面液晶表示素子6に表示し、ユーザに撮影画面内の焦点検出動作が可能な範囲を知らせる。   In step S2004, when the user presses the operation button, a focus detection operation command is issued and the focus detection operation is started. In step S2005, it is determined whether the shooting mode is the camera shake correction drive mode. If it is determined in step S2005 that the shooting mode is not the camera shake correction drive mode, the process proceeds to step S2013, and since there is no vignetting effect due to the camera shake correction drive, the entire shooting screen is set as a focus detectable range. On the other hand, if it is determined that the camera shake correction drive mode is selected, the process proceeds to step S2006, and the result calculated in step S2003 is set as the focus detectable range by the focus detectable range determining unit (camera CPU 20). Then, the focus detectable range display unit (camera CPU 20) displays the focus detectable range on the internal liquid crystal display element 4 or the rear liquid crystal display element 6, and informs the user of the range in which the focus detection operation within the photographing screen can be performed.

次に、ステップS2007では焦点検出可能範囲において、焦点検出用画素群から得られる像を用いて焦点検出のための相関演算を行う。相関演算の結果より、撮影画面に撮像された各被写体の被写体距離が検出され、ユーザに最も近傍の被写体が目的被写体と判断される。そして、ステップS2008に進み目的被写体が合焦するように焦点検出結果に基づき焦点レンズ駆動機構51を駆動させる。ステップS2008で焦点レンズ5bが目標位置まで駆動されると、ステップS2009において目的被写体に対して合焦状態にあるかを判断するために、焦点検出用画素群からの像を用いて、再び焦点検出のための相関演算が行われる。次に、ステップS2010において相関演算の結果、目的被写体に対し合焦状態であると判断されるまで、ステップS2008に戻って焦点レンズ5bの駆動と焦点検出演算が繰り返される。   Next, in step S2007, correlation calculation for focus detection is performed using an image obtained from the focus detection pixel group in the focus detectable range. The subject distance of each subject imaged on the shooting screen is detected from the correlation calculation result, and the subject closest to the user is determined as the target subject. In step S2008, the focus lens driving mechanism 51 is driven based on the focus detection result so that the target subject is focused. When the focus lens 5b is driven to the target position in step S2008, focus detection is performed again using the image from the focus detection pixel group in order to determine whether or not the target subject is in focus in step S2009. Correlation calculation for is performed. Next, until it is determined in step S2010 that the target object is in focus as a result of the correlation calculation, the process returns to step S2008, and the driving of the focus lens 5b and the focus detection calculation are repeated.

以下、ステップS2011〜S2012及びステップS2014の動作は第1の実施形態のステップS1014〜S1015及びステップS1016の動作と同様であるため説明を省略する。ステップS2012を終えるとフローを終了する。   Hereinafter, the operations in steps S2011 to S2012 and step S2014 are the same as the operations in steps S1014 to S1015 and step S1016 of the first embodiment, and thus description thereof is omitted. When step S2012 ends, the flow ends.

以上説明したように、第2の実施形態では、装着された撮影レンズの光学情報から手振れ補正駆動により発生する撮影画面内の各位置での各ケラレ量を算出し、手振れ補正駆動モードであるときはケラレの影響が少ない撮影画面の範囲のみで焦点検出動作を可能とする。そして、液晶表示装置に焦点検出可能範囲として表示し、ユーザに焦点検出を行う範囲を報知する。また、手振れ補正駆動モードでないときは撮影画面の全域を焦点検出可能範囲とする。   As described above, in the second embodiment, the amount of vignetting at each position in the shooting screen generated by the camera shake correction drive is calculated from the optical information of the mounted shooting lens, and the camera is in the camera shake correction drive mode. The focus detection operation can be performed only in the range of the shooting screen with less influence of vignetting. And it displays on a liquid crystal display device as a focus detectable range, and notifies the range which performs focus detection to a user. When not in the camera shake correction drive mode, the entire area of the shooting screen is set as a focus detectable range.

第2の実施形態では、算出された撮影画面内の各位置のケラレ量より焦点検出可能範囲を設定して、焦点検出可能範囲内でのみ焦点検出の相関演算を行ったが、第1の実施形態と組み合わせても良い。例えば、第1の実施形態の動作と第2の実施形態の動作をそれぞれ別のモードとして設定して、ユーザの設定により焦点検出動作を切り替えても良い。   In the second embodiment, the focus detection detectable range is set based on the calculated amount of vignetting at each position in the shooting screen, and the focus detection correlation calculation is performed only within the focus detection possible range. You may combine with form. For example, the operation of the first embodiment and the operation of the second embodiment may be set as different modes, and the focus detection operation may be switched according to a user setting.

Claims (5)

撮像装置であって、
撮影レンズにより結像された被写体像を光電変換する固体撮像素子であって、前記撮影レンズの第1の瞳領域を通過する光束を受光する複数の第1の焦点検出用画素からなる第1の焦点検出用画素群と、前記撮影レンズの前記第1の瞳領域とは異なる第2の瞳領域を通過する光束を受光する複数の第2の焦点検出用画素からなる第2の焦点検出用画素群とを有する固体撮像素子と、
前記第1の焦点検出用画素群から得られる第1の像と、前記第2の焦点検出用画素群から得られる第2の像の位相差に基づいて前記撮影レンズの焦点状態を検出する焦点検出手段と、
前記撮影レンズを通過して前記固体撮像素子に達する光束の光学経路を調整することにより、前記撮像装置の振れに起因する前記被写体像の振れを補正する振れ補正手段と、
前記振れ補正手段により前記光学経路を調整した場合の、前記第1の焦点検出用画素と前記第2の焦点検出用画素の受光分布を算出する演算手段と、
前記演算手段により算出された前記受光分布に基づいて、前記振れ補正手段を動作させるか否かを制御する制御手段と、
を備えることを特徴とする撮像装置。
An imaging device,
A solid-state imaging device that photoelectrically converts a subject image formed by a photographic lens, and includes a first focus detection pixel that receives a light beam that passes through a first pupil region of the photographic lens. A second focus detection pixel comprising a focus detection pixel group and a plurality of second focus detection pixels that receive a light beam passing through a second pupil region different from the first pupil region of the photographing lens. A solid-state imaging device having a group;
A focus for detecting a focus state of the photographing lens based on a phase difference between a first image obtained from the first focus detection pixel group and a second image obtained from the second focus detection pixel group. Detection means;
A shake correction unit that corrects a shake of the subject image caused by a shake of the imaging device by adjusting an optical path of a light beam that passes through the photographing lens and reaches the solid-state imaging device;
Arithmetic means for calculating a light reception distribution of the first focus detection pixel and the second focus detection pixel when the optical path is adjusted by the shake correction means;
Control means for controlling whether to operate the shake correction means based on the received light distribution calculated by the calculation means;
An imaging apparatus comprising:
前記第1の焦点検出用画素とは開口の位置が異なる複数の第3の焦点検出用画素からなる第3の焦点検出用画素群と、前記第2の焦点検出用画素とは開口の位置が異なる複数の第4の焦点検出用画素からなる第4の焦点検出用画素群と、前記第3の焦点検出用画素群から得られる第3の像と、前記第4の焦点検出用画素群から得られる第4の像の位相差に基づいて前記撮影レンズの焦点状態を検出する第2の焦点検出手段とを更に備え、前記演算手段は第3の焦点検出用画素と前記第4の焦点検出用画素の受光分布を更に算出し、前記制御手段は、前記演算手段により算出された受光分布に基づいて、前記焦点検出手段と前記第2の焦点検出手段のどちらの検出結果を用いて前記撮影レンズの焦点調節を行うかを選択することを特徴とする請求項1に記載の撮像装置。   A third focus detection pixel group consisting of a plurality of third focus detection pixels whose opening positions are different from those of the first focus detection pixels, and the second focus detection pixels have an opening position. From a fourth focus detection pixel group including a plurality of different fourth focus detection pixels, a third image obtained from the third focus detection pixel group, and the fourth focus detection pixel group Second focus detection means for detecting the focus state of the photographing lens based on the phase difference of the obtained fourth image, and the calculation means includes a third focus detection pixel and the fourth focus detection. The light receiving distribution of the pixels is further calculated, and the control means uses the detection result of either the focus detecting means or the second focus detecting means based on the light receiving distribution calculated by the calculating means. Select whether to adjust the focus of the lens. The imaging apparatus according to claim 1. 撮像装置であって、
撮影レンズにより結像された被写体像を光電変換する固体撮像素子であって、前記撮影レンズの第1の瞳領域を通過する光束を受光する複数の第1の焦点検出用画素からなる第1の焦点検出用画素群と、前記撮影レンズの前記第1の瞳領域とは異なる第2の瞳領域を通過する光束を受光する複数の第2の焦点検出用画素からなる第2の焦点検出用画素群とを有する固体撮像素子と、
前記第1の焦点検出用画素群から得られる第1の像と、前記第2の焦点検出用画素群から得られる第2の像の位相差に基づいて前記撮影レンズの焦点状態を検出する焦点検出手段と、
前記撮影レンズを通過して前記固体撮像素子に達する光束の光学経路を調整することにより、前記撮像装置の振れに起因する前記被写体像の振れを補正する振れ補正手段と、
前記振れ補正手段により前記光学経路を調整した場合の、前記第1の焦点検出用画素と前記第2の焦点検出用画素の受光分布を算出する演算手段と、
前記演算手段により算出された前記受光分布に基づいて、前記固体撮像素子の画面内での焦点検出に用いる画面範囲を制御する制御手段と、
を備えることを特徴とする撮像装置。
An imaging device,
A solid-state imaging device that photoelectrically converts a subject image formed by a photographic lens, and includes a first focus detection pixel that receives a light beam that passes through a first pupil region of the photographic lens. A second focus detection pixel comprising a focus detection pixel group and a plurality of second focus detection pixels that receive a light beam passing through a second pupil region different from the first pupil region of the photographing lens. A solid-state imaging device having a group;
A focus for detecting a focus state of the photographing lens based on a phase difference between a first image obtained from the first focus detection pixel group and a second image obtained from the second focus detection pixel group. Detection means;
A shake correction unit that corrects a shake of the subject image caused by a shake of the imaging device by adjusting an optical path of a light beam that passes through the photographing lens and reaches the solid-state imaging device;
Arithmetic means for calculating a light reception distribution of the first focus detection pixel and the second focus detection pixel when the optical path is adjusted by the shake correction means;
Control means for controlling a screen range used for focus detection within the screen of the solid-state imaging device, based on the received light distribution calculated by the computing means;
An imaging apparatus comprising:
前記焦点検出に用いる画面範囲を表示する表示手段を更に備えることを特徴とする請求項3に記載の撮像装置。   The imaging apparatus according to claim 3, further comprising display means for displaying a screen range used for the focus detection. 前記第1の焦点検出用画素とは開口の位置が異なる複数の第3の焦点検出用画素からなる第3の焦点検出用画素群と、前記第2の焦点検出用画素とは開口の位置が異なる複数の第4の焦点検出用画素からなる第4の焦点検出用画素群と、前記第3の焦点検出用画素群から得られる第3の像と、前記第4の焦点検出用画素群から得られる第4の像の位相差に基づいて前記撮影レンズの焦点状態を検出する第2の焦点検出手段とを更に備え、前記演算手段は第3の焦点検出用画素と前記第4の焦点検出用画素の受光分布を更に算出し、前記制御手段は、前記演算手段により算出された受光分布に基づいて、前記焦点検出手段と前記第2の焦点検出手段のどちらの検出結果を用いて前記撮影レンズの焦点調節を行うかを選択することを特徴とする請求項3に記載の撮像装置。   A third focus detection pixel group consisting of a plurality of third focus detection pixels whose opening positions are different from those of the first focus detection pixels, and the second focus detection pixels have an opening position. From a fourth focus detection pixel group including a plurality of different fourth focus detection pixels, a third image obtained from the third focus detection pixel group, and the fourth focus detection pixel group Second focus detection means for detecting the focus state of the photographing lens based on the phase difference of the obtained fourth image, and the calculation means includes a third focus detection pixel and the fourth focus detection. The light receiving distribution of the pixels is further calculated, and the control means uses the detection result of either the focus detecting means or the second focus detecting means based on the light receiving distribution calculated by the calculating means. Select whether to adjust the focus of the lens. The imaging apparatus according to claim 3.
JP2009233552A 2009-10-07 2009-10-07 Imaging device Expired - Fee Related JP5118680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009233552A JP5118680B2 (en) 2009-10-07 2009-10-07 Imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009233552A JP5118680B2 (en) 2009-10-07 2009-10-07 Imaging device

Publications (2)

Publication Number Publication Date
JP2011081201A true JP2011081201A (en) 2011-04-21
JP5118680B2 JP5118680B2 (en) 2013-01-16

Family

ID=44075312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009233552A Expired - Fee Related JP5118680B2 (en) 2009-10-07 2009-10-07 Imaging device

Country Status (1)

Country Link
JP (1) JP5118680B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013099638A1 (en) * 2011-12-28 2013-07-04 富士フイルム株式会社 Image pickup element and image pickup apparatus
JP2013218214A (en) * 2012-04-11 2013-10-24 Canon Inc Imaging device
WO2016067648A1 (en) * 2014-10-30 2016-05-06 オリンパス株式会社 Focal point adjustment device, camera system, and focal point adjustment method
US9451149B2 (en) 2012-09-11 2016-09-20 Sony Corporation Processing apparatus, processing method, and program
US10021307B2 (en) 2012-09-11 2018-07-10 Sony Corporation Processing apparatus for camera shake correction
JP2019028359A (en) * 2017-08-02 2019-02-21 キヤノン株式会社 Imaging apparatus and control method of the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07333487A (en) * 1994-06-06 1995-12-22 Nikon Corp Focus detector
WO2008149925A1 (en) * 2007-06-08 2008-12-11 Nikon Corporation Imaging device, image display device, and program
JP2009122159A (en) * 2007-11-12 2009-06-04 Nikon Corp Focus detection device and imaging apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07333487A (en) * 1994-06-06 1995-12-22 Nikon Corp Focus detector
WO2008149925A1 (en) * 2007-06-08 2008-12-11 Nikon Corporation Imaging device, image display device, and program
JP2009122159A (en) * 2007-11-12 2009-06-04 Nikon Corp Focus detection device and imaging apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013099638A1 (en) * 2011-12-28 2013-07-04 富士フイルム株式会社 Image pickup element and image pickup apparatus
JP5589146B2 (en) * 2011-12-28 2014-09-10 富士フイルム株式会社 Imaging device and imaging apparatus
US9167183B2 (en) 2011-12-28 2015-10-20 Fujifilm Corporation Imaging element and imaging apparatus employing phase difference detection pixels pairs
JP2013218214A (en) * 2012-04-11 2013-10-24 Canon Inc Imaging device
US9451149B2 (en) 2012-09-11 2016-09-20 Sony Corporation Processing apparatus, processing method, and program
US10021307B2 (en) 2012-09-11 2018-07-10 Sony Corporation Processing apparatus for camera shake correction
WO2016067648A1 (en) * 2014-10-30 2016-05-06 オリンパス株式会社 Focal point adjustment device, camera system, and focal point adjustment method
JP2016090649A (en) * 2014-10-30 2016-05-23 オリンパス株式会社 Focus adjustment device, camera system and focus adjustment method
JP2019028359A (en) * 2017-08-02 2019-02-21 キヤノン株式会社 Imaging apparatus and control method of the same

Also Published As

Publication number Publication date
JP5118680B2 (en) 2013-01-16

Similar Documents

Publication Publication Date Title
JP5159700B2 (en) Optical apparatus and focus detection method
US8634015B2 (en) Image capturing apparatus and method and program for controlling same
JP5489641B2 (en) Focus detection apparatus and control method thereof
JP5465244B2 (en) Solid-state imaging device and imaging apparatus
JP4952060B2 (en) Imaging device
JP4720508B2 (en) Imaging device and imaging apparatus
US8711270B2 (en) Focus detection device and imaging apparatus having the same
JP5012495B2 (en) IMAGING ELEMENT, FOCUS DETECTION DEVICE, FOCUS ADJUSTMENT DEVICE, AND IMAGING DEVICE
JP6317548B2 (en) Imaging apparatus and control method thereof
JP5404693B2 (en) IMAGING ELEMENT, IMAGING DEVICE HAVING THE SAME, AND CAMERA SYSTEM
JP5274299B2 (en) Imaging device
JP6124564B2 (en) Focus detection apparatus and method, and imaging apparatus
US8902349B2 (en) Image pickup apparatus
JP5118680B2 (en) Imaging device
JP2004191629A (en) Focus detector
JP5219787B2 (en) Imaging device
JP2009141390A (en) Image sensor and imaging apparatus
JP5417827B2 (en) Focus detection apparatus and imaging apparatus
US11297271B2 (en) Image sensor and image capture apparatus
JP5784395B2 (en) Imaging device
US9049365B2 (en) Image capturing apparatus and control method thereof
JP5800573B2 (en) Imaging apparatus, camera system, and focus detection method
JP5486284B2 (en) Imaging device
JP2009258451A (en) Focus detection device
JP5060216B2 (en) Imaging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120921

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121019

R151 Written notification of patent or utility model registration

Ref document number: 5118680

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees