Nothing Special   »   [go: up one dir, main page]

JP2011066999A - Rotor of permanent magnet motor - Google Patents

Rotor of permanent magnet motor Download PDF

Info

Publication number
JP2011066999A
JP2011066999A JP2009214897A JP2009214897A JP2011066999A JP 2011066999 A JP2011066999 A JP 2011066999A JP 2009214897 A JP2009214897 A JP 2009214897A JP 2009214897 A JP2009214897 A JP 2009214897A JP 2011066999 A JP2011066999 A JP 2011066999A
Authority
JP
Japan
Prior art keywords
rotor
outer peripheral
permanent magnet
type motor
wave shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009214897A
Other languages
Japanese (ja)
Inventor
Kazuhiko Baba
和彦 馬場
Hitoshi Kawaguchi
仁 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009214897A priority Critical patent/JP2011066999A/en
Publication of JP2011066999A publication Critical patent/JP2011066999A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotor of a permanent magnet motor further reduced in the leakage of magnetic flux in a rotor core. <P>SOLUTION: The rotor 100 of the permanent magnet motor is equipped with: the rotor core 17 which is constituted by laminating a prescribed number of electromagnetic steel plates which are punched out in prescribed shapes; a plurality of magnet accommodation holes 11 which are formed along the external periphery of the rotor core 17; a pair of magnetic flux leakage suppression slits 13a, 13b which are formed at both ends of the magnet accommodation holes 11, connected to the magnet accommodation holes 11, and extended toward the center of a magnetic pole along the external periphery of the rotor core 17; permanent magnets 8 which are inserted into the magnet accommodation holes 11; and an external peripheral thinned part which is formed between the external periphery of the rotor core 17 and the magnetic flux leakage suppression slits 13a, 13b. A shape of the external peripheral thinned part is formed in such a waveform shape that the magnetic passage length of the external peripheral thinned part becomes long compared with the case where the external peripheral thinned part is linear or circular, and extends in the circumferential direction. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、永久磁石型モータの回転子に関する。   The present invention relates to a rotor of a permanent magnet type motor.

従来、多数の積層された鋼板からなる固定子鉄心と、固定子鉄心に巻装された固定子巻線とを有する固定子と、固定子に対向して回転自在に設けられ多数の積層された鋼板からなる回転子鉄心と極を作る永久磁石とを有する回転子とを備えており、極は偶数個存在し、極と隣の極との間には補助磁極が形成され、回転子を構成する鋼板の、永久磁石の固定子側に位置する鋼板部分と補助磁極との間の部分にエッチング加工により孔またはスリットを設け、回転子鉄心内での磁束の漏れを低減して固定子鉄心側に向かう磁束を大きくした永久磁石型モータが提案されている(例えば、特許文献1参照)。   Conventionally, a stator having a stator core made of a large number of laminated steel sheets, a stator winding wound around the stator core, and a large number of layers provided to be rotatable in opposition to the stator. It is equipped with a rotor core made of a steel plate and a rotor having a permanent magnet that creates a pole, and there is an even number of poles, and an auxiliary magnetic pole is formed between the pole and the adjacent pole, constituting the rotor A hole or slit is provided by etching in the part between the steel plate part located on the stator side of the permanent magnet and the auxiliary magnetic pole of the steel plate to be machined, reducing the leakage of magnetic flux in the rotor core, and the stator core side There has been proposed a permanent magnet type motor in which the magnetic flux toward the surface is increased (see, for example, Patent Document 1).

特開2009−033908号JP 2009-033908

しかしながら、上記特許文献1に記載された永久磁石型モータは、永久磁石の固定子側に位置する鋼板部分と補助磁極との間の部分に設けたエッチング加工による孔またはスリットのみが構成されているだけであり、十分な漏れ磁束の低減がなされないという課題があった。   However, the permanent magnet type motor described in Patent Document 1 includes only etching holes or slits provided in a portion between the steel plate portion located on the stator side of the permanent magnet and the auxiliary magnetic pole. However, there is a problem that the leakage magnetic flux cannot be sufficiently reduced.

この発明は、上記のよう課題を解決するためになされたもので、回転子鉄心内の漏れ磁束をより一層低減した永久磁石型モータの回転子を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a rotor of a permanent magnet type motor in which leakage magnetic flux in the rotor core is further reduced.

この発明に係る永久磁石型モータの回転子は、所定の形状に打ち抜かれた電磁鋼板を、所定の枚数積層して構成される回転子鉄心と、
回転子鉄心の外周部に沿って形成された複数の磁石挿入孔と、
磁石挿入孔の両端部に設けられ、磁石挿入孔に連結し、回転子鉄心の外周部に沿って磁極中心に向かう方向に伸びる一対の漏れ磁束抑制スリットと、
磁石挿入孔内に挿入される永久磁石と、
回転子鉄心の外周部と漏れ磁束抑制スリットとの間に形成される外周薄肉部と、を備え、
外周薄肉部の形状を、外周薄肉部が直線もしくは円弧で周方向に伸びる場合に比べて、外周薄肉部の磁路長が長くなるような波型形状としたものである。
The rotor of the permanent magnet type motor according to the present invention includes a rotor core configured by laminating a predetermined number of electromagnetic steel sheets punched into a predetermined shape,
A plurality of magnet insertion holes formed along the outer periphery of the rotor core;
A pair of leakage flux suppressing slits provided at both ends of the magnet insertion hole, connected to the magnet insertion hole, and extending in a direction toward the magnetic pole center along the outer peripheral portion of the rotor core;
A permanent magnet inserted into the magnet insertion hole;
An outer peripheral thin portion formed between the outer peripheral portion of the rotor core and the leakage flux suppressing slit,
The shape of the outer peripheral thin portion is a corrugated shape in which the magnetic path length of the outer peripheral thin portion is longer than that in the case where the outer peripheral thin portion extends in the circumferential direction with a straight line or an arc.

この発明に係る永久磁石型モータの回転子は、外周薄肉部の形状を、外周薄肉部が直線もしくは円弧で周方向に伸びる場合に比べて、外周薄肉部の磁路長が長くなるような波型形状としたので、回転子鉄心内の漏れ磁束をより一層低減できる。   The rotor of the permanent magnet type motor according to the present invention is such that the shape of the outer peripheral thin portion is such that the magnetic path length of the outer peripheral thin portion is longer than when the outer peripheral thin portion extends in the circumferential direction by a straight line or an arc. Because of the mold shape, the leakage magnetic flux in the rotor core can be further reduced.

実施の形態1を示す図で、永久磁石型モータの回転子100の横断面図。FIG. 3 shows the first embodiment, and is a transverse sectional view of a rotor 100 of a permanent magnet type motor. 図1の部分拡大図。The elements on larger scale of FIG. 実施の形態1を示す図で、回転子鉄心17の平面図。FIG. 5 shows the first embodiment and is a plan view of a rotor core 17. 図3の部分拡大図。The elements on larger scale of FIG. 実施の形態1を示す図で、漏れ磁束抑制スリット13a付近の拡大図。FIG. 5 shows the first embodiment and is an enlarged view in the vicinity of a leakage flux suppressing slit 13a. 実施の形態1を示す図で、変形例1の永久磁石型モータの回転子200の横断面図。FIG. 5 shows the first embodiment, and is a cross-sectional view of a rotor 200 of a permanent magnet type motor according to a first modification. 図6の部分拡大図。The elements on larger scale of FIG. 実施の形態1を示す図で、変形例1の回転子鉄心27の平面図。FIG. 5 shows the first embodiment, and is a plan view of a rotor core 27 of a first modification. 図8の部分拡大図。The elements on larger scale of FIG. 実施の形態1を示す図で、漏れ磁束抑制スリット23a付近の拡大図。FIG. 5 shows the first embodiment and is an enlarged view in the vicinity of a leakage flux suppressing slit 23a. 実施の形態1を示す図で、変形例2の永久磁石型モータの回転子300の横断面図。FIG. 5 shows the first embodiment, and is a cross-sectional view of a rotor 300 of a permanent magnet type motor according to a second modification. 図11の部分拡大図。The elements on larger scale of FIG. 実施の形態1を示す図で、変形例2の回転子鉄心37の平面図。FIG. 5 shows the first embodiment, and is a plan view of a rotor core 37 of a second modification. 図13の部分拡大図。The elements on larger scale of FIG. 実施の形態1を示す図で、漏れ磁束抑制スリット33a付近の拡大図。FIG. 5 shows the first embodiment and is an enlarged view in the vicinity of a leakage flux suppressing slit 33a. 実施の形態1を示す図で、変形例3の永久磁石型モータの回転子400の横断面図。FIG. 5 shows the first embodiment, and is a cross-sectional view of a rotor 400 of a permanent magnet type motor according to a third modification. 図16の部分拡大図。The elements on larger scale of FIG. 実施の形態1を示す図で、変形例3の回転子鉄心47の平面図。FIG. 5 shows the first embodiment and is a plan view of a rotor core 47 of a third modification. 図18の部分拡大図。The elements on larger scale of FIG. 実施の形態1を示す図で、漏れ磁束抑制スリット43a付近の拡大図。FIG. 5 shows the first embodiment and is an enlarged view in the vicinity of a leakage flux suppressing slit 43a. 実施の形態1を示す図で、変形例4の永久磁石型モータの回転子500の横断面図。FIG. 5 shows the first embodiment, and is a cross-sectional view of a rotor 500 of a permanent magnet type motor according to a fourth modification. 図21の部分拡大図。The elements on larger scale of FIG. 実施の形態1を示す図で、変形例4の回転子鉄心57の平面図。FIG. 9 shows the first embodiment and is a plan view of a rotor core 57 of a fourth modification. 図23の部分拡大図。The elements on larger scale of FIG. 実施の形態1を示す図で、漏れ磁束抑制スリット53a付近の拡大図。FIG. 5 shows the first embodiment and is an enlarged view in the vicinity of a leakage flux suppressing slit 53a.

実施の形態1.
図1乃至図25は実施の形態1を示す図で、図1は永久磁石型モータの回転子100の横断面図、図2は図1の部分拡大図、図3は回転子鉄心17の平面図、図4は図3の部分拡大図、図5は漏れ磁束抑制スリット13a付近の拡大図、図6は変形例1の永久磁石型モータの回転子200の横断面図、図7は図6の部分拡大図、図8は変形例1の回転子鉄心27の平面図、図9は図8の部分拡大図、図10は漏れ磁束抑制スリット23a付近の拡大図、図11は変形例2の永久磁石型モータの回転子300の横断面図、図12は図11の部分拡大図、図13は変形例2の回転子鉄心37の平面図、図14は図13の部分拡大図、図15は漏れ磁束抑制スリット33a付近の拡大図、図16は変形例3の永久磁石型モータの回転子400の横断面図、図17は図16の部分拡大図、図18は変形例3の回転子鉄心47の平面図、図19は図18の部分拡大図、図20は漏れ磁束抑制スリット43a付近の拡大図、図21は変形例4の永久磁石型モータの回転子500の横断面図、図22は図21の部分拡大図、図23は変形例4の回転子鉄心57の平面図、図24は図23の部分拡大図、図25は漏れ磁束抑制スリット53a付近の拡大図である。
Embodiment 1 FIG.
1 to 25 show the first embodiment. FIG. 1 is a cross-sectional view of a rotor 100 of a permanent magnet motor, FIG. 2 is a partially enlarged view of FIG. 1, and FIG. 4 is a partially enlarged view of FIG. 3, FIG. 5 is an enlarged view of the vicinity of the leakage flux suppressing slit 13a, FIG. 6 is a cross-sectional view of the rotor 200 of the permanent magnet type motor of Modification 1, and FIG. 8 is a plan view of the rotor core 27 of the first modification, FIG. 9 is a partial enlarged view of FIG. 8, FIG. 10 is an enlarged view of the vicinity of the leakage flux suppressing slit 23a, and FIG. FIG. 12 is a partially enlarged view of FIG. 11, FIG. 13 is a plan view of the rotor core 37 of the second modification, FIG. 14 is a partially enlarged view of FIG. Is an enlarged view of the vicinity of the leakage flux suppressing slit 33a, and FIG. FIG. 17 is a partially enlarged view of FIG. 16, FIG. 18 is a plan view of the rotor core 47 of Modification 3, FIG. 19 is a partially enlarged view of FIG. 18, and FIG. 20 is an enlarged view of the vicinity of the leakage flux suppressing slit 43a. 21 is a cross-sectional view of a rotor 500 of a permanent magnet motor according to a fourth modification, FIG. 22 is a partially enlarged view of FIG. 21, FIG. 23 is a plan view of a rotor core 57 according to the fourth modification, and FIG. FIG. 25 is an enlarged view of the vicinity of the leakage flux suppressing slit 53a.

図1乃至図5により、永久磁石型モータの回転子100について説明する。   A rotor 100 of a permanent magnet type motor will be described with reference to FIGS.

以下、永久磁石型モータの回転子100を、単に回転子と呼ぶ場合もある。   Hereinafter, the rotor 100 of the permanent magnet type motor may be simply referred to as a rotor.

本実施の形態の永久磁石型モータの回転子100は、希土類の永久磁石8の形状を平板形状とし、六枚の永久磁石8を周方向に六角形を形成するように配置している(図1参照)。   In the rotor 100 of the permanent magnet type motor of the present embodiment, the shape of the rare earth permanent magnet 8 is a flat plate shape, and the six permanent magnets 8 are arranged so as to form a hexagon in the circumferential direction (see FIG. 1).

但し、これは一例であって、永久磁石8の種類、枚数、形状、配置は、これに限定されるものではない。   However, this is only an example, and the type, number, shape, and arrangement of the permanent magnets 8 are not limited thereto.

図1において、回転子鉄心17は、薄板の電磁鋼板(例えば、0.1〜0.5mm程度の板厚で、無方向性電磁鋼板(鋼板の特定方向に偏って磁気特性を示さないよう、各結晶の結晶軸方向をできる限りランダムに配置させたもの))を所定の形状に金型で打ち抜き、所定の枚数(複数枚)積層して形成される。   In FIG. 1, the rotor core 17 is a thin electromagnetic steel plate (for example, a thickness of about 0.1 to 0.5 mm, and a non-oriented electrical steel plate (so as not to show magnetic characteristics biased to a specific direction of the steel plate, The crystal axis direction of each crystal is arranged as randomly as possible))) is punched into a predetermined shape with a mold, and a predetermined number (multiple) is laminated.

回転子鉄心17には、横断面が長方形の六個の磁石収容孔11が、周方向に六角形を形成するように形成されている(図3参照)。   The rotor core 17 is formed with six magnet housing holes 11 having a rectangular cross section so as to form a hexagon in the circumferential direction (see FIG. 3).

磁石収容孔11の内部に、N極とS極とが交互になるように着磁された六枚の平板形状の永久磁石8を挿入することで6極の回転子を形成している。   A six-pole rotor is formed by inserting six plate-shaped permanent magnets 8 magnetized so that N poles and S poles are alternately arranged inside the magnet housing hole 11.

永久磁石8には、ネオジウム、鉄、ボロンを主成分とする希土類を用いている。   The permanent magnet 8 is made of rare earth mainly composed of neodymium, iron and boron.

磁石収容孔11の両端部には、磁石収容孔11に連結され、周方向に沿って磁極中心(図1、図4参照)に向かう方向に一対の細長な漏れ磁束抑制スリット13a,13bが設けられている。   A pair of elongated leakage magnetic flux suppression slits 13a and 13b are provided at both ends of the magnet accommodation hole 11 in a direction toward the magnetic pole center (see FIGS. 1 and 4) along the circumferential direction. It has been.

図4に示すように、同一極中にある一対の漏れ磁束抑制スリット13a,13bの先端部間の距離Bが、磁石収容孔11の長手方向(周方向)の長さAよりも十分小さくなるように構成されている。即ち、
A≫B
の関係を満たす。
As shown in FIG. 4, the distance B between the tip portions of the pair of leakage flux suppressing slits 13 a and 13 b in the same pole is sufficiently smaller than the length A in the longitudinal direction (circumferential direction) of the magnet housing hole 11. It is configured as follows. That is,
A >> B
Satisfy the relationship.

また、漏れ磁束抑制スリット13a,13bと回転子鉄心17の外周部17a(図5参照)との間には、周方向に伸びる外周薄肉部19を形成する(図5参照)。但し、図5では、漏れ磁束抑制スリット13aのみ示しているが、漏れ磁束抑制スリット13bについても同様である。   Further, an outer peripheral thin portion 19 extending in the circumferential direction is formed between the leakage flux suppressing slits 13a and 13b and the outer peripheral portion 17a (see FIG. 5) of the rotor core 17 (see FIG. 5). However, FIG. 5 shows only the leakage flux suppressing slit 13a, but the same applies to the leakage flux suppressing slit 13b.

この外周薄肉部19の形状を、正弦波状になるように形成する。これは、外周薄肉部19の磁路を長くするためである。   The shape of the outer peripheral thin portion 19 is formed to be a sine wave. This is to lengthen the magnetic path of the outer peripheral thin portion 19.

外周薄肉部19の厚みt(図5参照)は、強度が許容される範囲であれば、可能な限り薄くするのが望ましく、例えば、電磁鋼板の板厚(0.1〜0.5mm)以下とするのが好ましい。これは、外周薄肉部19の磁路の面積を小さくして、磁気抵抗を大きくするためである。   The thickness t (see FIG. 5) of the outer peripheral thin portion 19 is desirably as thin as possible within a range where the strength is allowable. For example, the thickness (0.1 to 0.5 mm) or less of the electromagnetic steel sheet Is preferable. This is to reduce the area of the magnetic path of the outer peripheral thin portion 19 and increase the magnetic resistance.

このように、漏れ磁束抑制スリット13a,13bと回転子鉄心17の外周部17a(図5参照)との間に形成した周方向に伸びる外周薄肉部19の形状を正弦波状に形成するとともに、外周薄肉部19の厚みtを、強度が許容される範囲で、可能な限り薄くすることで、外周薄肉部19の磁路長が増大し、且つ磁路面積が小さくなり、磁気抵抗を増加させることができ、回転子鉄心17内部で閉じる漏れ磁束を抑制する効果が得られる。   As described above, the shape of the outer peripheral thin wall portion 19 extending in the circumferential direction formed between the leakage flux suppressing slits 13a and 13b and the outer peripheral portion 17a (see FIG. 5) of the rotor core 17 is formed in a sine wave shape, and By reducing the thickness t of the thin portion 19 as much as possible within the range where the strength is allowed, the magnetic path length of the outer thin portion 19 is increased, the magnetic path area is reduced, and the magnetic resistance is increased. Thus, the effect of suppressing the leakage magnetic flux closing inside the rotor core 17 is obtained.

図6乃至図10により、変形例1の永久磁石型モータの回転子200について説明する。   The rotor 200 of the permanent magnet type motor of Modification 1 will be described with reference to FIGS.

変形例1の永久磁石型モータの回転子200も、希土類の永久磁石8の形状を平板形状とし、六枚の永久磁石8を周方向に六角形を形成するように配置している(図6、図7参照)。   The rotor 200 of the permanent magnet type motor of Modification 1 is also arranged so that the rare earth permanent magnet 8 has a flat plate shape and the six permanent magnets 8 form a hexagon in the circumferential direction (FIG. 6). FIG. 7).

但し、これは一例であって、永久磁石8の種類、枚数、形状、配置は、これに限定されるものではない。   However, this is only an example, and the type, number, shape, and arrangement of the permanent magnets 8 are not limited thereto.

図6において、回転子鉄心27も、薄板の電磁鋼板(例えば、0.1〜0.5mm程度の板厚で、無方向性電磁鋼板(鋼板の特定方向に偏って磁気特性を示さないよう、各結晶の結晶軸方向をできる限りランダムに配置させたもの))を所定の形状に金型で打ち抜き、所定の枚数(複数枚)積層して形成される。   In FIG. 6, the rotor core 27 is also a thin electromagnetic steel sheet (for example, with a thickness of about 0.1 to 0.5 mm, and a non-oriented electromagnetic steel sheet (not to show a magnetic characteristic biased to a specific direction of the steel sheet, The crystal axis direction of each crystal is arranged as randomly as possible))) is punched into a predetermined shape with a mold, and a predetermined number (multiple) is laminated.

回転子鉄心27には、横断面が長方形の六個の磁石収容孔11が、周方向に六角形を形成するように形成されている(図8参照)。   The rotor core 27 is formed with six magnet housing holes 11 having a rectangular cross section so as to form a hexagon in the circumferential direction (see FIG. 8).

磁石収容孔11の内部に、N極とS極とが交互になるように着磁された六枚の平板形状の永久磁石8を挿入することで6極の回転子を形成している。   A six-pole rotor is formed by inserting six plate-shaped permanent magnets 8 magnetized so that N poles and S poles are alternately arranged inside the magnet housing hole 11.

永久磁石8には、ネオジウム、鉄、ボロンを主成分とする希土類を用いている。   The permanent magnet 8 is made of rare earth mainly composed of neodymium, iron and boron.

磁石収容孔11の両端部には、磁石収容孔11に連結され、周方向に沿って磁極中心(図6、図9参照)に向かう方向に一対の細長な漏れ磁束抑制スリット23a,23bが設けられている。   A pair of elongate leakage flux suppression slits 23a and 23b are provided at both ends of the magnet accommodation hole 11 in the direction toward the center of the magnetic pole (see FIGS. 6 and 9) along the circumferential direction. It has been.

図9に示すように、同一極中にある一対の漏れ磁束抑制スリット23a,23bの先端部間の距離Bが、磁石収容孔11の長手方向(周方向)の長さAよりも十分小さくなるように構成されている。即ち、
A≫B
の関係を満たす。
As shown in FIG. 9, the distance B between the tips of the pair of leakage flux suppressing slits 23a, 23b in the same pole is sufficiently smaller than the length A in the longitudinal direction (circumferential direction) of the magnet housing hole 11. It is configured as follows. That is,
A >> B
Satisfy the relationship.

また、漏れ磁束抑制スリット23a,23bと回転子鉄心27の外周部27a(図10参照)との間には、周方向に伸びる外周薄肉部29を形成する(図10参照)。但し、図10では、漏れ磁束抑制スリット23aのみ示しているが、漏れ磁束抑制スリット23bについても同様である。   Further, an outer peripheral thin portion 29 extending in the circumferential direction is formed between the leakage flux suppressing slits 23a and 23b and the outer peripheral portion 27a (see FIG. 10) of the rotor core 27 (see FIG. 10). However, FIG. 10 shows only the leakage flux suppressing slit 23a, but the same applies to the leakage flux suppressing slit 23b.

この外周薄肉部29の形状を、のこぎり波状になるように形成する。これは、外周薄肉部29の磁路を長くするためである。   The shape of the outer peripheral thin portion 29 is formed to have a sawtooth wave shape. This is to lengthen the magnetic path of the outer peripheral thin portion 29.

外周薄肉部29の厚みt(図10参照)は、強度が許容される範囲であれば、可能な限り薄くするのが望ましく、例えば、電磁鋼板の板厚(0.1〜0.5mm)以下としてもよい。これは、外周薄肉部29の磁路の面積を小さくして、磁気抵抗を大きくするためである。   The thickness t (see FIG. 10) of the outer peripheral thin portion 29 is desirably as thin as possible within a range where the strength is allowable. For example, the thickness (0.1 to 0.5 mm) or less of the electromagnetic steel sheet It is good. This is to reduce the area of the magnetic path of the outer peripheral thin portion 29 and increase the magnetic resistance.

このように、漏れ磁束抑制スリット23a,23bと回転子鉄心27の外周部27aとの間に形成した周方向に伸びる外周薄肉部29の形状をのこぎり波状に形成するとともに、外周薄肉部29の厚みtを、強度が許容される範囲で、可能な限り薄くすることで、外周薄肉部29の磁路長が増大し、且つ磁路面積が小さくなり、磁気抵抗を増加させることができ、回転子鉄心27内部で閉じる漏れ磁束を抑制する効果が得られる。   Thus, the shape of the outer peripheral thin portion 29 extending in the circumferential direction formed between the leakage flux suppressing slits 23 a and 23 b and the outer peripheral portion 27 a of the rotor core 27 is formed in a sawtooth wave shape, and the thickness of the outer peripheral thin portion 29. By making t as thin as possible within a range where the strength is allowed, the magnetic path length of the outer peripheral thin portion 29 is increased, the magnetic path area is reduced, and the magnetic resistance can be increased. An effect of suppressing leakage magnetic flux closing inside the iron core 27 is obtained.

図11乃至図15により、変形例2の永久磁石型モータの回転子300について説明する。   The rotor 300 of the permanent magnet type motor according to the second modification will be described with reference to FIGS. 11 to 15.

変形例2の永久磁石型モータの回転子300も、希土類の永久磁石8の形状を平板形状とし、六枚の永久磁石8を周方向に六角形を形成するように配置している(図11、図12参照)。   The rotor 300 of the permanent magnet type motor of Modification 2 is also arranged so that the rare earth permanent magnet 8 has a flat plate shape and the six permanent magnets 8 form a hexagon in the circumferential direction (FIG. 11). FIG. 12).

但し、これは一例であって、永久磁石8の種類、枚数、形状、配置は、これに限定されるものではない。   However, this is only an example, and the type, number, shape, and arrangement of the permanent magnets 8 are not limited thereto.

図11において、回転子鉄心37も、薄板の電磁鋼板(例えば、0.1〜0.5mm程度の板厚で、無方向性電磁鋼板(鋼板の特定方向に偏って磁気特性を示さないよう、各結晶の結晶軸方向をできる限りランダムに配置させたもの))を所定の形状に金型で打ち抜き、所定の枚数(複数枚)積層して形成される。   In FIG. 11, the rotor core 37 is also a thin electromagnetic steel sheet (for example, a thickness of about 0.1 to 0.5 mm, and a non-oriented electromagnetic steel sheet (not to show a magnetic characteristic biased to a specific direction of the steel sheet, The crystal axis direction of each crystal is arranged as randomly as possible))) is punched into a predetermined shape with a mold, and a predetermined number (multiple) is laminated.

回転子鉄心37には、横断面が長方形の六個の磁石収容孔11が、周方向に六角形を形成するように形成されている(図13参照)。   In the rotor core 37, six magnet housing holes 11 having a rectangular cross section are formed so as to form a hexagon in the circumferential direction (see FIG. 13).

磁石収容孔11の内部に、N極とS極とが交互になるように着磁された六枚の平板形状の永久磁石8を挿入することで6極の回転子を形成している。   A six-pole rotor is formed by inserting six plate-shaped permanent magnets 8 magnetized so that N poles and S poles are alternately arranged inside the magnet housing hole 11.

永久磁石8には、ネオジウム、鉄、ボロンを主成分とする希土類を用いている。   The permanent magnet 8 is made of rare earth mainly composed of neodymium, iron and boron.

磁石収容孔11の両端部には、磁石収容孔11に連結され、周方向に沿って磁極中心(図11、図14参照)に向かう方向に一対の細長な漏れ磁束抑制スリット33a,33bが設けられている。   A pair of elongate leakage flux suppression slits 33a and 33b are provided at both ends of the magnet accommodation hole 11 in the direction toward the magnetic pole center (see FIGS. 11 and 14) along the circumferential direction. It has been.

図14に示すように、同一極中にある一対の漏れ磁束抑制スリット33a,33bの先端部間の距離Bが、磁石収容孔11の長手方向(周方向)の長さAよりも十分小さくなるように構成されている。即ち、
A≫B
の関係を満たす。
As shown in FIG. 14, the distance B between the tip portions of the pair of leakage flux suppressing slits 33 a and 33 b in the same pole is sufficiently smaller than the length A in the longitudinal direction (circumferential direction) of the magnet housing hole 11. It is configured as follows. That is,
A >> B
Satisfy the relationship.

また、漏れ磁束抑制スリット33a,33bと回転子鉄心37の外周部37a(図15参照)との間には、周方向に伸びる外周薄肉部39を形成する(図15参照)。但し、図15では、漏れ磁束抑制スリット33aのみ示しているが、漏れ磁束抑制スリット33bについても同様である。   Further, an outer peripheral thin portion 39 extending in the circumferential direction is formed between the leakage magnetic flux suppressing slits 33a and 33b and the outer peripheral portion 37a (see FIG. 15) of the rotor core 37 (see FIG. 15). However, FIG. 15 shows only the leakage flux suppressing slit 33a, but the same applies to the leakage flux suppressing slit 33b.

この外周薄肉部39の形状を、矩形波状になるように形成する。これは、外周薄肉部39の磁路を長くするためである。   The shape of the outer peripheral thin portion 39 is formed to have a rectangular wave shape. This is to lengthen the magnetic path of the outer peripheral thin portion 39.

外周薄肉部39の厚みt(図15参照)は、強度が許容される範囲であれば、可能な限り薄くするのが望ましく、例えば、電磁鋼板の板厚(0.1〜0.5mm)以下としてもよい。これは、外周薄肉部39の磁路の面積を小さくして、磁気抵抗を大きくするためである。   The thickness t (see FIG. 15) of the outer peripheral thin portion 39 is desirably as thin as possible within a range where the strength is allowable. For example, the thickness (0.1 to 0.5 mm) or less of the electromagnetic steel sheet It is good. This is to reduce the area of the magnetic path of the outer peripheral thin portion 39 and increase the magnetic resistance.

このように、漏れ磁束抑制スリット33a,33bと回転子鉄心37の外周部37aとの間に形成した周方向に伸びる外周薄肉部39の形状を矩形波状に形成するとともに、外周薄肉部39の厚みtを、強度が許容される範囲で、可能な限り薄くすることで、外周薄肉部39の磁路長が増大し、且つ磁路面積が小さくなり、磁気抵抗を増加させることができ、回転子鉄心37内部で閉じる漏れ磁束を抑制する効果が得られる。   As described above, the shape of the outer peripheral thin portion 39 extending in the circumferential direction formed between the leakage flux suppressing slits 33a and 33b and the outer peripheral portion 37a of the rotor core 37 is formed in a rectangular wave shape, and the thickness of the outer peripheral thin portion 39 is also formed. By reducing t as much as possible within a range where the strength is allowed, the magnetic path length of the outer peripheral thin portion 39 is increased, the magnetic path area is reduced, and the magnetic resistance can be increased. The effect of suppressing the leakage magnetic flux closing inside the iron core 37 is obtained.

図16乃至図20により、変形例3の永久磁石型モータの回転子400について説明する。   A rotor 400 of a permanent magnet type motor according to Modification 3 will be described with reference to FIGS.

変形例3の永久磁石型モータの回転子400も、希土類の永久磁石8の形状を平板形状とし、六枚の永久磁石8を周方向に六角形を形成するように配置している(図16参照)。   The rotor 400 of the permanent magnet type motor of Modification 3 is also arranged so that the rare earth permanent magnet 8 has a flat plate shape and the six permanent magnets 8 form a hexagon in the circumferential direction (FIG. 16). reference).

但し、これは一例であって、永久磁石8の種類、枚数、形状、配置は、これに限定されるものではない。   However, this is only an example, and the type, number, shape, and arrangement of the permanent magnets 8 are not limited thereto.

図16において、回転子鉄心47も、薄板の電磁鋼板(例えば、0.1〜0.5mm程度の板厚で、無方向性電磁鋼板(鋼板の特定方向に偏って磁気特性を示さないよう、各結晶の結晶軸方向をできる限りランダムに配置させたもの))を所定の形状に金型で打ち抜き、所定の枚数(複数枚)積層して形成される。   In FIG. 16, the rotor core 47 is also a thin electromagnetic steel plate (for example, with a thickness of about 0.1 to 0.5 mm, a non-oriented electrical steel plate (so as not to show magnetic characteristics biased to a specific direction of the steel plate, The crystal axis direction of each crystal is randomly arranged as much as possible))) is punched into a predetermined shape with a mold, and a predetermined number (plural) are laminated.

回転子鉄心47には、横断面が長方形の六個の磁石収容孔11が、周方向に六角形を形成するように形成されている(図18参照)。   The rotor core 47 is formed with six magnet housing holes 11 having a rectangular cross section so as to form a hexagon in the circumferential direction (see FIG. 18).

磁石収容孔11の内部に、N極とS極とが交互になるように着磁された六枚の平板形状の永久磁石8を挿入することで6極の回転子を形成している。   A six-pole rotor is formed by inserting six plate-shaped permanent magnets 8 magnetized so that N poles and S poles are alternately arranged inside the magnet housing hole 11.

永久磁石8には、ネオジウム、鉄、ボロンを主成分とする希土類を用いている。   The permanent magnet 8 is made of rare earth mainly composed of neodymium, iron and boron.

磁石収容孔11の両端部には、磁石収容孔11に連結され、周方向に沿って磁極中心(図16、図19参照)に向かう方向に一対の細長な漏れ磁束抑制スリット43a,43bが設けられている。   A pair of elongated leakage magnetic flux suppression slits 43a and 43b are provided at both ends of the magnet accommodation hole 11 in a direction toward the magnetic pole center (see FIGS. 16 and 19) along the circumferential direction. It has been.

図19に示すように、同一極中にある一対の漏れ磁束抑制スリット43a,43bの先端部間の距離Bが、磁石収容孔11の長手方向(周方向)の長さAよりも十分小さくなるように構成されている。即ち、
A≫B
の関係を満たす。
As shown in FIG. 19, the distance B between the tips of the pair of leakage flux suppressing slits 43a and 43b in the same pole is sufficiently smaller than the length A in the longitudinal direction (circumferential direction) of the magnet housing hole 11. It is configured as follows. That is,
A >> B
Satisfy the relationship.

また、漏れ磁束抑制スリット43a,43bと回転子鉄心47の外周部47a(図20参照)との間には、周方向に伸びる外周薄肉部49を形成する(図20参照)。但し、図20では、漏れ磁束抑制スリット43aのみ示しているが、漏れ磁束抑制スリット43bについても同様である。   Further, an outer peripheral thin portion 49 extending in the circumferential direction is formed between the leakage flux suppressing slits 43a and 43b and the outer peripheral portion 47a (see FIG. 20) of the rotor core 47 (see FIG. 20). However, FIG. 20 shows only the leakage flux suppressing slit 43a, but the same applies to the leakage flux suppressing slit 43b.

この外周薄肉部49の形状を、台形波状になるように形成する。これは、外周薄肉部49の磁路を長くするためである。   The shape of the outer peripheral thin portion 49 is formed to be a trapezoidal wave shape. This is to lengthen the magnetic path of the outer peripheral thin portion 49.

外周薄肉部49の厚みt(図20参照)は、強度が許容される範囲であれば、可能な限り薄くするのが望ましく、例えば、電磁鋼板の板厚(0.1〜0.5mm)以下としてもよい。これは、外周薄肉部49の磁路の面積を小さくして、磁気抵抗を大きくするためである。   The thickness t (see FIG. 20) of the outer peripheral thin portion 49 is desirably as thin as possible within a range where the strength is allowable. For example, the thickness (0.1 to 0.5 mm) or less of the electromagnetic steel sheet It is good. This is to reduce the area of the magnetic path of the outer peripheral thin portion 49 and increase the magnetic resistance.

このように、漏れ磁束抑制スリット43a,43bと回転子鉄心47の外周部47aとの間に形成した周方向に伸びる外周薄肉部49の形状を台形波状に形成するとともに、外周薄肉部49の厚みtを、強度が許容される範囲で、可能な限り薄くすることで、外周薄肉部49の磁路長が増大し、且つ磁路面積が小さくなり、磁気抵抗を増加させることができ、回転子鉄心37内部で閉じる漏れ磁束を抑制する効果が得られる。   As described above, the shape of the outer peripheral thin portion 49 extending in the circumferential direction formed between the leakage flux suppressing slits 43 a and 43 b and the outer peripheral portion 47 a of the rotor core 47 is formed in a trapezoidal wave shape and the thickness of the outer peripheral thin portion 49. By making t as thin as possible within the range where the strength is allowed, the magnetic path length of the outer peripheral thin portion 49 is increased, the magnetic path area is reduced, and the magnetic resistance can be increased. The effect of suppressing the leakage magnetic flux closing inside the iron core 37 is obtained.

図21乃至図25により、変形例4の永久磁石型モータの回転子500について説明する。   A rotor 500 of a permanent magnet type motor according to Modification 4 will be described with reference to FIGS.

変形例4の永久磁石型モータの回転子500も、希土類の永久磁石8の形状を平板形状とし、六枚の永久磁石8を周方向に六角形を形成するように配置している(図21参照)。   The rotor 500 of the permanent magnet type motor of Modification 4 is also arranged so that the rare earth permanent magnet 8 has a flat plate shape and the six permanent magnets 8 form a hexagon in the circumferential direction (FIG. 21). reference).

但し、これは一例であって、永久磁石8の種類、枚数、形状、配置は、これに限定されるものではない。   However, this is only an example, and the type, number, shape, and arrangement of the permanent magnets 8 are not limited thereto.

図21において、回転子鉄心57も、薄板の電磁鋼板(例えば、0.1〜0.5mm程度の板厚で、無方向性電磁鋼板(鋼板の特定方向に偏って磁気特性を示さないよう、各結晶の結晶軸方向をできる限りランダムに配置させたもの))を所定の形状に金型で打ち抜き、所定の枚数(複数枚)積層して形成される。   In FIG. 21, the rotor core 57 is also a thin electromagnetic steel plate (for example, a thickness of about 0.1 to 0.5 mm, and a non-oriented electromagnetic steel plate (so as not to show magnetic characteristics biased to a specific direction of the steel plate, The crystal axis direction of each crystal is arranged as randomly as possible))) is punched into a predetermined shape with a mold, and a predetermined number (multiple) is laminated.

回転子鉄心57には、横断面が長方形の六個の磁石収容孔11が、周方向に六角形を形成するように形成されている(図23参照)。   The rotor core 57 is formed with six magnet housing holes 11 having a rectangular cross section so as to form a hexagon in the circumferential direction (see FIG. 23).

磁石収容孔11の内部に、N極とS極とが交互になるように着磁された六枚の平板形状の永久磁石8を挿入することで6極の回転子を形成している。   A six-pole rotor is formed by inserting six plate-shaped permanent magnets 8 magnetized so that N poles and S poles are alternately arranged inside the magnet housing hole 11.

永久磁石8には、ネオジウム、鉄、ボロンを主成分とする希土類を用いている。   The permanent magnet 8 is made of rare earth mainly composed of neodymium, iron and boron.

磁石収容孔11の両端部には、磁石収容孔11に連結され、周方向に沿って磁極中心(図21、図24参照)に向かう方向に一対の細長な漏れ磁束抑制スリット53a,53bが設けられている。   A pair of elongated leakage magnetic flux suppression slits 53a and 53b are provided at both ends of the magnet housing hole 11 and connected to the magnet housing hole 11 in the direction toward the magnetic pole center (see FIGS. 21 and 24) along the circumferential direction. It has been.

図24に示すように、同一極中にある一対の漏れ磁束抑制スリット53a,53bの先端部間の距離Bが、磁石収容孔11の長手方向(周方向)の長さAよりも十分小さくなるように構成されている。即ち、
A≫B
の関係を満たす。
As shown in FIG. 24, the distance B between the tips of the pair of leakage flux suppressing slits 53a, 53b in the same pole is sufficiently smaller than the length A in the longitudinal direction (circumferential direction) of the magnet housing hole 11. It is configured as follows. That is,
A >> B
Satisfy the relationship.

また、漏れ磁束抑制スリット53a,53bと回転子鉄心57の外周部57a(図25参照)との間には、周方向に伸びる外周薄肉部59を形成する(図25参照)。但し、図25では、漏れ磁束抑制スリット53aのみ示しているが、漏れ磁束抑制スリット53bについても同様である。   Further, an outer peripheral thin portion 59 extending in the circumferential direction is formed between the leakage flux suppressing slits 53a and 53b and the outer peripheral portion 57a (see FIG. 25) of the rotor core 57 (see FIG. 25). However, FIG. 25 shows only the leakage flux suppressing slit 53a, but the same applies to the leakage flux suppressing slit 53b.

この外周薄肉部59の形状を、三角波状になるように形成する。これは、外周薄肉部59の磁路を長くするためである。   The shape of the outer peripheral thin portion 59 is formed to have a triangular wave shape. This is because the magnetic path of the outer peripheral thin portion 59 is lengthened.

外周薄肉部59の厚みt(図25参照)は、強度が許容される範囲であれば、可能な限り薄くするのが望ましく、例えば、電磁鋼板の板厚(0.1〜0.5mm)以下としてもよい。これは、外周薄肉部59の磁路の面積を小さくして、磁気抵抗を大きくするためである。   The thickness t (see FIG. 25) of the outer peripheral thin portion 59 is desirably as thin as possible within a range where the strength is allowable. For example, the thickness (0.1 to 0.5 mm) or less of the electromagnetic steel sheet It is good. This is to reduce the area of the magnetic path of the outer peripheral thin portion 59 and increase the magnetic resistance.

このように、漏れ磁束抑制スリット53a,53bと回転子鉄心57の外周部57aとの間に形成した周方向に伸びる外周薄肉部59の形状を三角波状に形成するとともに、外周薄肉部59の厚みtを、強度が許容される範囲で、可能な限り薄くすることで、外周薄肉部59の磁路長が増大し、且つ磁路面積が小さくなり、磁気抵抗を増加させることができ、回転子鉄心37内部で閉じる漏れ磁束を抑制する効果が得られる。   Thus, the shape of the outer peripheral thin portion 59 extending in the circumferential direction formed between the leakage flux suppressing slits 53a and 53b and the outer peripheral portion 57a of the rotor core 57 is formed in a triangular wave shape, and the thickness of the outer peripheral thin portion 59 is increased. By making t as thin as possible within the range where the strength is allowed, the magnetic path length of the outer peripheral thin portion 59 is increased, the magnetic path area is reduced, and the magnetic resistance can be increased. The effect of suppressing the leakage magnetic flux closing inside the iron core 37 is obtained.

尚、外周薄肉部の磁路長を増加することができれば、外周薄肉部の形状は、正弦波形状、のこぎり波状、矩形波状、台形波状、及び三角波状の合成波となるよう形成してもよい。   If the magnetic path length of the outer peripheral thin portion can be increased, the shape of the outer peripheral thin portion may be formed to be a combined wave of a sine wave shape, a sawtooth wave shape, a rectangular wave shape, a trapezoidal wave shape, and a triangular wave shape. .

また、回転子鉄心17〜57の製法としては、プレス機を用いた打ち抜き加工でも可能であるが、本実施の形態のように外周薄肉部19〜59の周方向の長さを大きく、また、外周薄肉部19〜59の厚みを小さく形成した回転子鉄心17〜57をプレス加工で打ち抜いた場合、機械的なせん断・切断・破断により、塑性変形層が形成され、電磁鋼板の強度を大幅に劣化させてしまう。   Moreover, as a manufacturing method of the rotor cores 17 to 57, punching using a press machine is also possible, but the circumferential length of the outer peripheral thin portions 19 to 59 is increased as in the present embodiment, When the rotor cores 17 to 57 in which the outer peripheral thin portions 19 to 59 are formed with a small thickness are punched out by press working, a plastic deformation layer is formed by mechanical shearing, cutting and breaking, and the strength of the electrical steel sheet is greatly increased. It will deteriorate.

従って、例えば、塑性変形層のないフォトエッチング加工で作ることにより、回転子の強度を飛躍的に向上させることができる。   Therefore, for example, the strength of the rotor can be remarkably improved by making it by photoetching without a plastic deformation layer.

8 永久磁石、11 磁石収容孔、13a 漏れ磁束抑制スリット、13b 漏れ磁束抑制スリット、17 回転子鉄心、17a 外周部、19 外周薄肉部、23a 漏れ磁束抑制スリット、23b 漏れ磁束抑制スリット、27 回転子鉄心、27a 外周部、29 外周薄肉部、33a 漏れ磁束抑制スリット、33b 漏れ磁束抑制スリット、37 回転子鉄心、37a 外周部、39 外周薄肉部、43a 漏れ磁束抑制スリット、43b 漏れ磁束抑制スリット、47 回転子鉄心、47a 外周部、49 外周薄肉部、53a 漏れ磁束抑制スリット、53b 漏れ磁束抑制スリット、57 回転子鉄心、57a 外周部、59 外周薄肉部、100 永久磁石型モータの回転子、200 永久磁石型モータの回転子、300 永久磁石型モータの回転子、400 永久磁石型モータの回転子、500 永久磁石型モータの回転子。   8 Permanent magnet, 11 Magnet housing hole, 13a Leakage magnetic flux suppression slit, 13b Leakage magnetic flux suppression slit, 17 Rotor core, 17a Outer peripheral portion, 19 Outer peripheral thin wall portion, 23a Leakage magnetic flux suppression slit, 23b Leakage magnetic flux suppression slit, 27 Rotor Iron core, 27a outer peripheral portion, 29 outer peripheral thin portion, 33a leakage magnetic flux suppression slit, 33b leakage magnetic flux suppression slit, 37 rotor core, 37a outer peripheral portion, 39 outer thin portion, 43a leakage magnetic flux suppression slit, 43b leakage magnetic flux suppression slit, 47 Rotor core, 47a outer peripheral part, 49 outer thin part, 53a leakage magnetic flux suppression slit, 53b leakage magnetic flux suppression slit, 57 rotor magnetic core, 57a outer peripheral part, 59 outer thin part, 100 permanent magnet motor rotor, 200 permanent Magnet type motor rotor, 300 Permanent magnet type motor Trochanter, 400 permanent magnet motor rotor, 500 a permanent magnet type motor rotor.

Claims (9)

所定の形状に打ち抜かれた電磁鋼板を、所定の枚数積層して構成される回転子鉄心と、
前記回転子鉄心の外周部に沿って形成された複数の磁石挿入孔と、
前記磁石挿入孔の両端部に設けられ、前記磁石挿入孔に連結し、前記回転子鉄心の外周部に沿って磁極中心に向かう方向に伸びる一対の漏れ磁束抑制スリットと、
前記磁石挿入孔内に挿入される永久磁石と、
前記回転子鉄心の外周部と前記漏れ磁束抑制スリットとの間に形成される外周薄肉部と、を備え、
前記外周薄肉部の形状を、当該外周薄肉部が直線もしくは円弧で周方向に伸びる場合に比べて、前記外周薄肉部の磁路長が長くなるような波型形状としたことを特徴とする永久磁石型モータの回転子。
A rotor core constructed by laminating a predetermined number of magnetic steel sheets punched into a predetermined shape;
A plurality of magnet insertion holes formed along the outer periphery of the rotor core;
A pair of leakage flux suppressing slits provided at both ends of the magnet insertion hole, connected to the magnet insertion hole, and extending in a direction toward the magnetic pole center along the outer peripheral portion of the rotor core;
A permanent magnet inserted into the magnet insertion hole;
An outer peripheral thin portion formed between an outer peripheral portion of the rotor core and the leakage flux suppressing slit,
The shape of the outer peripheral thin portion is a wave shape that makes the magnetic path length of the outer peripheral thin portion longer than that when the outer peripheral thin portion extends in the circumferential direction by a straight line or an arc. Magnet type motor rotor.
同一極中にある一対の前記漏れ磁束抑制の先端部間の距離Bと、前記磁石挿入孔の周方向の長さAとは、
A≫B
の関係を満たすことを特徴とする請求項1記載の永久磁石型モータの回転子。
The distance B between the pair of leakage flux suppression tips in the same pole and the circumferential length A of the magnet insertion hole are:
A >> B
The rotor of a permanent magnet type motor according to claim 1, wherein the relationship is satisfied.
前記外周薄肉部の厚みは、前記電磁鋼板の板厚以下とすることを特徴とする請求項1又は請求項2記載の永久磁石型モータの回転子。   3. The rotor of a permanent magnet type motor according to claim 1, wherein a thickness of the outer peripheral thin portion is equal to or less than a thickness of the electromagnetic steel plate. 前記波型形状を、正弦波形状とすることを特徴とする請求項1乃至3のいずれかに記載の永久磁石型モータの回転子。   The rotor of a permanent magnet type motor according to any one of claims 1 to 3, wherein the wave shape is a sine wave shape. 前記波型形状を、矩形波形状とすることを特徴とする請求項1乃至3のいずれかに記載の永久磁石型モータの回転子。   The rotor of a permanent magnet type motor according to any one of claims 1 to 3, wherein the wave shape is a rectangular wave shape. 前記波型形状を、のこぎり波状とすることを特徴とする請求項1乃至3のいずれかに記載の永久磁石型モータの回転子。   The rotor of a permanent magnet type motor according to any one of claims 1 to 3, wherein the wave shape is a sawtooth wave shape. 前記波型形状を、台形波状とすることを特徴とする請求項1乃至3のいずれかに記載の永久磁石型モータの回転子。   The rotor of a permanent magnet type motor according to any one of claims 1 to 3, wherein the wave shape is a trapezoidal wave shape. 前記波型形状を、三角波状とすることを特徴とする請求項1乃至3のいずれかに記載の永久磁石型モータの回転子。   The rotor of a permanent magnet type motor according to any one of claims 1 to 3, wherein the wave shape is a triangular wave shape. 少なくとも前記外周薄肉部の周辺部を、エッチングで加工したことを特徴とする請求項1乃至8のいずれかに記載の永久磁石型モータの回転子。   The rotor of a permanent magnet type motor according to any one of claims 1 to 8, wherein at least a peripheral portion of the outer peripheral thin portion is processed by etching.
JP2009214897A 2009-09-16 2009-09-16 Rotor of permanent magnet motor Pending JP2011066999A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009214897A JP2011066999A (en) 2009-09-16 2009-09-16 Rotor of permanent magnet motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009214897A JP2011066999A (en) 2009-09-16 2009-09-16 Rotor of permanent magnet motor

Publications (1)

Publication Number Publication Date
JP2011066999A true JP2011066999A (en) 2011-03-31

Family

ID=43952642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009214897A Pending JP2011066999A (en) 2009-09-16 2009-09-16 Rotor of permanent magnet motor

Country Status (1)

Country Link
JP (1) JP2011066999A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018005544A1 (en) * 2016-06-27 2018-01-04 Nidec Motor Corporation High power density motor having bridged spoked rotor and prewound bobbins for stator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07212995A (en) * 1994-01-25 1995-08-11 Fuji Electric Co Ltd Reverse-salient-pole cylindrical magnet synchronous motor
JPH089611A (en) * 1994-06-21 1996-01-12 Fuji Electric Co Ltd Reverse salient cylinder permanent-magnet synchronous motor
JP2004180460A (en) * 2002-11-28 2004-06-24 Daikin Ind Ltd Brushless dc motor and brushless dc motor controlling device
JP2005237136A (en) * 2004-02-20 2005-09-02 Mitsubishi Electric Corp Motor, enclosed compressor and fan motor
JP2008245384A (en) * 2007-03-27 2008-10-09 Hitachi Ltd Permanent magnet type rotary electric machine, and compressor using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07212995A (en) * 1994-01-25 1995-08-11 Fuji Electric Co Ltd Reverse-salient-pole cylindrical magnet synchronous motor
JPH089611A (en) * 1994-06-21 1996-01-12 Fuji Electric Co Ltd Reverse salient cylinder permanent-magnet synchronous motor
JP2004180460A (en) * 2002-11-28 2004-06-24 Daikin Ind Ltd Brushless dc motor and brushless dc motor controlling device
JP2005237136A (en) * 2004-02-20 2005-09-02 Mitsubishi Electric Corp Motor, enclosed compressor and fan motor
JP2008245384A (en) * 2007-03-27 2008-10-09 Hitachi Ltd Permanent magnet type rotary electric machine, and compressor using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018005544A1 (en) * 2016-06-27 2018-01-04 Nidec Motor Corporation High power density motor having bridged spoked rotor and prewound bobbins for stator
US10742084B2 (en) 2016-06-27 2020-08-11 Nidec Motor Corporation High power density motor having bridged spoked rotor and prewound bobbins for stator

Similar Documents

Publication Publication Date Title
KR101880377B1 (en) Interior permanent magnet rotating electric machine
JP4755117B2 (en) Rotor, blower and compressor of embedded permanent magnet motor
JP5370433B2 (en) Permanent magnet embedded electric motor
KR101398309B1 (en) Rotor of permanent magnet embedded motor, blower, and compressor
JP5121939B2 (en) Motor rotor, motor, blower and compressor
JP4709132B2 (en) Rotor of permanent magnet embedded motor, motor for blower and motor for compressor
US9472986B2 (en) Rotor
US9692264B2 (en) Rotor of permanent magnet motor having air gaps at permanent magnet end portions
JP2009136040A (en) Rotor of rotary electric machine
US20150270750A1 (en) Permanent magnet type rotating electric machine
WO2013061427A1 (en) Rotor and interior permanent magnet motor
JP5387075B2 (en) Permanent magnet motor rotor and permanent magnet motor using the rotor
JP4717089B2 (en) Electric motor stator, electric motor, compressor and blower
JP2014003758A (en) Embedded magnet type rotor having continuous skew structure
JP2006158037A (en) Buried magnet rotor
JP5242720B2 (en) Rotor of permanent magnet embedded motor
JP2008072790A (en) Rotor of ipm motor
JP5621372B2 (en) Permanent magnet embedded rotor and rotating electric machine
WO2016021651A1 (en) Motor
JP2012023855A (en) Permanent magnet embedded rotor and rotary electric machine
JP2011083164A (en) Rotor of permanent magnet type motor
JP2011066999A (en) Rotor of permanent magnet motor
JP6079132B2 (en) Embedded magnet rotor
JP2012023856A (en) Embedded permanent magnet type rotor and rotary electric machine
JP5359239B2 (en) Electric motor rotor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120229

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121106