Nothing Special   »   [go: up one dir, main page]

JP2010237035A - Apparatus and method for diagnosing valve rod of valve device - Google Patents

Apparatus and method for diagnosing valve rod of valve device Download PDF

Info

Publication number
JP2010237035A
JP2010237035A JP2009085262A JP2009085262A JP2010237035A JP 2010237035 A JP2010237035 A JP 2010237035A JP 2009085262 A JP2009085262 A JP 2009085262A JP 2009085262 A JP2009085262 A JP 2009085262A JP 2010237035 A JP2010237035 A JP 2010237035A
Authority
JP
Japan
Prior art keywords
valve stem
wave
valve
probe
ultrasonic probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009085262A
Other languages
Japanese (ja)
Other versions
JP5232061B2 (en
Inventor
Yoshihiro Yamashita
善弘 山下
Kazumi Watabe
和美 渡部
Keiichi Sasaki
恵一 佐々木
Atsushi Chihoshi
淳 千星
Shunichi Shimizu
俊一 清水
Koji Hikuma
幸治 日隈
Tomohito Nakano
智仁 中野
Kotaro Sogi
幸太郎 枌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2009085262A priority Critical patent/JP5232061B2/en
Publication of JP2010237035A publication Critical patent/JP2010237035A/en
Application granted granted Critical
Publication of JP5232061B2 publication Critical patent/JP5232061B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To quickly and effectively detect a defect of a valve rod of a valve device, which may lead to breakage, before resulting in the breakage. <P>SOLUTION: An apparatus includes an electromagnetic ultrasonic probe (transverse wave EMAT probe 23) installed on a side face 36 of the valve rod 16 of a motor-driven valve which drives the valve rod 16 having a valve body 15 at an end thereof in an axial direction to make the valve body perform opening/closing, and for exciting and propagating an ultrasonic wave (transverse SH wave 23A) at the valve rod 16 by an electromagnetic force, and detecting the ultrasonic wave to be reflected from the defect 41 of the valve rod 16 as a reflected wave; a high-frequency power supply 29 supplying to this transverse wave EMAT probe 23 a high-frequency current for exciting the ultrasonic wave; and a processing section 35 computing a state of the defect 41 of the valve rod 16, using a time difference between the excitation of the ultrasonic wave by the transverse EMAT probe 23 and the detection of the reflected wave, based on a potential difference caused at a high-frequency coil 40 constituting the transverse wave EMAT probe 23. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電磁力により弁棒に超音波を励起して、この弁棒に生じた欠陥を検出する電磁超音波探触子を備えた弁装置の弁棒診断装置及び方法に関する。   The present invention relates to a valve stem diagnostic apparatus and method for a valve device provided with an electromagnetic ultrasonic probe that excites ultrasonic waves on a valve stem by electromagnetic force and detects defects generated in the valve stem.

原子力及び火力発電プラント等の配管に設置される電動弁や空気作動弁等の弁装置における弁棒の超音波診断は、弁装置を分解することなく実施できることから、弁棒折損によるプラントの計画外停止を事前に回避し、弁棒による故障を予防してプラント稼動率を改善することができる。特に、プラントの計画外停止及びプラント再起動に多くの時間と費用を要する原子力発電プラントでは、大きな経済的効果を奏する。   Ultrasound diagnosis of valve stems in valve devices such as motor-operated valves and pneumatically operated valves installed in piping of nuclear power plants and thermal power plants can be performed without disassembling the valve devices. The plant operation rate can be improved by avoiding the stop in advance and preventing the failure due to the valve stem. In particular, a nuclear power plant that requires a lot of time and cost for unplanned shutdown and restart of the plant has a great economic effect.

また近年、発電設備やエネルギー伝送ライン等の社会インフラの経年劣化が大きな問題になっている。劣化による損傷が一旦発生すると、経済的・社会的損失が大きく、特に1960年代から1970年代の高度成長期に建設されたプラントの主要部品の多くは、40年近い劣化と損傷が進んでいることが想定される。このことから、近年圧電セラミックを用いた接触式超音波探触子による欠陥診断が各種プラントで広く適用されており、この欠陥診断は、経年プラントの稼働率向上を目指すプラント運用の要になりつつある。   In recent years, aging of social infrastructure such as power generation facilities and energy transmission lines has become a major problem. Once damage due to deterioration occurs, economic and social losses are significant, and many of the major parts of the plant constructed during the high-growth period of the 1960s and 1970s have been deteriorated and damaged for nearly 40 years. Is assumed. For this reason, in recent years, defect diagnosis using contact-type ultrasonic probes using piezoelectric ceramics has been widely applied in various plants, and this defect diagnosis is becoming the key to plant operations aimed at improving the operating rate of aged plants. is there.

超音波診断の特徴は、検査対象物に接触する圧電セラミックもしくは高分子の圧電素子により超音波を励起して伝播し、欠陥部分からの反射波を接触式超音波探触子により受信して検出し、欠陥の有無を診断する。しかし、現場においては、超音波の伝播に必要な種々の形状や寸法の探触子や、この接触子を接着させるための接着治具が必要であり、更に超音波伝播のS/N比を確保するためのカプラント(接触媒体)が必要になるため、これらの選定に多くの工数と時間を要し、このためコストが上昇して、プラントの運用面から改善が求められている。   Ultrasonic diagnostics are characterized by exciting and propagating ultrasonic waves with a piezoelectric ceramic or polymer piezoelectric element in contact with the object to be inspected, and receiving and detecting reflected waves from the defective part with a contact ultrasonic probe. Then, the presence or absence of defects is diagnosed. However, in the field, probes of various shapes and dimensions necessary for the propagation of ultrasonic waves and bonding jigs for bonding these contacts are required, and the S / N ratio of ultrasonic propagation is further increased. Since a plant (contact medium) for securing is required, it takes a lot of man-hours and time for the selection, which increases the cost and requires improvement from the operational aspect of the plant.

ところで、運転中のプラントにおける電動弁等の弁装置を診断することにより、プラントの計画外停止を予防し稼働率を改善する技術が特許文献1及び2に記載されており、産業界では一部実施されているものがある。これら両特許は、電動弁駆動時のモータの駆動トルクや駆動電流・電圧を検出して、弁駆動の健全性から弁装置を診断するもの等である。   By the way, Patent Documents 1 and 2 describe techniques for preventing unplanned stoppage of a plant and improving the operation rate by diagnosing a valve device such as an electric valve in an operating plant. Some have been implemented. Both of these patents, for example, detect the driving torque, driving current and voltage of the motor when driving the electric valve, and diagnose the valve device from the soundness of the valve driving.

特表2005−502824号公報JP-T-2005-502824 特開2005−308540号公報JP 2005-308540 A

このように、特許文献1及び2に記載の診断技術は、弁棒駆動系の劣化は検出できても、弁棒折損事象を直接検出するものではないため、初期に発生したき裂等の欠陥が運転期間中に序々に進展して疲労折損に至る弁棒の故障を、弁棒折損前に有効に検出することは不可能である。   As described above, the diagnostic techniques described in Patent Documents 1 and 2 do not directly detect the valve stem breakage event even though the deterioration of the valve stem drive system can be detected. However, it is impossible to effectively detect the failure of the valve stem that gradually progresses during the operation period and leads to fatigue breakage before the valve stem breakage.

本発明の目的は、上述の事情を考慮してなされたものであり、弁装置の弁棒に生じた折損に至る欠陥を、折損前に迅速且つ有効に検出できる弁装置の弁棒診断装置及び方法を提供することにある。   An object of the present invention has been made in consideration of the above-mentioned circumstances, and a valve rod diagnostic device for a valve device capable of quickly and effectively detecting a defect leading to breakage occurring in the valve rod of the valve device, and It is to provide a method.

本発明に係る弁装置の弁棒診断装置は、先端に弁体が設けられた弁棒を軸方向に駆動して、前記弁体に開閉動作を行わせる弁装置の前記弁棒の表面に設置され、電磁力により超音波を前記弁棒に励起して伝播させると共に、前記弁棒に生じた欠陥から反射する超音波を反射波として検出可能な電磁超音波探触子と、この電磁超音波探触子に超音波を励起させるための高周波電流を供給する高周波電源と、前記電磁超音波探触子を構成する高周波コイルに生じた電位差に基づき、前記電磁超音波探触子が超音波を励起してから反射波を検出するまでの時間差を用いて、前記弁棒における前記欠陥の状態を演算処理する処理部と、を有することを特徴とするものである。   A valve stem diagnostic apparatus for a valve device according to the present invention is installed on the surface of the valve stem of a valve device that drives a valve rod, which is provided with a valve body at the tip, in an axial direction to cause the valve body to open and close. An electromagnetic ultrasonic probe capable of exciting and propagating ultrasonic waves to the valve stem by electromagnetic force and detecting ultrasonic waves reflected from defects generated on the valve stem as reflected waves, and the electromagnetic ultrasonic wave Based on a high-frequency power source that supplies a high-frequency current for exciting ultrasonic waves to the probe and a potential difference generated in a high-frequency coil that constitutes the electromagnetic ultrasonic probe, the electromagnetic ultrasonic probe generates ultrasonic waves. And a processing unit that performs arithmetic processing on the state of the defect in the valve stem by using a time difference from when the reflected wave is detected to when the reflected wave is detected.

また、本発明に係る弁装置の弁棒診断方法は、先端に弁体が設けられた弁棒を軸方向に駆動して、前記弁体に開閉動作を行わせる弁装置の前記弁棒の表面に電磁超音波探触子を設置して、電磁力により前記弁棒に超音波を励起させて伝播させ、前記弁棒に生じた欠陥から反射する超音波を反射波として検出し、前記電磁超音波探触子が超音波を励起してから反射波を検出するまでの時間差を用いて、前記弁棒における前記欠陥の状態を演算することを特徴とするものである。   The valve stem diagnosis method for a valve device according to the present invention also includes a valve stem surface of the valve device that drives a valve stem, which is provided with a valve body at a tip, in an axial direction to cause the valve body to open and close. An electromagnetic ultrasonic probe is installed on the valve stem, and the valve stem is excited and propagated by electromagnetic force to detect the ultrasonic wave reflected from the defect generated in the valve stem as a reflected wave. The state of the defect in the valve stem is calculated using a time difference from when the acoustic probe excites the ultrasonic wave until the reflected wave is detected.

本発明によれば、弁装置の弁棒に生じた折損に至る欠陥を、電磁超音波探触子を用いて検出するので、弁棒の折損前に、この欠陥を迅速且つ有効に検出できる。   According to the present invention, since the defect that causes breakage in the valve stem of the valve device is detected using the electromagnetic ultrasonic probe, this defect can be detected quickly and effectively before the valve stem is broken.

本発明に係る弁装置の弁棒診断装置における一実施の形態が適用される弁装置としての電動弁を、横波電磁超音波探触子及び縦波電磁超音波探触子と共に示す斜視図。The perspective view which shows the motor operated valve as a valve apparatus with which one Embodiment in the valve-rod diagnostic apparatus of the valve apparatus which concerns on this invention is applied with a transverse wave electromagnetic ultrasonic probe and a longitudinal wave electromagnetic ultrasonic probe. 図1の横波電磁超音波探触子を用いた弁棒診断装置を示す構成斜視図。The composition perspective view showing the valve stem diagnostic device using the transverse wave electromagnetic ultrasonic probe of Drawing 1. 図1の縦波電磁超音波探触子を用いた弁棒診断装置を示す構成斜視図。The composition perspective view showing the valve stem diagnostic device using the longitudinal wave electromagnetic ultrasonic probe of Drawing 1. 図2及び図3の弁棒診断装置の構成を更に詳細に示す模式図。The schematic diagram which shows the structure of the valve-rod diagnostic apparatus of FIG.2 and FIG.3 in detail. 図2の横波電磁超音波探触子を用いた弁棒診断装置にて検出された反射波を表す電位差を示すグラフ。The graph which shows the electric potential difference showing the reflected wave detected with the valve-rod diagnostic apparatus using the transverse wave electromagnetic ultrasonic probe of FIG. 図3の縦波電磁超音波探触子を用いた弁棒診断装置にて検出された反射波を表す電位差を示すグラフ。The graph which shows the electric potential difference showing the reflected wave detected with the valve-rod diagnostic apparatus using the longitudinal wave electromagnetic ultrasonic probe of FIG. 図2の弁棒診断装置が、弁体と一体化された弁棒に適用された場合の一部を示す斜視図。The perspective view which shows a part at the time of the valve stem diagnostic apparatus of FIG. 2 being applied to the valve stem integrated with the valve body.

以下、本発明を実施するための最良の形態を、図面に基づき説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

図1は、本発明に係る弁装置の弁棒診断装置における一実施の形態が適用される弁装置としての電動弁を、横波電磁超音波探触子及び縦波電磁超音波探触子と共に示す斜視図である。この図1に示す弁装置としての電動弁10は、弁体収納部11、弁体駆動部12、駆動量制御機構部13及びヨーク14を有して構成される。   FIG. 1 shows a motor-operated valve as a valve device to which an embodiment of a valve stem diagnostic device for a valve device according to the present invention is applied, together with a transverse electromagnetic ultrasonic probe and a longitudinal electromagnetic ultrasonic probe. It is a perspective view. The motor-operated valve 10 as the valve device shown in FIG. 1 includes a valve body storage portion 11, a valve body drive portion 12, a drive amount control mechanism portion 13, and a yoke 14.

弁体収納部11は、図示しない配管に接続される。この弁体収納部11には、弁棒16の先端に設けられた弁体15が、弁体収納部11の流路を開閉し得るように収納されている。また、弁体駆動部12は、モータ17の回転駆動力をギア部18により減速して弁棒16へ伝達し、この弁棒16を軸方向に昇降駆動して弁体15に開閉動作を行なわせ、弁体収納部11内を流れる流体の流量を制御する。   The valve body storage part 11 is connected to piping which is not shown in figure. In the valve body storage section 11, a valve body 15 provided at the tip of the valve rod 16 is stored so that the flow path of the valve body storage section 11 can be opened and closed. Further, the valve body drive unit 12 decelerates the rotational driving force of the motor 17 by the gear unit 18 and transmits it to the valve stem 16, and drives the valve rod 16 up and down in the axial direction to open and close the valve body 15. The flow rate of the fluid flowing through the valve body storage unit 11 is controlled.

駆動量制御機構部13は、リミットスイッチ19及びトルクスイッチ20を備える。リミットスイッチ19は、弁棒16の回転量からこの弁棒16の昇降駆動量(軸方向ストローク)を検出して、弁体15の開度を検知する。トルクスイッチ20は、ギア部18の図示しないウォームギアに作用するトルクを検出して、弁体15の全開位置または全閉位置を検知する。このようにしてリミットスイッチ19及びトルクスイッチ20が弁体15の位置を検知することで、駆動量制御機構部13は、弁棒16の昇降駆動量を制御して、弁体15の開閉動作を制御する。   The drive amount control mechanism unit 13 includes a limit switch 19 and a torque switch 20. The limit switch 19 detects the opening / closing drive amount (axial stroke) of the valve stem 16 from the rotation amount of the valve stem 16 to detect the opening degree of the valve body 15. The torque switch 20 detects a torque acting on a worm gear (not shown) of the gear unit 18 and detects the fully open position or the fully closed position of the valve body 15. Thus, when the limit switch 19 and the torque switch 20 detect the position of the valve body 15, the drive amount control mechanism unit 13 controls the drive amount of the valve rod 16 to open and close the valve body 15. Control.

ヨーク14は、弁体収納部11と弁体駆動部12とを連結するものである。このヨーク14には開口21が形成され、これにより弁棒16の一部が外部に露出して、弁棒16に外部露出部22が生ずる。   The yoke 14 connects the valve body storage part 11 and the valve body drive part 12. An opening 21 is formed in the yoke 14, whereby a part of the valve stem 16 is exposed to the outside, and an external exposed portion 22 is generated in the valve stem 16.

弁棒16には、前記の如く、モータ17の回転駆動力が、ギア部18により減速され増大して繰り返し作用することから、この弁棒16に疲労欠陥が発生し、最終的にき裂が進展して弁棒16が折損する事態を引き起こす場合がある。本実施の形態の弁棒診断装置は、この弁棒16に生じた欠陥を、弁棒16の折損前に迅速かつ有効に検出するものであり、横波電磁超音波探触子(以下、横波EMAT探触子と称する)23を用いた弁棒診断装置24(図2)と、縦波電磁超音波探触子(以下、縦波EMAT探触子と称する)25を用いた弁棒診断装置26(図3)とを有する。   As described above, the rotational driving force of the motor 17 is decelerated and increased by the gear portion 18 and repeatedly acts on the valve stem 16, so that a fatigue defect occurs in the valve stem 16 and eventually cracks occur. There is a case where the valve stem 16 breaks down and breaks. The valve stem diagnostic apparatus according to the present embodiment detects a defect generated in the valve stem 16 quickly and effectively before the valve stem 16 breaks. A transverse wave electromagnetic ultrasonic probe (hereinafter, transverse wave EMAT) is detected. A valve stem diagnostic device 24 using a probe 23) (FIG. 2) and a valve stem diagnostic device 26 using a longitudinal electromagnetic ultrasonic probe (hereinafter referred to as a longitudinal EMAT probe) 25. (FIG. 3).

弁棒診断装置24は、図2及び図4に示すように、横波マット探触子23のほかに、高周波発生部27及び送信アンプ28を備えた高周波電源29と、電位差計30と、バンドパスフィルタ31、プリアンプ32、AD変換器33及びデータ処理システム34を備えた処理部35と、を有して構成される。また、前記弁棒診断装置26は、縦波EMAT探触子25のほか、弁棒診断装置24と同様に、高周波電源29、電位差計30及び処理部35を有して構成される。   As shown in FIGS. 2 and 4, the valve stem diagnostic device 24 includes a high-frequency power source 29 including a high-frequency generator 27 and a transmission amplifier 28, a potentiometer 30, a bandpass, in addition to the transverse wave mat probe 23. And a processing unit 35 including a filter 31, a preamplifier 32, an AD converter 33, and a data processing system 34. In addition to the longitudinal wave EMAT probe 25, the valve stem diagnostic device 26 includes a high frequency power supply 29, a potentiometer 30 and a processing unit 35, similar to the valve rod diagnostic device 24.

横波EMAT探触子23は、図2に示すように、弁棒16の表面である側面36の外部露出部22に設置され、この側面36に垂直な方向の定常磁場37を生じさせる永久磁石38と、この永久磁石38の外周に巻き付けられ、高周波電源29から供給されるパルス変調された高周波電流によって、弁棒16の側面36に定常磁場37に直交し高周波振動する渦電流39を発生する高周波コイル40と、を有してなる。   As shown in FIG. 2, the transverse wave EMAT probe 23 is installed on the externally exposed portion 22 of the side surface 36 that is the surface of the valve stem 16, and a permanent magnet 38 that generates a stationary magnetic field 37 in a direction perpendicular to the side surface 36. And a high frequency that is wound around the outer periphery of the permanent magnet 38 and generates an eddy current 39 that oscillates at a high frequency perpendicular to the stationary magnetic field 37 on the side surface 36 of the valve rod 16 by a pulse-modulated high frequency current supplied from a high frequency power supply 29. A coil 40.

尚、弁棒16がクロム系鋼またはマルテンサイト系ステンレス鋼の場合には、横波EMAT探触子23は、永久磁石38の磁力によって弁棒16の側面36に磁着される。それ以外の場合には、横波EMAT探触子23は、図示しない取付バンドや、柔軟で形状追従性に富む接着治具(例えばソフトシュー)を用いて弁棒16の側面36に取り付けられる。   When the valve stem 16 is chrome steel or martensitic stainless steel, the transverse wave EMAT probe 23 is magnetically attached to the side surface 36 of the valve stem 16 by the magnetic force of the permanent magnet 38. In other cases, the transverse wave EMAT probe 23 is attached to the side surface 36 of the valve stem 16 by using an attachment band (not shown) or an adhesive jig (for example, soft shoe) that is flexible and has good shape following ability.

定常磁場37と渦電流39とが直交するため、これらによって弁棒16の側面36に、周期的に振動する電磁力(ローレンツ力)が発生し、この電磁力により弁棒16の側面36にパルス状の超音波である横波のSH波23Aが励起され、このSH波23Aが弁棒16の軸方向に伝播する。ここで、SH波23Aは、横波のうち弁棒16の表面に沿って水平方向に振動する波である。   Since the stationary magnetic field 37 and the eddy current 39 are orthogonal, an electromagnetic force (Lorentz force) that periodically oscillates is generated on the side surface 36 of the valve stem 16, and the electromagnetic force causes a pulse on the side surface 36 of the valve stem 16. The transverse wave SH wave 23 </ b> A, which is an ultrasonic wave, is excited, and this SH wave 23 </ b> A propagates in the axial direction of the valve stem 16. Here, the SH wave 23 </ b> A is a wave that oscillates in the horizontal direction along the surface of the valve rod 16 of the transverse wave.

このパルス状の横波のSH波13Aは、弁棒16に生じた欠陥41により反射してパルス状の反射波になり、伝播ルートを戻る。この反射波は、横波EMAT探触子23の永久磁石38及び高周波コイル40を振動させ、電磁誘導の作用で高周波コイル40に電位差を発生させることで検出される。この電位差が電位差計30により計測される。前記欠陥41は、通常弁棒16の半径方向に延び、その長さ寸法は数百μm以上である。   The pulsed shear wave 13A is reflected by the defect 41 generated in the valve stem 16 to become a pulsed reflected wave and returns to the propagation route. This reflected wave is detected by causing the permanent magnet 38 and the high-frequency coil 40 of the transverse wave EMAT probe 23 to vibrate and generating a potential difference in the high-frequency coil 40 by the action of electromagnetic induction. This potential difference is measured by the potentiometer 30. The defect 41 usually extends in the radial direction of the valve stem 16 and has a length dimension of several hundred μm or more.

縦波EMAT探触子25は、図3に示すように、弁棒16の表面である頂面42に設置され、この頂面42に平行な定常磁場43を生じさせる一対の永久磁石44と、これら一対の永久磁石44間に配置されて、高周波電源29から供給されるパルス変調された高周波電流によって、弁棒16の頂面42に、定常磁場43に直交し高周波振動する渦電流45を発生する高周波コイル46と、を有してなる。   As shown in FIG. 3, the longitudinal wave EMAT probe 25 is installed on a top surface 42 that is a surface of the valve stem 16, and a pair of permanent magnets 44 that generate a stationary magnetic field 43 parallel to the top surface 42. An eddy current 45 that is arranged between the pair of permanent magnets 44 and that oscillates at a high frequency perpendicular to the stationary magnetic field 43 is generated on the top surface 42 of the valve rod 16 by a pulse-modulated high-frequency current supplied from a high-frequency power supply 29. High-frequency coil 46.

尚、この縦波EMAT探触子25も、弁棒16がクロム系鋼またはマルテンサイト系ステンレス鋼の場合に、永久磁石44の磁力により弁棒16の頂面42に磁着される。それ以外の場合には、縦波EMAT探触子25は、図示しない取付バンドや、柔軟で形状追従性に富む接着治具(例えばソフトシュー)を用いて弁棒16の頂面42に取り付けられる。   The longitudinal wave EMAT probe 25 is also magnetically attached to the top surface 42 of the valve stem 16 by the magnetic force of the permanent magnet 44 when the valve stem 16 is made of chromium steel or martensitic stainless steel. In other cases, the longitudinal wave EMAT probe 25 is attached to the top surface 42 of the valve stem 16 using an attachment band (not shown) or an adhesive jig (for example, a soft shoe) that is flexible and has a good shape following ability. .

定常磁場43と渦電流45とが直交するため、これらによって弁棒46の頂面42に、周期的に振動する電磁力(ローレンツ力)が発生し、この電磁力により弁棒16の頂面42にパルス状の超音波である縦波25Aが励起される。この縦波25Aは、弁棒16の頂面42から、弁棒16の内部及び側面36を、弁棒16の軸方向に伝播する。このパルス状の縦波25Aは、弁棒16に生じた欠陥41により反射してパルス状の反射波となり、伝播ルートを戻る。この反射波は、縦波EMAT探触子25の永久磁石44及び高周波コイル46を振動させ、電磁誘導の作用で高周波コイル46に電位差を発生させることで検出され、この電位差が電位差計30により計測される。   Since the stationary magnetic field 43 and the eddy current 45 are orthogonal to each other, an electromagnetic force (Lorentz force) that periodically oscillates is generated on the top surface 42 of the valve stem 46, and the top surface 42 of the valve stem 16 is generated by this electromagnetic force. A longitudinal wave 25A, which is a pulsed ultrasonic wave, is excited. The longitudinal wave 25 </ b> A propagates from the top surface 42 of the valve stem 16 through the inside of the valve stem 16 and the side surface 36 in the axial direction of the valve stem 16. The pulse-like longitudinal wave 25A is reflected by the defect 41 generated in the valve stem 16 to become a pulse-like reflected wave, and returns to the propagation route. This reflected wave is detected by causing the permanent magnet 44 and the high frequency coil 46 of the longitudinal wave EMAT probe 25 to vibrate and generating a potential difference in the high frequency coil 46 by the action of electromagnetic induction, and this potential difference is measured by the potentiometer 30. Is done.

本実施の形態では横波EMAT探触子23及び縦波EMAT探触子25は、超音波を励起する機能と、反射波を検出する機能とを備えたものを述べたが、超音波励起用の横波EMAT探触子23、縦波EMAT探触子25と、反射波検出用の横波EMAT探触子23、縦波EMAT探触子25とを別々に設けてもよい。   In the present embodiment, the transverse wave EMAT probe 23 and the longitudinal wave EMAT probe 25 have been described as having a function of exciting an ultrasonic wave and a function of detecting a reflected wave. The transverse wave EMAT probe 23, the longitudinal wave EMAT probe 25, and the transverse wave EMAT probe 23 for detecting reflected waves and the longitudinal wave EMAT probe 25 may be provided separately.

前記高周波電源29は、図2、図3及び図4に示すように、横波EMAT探触子23、縦波EMAT探触子25にパルス状の超音波を励起させるために、これらの横波EMAT探触子23、縦波EMAT探触子25にパルス変調された高周波電流を供給するものである。具体的には、高周波発生部27からパルス変調された高周波電流を出力し、この高周波電流を送信アンプ28にて増幅して横波EMAT探触子23の高周波コイル40、縦波EMAT探触子25の高周波コイル46へ供給する。この高周波電流により、横波EMAT探触子23の高周波コイル40が弁棒16の側面36に、また、縦波EMAT探触子25の高周波コイル46が弁棒16の頂面42に、それぞれ高周波振動する渦電流を発生させる。   As shown in FIGS. 2, 3, and 4, the high-frequency power source 29 is used to excite pulse-like ultrasonic waves in the transverse wave EMAT probe 23 and the longitudinal wave EMAT probe 25. A high frequency current pulse-modulated is supplied to the contact 23 and the longitudinal wave EMAT probe 25. Specifically, a high-frequency current pulse-modulated from the high-frequency generator 27 is output, and this high-frequency current is amplified by the transmission amplifier 28 to be amplified by the high-frequency coil 40 of the transverse wave EMAT probe 23 and the longitudinal wave EMAT probe 25. To the high frequency coil 46. This high frequency current causes the high frequency coil 40 of the transverse wave EMAT probe 23 to vibrate on the side surface 36 of the valve stem 16 and the high frequency coil 46 of the longitudinal wave EMAT probe 25 to the top surface 42 of the valve stem 16. Eddy currents are generated.

前記処理部35は、横波EMAT探触子23の高周波コイル40、縦波EMAT探触子25の高周波コイル46に生じた電位差に基づき、横波EMAT探触子23、縦波EMAT探触子25がそれぞれパルス状の超音波(横波EMAT探触子23の場合には横波のSH波23A、縦波EMAT探触子25の場合には縦波25A)を励起してからパルス状の反射波を検出するまでの時間差を用いて、弁棒16における欠陥41の状態(位置及び面積(長さ×深さ))を演算処理して特定する。   Based on the potential difference generated in the high-frequency coil 40 of the transverse wave EMAT probe 23 and the high-frequency coil 46 of the longitudinal wave EMAT probe 25, the processing unit 35 includes the transverse wave EMAT probe 23 and the longitudinal wave EMAT probe 25. Pulse-like reflected waves are detected after exciting pulse-like ultrasonic waves (in the case of the transverse wave EMAT probe 23, the shear wave 23A of the transverse wave, and in the case of the longitudinal wave EMAT probe 25, the longitudinal wave 25A). The state (position and area (length × depth)) of the defect 41 in the valve stem 16 is calculated and specified using the time difference until it is done.

つまり、電位差計30から出力される電位差のノイズ成分をバンドパスフィルタ31にて除去し、プリアンプ32にて電位を増幅し、AD変換器33にて電位差をデジタル信号に変換する。データ処理システム34は、AD変換器33からの電位差信号に基づき、横波EMAT探触子23によりパルス状の横波のSH波23Aが励起されてから反射波が検出されるまでの時間差を用いて、また、縦波EMAT探触子25によりパルス状の縦波25Aが励起されてからその反射波が検出されるまでの時間差を用いて、欠陥41の位置を演算し特定する。更にデータ処理システム34は、反射波(特に縦波25Aの反射波)の電位差が欠陥41の面積に比例することから、反射波(特に縦波25Aの反射波)の電位差から欠陥41の面積(長さ×深さ)を演算し特定する。   That is, the noise component of the potential difference output from the potentiometer 30 is removed by the band pass filter 31, the potential is amplified by the preamplifier 32, and the potential difference is converted into a digital signal by the AD converter 33. Based on the potential difference signal from the AD converter 33, the data processing system 34 uses the time difference from when the pulsed transverse wave SH wave 23 </ b> A is excited by the transverse wave EMAT probe 23 to when the reflected wave is detected, Further, the position of the defect 41 is calculated and specified using the time difference from when the pulsed longitudinal wave 25A is excited by the longitudinal wave EMAT probe 25 until the reflected wave is detected. Furthermore, since the potential difference of the reflected wave (especially the reflected wave of the longitudinal wave 25A) is proportional to the area of the defect 41, the data processing system 34 determines the area of the defect 41 (from the potential difference of the reflected wave (particularly the reflected wave of the longitudinal wave 25A)). (Length x depth) is calculated and specified.

ところで、横波EMAT探触子23、縦波EMAT探触子25が弁棒16に励起する超音波の周波数、波長は、高周波電源29から横波EMAT探触子23の高周波コイル40、縦波EMAT探触子25の高周波コイル46へ供給される高周波電流の周波数、波長にそれぞれ依存する。   By the way, the frequency and the wavelength of the ultrasonic wave excited by the transverse wave EMAT probe 23 and the longitudinal wave EMAT probe 25 on the valve rod 16 are changed from the high frequency power source 29 to the high frequency coil 40 of the transverse wave EMAT probe 23, the longitudinal wave EMAT probe. The frequency depends on the frequency and wavelength of the high-frequency current supplied to the high-frequency coil 46 of the touch element 25.

そこで、高周波電源29は、横波EMAT探触子23、縦波EMAT探触子25へ供給して超音波(横波のSH波23A、縦波25A)を励起させる高周波電流の波長を、弁棒16の直径寸法(例えば10mm〜100mm)と同等またはその数分の一程度として、弁棒16に励起される超音波が、弁棒16に対して波長減衰が少なく伝播性の良好なガイド波として挙動するようにする。   Therefore, the high-frequency power source 29 supplies the wavelength of the high-frequency current to the transverse wave EMAT probe 23 and the longitudinal wave EMAT probe 25 to excite ultrasonic waves (the transverse wave SH wave 23A and the longitudinal wave 25A). The ultrasonic wave excited by the valve stem 16 behaves as a guide wave having a small wavelength attenuation with respect to the valve stem 16 and having a good propagation property. To do.

更に、高周波電源29は、横波EMAT探触子23、縦波EMAT探触子25へ供給して超音波(横波のSH波23A、縦波25A)を励起させる高周波電流の波長を、弁棒16に生じた長さ寸法が数百μm以上の欠陥41からは超音波を反射させるが、弁棒16の側面36に数mmピッチで加工されているねじ47からは超音波の反射を抑制する値とする。   Further, the high-frequency power source 29 supplies the wavelength of the high-frequency current supplied to the transverse wave EMAT probe 23 and the longitudinal wave EMAT probe 25 to excite the ultrasonic waves (the transverse wave SH wave 23A and the longitudinal wave 25A). The ultrasonic wave is reflected from the defect 41 having a length dimension of several hundreds μm or more, but the reflection of the ultrasonic wave is suppressed from the screw 47 processed on the side surface 36 of the valve stem 16 at a pitch of several mm. And

具体的には、高周波電源29は、横波EMAT探触子23、縦波EMAT探触子25へ供給して超音波(横波のSH波23A、縦波25A)を励起させる高周波電流の周波数を、弁棒16の直径が10mm〜100mmであるときに、100kHz〜500kHzの範囲の値とする。この周波数範囲の高周波電流により弁棒16に励起される超音波(横波のSH波23A、縦波25A)は、上記直径の弁棒16に対してガイド波として挙動し、波長減衰が少なく弁棒16及び弁体15の略全長に亘って伝播する良好な伝播性を有すると共に、長さ寸法が数百μm以上の欠陥41から反射波を生じさせ、弁棒16の側面36に加工された数mmピッチのねじ47からは反射波を抑制して、高S/N比を実現する。   Specifically, the high frequency power supply 29 supplies the frequency of the high frequency current that is supplied to the transverse wave EMAT probe 23 and the longitudinal wave EMAT probe 25 to excite the ultrasonic waves (lateral wave SH wave 23A, longitudinal wave 25A). When the diameter of the valve stem 16 is 10 mm to 100 mm, the value is in the range of 100 kHz to 500 kHz. The ultrasonic waves (transverse wave SH wave 23A, longitudinal wave 25A) excited by the high frequency current in this frequency range behave as a guide wave with respect to the valve rod 16 having the above-mentioned diameter, and have little wavelength attenuation. 16 and the valve body 15 have a good propagation property that propagates over substantially the entire length, and a reflected wave is generated from the defect 41 having a length dimension of several hundred μm or more, and the number processed on the side surface 36 of the valve stem 16 Reflected waves are suppressed from the mm pitch screw 47 to achieve a high S / N ratio.

図5は、横波EMAT探触子23にて検出され処理部35のデータ処理システム34へ出力される超音波(横波のSH波23A)の反射波を表す電位差を、前記横波EMAT探触子23が超音波を励起した時点を基準とする時間軸を用いて示すグラフである。横波EMAT探触子23は、例えば弁棒16の側面36に超音波(横波のSH波23A)を励起してから、110μ秒後に欠陥41からの反射波を、210μ秒後に弁棒16と弁体15の接続部48からの反射波を、220〜240μ秒後に弁体13の先端面49の内部を迂回してきた反射波を、それぞれ検出している。   FIG. 5 shows a potential difference representing a reflected wave of an ultrasonic wave (a transverse SH wave 23A) detected by the transverse wave EMAT probe 23 and output to the data processing system 34 of the processing unit 35, and the transverse wave EMAT probe 23. It is a graph shown using the time-axis on the basis of the time of exciting an ultrasonic wave. For example, the transverse wave EMAT probe 23 excites ultrasonic waves (a transverse wave SH wave 23A) on the side surface 36 of the valve stem 16, and then reflects the reflected wave from the defect 41 after 110 μs, and the valve rod 16 and the valve after 210 μs. The reflected wave from the connection portion 48 of the body 15 is detected as the reflected wave that has bypassed the inside of the distal end surface 49 of the valve body 13 after 220 to 240 μsec.

直径数10mmの弁棒16の側面36を伝播する横波のSH波23Aが3000m/秒の伝播速度であることから、処理部35のデータ処理システム34は下記計算により、横波EMAT探触子23から欠陥41までの距離Lを算出する。
[数1]
L=V×t/2=3000m×110×10−6÷2=0.165m
ここで、V:横波のSH波23Aの伝播速度
t:超音波(横波のSH波23A)の励起から反射波検出までの時間差
Since the shear wave 23A of the transverse wave propagating through the side surface 36 of the valve rod 16 having a diameter of several tens of millimeters has a propagation velocity of 3000 m / second, the data processing system 34 of the processing unit 35 performs the following calculation from the transverse wave EMAT probe 23 by The distance L to the defect 41 is calculated.
[Equation 1]
L = V × t / 2 = 3000 m × 110 × 10 −6 ÷ 2 = 0.165 m
Where V: Propagation speed of shear wave 23A
t: Time difference from excitation of ultrasonic wave (transverse SH wave 23A) to detection of reflected wave

上記計算によれば、弁棒16の側面36において、横波EMAT探触子23から0.165m、つまり16.5cmの距離(位置)に欠陥41が存在することが分かる。横波のSH波23Aは、一般的に、縦波25Aで発生する弁体15内部でのバックエコー(図6参照)が少ないことから、欠陥41の位置を高S/N比で特定することができる。   According to the above calculation, it can be seen that the defect 41 exists on the side surface 36 of the valve stem 16 at a distance (position) of 0.165 m from the transverse wave EMAT probe 23, that is, 16.5 cm. Since the shear wave 23A of the transverse wave generally has few back echoes (see FIG. 6) inside the valve element 15 generated by the longitudinal wave 25A, the position of the defect 41 can be specified with a high S / N ratio. it can.

ここで、弁棒16と弁体15の接続部48と横波EMAT探触子23との距離、弁体15の先端面49と横波EMAT探触子23との距離がそれぞれ既知であることから、図5において、弁棒16と弁体15の接続部48からの反射波、弁体15の先端面49の内部を迂回した反射波は、共に、欠陥41からの反射波と区別して認識される。   Here, since the distance between the connecting portion 48 of the valve stem 16 and the valve body 15 and the transverse wave EMAT probe 23 and the distance between the tip surface 49 of the valve body 15 and the transverse wave EMAT probe 23 are known, In FIG. 5, the reflected wave from the connecting portion 48 of the valve stem 16 and the valve body 15 and the reflected wave that bypasses the inside of the front end surface 49 of the valve body 15 are recognized separately from the reflected wave from the defect 41. .

図6は、縦波EMAT探触子25にて検出され処理部35のデータ処理システム34へ出力される超音波(縦波25A)の反射波を表す電位差を、前記縦波EMAT探触子25が超音波を励起した時点を基準とする時間軸を用いて示すグラフである。縦波EMAT探触子25は、例えば弁棒16の頂面42に超音波(縦波25A)を励起してから、80μ秒後に欠陥41からの反射波を、130μ秒後に弁棒16と弁体15の接続部からの反射波を、140〜180μ秒後に弁体15の先端面49にて反射した反射波を、それぞれ検出している。   6 shows the potential difference representing the reflected wave of the ultrasonic wave (longitudinal wave 25A) detected by the longitudinal wave EMAT probe 25 and output to the data processing system 34 of the processing unit 35, and the longitudinal wave EMAT probe 25. It is a graph shown using the time-axis on the basis of the time of exciting an ultrasonic wave. The longitudinal wave EMAT probe 25, for example, excites ultrasonic waves (longitudinal wave 25A) on the top surface 42 of the valve stem 16, and then reflects the reflected wave from the defect 41 after 80 μs, and the valve rod 16 and the valve after 130 μs. The reflected wave reflected from the front end surface 49 of the valve body 15 after 140 to 180 microseconds is detected from the reflected wave from the connection part of the body 15.

直径数10mmの弁棒16の内部及び側面36を伝播する縦波25Aが5000m/秒の伝播速度であることから、処理部35のデータ処理システム34は下記計算により、縦波EMAT探触子25から欠陥41までの距離Lを算出する。
[数2]
L=V×t/2=5000m×80×10−6÷2=0.200m
ここで、V:縦波25Aの伝播速度
t:超音波(縦波25A)の励起から反射波検出までの時間差
Since the longitudinal wave 25A propagating through the inside and the side surface 36 of the valve rod 16 having a diameter of 10 mm has a propagation velocity of 5000 m / sec, the data processing system 34 of the processing unit 35 calculates the longitudinal wave EMAT probe 25 by the following calculation. The distance L from to the defect 41 is calculated.
[Equation 2]
L = V × t / 2 = 0.000 m × 80 × 10 −6 ÷ 2 = 0.200 m
Where V: propagation speed of longitudinal wave 25A
t: Time difference from excitation of ultrasonic wave (longitudinal wave 25A) to detection of reflected wave

上記計算によれば、弁棒16の側面36において、縦波EMAT探触子25から0.200m、つまり20.0cmの距離(位置)に欠陥41があることが分かる。この欠陥位置は、縦波EMAT探触子25と横波EMAT探触子23の設置位置の若干の違いを考慮すると、上述の横波のSH波23Aによる欠陥41の計測位置と略一致する。   According to the above calculation, it can be seen that the defect 41 is present on the side surface 36 of the valve stem 16 at a distance (position) of 0.200 m, that is, 20.0 cm from the longitudinal wave EMAT probe 25. This defect position substantially coincides with the measurement position of the defect 41 by the above-described shear wave 23A of the transverse wave in consideration of a slight difference in the installation position of the longitudinal wave EMAT probe 25 and the transverse wave EMAT probe 23.

縦波25Aは、一般的に、弁体15の内部でのバックエコーが強く数回反射することから、このバックエコーの処理が煩雑になるが、欠陥41の面積(長さ×深さ)が、欠陥41からの反射波の電位差(パルス高さ)に比例することから、処理部35のデータ処理システム34は、特に縦波25Aの反射波を用いて、欠陥41の位置と面積を特定することができる。   In the longitudinal wave 25A, since the back echo inside the valve body 15 is reflected strongly several times in general, the processing of the back echo becomes complicated, but the area (length × depth) of the defect 41 is large. Since it is proportional to the potential difference (pulse height) of the reflected wave from the defect 41, the data processing system 34 of the processing unit 35 specifies the position and area of the defect 41 using the reflected wave of the longitudinal wave 25A in particular. be able to.

従って、本実施の形態によれば、次の効果(1)〜(4)を奏する。   Therefore, according to the present embodiment, the following effects (1) to (4) are obtained.

(1)電動弁10における弁棒16の表面、つまり弁棒16の側面36、頂面42に横波EMAT探触子23、縦波EMAT探触子25をそれぞれ設置し、この弁棒16に生じた折損に至る欠陥41を、前記横波EMAT探触子23及び縦波EMAT探触子25を用いて直接検出するので、弁棒16の折損前に、前記欠陥41を迅速かつ有効に検出できる。   (1) The transverse wave EMAT probe 23 and the longitudinal wave EMAT probe 25 are respectively installed on the surface of the valve stem 16 in the motor-operated valve 10, that is, on the side surface 36 and the top surface 42 of the valve stem 16. Since the defect 41 leading to breakage is directly detected using the transverse wave EMAT probe 23 and the longitudinal wave EMAT probe 25, the defect 41 can be detected quickly and effectively before the valve stem 16 breaks.

(2)電動弁10を分解することなく、弁棒16の側面36の外部露出部22に横波EMAT探触子23を、また、弁棒16の外部に露出する頂面42に縦波EMAT探触子25をそれぞれ設置して、この弁棒16に生じた欠陥41を検出するので、電動弁10を分解する必要がない。このため、電動弁10の分解及び組立工程を削除できると共に、これらの分解または組立時に不具合が発生する事態を未然に回避できる。   (2) Without disassembling the motor-operated valve 10, the transverse wave EMAT probe 23 is exposed to the externally exposed portion 22 of the side surface 36 of the valve stem 16, and the longitudinal wave EMAT probe is exposed to the top surface 42 exposed to the outside of the valve stem 16. Since the touch elements 25 are respectively installed and the defect 41 generated in the valve rod 16 is detected, it is not necessary to disassemble the motor-operated valve 10. For this reason, the disassembly and assembly process of the motor-operated valve 10 can be eliminated, and a situation in which a malfunction occurs during the disassembly or assembly can be avoided.

(3)圧電素子を具備する従来の接触式超音波探触子を用いて電動弁10の弁棒16における欠陥41を検出する場合には、弁棒16の直径に対応する探触子や接着治具(例えばシュー)を、異なる直径の弁棒16毎に用意しなければならず、更に、超音波の伝播性を向上させるための接触媒体(例えばグリースなどの液体)を用意しなければならない。   (3) When detecting a defect 41 in the valve stem 16 of the motor-operated valve 10 using a conventional contact ultrasonic probe having a piezoelectric element, a probe or an adhesive corresponding to the diameter of the valve stem 16 A jig (for example, a shoe) must be prepared for each valve stem 16 having a different diameter, and a contact medium (for example, a liquid such as grease) must be prepared for improving the propagation of ultrasonic waves. .

これに対し、本実施の形態では、永久磁石38、44と高周波コイル40、46を具備し、電磁力により弁棒16の表面に超音波を非接触で励起させ、また弁棒16に生じた欠陥41からの反射波を弁棒16に対して非接触で検出する電磁超音波探触子(横波EMAT探触子23、縦波EMAT探触子25)を用いて、前記欠陥41を検出している。このため、前記接触媒体が不要となり、弁棒16の直径に応じた電磁超音波探触子(横波EMAT探触子23、縦波EMAT探触子25)や接着治具を複数用意する必要もない。更に、弁棒16の表面にねじ47が加工されている場合にも、弁棒16の表面形状に影響されることなく、電磁超音波探触子(横波EMAT探触子23、縦波EMAT探触子25)にて超音波を励起し、反射波を検出することができる。   On the other hand, in the present embodiment, the permanent magnets 38 and 44 and the high frequency coils 40 and 46 are provided, and the surface of the valve stem 16 is excited in a non-contact manner by electromagnetic force. The defect 41 is detected using an electromagnetic ultrasonic probe (a transverse wave EMAT probe 23, a longitudinal wave EMAT probe 25) that detects a reflected wave from the defect 41 in a non-contact manner with respect to the valve stem 16. ing. This eliminates the need for the contact medium, and it is also necessary to prepare a plurality of electromagnetic ultrasonic probes (transverse wave EMAT probe 23, longitudinal wave EMAT probe 25) and bonding jigs according to the diameter of the valve stem 16. Absent. Further, even when the screw 47 is machined on the surface of the valve stem 16, the electromagnetic ultrasonic probe (transverse wave EMAT probe 23, longitudinal wave EMAT probe is not affected by the surface shape of the valve stem 16. Ultrasonic waves can be excited by the touch element 25) to detect a reflected wave.

(4)横波EMAT探触子23、縦波EMAT探触子25にて弁棒16の表面に励起される超音波(横波のSH波23A、縦波25A)の周波数は、弁棒16の直径が10mm〜100mmであるときに、100kHz〜500kHzの範囲の値に設定される。このため、この超音波(横波のSH波23A、縦波25A)は、波長が弁棒16の直径と同等または数分の一程度となるので、この直径の弁棒16に対してガイド波となり、波長減衰が少なく弁棒16及び弁体15の略全長に亘って伝播する良好な伝播性を有する。更に、この周波数範囲の超音波(横波のSH波23A、縦波25A)は、長さ寸法が数百μm以上の欠陥41から反射波を生じさせ、弁棒16の側面36に加工された数mmピッチのねじ47からは反射波を抑制できるので、高S/N比を実現できる。   (4) The frequency of the ultrasonic waves (transverse SH wave 23A, longitudinal wave 25A) excited on the surface of the valve stem 16 by the transverse wave EMAT probe 23 and longitudinal wave EMAT probe 25 is the diameter of the valve stem 16. Is set to a value in the range of 100 kHz to 500 kHz. For this reason, since the wavelength of this ultrasonic wave (transverse SH wave 23A, longitudinal wave 25A) is equal to or about a fraction of the diameter of the valve stem 16, it becomes a guide wave for the valve stem 16 of this diameter. In addition, the wavelength attenuation is small, and the valve rod 16 and the valve body 15 have a good propagation property that propagates over substantially the entire length. Further, the ultrasonic waves in this frequency range (the shear wave 23A and the longitudinal wave 25A) generate reflected waves from the defect 41 having a length dimension of several hundreds μm or more and are processed on the side surface 36 of the valve stem 16. Since the reflected wave can be suppressed from the mm pitch screw 47, a high S / N ratio can be realized.

以上、本発明を上記実施の形態に基づいて説明したが、本発明はこれに限定されるものではない。例えば、上述の実施の形態では、先端に弁体15が接続された構造の弁棒16に対して、横波EMAT探触子23を備えた弁棒診断装置24、縦波EMAT探触子25を備えた弁棒診断装置26を適用した場合を述べたが、弁棒16と弁体15が鍛造により一体成形され、弁棒16が弁体15に向かって徐々に扁平し、弁体15が例えば楕円形状を有するものに対しても、前記弁棒診断装置24、26を適用できる。特に、弁棒診断装置24の横波EMAT探触子23を弁棒16の側面36に設置して、この側面36に超音波(横波のSH波23A)を励起させる場合には、この横波のSH波23Aが弁棒16から弁体15へ伝播することで、弁棒16及び弁体15の表面に生じた欠陥41を確実に検出することができる。   As mentioned above, although this invention was demonstrated based on the said embodiment, this invention is not limited to this. For example, in the above-described embodiment, the valve stem diagnostic device 24 including the transverse wave EMAT probe 23 and the longitudinal wave EMAT probe 25 are provided to the valve stem 16 having a structure in which the valve body 15 is connected to the tip. Although the case where the provided valve stem diagnostic device 26 is applied has been described, the valve stem 16 and the valve body 15 are integrally formed by forging, the valve stem 16 is gradually flattened toward the valve body 15, and the valve body 15 is, for example, The valve stem diagnostic devices 24 and 26 can also be applied to those having an elliptical shape. In particular, when the transverse wave EMAT probe 23 of the valve stem diagnostic device 24 is installed on the side surface 36 of the valve stem 16 and the side surface 36 is excited with ultrasonic waves (a transverse wave SH wave 23A), the shear wave SH Since the wave 23 </ b> A propagates from the valve stem 16 to the valve body 15, the defect 41 generated on the surfaces of the valve stem 16 and the valve body 15 can be reliably detected.

10 電動弁(弁装置)
15 弁体
16 弁棒
23 横波EMAT探触子(横波電磁超音波探触子)
23A 横波のSH波
24 弁棒診断装置
25 縦波EMAT探触子(縦波電磁超音波探触子)
25A 縦波
26 弁棒診断装置
29 高周波電源
30 電位差計
35 処理部
36 側面(表面)
38 永久磁石
40 高周波コイル
41 欠陥
42 頂面(表面)
44 永久磁石
46 高周波コイル
47 ねじ
10 Electric valve (valve device)
15 Valve body 16 Valve stem 23 Transverse wave EMAT probe (transverse wave electromagnetic ultrasonic probe)
23A SH wave of shear wave 24 Valve stem diagnosis device 25 Longitudinal wave EMAT probe (longitudinal wave electromagnetic ultrasonic probe)
25A Longitudinal wave 26 Valve stem diagnostic device 29 High frequency power supply 30 Potentiometer 35 Processing unit 36 Side surface (surface)
38 Permanent magnet 40 High-frequency coil 41 Defect 42 Top surface (surface)
44 Permanent magnet 46 High frequency coil 47 Screw

Claims (9)

先端に弁体が設けられた弁棒を軸方向に駆動して、前記弁体に開閉動作を行わせる弁装置の前記弁棒の表面に設置され、電磁力により超音波を前記弁棒に励起して伝播させると共に、前記弁棒に生じた欠陥から反射する超音波を反射波として検出可能な電磁超音波探触子と、
この電磁超音波探触子に超音波を励起させるための高周波電流を供給する高周波電源と、
前記電磁超音波探触子を構成する高周波コイルに生じた電位差に基づき、前記電磁超音波探触子が超音波を励起してから反射波を検出するまでの時間差を用いて、前記弁棒における前記欠陥の状態を演算処理する処理部と、を有することを特徴とする弁装置の弁棒診断装置。
It is installed on the surface of the valve stem of the valve device that drives the valve stem, which is provided with a valve body at the tip, in the axial direction to cause the valve body to open and close, and excites ultrasonic waves to the valve stem by electromagnetic force And an electromagnetic ultrasonic probe capable of detecting an ultrasonic wave reflected from a defect generated in the valve stem as a reflected wave, and
A high-frequency power source for supplying a high-frequency current for exciting ultrasonic waves to the electromagnetic ultrasonic probe;
Based on the potential difference generated in the high-frequency coil constituting the electromagnetic ultrasonic probe, using the time difference from when the electromagnetic ultrasonic probe excites the ultrasonic wave until the reflected wave is detected, A valve stem diagnosis device for a valve device, comprising: a processing unit that performs arithmetic processing on the state of the defect.
前記電磁超音波探触子は、弁棒の側面に設置され、前記弁棒の表面を伝播する超音波としての横波のSH波を励起し検出する横波電磁超音波探触子であることを特徴とする請求項1に記載の弁装置の弁棒診断装置。 The electromagnetic ultrasonic probe is a lateral wave electromagnetic ultrasonic probe that is installed on a side surface of a valve stem and excites and detects a shear wave of a transverse wave as an ultrasonic wave propagating through the surface of the valve stem. The valve stem diagnosis device for a valve device according to claim 1. 前記電磁超音波探触子は、弁棒の端面に設置され、前記弁棒の内部及び表面を伝播する超音波としての縦波を励起し検出する縦波電磁超音波探触子であることを特徴とする請求項1に記載の弁装置の弁棒診断装置。 The electromagnetic ultrasonic probe is a longitudinal wave electromagnetic ultrasonic probe that is installed on an end surface of a valve stem and excites and detects longitudinal waves as ultrasonic waves propagating through the inside and the surface of the valve stem. The valve stem diagnosis device for a valve device according to claim 1, wherein the device is a diagnostic device. 前記高周波電源が電磁超音波探触子へ供給して超音波を励磁させる高周波電流は、弁棒の直径寸法と同等または数分の一程度の波長の電流であることを特徴とする請求項1に記載の弁装置の弁棒診断装置。 2. The high-frequency current supplied from the high-frequency power source to the electromagnetic ultrasonic probe to excite the ultrasonic wave is a current having a wavelength equivalent to or about a fraction of the diameter of the valve stem. The valve stem diagnostic device for the valve device according to 1. 前記高周波電源が電磁超音波探触子へ供給して超音波を励磁させる高周波電流は、弁棒に生じた欠陥からは超音波を反射させるが、弁棒の表面に加工されたねじからは超音波の反射を抑制する波長の電流であることを特徴とする請求項1に記載の弁装置の弁棒診断装置。 The high-frequency current supplied to the electromagnetic ultrasonic probe by the high-frequency power source to excite the ultrasonic wave reflects the ultrasonic wave from the defect generated in the valve stem, but from the screw processed on the surface of the valve stem. 2. The valve stem diagnostic device for a valve device according to claim 1, wherein the current is a wavelength that suppresses reflection of sound waves. 前記高周波電源が電磁超音波探触子へ供給して超音波を励磁させる高周波電流は、弁棒の直径が10mm〜100mmであるとき、100KHz〜500KHzの周波数の電流であることを特徴とする請求項1に記載の弁装置の弁棒診断装置。 The high frequency current that the high frequency power supply supplies to the electromagnetic ultrasonic probe to excite the ultrasonic wave is a current having a frequency of 100 KHz to 500 KHz when the diameter of the valve stem is 10 mm to 100 mm. Item 8. A valve stem diagnostic apparatus for a valve device according to Item 1. 前記電磁超音波探触子は、この電磁超音波探触子を構成する永久磁石による磁力、取付バンド、または柔軟で形状追従性を有する接着治具を用いて、弁棒の表面に設置されることを特徴とする請求項1に記載の弁装置の弁棒診断装置。   The electromagnetic ultrasonic probe is installed on the surface of the valve stem using a magnetic force by a permanent magnet constituting the electromagnetic ultrasonic probe, an attachment band, or a flexible and shape-adhering bonding jig. The valve stem diagnostic apparatus for a valve device according to claim 1. 先端に弁体が設けられた弁棒を軸方向に駆動して、前記弁体に開閉動作を行わせる弁装置の前記弁棒の表面に電磁超音波探触子を設置して、電磁力により前記弁棒に超音波を励起させて伝播させ、前記弁棒に生じた欠陥から反射する超音波を反射波として検出し、
前記電磁超音波探触子が超音波を励起してから反射波を検出するまでの時間差を用いて、前記弁棒における前記欠陥の状態を演算することを特徴とする弁装置の弁棒診断方法。
An electromagnetic ultrasonic probe is installed on the surface of the valve stem of the valve device that drives the valve stem provided with a valve body at the tip end in the axial direction to cause the valve body to open and close. Exciting and propagating ultrasonic waves to the valve stem, detecting ultrasonic waves reflected from defects generated in the valve stem as reflected waves,
A valve rod diagnostic method for a valve device, wherein the state of the defect in the valve rod is calculated using a time difference from when the electromagnetic ultrasonic probe excites an ultrasonic wave until a reflected wave is detected. .
前記電磁超音波探触子が励起する超音波の周波数は、弁棒の直径が10mm〜100mmであるとき、100KHz〜500KHzであることを特徴とする請求項8に記載の弁装置の弁棒診断方法。 9. The valve stem diagnosis of a valve device according to claim 8, wherein the frequency of the ultrasonic wave excited by the electromagnetic ultrasonic probe is 100 KHz to 500 KHz when the diameter of the valve stem is 10 mm to 100 mm. Method.
JP2009085262A 2009-03-31 2009-03-31 Valve stem diagnosis device and method for valve device Expired - Fee Related JP5232061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009085262A JP5232061B2 (en) 2009-03-31 2009-03-31 Valve stem diagnosis device and method for valve device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009085262A JP5232061B2 (en) 2009-03-31 2009-03-31 Valve stem diagnosis device and method for valve device

Publications (2)

Publication Number Publication Date
JP2010237035A true JP2010237035A (en) 2010-10-21
JP5232061B2 JP5232061B2 (en) 2013-07-10

Family

ID=43091486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009085262A Expired - Fee Related JP5232061B2 (en) 2009-03-31 2009-03-31 Valve stem diagnosis device and method for valve device

Country Status (1)

Country Link
JP (1) JP5232061B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102890115A (en) * 2011-07-21 2013-01-23 费希尔控制国际公司 Control valve monitoring system
WO2013164755A1 (en) * 2012-04-30 2013-11-07 Techni As System for position measuring and integrity measuring
US9494560B2 (en) 2011-07-21 2016-11-15 Fisher Controls International Llc Control valve monitoring system
CN107084692A (en) * 2017-06-30 2017-08-22 沈阳工业大学 Electromagnetic acoustic shear wave thickness measuring transducer
CN113848251A (en) * 2021-09-27 2021-12-28 南昌航空大学 Online detection probe, system and method for ultrahigh-temperature ferromagnetic metal casting and forging

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6413433A (en) * 1987-07-08 1989-01-18 Nippon Kensetsu Kikaika Kyokai Rod type fixing device and its using method
JPH0493652A (en) * 1990-08-06 1992-03-26 Toshiba Corp Trouble shooting for valve stem
JPH102884A (en) * 1996-01-30 1998-01-06 Babcock & Wilcox Co:The Device and method for measuring load on part and monitoring perfectness of the part
JP2005214686A (en) * 2004-01-28 2005-08-11 Sumitomo Metal Ind Ltd Electromagnetic ultrasonic probe and ultrasonic flaw detection method
JP2008064540A (en) * 2006-09-06 2008-03-21 Hitachi Ltd Piping inspection method using guide wave and piping inspection device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6413433A (en) * 1987-07-08 1989-01-18 Nippon Kensetsu Kikaika Kyokai Rod type fixing device and its using method
JPH0493652A (en) * 1990-08-06 1992-03-26 Toshiba Corp Trouble shooting for valve stem
JPH102884A (en) * 1996-01-30 1998-01-06 Babcock & Wilcox Co:The Device and method for measuring load on part and monitoring perfectness of the part
JP2005214686A (en) * 2004-01-28 2005-08-11 Sumitomo Metal Ind Ltd Electromagnetic ultrasonic probe and ultrasonic flaw detection method
JP2008064540A (en) * 2006-09-06 2008-03-21 Hitachi Ltd Piping inspection method using guide wave and piping inspection device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3051285B1 (en) * 2011-07-21 2018-10-10 Fisher Controls International Llc Control valve monitoring system
US10550959B2 (en) 2011-07-21 2020-02-04 Fisher Controls International Llc Control valve monitoring system
US9494560B2 (en) 2011-07-21 2016-11-15 Fisher Controls International Llc Control valve monitoring system
CN102890115A (en) * 2011-07-21 2013-01-23 费希尔控制国际公司 Control valve monitoring system
US10197185B2 (en) 2011-07-21 2019-02-05 Fisher Controls International Llc Control valve monitoring system
CN102890115B (en) * 2011-07-21 2018-04-13 费希尔控制国际公司 control valve monitoring system
CN108445080A (en) * 2011-07-21 2018-08-24 费希尔控制国际公司 Control valve monitoring system
NO343480B1 (en) * 2012-04-30 2019-03-25 Techi As Position measurement in cylinder
US9803664B2 (en) 2012-04-30 2017-10-31 Techni As System for position measuring and integrity measuring
WO2013164755A1 (en) * 2012-04-30 2013-11-07 Techni As System for position measuring and integrity measuring
CN107084692A (en) * 2017-06-30 2017-08-22 沈阳工业大学 Electromagnetic acoustic shear wave thickness measuring transducer
CN113848251A (en) * 2021-09-27 2021-12-28 南昌航空大学 Online detection probe, system and method for ultrahigh-temperature ferromagnetic metal casting and forging
CN113848251B (en) * 2021-09-27 2023-06-16 南昌航空大学 Online detection probe, system and method for ultrahigh-temperature ferromagnetic metal cast forging

Also Published As

Publication number Publication date
JP5232061B2 (en) 2013-07-10

Similar Documents

Publication Publication Date Title
JP5232061B2 (en) Valve stem diagnosis device and method for valve device
US8432159B2 (en) Method and apparatus for monitoring wall thinning of a pipe using magnetostrictive transducers and variation of dispersion characteristics of broadband multimode shear horizontal (SH) waves
CA2633271C (en) Method and system for nondestructive testing of a metallic workpiece
Qing et al. An active diagnostic system for structural health monitoring of rocket engines
KR100476848B1 (en) Method and apparatus for long range inspection of plate-type ferromagnetic structures
EP2629051A1 (en) Thickness measuring device and measuring method therefor
JP6362533B2 (en) Residual stress evaluation method and residual stress evaluation apparatus
KR100573736B1 (en) Transducer for Generating and Sensing Torsional Waves, and Apparatus and Method for Structural Diagnosis Using It
JP2013525803A (en) Methods and devices for nondestructive material testing by ultrasound
CN108956762A (en) The effective flexible electromagnetic ultrasonic guide wave sensor of one kind and detection method
JP2013536946A (en) Phased array ultrasonic inspection system for turbine and generator rotors
JP4881212B2 (en) Material thickness monitoring system and material thickness measuring method
JP2011027571A (en) Piping thickness reduction inspection apparatus and piping thickness reduction inspection method
JP2009092444A (en) Method and device for measuring pile shape
JP2011145219A (en) Piping and device monitoring apparatus and method
Hernandez-Valle et al. Pulsed electromagnet EMAT for ultrasonic measurements at elevated temperatures
CN111678986B (en) Ultrasonic guided wave detection device and method for edge defects of turbine blades
JPH0587780A (en) Method and apparatus for nondestructive inspection of metal pipe
CN114402197A (en) Apparatus and method for pipe inspection using shear waves generated by EMAT
WO2011135732A1 (en) L-mode guided wave sensor
KR102358685B1 (en) System for monitoring wall-thinning of pipe
KR101723485B1 (en) Method and Apparatus for Circumferential Wave Resonance Inspection of Boiler Waterwall Tubes
JP4367208B2 (en) Electromagnetic ultrasonic measuring device
Pedrick et al. A novel technique with a magnetostrictive transducer for in situ length monitoring of a distant specimen
JP2001343368A (en) Evaluation method of creep life and measuring method of hardness

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110210

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20111218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130322

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees