Nothing Special   »   [go: up one dir, main page]

JP2011052850A - Heat pump type warm water heating device - Google Patents

Heat pump type warm water heating device Download PDF

Info

Publication number
JP2011052850A
JP2011052850A JP2009199713A JP2009199713A JP2011052850A JP 2011052850 A JP2011052850 A JP 2011052850A JP 2009199713 A JP2009199713 A JP 2009199713A JP 2009199713 A JP2009199713 A JP 2009199713A JP 2011052850 A JP2011052850 A JP 2011052850A
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
heat
hot water
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009199713A
Other languages
Japanese (ja)
Inventor
Masayuki Hamada
真佐行 濱田
Noriho Okaza
典穂 岡座
Hideji Nishimura
秀司 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009199713A priority Critical patent/JP2011052850A/en
Publication of JP2011052850A publication Critical patent/JP2011052850A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat pump type warm water heating device capable of suppressing a rise of a refrigerant discharge temperature, and not degrading reliability. <P>SOLUTION: In this heat pump type warm water heating device having a refrigerating cycle 6 constituted by successively and annularly connecting a compressor 1 for compressing a refrigerant, a water-refrigerant heat exchanger 2 exchanging heat between a refrigerant of high temperature and water, a pressure reducing device 3 for reducing a pressure of the refrigerant, and an evaporator 4 for exchanging heat between the refrigerant and an air, and a warm water pump 9 for distributing the water of high temperature produced by the water-refrigerant heat exchanger 2 to a heating terminal 8, a refrigerant flow channel in the evaporator 4 is branched into a plurality of flow channels, and a heat exchange amount between the air and the refrigerant in at least one of a plurality of refrigerant flow channels in the evaporator 4 is less than the heat exchange amounts between the air and the refrigerant in the other refrigerant flow channels in the evaporator 4. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ヒートポンプを用いて生成した温水で暖房を行うヒートポンプ式温水暖房装置に関する。 The present invention relates to a heat pump type hot water heating apparatus that performs heating with hot water generated using a heat pump.

従来では、石油やガスなどの燃焼系の燃料を熱源とした暖房機器の利用が大半を占めていたが、近年ではヒートポンプ技術を利用した暖房市場が急激に拡大している。また、従来の空気調和機においてもヒートポンプ技術を利用して、冷房と暖房の双方を利用することができるものもある。   Conventionally, heating equipment using combustion fuels such as oil and gas as the heat source has occupied the majority, but in recent years the heating market using heat pump technology has expanded rapidly. Also, some conventional air conditioners can use both cooling and heating by utilizing heat pump technology.

しかしながら、従来の空気調和機だけでは、暖房時に足元が暖まりにくい等の課題があり、それを解消するためにヒートポンプ技術を利用した温水暖房装置が開発されている(例えば、特許文献1参照)。特許文献1に記載の温水暖房装置では、高温冷媒と温水とを熱交換して、熱交換して昇温した温水を床暖房パネル等の暖房端末へ送り、暖房を行っている。   However, the conventional air conditioner alone has a problem that the feet are difficult to warm during heating, and a hot water heater using heat pump technology has been developed to solve the problem (see, for example, Patent Document 1). In the hot water heating apparatus described in Patent Document 1, heat exchange is performed between a high-temperature refrigerant and hot water, and the hot water heated by heat exchange is sent to a heating terminal such as a floor heating panel to perform heating.

図8は、従来のヒートポンプ式温水暖房装置の構成図である。図8に示すように、従来のヒートポンプ式温水暖房装置は、圧縮機101と、水冷媒熱交換器102の冷媒流路と、減圧装置103と、蒸発器104とを順次冷媒配管105で環状に接続して冷凍サイクル106を構成し、水冷媒熱交換器102の水流路と、温水暖房ポンプ109と、暖房端末108とを順次環状に接続して暖房サイクルを構成していた。そして暖房運転を開始すると冷凍サイクルの運転動作を開始し、温水循環ポンプ109を駆動することによって、水冷媒熱交換器102で昇温した温水を暖房端末108へ送り、床暖房パネル等の暖房端末108で居室内を暖房している。   FIG. 8 is a configuration diagram of a conventional heat pump hot water heater. As shown in FIG. 8, the conventional heat pump hot water heating apparatus has a compressor 101, a refrigerant flow path of a water / refrigerant heat exchanger 102, a decompression device 103, and an evaporator 104 that are sequentially annularly formed by a refrigerant pipe 105. The refrigeration cycle 106 was connected to form a heating cycle by sequentially connecting the water flow path of the water-refrigerant heat exchanger 102, the hot water heating pump 109, and the heating terminal 108 in an annular manner. Then, when the heating operation is started, the operation of the refrigeration cycle is started, and the hot water circulation pump 109 is driven to send the hot water heated by the water / refrigerant heat exchanger 102 to the heating terminal 108, thereby heating the floor heating panel or other heating terminal. The room is heated at 108.

このように構成されたヒートポンプ式温水暖房装置において、温水暖房運転中は常に温水暖房ポンプを駆動させているので、水冷媒熱交換器での熱交換は常に行われている状態である。   In the heat pump type hot water heating apparatus configured as described above, since the hot water heating pump is always driven during the hot water heating operation, heat exchange in the water refrigerant heat exchanger is always performed.

特開2006−266587号公報JP 2006-266587 A

しかしながら、暖房運転を長時間継続していると、暖房端末側も十分暖まってくるため、送った温水が暖房端末であまり放熱せず、あまり温度が下がらないまま水冷媒熱交換器へ温水が戻ってきてしまうことになる。そして温度低下が少ない高温水が水冷媒熱交換器へ戻ってくると、低温水が戻ってきたときに比べて、冷媒の高圧側が上がってしまい、その結果、冷媒の吐出温度が上昇してしまう。   However, if the heating operation is continued for a long time, the heating terminal side will also be sufficiently warmed, so the sent hot water will not radiate much heat at the heating terminal, and the hot water will return to the water-refrigerant heat exchanger without the temperature dropping too much. Will come. And when high-temperature water with little temperature drop returns to the water-refrigerant heat exchanger, compared to when low-temperature water returns, the high-pressure side of the refrigerant goes up, and as a result, the refrigerant discharge temperature rises. .

さらには、水冷媒熱交換器での冷媒状態が気体から液体への凝縮変化を伴う場合、温度変化を伴わない2相域があるため、熱交換する水と冷媒の温度差が小さくなる領域が発生し、熱交換能力が低下するため、冷媒の圧力が上昇することになり、結果的に冷媒の吐出温度が上昇してしまう。   Furthermore, when the refrigerant state in the water-refrigerant heat exchanger is accompanied by a condensation change from gas to liquid, there is a two-phase region that does not involve a temperature change, so there is a region where the temperature difference between the water to be heat-exchanged and the refrigerant is small. Since this occurs and the heat exchange capacity decreases, the pressure of the refrigerant increases, and as a result, the discharge temperature of the refrigerant increases.

このように、所望の温度にする必要がある水と冷媒とが熱交換を行う冷凍サイクルを有
するヒートポンプ式温水暖房装置においては、冷媒の高圧が上昇し、吐出温度が上昇してしまい、その結果、材料劣化及び油劣化が進み、圧縮機機構部の信頼性が低下してしまうという課題を有していた。
Thus, in a heat pump hot water heating apparatus having a refrigeration cycle in which water and refrigerant that need to have a desired temperature exchange heat, the high pressure of the refrigerant rises, and the discharge temperature rises. However, there has been a problem that the deterioration of the compressor mechanism is reduced due to the progress of material deterioration and oil deterioration.

従来の空気調和機に用いられる冷媒と空気とが熱交換を行う冷凍サイクルでは、空間に大量に存在する空気に冷媒が放熱したときの空気の温度変化が小さいことと、吹出し温度を所望の温度にする必要がないことから、結果、冷媒は空気の温度変化の影響を受けにくいため、上述した課題認識はなかった。   In a refrigeration cycle in which heat is exchanged between the refrigerant and air used in conventional air conditioners, the temperature change of the air when the refrigerant dissipates heat to a large amount of air in the space is small, and the blowing temperature is set to the desired temperature. As a result, the refrigerant is not easily affected by the temperature change of the air, and thus the above-described problem recognition has not been made.

一方、水と冷媒とで熱交換を行う冷凍サイクルでは、水冷媒熱交換器で冷媒が放熱した熱量を水が吸熱することで、水の温度が大きく変化するため、冷媒は水の温度変化の影響を受けやすく、また空気調和機とは異なり所望の温度の湯水にする必要があるため、上記課題は、水と冷媒とで熱交換を行う冷凍サイクルを用いることによって初めて見出される特有の課題である。   On the other hand, in a refrigeration cycle in which heat is exchanged between water and refrigerant, water absorbs the amount of heat radiated by the refrigerant in the water / refrigerant heat exchanger, so that the temperature of the water changes greatly. The above problem is a unique problem that is found for the first time by using a refrigeration cycle in which heat is exchanged between water and refrigerant, because it is easily affected and, unlike air conditioners, it is necessary to use hot water at a desired temperature. is there.

本発明は、前記従来の課題を解決するもので、冷媒の吐出温度の上昇を抑制し、信頼性を損なうことの無いヒートポンプ式温水暖房装置を提供することを目的とする。   The present invention solves the above-described conventional problems, and an object of the present invention is to provide a heat pump hot water heating apparatus that suppresses an increase in refrigerant discharge temperature and does not impair reliability.

前記従来の課題を解決するために、本発明のヒートポンプ式温水暖房装置は、冷媒を圧縮する圧縮機、高温冷媒と水とが熱交換を行う水冷媒熱交換器、冷媒を減圧する減圧装置、冷媒と空気とが熱交換を行う蒸発器を順次環状に接続してなる冷凍サイクルと、水冷媒熱交換器で生成した高温水を暖房端末へ送る温水ポンプとを備えたヒートポンプ式温水暖房装置において、蒸発器内の冷媒流路を複数に分岐させて構成するとともに、蒸発器における複数の冷媒流路のうち少なくとも1つの冷媒流路の空気と冷媒との熱交換量が、蒸発器におけるその他の冷媒流路での空気と冷媒との熱交換量よりも少なくなるように構成することにより、蒸発器の出口での冷媒合流後の過熱度を低減することで、圧縮機への吸入温度を下げ、その結果、圧縮機から吐出される冷媒温度を下げることができ、圧縮機の信頼性を損なうこと防止することができる。   In order to solve the conventional problems, a heat pump type hot water heating apparatus of the present invention includes a compressor that compresses a refrigerant, a water refrigerant heat exchanger that exchanges heat between the high-temperature refrigerant and water, a decompression apparatus that depressurizes the refrigerant, In a heat pump type hot water heating apparatus comprising a refrigeration cycle in which evaporators that perform heat exchange between refrigerant and air are sequentially connected in an annular manner, and a hot water pump that sends high temperature water generated by a water refrigerant heat exchanger to a heating terminal The refrigerant flow path in the evaporator is divided into a plurality of branches, and the heat exchange amount between the air and the refrigerant in at least one of the plurality of refrigerant flow paths in the evaporator is different from that in the evaporator. By reducing the amount of heat exchange between the air and the refrigerant in the refrigerant flow path, the degree of superheat after the refrigerant merges at the outlet of the evaporator is reduced, thereby lowering the intake temperature to the compressor. The result, the compressor Can be lowered coolant temperature discharged al, it is possible to prevent compromising the reliability of the compressor.

また、本発明のヒートポンプ式温水暖房装置は、冷媒を圧縮する圧縮機、高温冷媒と水とが熱交換を行う水冷媒熱交換器、冷媒を減圧する減圧装置、冷媒と空気とが熱交換を行う蒸発器を順次環状に接続してなる冷凍サイクルと、水冷媒熱交換器で生成した高温水を貯める貯湯タンクと、貯湯タンク内の高温水を暖房端末へ送る温水ポンプとを備えたヒートポンプ式温水暖房装置において、蒸発器内の冷媒流路を複数に分岐させて構成するとともに、蒸発器における複数の冷媒流路のうち少なくとも1つの冷媒流路の空気と冷媒との熱交換量が、蒸発器におけるその他の冷媒流路での空気と冷媒との熱交換量よりも少なくなるように構成することにより、蒸発器の出口での冷媒合流後の過熱度を低減することで、圧縮機への吸入温度を下げ、その結果、圧縮機から吐出される冷媒温度を下げることができ、圧縮機の信頼性を損なうこと防止することができる。   The heat pump type hot water heating apparatus of the present invention includes a compressor that compresses a refrigerant, a water refrigerant heat exchanger that exchanges heat between the high-temperature refrigerant and water, a decompression device that depressurizes the refrigerant, and refrigerant and air exchange heat. A heat pump type equipped with a refrigeration cycle in which the evaporators to be sequentially connected in a ring, a hot water storage tank for storing the high temperature water generated by the water refrigerant heat exchanger, and a hot water pump for sending the high temperature water in the hot water storage tank to the heating terminal In the hot water heater, the refrigerant flow path in the evaporator is divided into a plurality of branches, and the amount of heat exchange between the air and the refrigerant in at least one of the refrigerant flow paths in the evaporator is evaporated. By reducing the amount of heat exchange between the air and the refrigerant in the other refrigerant flow paths in the evaporator, the degree of superheat after the refrigerant merges at the outlet of the evaporator can be reduced. Lower the inhalation temperature, As a result, the refrigerant temperature discharged from the compressor can be lowered, it is possible to prevent compromising the reliability of the compressor.

本発明は、冷媒の吐出温度の上昇を抑制し、信頼性を損なうことの無いヒートポンプ式温水暖房装置を提供することができる。   The present invention can provide a heat pump hot water heating apparatus that suppresses an increase in the discharge temperature of the refrigerant and does not impair reliability.

本発明の実施の形態1におけるヒートポンプ式温水暖房装置の構成図The block diagram of the heat pump type hot water heating apparatus in Embodiment 1 of this invention 同実施の形態1における他のヒートポンプ式温水暖房装置の構成図The block diagram of the other heat pump type hot water heating apparatus in Embodiment 1 同実施の形態1における他のヒートポンプ式温水暖房装置の構成図The block diagram of the other heat pump type hot water heating apparatus in Embodiment 1 同実施の形態1における蒸発器の構成図Configuration diagram of the evaporator in the first embodiment 同実施の形態1における冷凍サイクルのモリエル線図Mollier diagram of the refrigeration cycle in the first embodiment 同実施の形態1における他の蒸発器の構成図Configuration diagram of another evaporator in the first embodiment 同実施の形態1における他の蒸発器の構成図Configuration diagram of another evaporator in the first embodiment 従来のヒートポンプ式温水暖房装置の構成図Configuration diagram of conventional heat pump hot water heater

第1の発明のヒートポンプ式温水暖房装置は、冷媒を圧縮する圧縮機、高温冷媒と水とが熱交換を行う水冷媒熱交換器、冷媒を減圧する減圧装置、冷媒と空気とが熱交換を行う蒸発器を順次環状に接続してなる冷凍サイクルと、水冷媒熱交換器で生成した高温水を暖房端末へ送る温水ポンプとを備えたヒートポンプ式温水暖房装置において、蒸発器内の冷媒流路を複数に分岐させて構成するとともに、蒸発器における複数の冷媒流路のうち少なくとも1つの冷媒流路の空気と冷媒との熱交換量が、蒸発器におけるその他の冷媒流路での空気と冷媒との熱交換量よりも少なくなるように構成することにより、蒸発器の出口での冷媒合流後の過熱度を低減することで、圧縮機への吸入温度を下げ、その結果、圧縮機から吐出される冷媒温度を下げることができ、圧縮機の信頼性を損なうこと防止することができる。   The heat pump type hot water heating device of the first invention includes a compressor for compressing refrigerant, a water refrigerant heat exchanger for exchanging heat between the high-temperature refrigerant and water, a decompression device for depressurizing the refrigerant, and heat exchange between the refrigerant and air. In a heat pump hot water heating apparatus comprising a refrigeration cycle in which evaporators to be sequentially connected in a ring form and a hot water pump for sending high temperature water generated by a water refrigerant heat exchanger to a heating terminal, a refrigerant flow path in the evaporator The heat exchange amount between the air and the refrigerant in at least one of the plurality of refrigerant channels in the evaporator is such that the air and the refrigerant in the other refrigerant channels in the evaporator. By reducing the amount of heat exchange with the refrigerant, the degree of superheat after the refrigerant merges at the outlet of the evaporator is reduced, thereby lowering the intake temperature to the compressor, and as a result, discharging from the compressor. Lower the refrigerant temperature It can, it is possible to prevent compromising the reliability of the compressor.

第2の発明のヒートポンプ式温水暖房装置は、冷媒を圧縮する圧縮機、高温冷媒と水とが熱交換を行う水冷媒熱交換器、冷媒を減圧する減圧装置、冷媒と空気とが熱交換を行う蒸発器を順次環状に接続してなる冷凍サイクルと、水冷媒熱交換器で生成した高温水を貯める貯湯タンクと、貯湯タンク内の高温水を暖房端末へ送る温水ポンプとを備えたヒートポンプ式温水暖房装置において、蒸発器内の冷媒流路を複数に分岐させて構成するとともに、蒸発器における複数の冷媒流路のうち少なくとも1つの冷媒流路の空気と冷媒との熱交換量が、蒸発器におけるその他の冷媒流路での空気と冷媒との熱交換量よりも少なくなるように構成することにより、蒸発器の出口での冷媒合流後の過熱度を低減することで、圧縮機への吸入温度を下げ、その結果、圧縮機から吐出される冷媒温度を下げることができ、圧縮機の信頼性を損なうこと防止することができる。   The heat pump type hot water heating device of the second invention includes a compressor that compresses a refrigerant, a water refrigerant heat exchanger that exchanges heat between the high-temperature refrigerant and water, a decompression device that depressurizes the refrigerant, and heat exchange between the refrigerant and air. A heat pump type equipped with a refrigeration cycle in which the evaporators to be sequentially connected in a ring, a hot water storage tank for storing the high temperature water generated by the water refrigerant heat exchanger, and a hot water pump for sending the high temperature water in the hot water storage tank to the heating terminal In the hot water heater, the refrigerant flow path in the evaporator is divided into a plurality of branches, and the amount of heat exchange between the air and the refrigerant in at least one of the refrigerant flow paths in the evaporator is evaporated. By reducing the amount of heat exchange between the air and the refrigerant in the other refrigerant flow paths in the evaporator, the degree of superheat after the refrigerant merges at the outlet of the evaporator can be reduced. Reduce the suction temperature Result, the refrigerant temperature discharged from the compressor can be lowered, it is possible to prevent compromising the reliability of the compressor.

第3の発明のヒートポンプ式温水暖房装置は、特に第1または第2の発明において、蒸発器における複数の冷媒流路のうち少なくとも1つの冷媒流路の配管長を、蒸発器におけるその他の冷媒流路の配管長よりも短くしたことにより、一部の冷媒流路の伝熱面積が少なくなることで伝熱能力が低下し、冷媒の乾き度を小さくして、合流後の冷媒の加熱度を低減することができる。   The heat pump type hot water heating device of the third invention is the first or second invention, in particular, the pipe length of at least one refrigerant channel among the plurality of refrigerant channels in the evaporator and the other refrigerant flow in the evaporator. By making it shorter than the pipe length of the passage, the heat transfer area is reduced by reducing the heat transfer area of some refrigerant flow paths, reducing the dryness of the refrigerant and reducing the heating degree of the refrigerant after merging. Can be reduced.

第4の発明のヒートポンプ式温水暖房装置は、特に第1から第3の発明において、蒸発器における複数の冷媒流路のうち少なくとも1つの冷媒流路の配管の伝熱性能を、蒸発器におけるその他の冷媒流路の配管の伝熱性能よりも低くしたことにより、一部の冷媒流路での伝熱能力が低下し、冷媒の乾き度を小さくして、合流後の冷媒の加熱度を低減することができる。   The heat pump type hot water heating device of the fourth invention is the heat pump type hot water heating apparatus of the fourth invention, particularly in the first to third inventions, wherein the heat transfer performance of the piping of at least one refrigerant flow path among the plurality of refrigerant flow paths in the evaporator is Lowering the heat transfer performance of the refrigerant flow pipes reduces the heat transfer capacity of some of the refrigerant flow paths, reducing the dryness of the refrigerant and reducing the heat of the refrigerant after merging can do.

第5の発明のヒートポンプ式温水暖房装置は、特に第1から第4の発明において、蒸発器を前後2列の構成とし、蒸発器における複数の冷媒流路のうち少なくとも1つの冷媒流路を流れる冷媒流れと空気流れと平行流とし、蒸発器におけるその他の冷媒流路を流れる冷媒流れと空気流れを対向流としたことにより、一部の冷媒流路での伝熱能力が低下し、冷媒の乾き度を小さくして、合流後の冷媒の加熱度を低減することができる。   The heat pump type hot water heating apparatus of the fifth invention is the heat pump type hot water heating apparatus of the fifth invention, particularly in the first to fourth inventions, wherein the evaporators are arranged in two front and rear rows, and flow through at least one refrigerant flow path among a plurality of refrigerant flow paths in the evaporator. By making the refrigerant flow and the air flow parallel to each other and making the refrigerant flow and the air flow through the other refrigerant flow paths in the evaporator counter-current, the heat transfer capability in some of the refrigerant flow paths decreases, The degree of dryness can be reduced, and the degree of heating of the refrigerant after merging can be reduced.

第6の発明のヒートポンプ式温水暖房装置は、特に第1から第5の発明において、蒸発器における複数の冷媒流路のうち少なくとも1つの冷媒流路へ流れる冷媒量を、蒸発器におけるその他の冷媒流路へ流れる冷媒量よりも多くしたことにより、一部の冷媒流路の冷媒の乾き度を小さくして、合流後の冷媒の加熱度を低減することができる。   The heat pump type hot water heating apparatus of the sixth invention is the first to fifth inventions, in particular, in the first to fifth inventions, the amount of refrigerant flowing to at least one refrigerant channel among the plurality of refrigerant channels in the evaporator, By making it larger than the amount of refrigerant flowing into the flow path, it is possible to reduce the dryness of the refrigerant in some of the refrigerant flow paths and reduce the degree of heating of the combined refrigerant.

第7の発明のヒートポンプ式温水暖房装置は、特に第1から第6の発明において、圧縮機、減圧装置、蒸発器を収納するヒートポンプユニットと、水冷媒熱交換器を収納する熱交換ユニットとを別ユニットにて構成し、熱交換ユニットを屋内に配したことにより、屋内と屋外との接続は冷媒配管で行うため、外気温度が低い寒冷地等においても配管が凍結する恐れを少なくすることができる。   The heat pump type hot water heating apparatus of the seventh invention is the heat pump unit that houses the compressor, the decompression device, and the evaporator, and the heat exchange unit that houses the water refrigerant heat exchanger, particularly in the first to sixth inventions. Since it is configured as a separate unit and the heat exchange unit is placed indoors, the connection between the indoor and the outdoor is made with refrigerant piping. it can.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1におけるヒートポンプ式温水暖房装置の構成図である。まず、図1を用いてヒートポンプ式温水暖房装置の構成を説明する。本実施の形態のヒートポンプ式温水暖房装置は、冷媒を圧縮して高温冷媒を吐出する圧縮機1と、水と高温冷媒とを熱交換して高温水を生成する水冷媒熱交換器2と、冷媒を減圧する減圧装置3と、空気と冷媒とで熱交換を行う蒸発器4とを順次冷媒配管5で環状に接続してなる冷凍サイクル6を有している。さらに、蒸発器4へ送風するための送風ファン7を有している。なお、冷媒にはR410Aを用いているが、その他、フルオロカーボン系の冷媒を用いることができる。また、圧縮機1は密閉型であり、高圧側にモータを配し、モータには希土類磁石を用いている。
(Embodiment 1)
FIG. 1 is a configuration diagram of a heat pump hot water heating apparatus according to Embodiment 1 of the present invention. First, the structure of a heat pump type hot water heating apparatus will be described with reference to FIG. The heat pump type hot water heating apparatus of the present embodiment includes a compressor 1 that compresses refrigerant and discharges high-temperature refrigerant, a water-refrigerant heat exchanger 2 that generates heat by exchanging heat between water and the high-temperature refrigerant, It has a refrigeration cycle 6 in which a decompression device 3 for decompressing the refrigerant and an evaporator 4 for exchanging heat between air and the refrigerant are sequentially connected in an annular manner by a refrigerant pipe 5. Further, it has a blower fan 7 for sending air to the evaporator 4. Note that R410A is used as the refrigerant, but other fluorocarbon refrigerants can also be used. The compressor 1 is a hermetically sealed type, and a motor is disposed on the high-pressure side, and a rare earth magnet is used for the motor.

また、居室内を暖房する暖房端末8(例えば、床暖房パネルや輻射パネル等)を備えており、暖房端末8の内部を水冷媒熱交換器2で生成した高温水を流して居室内を暖房するものである。そのため、暖房端末8と水冷媒熱交換器2とを水が循環する構成となっており、水を循環させるための温水ポンプ9を備えている。   Moreover, the heating terminal 8 (for example, a floor heating panel, a radiation panel, etc.) which heats a living room is provided, and the inside of the heating terminal 8 is heated by flowing the high temperature water produced | generated with the water-refrigerant heat exchanger 2 inside. To do. Therefore, water is configured to circulate between the heating terminal 8 and the water refrigerant heat exchanger 2, and a hot water pump 9 for circulating water is provided.

そして、水冷媒熱交換器2の温水出口側に出湯温度を検出するための温度センサ13を設け、温度センサ13で検出される温度が、リモコン装置等(図示せず)によって設定された設定温度に近づけば、圧縮機1の回転数を少なくして能力を下げる。この場合、能力が低下するが、水温により高圧圧力が決まるため、圧縮機1の吐出温度は能力に伴いほとんど下がることはない。   And the temperature sensor 13 for detecting the tapping temperature is provided on the hot water outlet side of the water-refrigerant heat exchanger 2, and the temperature detected by the temperature sensor 13 is a set temperature set by a remote control device or the like (not shown). If it approaches, the number of rotations of the compressor 1 is reduced to lower the capacity. In this case, the capacity is reduced, but since the high pressure is determined by the water temperature, the discharge temperature of the compressor 1 hardly decreases with the capacity.

また、圧縮機1の吐出冷媒の温度を検出する温度センサ14を設け、温度センサ14で検出される温度が、リモコン装置等で設定された設定温度に対して予め関連付けられている最適吐出温度となるように減圧装置3が制御される。   Moreover, the temperature sensor 14 which detects the temperature of the discharge refrigerant | coolant of the compressor 1 is provided, and the temperature detected by the temperature sensor 14 is the optimal discharge temperature previously linked | related with respect to the setting temperature set with the remote control apparatus etc. Thus, the decompression device 3 is controlled.

図1では、冷凍サイクル6をヒートポンプユニット10aの筐体内に収め屋外に配する構成としている。そのため屋内と屋外とは水配管によって接続されることになり、ヒートポンプユニット10a内に冷凍サイクル6を全て収納することができ、設置時の配管の接続は、水配管の接続のみとなり施工性は高い。   In FIG. 1, the refrigeration cycle 6 is housed in the housing of the heat pump unit 10 a and arranged outdoors. Therefore, the indoor and outdoor are connected by water piping, and the refrigeration cycle 6 can be stored in the heat pump unit 10a. The piping connection at the time of installation is only the connection of the water piping, and the workability is high. .

また、図2に示すようなヒートポンプ式温水暖房装置の構成としてもよい。図2に示すように、冷凍サイクルを構成する機能部品のうち水冷媒熱交換器2以外の部品をヒートポンプユニット10bの筐体内に収納し、水冷媒熱交換器2を熱交換ユニット10cの筐体内に収納する構成であってもよい。この場合、ヒートポンプユニット10bを屋外に配し、熱交換ユニット10cを屋内に配することで、屋内と屋外とは冷媒配管によって接続されることになる。そのため冬季など外気温度が低い時であっても、屋内と屋外とは冷媒配管で接続されているため、水配管で接続されているときに比べて凍結の恐れが低いという利点がある。   Moreover, it is good also as a structure of a heat pump type hot water heating apparatus as shown in FIG. As shown in FIG. 2, components other than the water-refrigerant heat exchanger 2 among the functional components constituting the refrigeration cycle are housed in the housing of the heat pump unit 10b, and the water-refrigerant heat exchanger 2 is placed in the housing of the heat exchange unit 10c. The structure accommodated in may be sufficient. In this case, the heat pump unit 10b is arranged outdoors, and the heat exchange unit 10c is arranged indoors, so that the indoors and the outdoors are connected by refrigerant piping. Therefore, even when the outside air temperature is low, such as in winter, the indoor and the outdoor are connected by the refrigerant pipe, so that there is an advantage that the risk of freezing is lower than when the water pipe is connected.

また、図3に示すようなヒートポンプ式温水暖房装置の構成としてもよい。図3では、貯湯タンク11および沸き上げポンプ12を設けている。そのため、水冷媒熱交換器2では、貯湯タンク11へ貯める高温水を生成しており、貯湯タンク11へ貯められた高温水を暖房端末8へ送る構成となっている。また、水冷媒熱交換器2へは沸き上げポンプ12を駆動することによって貯湯タンク11の底部の水を送り、水冷媒熱交換器2で生成された高温水は貯湯タンク11へ戻される。   Moreover, it is good also as a structure of a heat pump type hot water heating apparatus as shown in FIG. In FIG. 3, a hot water storage tank 11 and a boiling pump 12 are provided. Therefore, the water-refrigerant heat exchanger 2 generates high-temperature water stored in the hot water storage tank 11 and sends the high-temperature water stored in the hot water storage tank 11 to the heating terminal 8. Further, the water at the bottom of the hot water storage tank 11 is sent to the water refrigerant heat exchanger 2 by driving the boiling pump 12, and the high temperature water generated by the water refrigerant heat exchanger 2 is returned to the hot water storage tank 11.

図3のように構成することによって、蒸発器4に着霜したときに行う除霜運転中であっても、暖房端末8へは貯湯タンク11へ貯められた高温水を送ることになるので、安定して高温水を送ることができ、除霜運転の影響を最小限にすることができる。なお、図2および図3ともに、図1と同じ部位については同じ記号を付して説明している。さらに図1から図3の冷凍サイクルには四方弁を図示していないが、蒸発器4の除霜運転やポンプダウンを行うために、圧縮機1から吐出する冷媒を水冷媒熱交換器2か蒸発器4のいずれに送るかを切り替える四方弁を設けていてもよい。   By configuring as shown in FIG. 3, even during the defrosting operation performed when the evaporator 4 is frosted, the hot water stored in the hot water storage tank 11 is sent to the heating terminal 8, High temperature water can be sent stably, and the influence of defrosting operation can be minimized. 2 and 3, the same parts as those in FIG. 1 are described with the same symbols. Further, although the four-way valve is not shown in the refrigeration cycle of FIGS. 1 to 3, the refrigerant discharged from the compressor 1 is supplied to the water refrigerant heat exchanger 2 in order to perform the defrosting operation and the pump down of the evaporator 4. You may provide the four-way valve which switches which of the evaporator 4 sends.

以上のように構成されたヒートポンプ式温水暖房装置において、以下、蒸発器4の構成について説明する。   In the heat pump type hot water heating apparatus configured as described above, the configuration of the evaporator 4 will be described below.

図4は、本実施の形態1における蒸発器の構成図である。本実施の形態の蒸発器は、フィンアンドチューブ式の熱交換器を用いており、平型や波型の複数のフィン41に直交するように冷媒管42a〜42dが内部を貫通しており、空気と冷媒との熱交換を行っている。   FIG. 4 is a configuration diagram of the evaporator according to the first embodiment. The evaporator of the present embodiment uses a fin-and-tube heat exchanger, and refrigerant pipes 42a to 42d pass through the inside so as to be orthogonal to a plurality of flat and corrugated fins 41. Heat exchange between air and refrigerant is performed.

そして本実施の形態1における蒸発器4内の冷媒流路は4つに分岐されており、減圧装置3に接続されている冷媒管43aが分配器44に接続され、分配器44の下流側で冷媒管42a〜42dの4流路に分配されている。また、蒸発器4の出口側には冷媒管42a〜42dを接続して冷媒を合流させる合流器45が配されており、合流器45の下流側には圧縮機に接続される冷媒管43bが接続されている。   In the first embodiment, the refrigerant flow path in the evaporator 4 is branched into four, the refrigerant pipe 43a connected to the decompression device 3 is connected to the distributor 44, and on the downstream side of the distributor 44. The refrigerant pipes 42a to 42d are distributed to the four flow paths. Further, a merger 45 for connecting the refrigerant tubes 42 a to 42 d to join the refrigerant is arranged on the outlet side of the evaporator 4, and a refrigerant tube 43 b connected to the compressor is arranged on the downstream side of the merger 45. It is connected.

そして、蒸発器4内の4流路のうち、冷媒管42a〜42cの冷媒流路と、冷媒管42dの冷媒流路との配管長を異ならしている。つまり冷媒管42a〜42dに同じ循環量の冷媒を流すと、冷媒管42a〜42cの冷媒流路での出口部での冷媒の過熱度が同じとなり、冷媒管42dの出口部での冷媒の過熱度が、冷媒管42a〜42cの過熱度よりも小さくなるようにしている。   Of the four flow paths in the evaporator 4, the pipe lengths of the refrigerant flow paths of the refrigerant pipes 42a to 42c and the refrigerant flow path of the refrigerant pipe 42d are different. That is, if the same circulation amount of refrigerant flows through the refrigerant pipes 42a to 42d, the degree of superheat of the refrigerant at the outlet in the refrigerant flow path of the refrigerant pipes 42a to 42c becomes the same, and the refrigerant is overheated at the outlet of the refrigerant pipe 42d. The degree is set to be smaller than the degree of superheat of the refrigerant tubes 42a to 42c.

図5は、本実施の形態の蒸発器4を用いた冷凍サイクルのモリエル線図である。図5に示すように、従来から用いられていた蒸発器では冷媒管42a〜42dを同じ配管長としていたため合流器45の下流側の冷媒の状態はMaに位置しており、このような冷媒状態のまま圧縮してしまうと等温線THまで吐出温度が上昇してしまう。   FIG. 5 is a Mollier diagram of a refrigeration cycle using the evaporator 4 of the present embodiment. As shown in FIG. 5, in the conventionally used evaporator, the refrigerant pipes 42a to 42d have the same pipe length, so the state of the refrigerant on the downstream side of the merger 45 is located at Ma. Such a refrigerant If it compresses in a state, discharge temperature will rise to the isotherm TH.

しかしながら、図4に示すような蒸発器を用いた場合、冷媒管42a〜42cの配管長Laと、冷媒管42dの配管長Lbとを異ならせており、La>Lbの関係を有しているため、冷媒管42a〜42cの出口の冷媒状態はMaとなるが、冷媒管42dの出口の冷媒状態はMcに位置する。そしてそれぞれの冷媒経路から出た冷媒が合流した結果、合流器45よりも下流側の冷媒の状態はMdに位置することになり、Mdの状態の冷媒を圧縮機で圧縮すると、等温線TL上に位置する状態Meとなる。このときTL<THという関係なので、圧縮機1から吐出する冷媒の温度が低くなる。   However, when the evaporator as shown in FIG. 4 is used, the pipe length La of the refrigerant pipes 42a to 42c is different from the pipe length Lb of the refrigerant pipe 42d, and there is a relationship of La> Lb. Therefore, the refrigerant state at the outlet of the refrigerant pipes 42a to 42c is Ma, but the refrigerant state at the outlet of the refrigerant pipe 42d is located at Mc. As a result of the merged refrigerants from the respective refrigerant paths, the state of the refrigerant on the downstream side of the confluencer 45 is positioned at Md, and when the refrigerant in the Md state is compressed by the compressor, on the isotherm TL It becomes a state Me located at. At this time, since TL <TH, the temperature of the refrigerant discharged from the compressor 1 is lowered.

以上のように、本実施の形態の蒸発器では、蒸発器4の冷媒流路の少なくとも1つの冷媒流路の配管長を、蒸発器4のその他の冷媒流路の配管長よりも短くしたことにより、配
管長を短くした冷媒流路での伝熱性能を低下させて、合流器45よりも下流側の冷媒の過熱度を低減することができるので、圧縮機1から吐出する冷媒温度を低減することができる。
As described above, in the evaporator of the present embodiment, the pipe length of at least one refrigerant flow path of the refrigerant flow path of the evaporator 4 is made shorter than the pipe length of other refrigerant flow paths of the evaporator 4. Thus, the heat transfer performance in the refrigerant flow path with the pipe length shortened can be reduced and the degree of superheat of the refrigerant downstream of the merger 45 can be reduced, so the refrigerant temperature discharged from the compressor 1 is reduced. can do.

また、本実施の形態では、蒸発器4に設けた冷媒流路を4経路設けたが、これに限定されることはない。さらに、本実施の形態では、4つの冷媒流路のうち、1つの冷媒流路のみの配管長を短くしたが、蒸発器4では熱交換量が異なる冷媒流路を設ければよいので、熱交換量を低下させる冷媒流路を1つに限定する必要は無い(例えば、4つの冷媒流路を設けて、2つの冷媒流路の配管長を短くする)。   Moreover, in this Embodiment, although the four refrigerant | coolant flow paths provided in the evaporator 4 were provided, it is not limited to this. Further, in the present embodiment, the piping length of only one refrigerant channel among the four refrigerant channels is shortened, but the evaporator 4 may be provided with refrigerant channels having different heat exchange amounts. There is no need to limit the number of refrigerant flow paths to be reduced to one (for example, four refrigerant flow paths are provided to shorten the piping length of the two refrigerant flow paths).

また、蒸発器4の構成を図6に示すように前後2列のフィンアンドチューブ式熱交換器で構成してもよい。この場合、蒸発器4は前側蒸発器4aと後側蒸発器4bで構成されている。そして、送風ファン7が駆動することによって後側から前側へと空気流れが発生する。   Moreover, you may comprise the structure of the evaporator 4 with the fin and tube type heat exchanger of 2 rows before and behind, as shown in FIG. In this case, the evaporator 4 includes a front evaporator 4a and a rear evaporator 4b. When the blower fan 7 is driven, an air flow is generated from the rear side to the front side.

そこで、蒸発器4における複数の冷媒流路のうち少なくとも1つの冷媒流路を流れる冷媒流れと空気流れと平行流とし、蒸発器におけるその他の冷媒流路を流れる冷媒流れと空気流れを対向流とする。つまり、冷媒流路42a〜42cは前側蒸発器4aから入り、後側蒸発器4bから出るようにし、冷媒流路42dは後側蒸発器4bから入り、後側蒸発器4bから出るようにする。   Therefore, the refrigerant flow and the air flow that flow through at least one of the plurality of refrigerant channels in the evaporator 4 are set in parallel flow, and the refrigerant flow and the air flow that flow in the other refrigerant channels in the evaporator are set as counterflows. To do. That is, the refrigerant flow paths 42a to 42c enter from the front evaporator 4a and exit from the rear evaporator 4b, and the refrigerant flow path 42d enters from the rear evaporator 4b and exit from the rear evaporator 4b.

その結果、冷媒流路42a〜42c内の冷媒は空気流れと対向方向に流れ、冷媒流路42d内の冷媒は空気流れと平行方向に流れることになり、冷媒流路42a〜42cでの熱交換量よりも、冷媒流路42dでの熱交換量の方が小さくなる。冷媒流路42a〜42cの出口部の過熱度よりも、冷媒流路42dの出口部の過熱度の方が小さくなり、合流器45よりも下流側での冷媒の過熱度を抑えることができ、圧縮機1から吐出する冷媒温度も低下させることができる。   As a result, the refrigerant in the refrigerant flow paths 42a to 42c flows in a direction opposite to the air flow, the refrigerant in the refrigerant flow path 42d flows in a direction parallel to the air flow, and heat exchange in the refrigerant flow paths 42a to 42c. The amount of heat exchange in the refrigerant flow path 42d is smaller than the amount. The degree of superheat at the outlet part of the refrigerant flow path 42d is smaller than the degree of superheat at the outlet part of the refrigerant flow paths 42a to 42c, and the superheat degree of the refrigerant on the downstream side of the merger 45 can be suppressed. The refrigerant temperature discharged from the compressor 1 can also be lowered.

また、蒸発器4に設けた冷媒流路を4経路設けたが、これに限定されることはない。また、4つの冷媒流路のうち、1つの冷媒流路のみの平行流としたが、蒸発器4では熱交換量が異なる冷媒流路を設ければよいので、熱交換量を低下させる冷媒流路を1つに限定する必要は無い(例えば、4つの冷媒流路を設けて、2つの冷媒流路を平行流とする)。   In addition, although four refrigerant flow paths provided in the evaporator 4 are provided, the present invention is not limited to this. Moreover, although it was set as the parallel flow of only one refrigerant flow path among four refrigerant flow paths, since the refrigerant flow path in which the heat exchange amount differs in the evaporator 4 should just be provided, the refrigerant flow which reduces heat exchange amount There is no need to limit the number of paths to one (for example, four refrigerant channels are provided and the two refrigerant channels are parallel flows).

また、蒸発器4の構成を図7に示すように分配用のキャピラリチューブ46a〜46dを設けて、キャピラリチューブ46dのみの絞り効果を少なくすることで、冷媒流路42dへ流れる冷媒量を、冷媒流路42a〜42cへ流れる冷媒量に比べて多くすることができる。その結果、冷媒流路42dでの過熱度上昇を抑えることができ、合流器45の下流側における冷媒の過熱度も抑えることができる。なお、冷媒流路42dのみキャピラリチューブを設けない構成としてもよい。   Further, as shown in FIG. 7, the evaporator 4 is provided with distribution capillary tubes 46a to 46d to reduce the throttling effect of only the capillary tube 46d, thereby reducing the amount of refrigerant flowing into the refrigerant flow path 42d. The amount of the refrigerant flowing into the flow paths 42a to 42c can be increased. As a result, an increase in the degree of superheat in the refrigerant flow path 42d can be suppressed, and the degree of superheat of the refrigerant on the downstream side of the merger 45 can also be suppressed. Note that only the refrigerant flow path 42d may be provided with no capillary tube.

また、蒸発器4に設けた冷媒流路を4経路設けたが、これに限定されることはない。また、4つの冷媒流路のうち、1つの冷媒流路のみのキャピラリチューブの絞り効果を異ならしたが、蒸発器4において熱交換量が異なる冷媒流路を設ければよいので、熱交換量を低下させる冷媒流路を1つに限定する必要は無い(例えば、4つの冷媒流路を設けて、2つの冷媒流路のキャピラリチューブの絞り効果を異ならせる)。また、キャピラリチューブを設けることなく、分配器44の分配割を偏流させて冷媒流路42dに流れる冷媒流量を多くしてもよい。   In addition, although four refrigerant flow paths provided in the evaporator 4 are provided, the present invention is not limited to this. In addition, although the throttle effect of the capillary tube of only one refrigerant flow path among the four refrigerant flow paths is different, it is only necessary to provide a refrigerant flow path with a different heat exchange amount in the evaporator 4, so that the heat exchange amount can be reduced. It is not necessary to limit the number of refrigerant channels to be lowered to one (for example, four refrigerant channels are provided to make the capillary tubes of the two refrigerant channels have different throttling effects). Further, the flow rate of the refrigerant flowing in the refrigerant flow path 42d may be increased by causing the distribution of the distributor 44 to drift without providing a capillary tube.

以上のように、本発明のヒートポンプ式温水暖房装置は、貯湯タンクがある温水暖房装
置にも、貯湯タンクがない温水暖房装置にも適用することができる。
As described above, the heat pump hot water heating apparatus of the present invention can be applied to a hot water heating apparatus having a hot water storage tank and a hot water heating apparatus having no hot water storage tank.

1 圧縮機
2 水冷媒熱交換器
3 減圧装置
4 蒸発器
5 冷媒配管
6 冷凍サイクル
7 送風ファン
8 暖房端末
9 温水ポンプ
10a ヒートポンプユニット
10b ヒートポンプユニット
10c 熱交換ユニット
11 貯湯タンク
12 沸き上げポンプ
13 温度センサ
14 温度センサ
41 フィン
42a〜d 冷媒流路
43a、b 冷媒管
44 分配器
45 合流器
46a〜d キャピラリチューブ
DESCRIPTION OF SYMBOLS 1 Compressor 2 Water refrigerant | coolant heat exchanger 3 Pressure reducing device 4 Evaporator 5 Refrigerant piping 6 Refrigeration cycle 7 Blower fan 8 Heating terminal 9 Hot water pump 10a Heat pump unit 10b Heat pump unit 10c Heat exchange unit 11 Hot water storage tank 12 Boiling pump 13 Temperature sensor 14 Temperature sensor 41 Fin 42a-d Refrigerant flow path 43a, b Refrigerant pipe 44 Distributor 45 Merger 46a-d Capillary tube

Claims (7)

冷媒を圧縮する圧縮機、高温冷媒と水とが熱交換を行う水冷媒熱交換器、冷媒を減圧する減圧装置、冷媒と空気とが熱交換を行う蒸発器を順次環状に接続してなる冷凍サイクルと、前記水冷媒熱交換器で生成した高温水を暖房端末へ送る温水ポンプとを備えたヒートポンプ式温水暖房装置において、前記蒸発器内の冷媒流路を複数に分岐させて構成するとともに、前記蒸発器における複数の冷媒流路のうち少なくとも1つの冷媒流路の空気と冷媒との熱交換量が、前記蒸発器におけるその他の冷媒流路での空気と冷媒との熱交換量よりも少なくなるように構成することを特徴とするヒートポンプ式温水暖房装置。 A compressor that compresses refrigerant, a water-refrigerant heat exchanger that exchanges heat between high-temperature refrigerant and water, a decompression device that depressurizes refrigerant, and an evaporator that exchanges heat between refrigerant and air in order to form a refrigeration In a heat pump type hot water heating apparatus comprising a cycle and a hot water pump for sending high temperature water generated by the water refrigerant heat exchanger to a heating terminal, the refrigerant flow path in the evaporator is divided into a plurality of branches, and configured. The heat exchange amount between the air and the refrigerant in at least one of the plurality of refrigerant channels in the evaporator is smaller than the heat exchange amount between the air and the refrigerant in the other refrigerant channels in the evaporator. It is comprised so that it may become. The heat pump type hot water heating apparatus characterized by the above-mentioned. 冷媒を圧縮する圧縮機、高温冷媒と水とが熱交換を行う水冷媒熱交換器、冷媒を減圧する減圧装置、冷媒と空気とが熱交換を行う蒸発器を順次環状に接続してなる冷凍サイクルと、前記水冷媒熱交換器で生成した高温水を貯める貯湯タンクと、前記貯湯タンク内の高温水を暖房端末へ送る温水ポンプとを備えたヒートポンプ式温水暖房装置において、前記蒸発器内の冷媒流路を複数に分岐させて構成するとともに、前記蒸発器における複数の冷媒流路のうち少なくとも1つの冷媒流路の空気と冷媒との熱交換量が、前記蒸発器におけるその他の冷媒流路での空気と冷媒との熱交換量よりも少なくなるように構成することを特徴とするヒートポンプ式温水暖房装置。 A compressor that compresses refrigerant, a water-refrigerant heat exchanger that exchanges heat between high-temperature refrigerant and water, a decompression device that depressurizes refrigerant, and an evaporator that exchanges heat between refrigerant and air in order to form a refrigeration A heat pump type hot water heating apparatus comprising a cycle, a hot water storage tank for storing high temperature water generated by the water refrigerant heat exchanger, and a hot water pump for sending the high temperature water in the hot water storage tank to a heating terminal. The refrigerant flow path is divided into a plurality of branches, and the amount of heat exchange between the air and the refrigerant in at least one of the plurality of refrigerant flow paths in the evaporator is determined by the other refrigerant flow paths in the evaporator. The heat pump type hot water heating apparatus is configured so as to be less than the heat exchange amount between the air and the refrigerant. 前記蒸発器における複数の冷媒流路のうち少なくとも1つの冷媒流路の配管長を、前記蒸発器におけるその他の冷媒流路の配管長よりも短くしたことを特徴とする請求項1または2に記載のヒートポンプ式温水暖房装置。 The pipe length of at least one refrigerant flow path among the plurality of refrigerant flow paths in the evaporator is shorter than the pipe length of other refrigerant flow paths in the evaporator. Heat pump type hot water heater. 前記蒸発器における複数の冷媒流路のうち少なくとも1つの冷媒流路の配管の伝熱性能を、前記蒸発器におけるその他の冷媒流路の配管の伝熱性能よりも低くしたことを特徴とする請求項1から3のいずれか1つに記載のヒートポンプ式温水暖房装置。 The heat transfer performance of a pipe of at least one refrigerant flow path among the plurality of refrigerant flow paths in the evaporator is lower than the heat transfer performance of a pipe of another refrigerant flow path in the evaporator. Item 4. The heat pump hot water heater according to any one of Items 1 to 3. 前記蒸発器を前後2列の構成とし、前記蒸発器における複数の冷媒流路のうち少なくとも1つの冷媒流路を流れる冷媒流れと空気流れと平行流とし、前記蒸発器におけるその他の冷媒流路を流れる冷媒流れと空気流れを対向流としたことを特徴とする請求項1から4のいずれか1つに記載のヒートポンプ式温水暖房装置。 The evaporator is configured in two front and rear rows, a refrigerant flow flowing through at least one of the plurality of refrigerant channels in the evaporator and a parallel flow with the air flow, and the other refrigerant channels in the evaporator The heat pump type hot water heating apparatus according to any one of claims 1 to 4, wherein the flowing refrigerant flow and the air flow are counterflows. 前記蒸発器における複数の冷媒流路のうち少なくとも1つの冷媒流路へ流れる冷媒量を、前記蒸発器におけるその他の冷媒流路へ流れる冷媒量よりも多くしたことを特徴とする請求項1から5のいずれか1つに記載のヒートポンプ式温水暖房装置。 6. The refrigerant amount flowing to at least one refrigerant flow channel among the plurality of refrigerant flow channels in the evaporator is larger than the refrigerant amount flowing to other refrigerant flow channels in the evaporator. The heat pump type hot water heating apparatus according to any one of the above. 前記圧縮機、前記減圧装置、前記蒸発器を収納するヒートポンプユニットと、前記水冷媒熱交換器を収納する熱交換ユニットとを別ユニットにて構成し、前記熱交換ユニットを屋内に配したことを特徴とする請求項1から6のいずれか1項に記載のヒートポンプ式温水暖房装置。 The heat pump unit that houses the compressor, the decompression device, and the evaporator and the heat exchange unit that houses the water-refrigerant heat exchanger are configured as separate units, and the heat exchange unit is disposed indoors. The heat pump type hot water heater according to any one of claims 1 to 6, wherein
JP2009199713A 2009-08-31 2009-08-31 Heat pump type warm water heating device Pending JP2011052850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009199713A JP2011052850A (en) 2009-08-31 2009-08-31 Heat pump type warm water heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009199713A JP2011052850A (en) 2009-08-31 2009-08-31 Heat pump type warm water heating device

Publications (1)

Publication Number Publication Date
JP2011052850A true JP2011052850A (en) 2011-03-17

Family

ID=43942042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009199713A Pending JP2011052850A (en) 2009-08-31 2009-08-31 Heat pump type warm water heating device

Country Status (1)

Country Link
JP (1) JP2011052850A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013076554A (en) * 2011-09-12 2013-04-25 Osaka Gas Co Ltd Heat pump
JP2013167398A (en) * 2012-02-15 2013-08-29 Mitsubishi Electric Corp Outdoor unit and heat pump cycle device
CN107178942A (en) * 2017-07-17 2017-09-19 河南恒天润景环境科技有限公司 A kind of anti-freeze device of air source heat pump evaporator defrosting water
EP3637016A4 (en) * 2017-06-09 2020-05-20 Mitsubishi Electric Corporation Equipment that uses heat pump

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013076554A (en) * 2011-09-12 2013-04-25 Osaka Gas Co Ltd Heat pump
JP2013167398A (en) * 2012-02-15 2013-08-29 Mitsubishi Electric Corp Outdoor unit and heat pump cycle device
EP3637016A4 (en) * 2017-06-09 2020-05-20 Mitsubishi Electric Corporation Equipment that uses heat pump
US11248829B2 (en) 2017-06-09 2022-02-15 Mitsubishi Electric Corporation Apparatus using a heat pump including a refrigerant leakage detector
CN107178942A (en) * 2017-07-17 2017-09-19 河南恒天润景环境科技有限公司 A kind of anti-freeze device of air source heat pump evaporator defrosting water

Similar Documents

Publication Publication Date Title
KR101366986B1 (en) Heat pump system
EP2947402B1 (en) Heat pump
CN101479535A (en) Air conditioning system
JP2009133624A (en) Refrigerating/air-conditioning device
EP2626654A2 (en) Heat pump
JP2007232282A (en) Heat pump type water heater
KR20170074917A (en) Air conditioning apparatus
CN103890501B (en) Conditioner
JP2005249319A (en) Heat pump hot water supply air-conditioner
JP2005257231A (en) Heat pump hot water supply air conditioner
JP2011052850A (en) Heat pump type warm water heating device
EP2578966A1 (en) Refrigeration device and cooling and heating device
JP4428341B2 (en) Refrigeration cycle equipment
KR20100046365A (en) Heat pump system
JP4661908B2 (en) Heat pump unit and heat pump water heater
JP2012237518A (en) Air conditioner
KR101624622B1 (en) Apparatus for supplying warm water utilizing an air source heat pump
KR20100005736U (en) Heat pump system
KR100897981B1 (en) Air conditioner
KR101658021B1 (en) A Heatpump System Using Duality Cold Cycle
CN101178211A (en) Air conditioner
KR20220039003A (en) A Water Heater
KR102110539B1 (en) Air conditioning system
JP2009024884A (en) Refrigerating cycle device and cold insulation cabinet
JP2016114319A (en) Heating system