JP2010235938A - 芳香族ポリエステル及びそれからなるポリエステル成形体 - Google Patents
芳香族ポリエステル及びそれからなるポリエステル成形体 Download PDFInfo
- Publication number
- JP2010235938A JP2010235938A JP2010054387A JP2010054387A JP2010235938A JP 2010235938 A JP2010235938 A JP 2010235938A JP 2010054387 A JP2010054387 A JP 2010054387A JP 2010054387 A JP2010054387 A JP 2010054387A JP 2010235938 A JP2010235938 A JP 2010235938A
- Authority
- JP
- Japan
- Prior art keywords
- ppm
- polyester
- less
- aromatic polyester
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Containers Having Bodies Formed In One Piece (AREA)
- Wrappers (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Polyesters Or Polycarbonates (AREA)
Abstract
【解決手段】 芳香族ジカルボン酸成分とグリコール成分とからなる繰り返し単位を有する芳香族ポリエステルであって、前記芳香族ポリエステルからなる成形体を超純水中で80℃において1時間抽出処理を実施して得られた抽出水を人工脂質膜からなる味センサを備えた味検査装置で苦味値と渋味値を測定した場合、前記抽出水の苦味値と超純水の苦味値の差及び前記抽出水の渋味値と超純水の渋味値の差が、それぞれ0.5以下であることを特徴とする芳香族ポリエステル。
【選択図】なし
Description
このような熱可塑性ポリエステルは、例えば、射出成形機械などの成形機に供給して中空成形体用プリフォームを成形し、このプリフォームを所定形状の金型に挿入し延伸ブロー成形した後ボトルの胴部を熱処理(ヒートセット)して中空成形容器に成形され、さらには必要に応じてボトルの口栓部を熱処理(口栓部結晶化)させるのが一般的である。
しかしながら、PETは、溶融重縮合時の副生物としてアセトアルデヒド(以下、AAと略称することがある)を含有する。また、PETは、中空成形体等の成形体を熱成形する際に熱分解によりアセトアルデヒドを生成し、得られた成形体の材質中のアセトアルデヒド含有量が多くなり、中空成形体等に充填された飲料等の風味や臭いに影響を及ぼす。したがって、従来からポリエステル成形体中のアセトアルデヒド含有量を低減させるために種々の方策が採られてきた。一般的には、溶融重縮合したポリエステルを固相重合することによってAA含有量を低下させる方法(例えば、特許文献1、2など参照)、融点がより低い共重合ポリエステルを使用して成形時のAA生成を低下させる方法(例えば、特許文献3、4など参照)、熱成形時における成形温度を可及的に低くする方法および熱成形時におけるせん断応力を可及的に小さくする方法(例えば、特許文献5など参照)等が公知である。
また、成形後の飲料容器中のアセトアルデヒド、ホルムアルデヒドを低減する為に、固相重合したPETを酸素の不存在下、水素を含有する不活性気体気流下で乾燥させる方法もある(例えば特許文献7参照)。
風味や臭いの問題を解決する技術として、熱可塑性ポリエステル樹脂100重量部に対して、メタキシリレン基含有ポリアミド樹脂を0.05重量部以上、1重量部未満の量を添加したポリエステル組成物を用いる方法(例えば、特許文献8参照)や、熱可塑性ポリエステルに、末端アミノ基濃度をある範囲に規制した特定のポリアミドを含有させたポリエステル組成物からなるポリエステル製容器(例えば、特許文献9参照)が提案されている。また、ポリエチレンテレフタレート樹脂中の遊離のモノマー含有量や遊離のオリゴマー含有量を低減させることによって前記樹脂から得た容器のフレーバー性を官能試験によって判断する試験法によって試験する方法で判定して改良されたPET樹脂(例えば、特許文献10参照)が提案されている。
また、耐熱性の良好な熱可塑性ポリエステル系フィルムを金属板にラミネートし、前記ラミネート金属板を清涼飲料、ビール、缶詰等の主として食料品容器用金属缶に利用することが検討されている。このような用途において、香味保持性を改良するために、アセトアルデヒド含有量を20ppm以下にした金属板張り合わせ用熱可塑性ポリエステルフィルム(例えば、特許文献11参照)が提案されている。
前記したようにアセトアルデヒド含有量の大幅な低減によってフレーバー性は、実用的に一応十分な程度まで、即ち現在の流通に際し満足出来る程度まで改善された状態にある。一方、我々は、更により一層美味しい飲料用容器に適したポリエステル樹脂を追求して来たが、微妙な味覚を改善するためにはポリエステルレジン中のアセトアルデヒド含有量の低減だけでは対策として何かが不足していることを見いだし、従って味覚的に高度な飲料に耐えうるポリエステルレジンを開発するという課題を自ら設定した。
すなわち、本発明の芳香族ポリエステルは、芳香族ジカルボン酸成分とグリコール成分とからなる繰り返し単位を有する芳香族ポリエステルであって、前記芳香族ポリエステルからなる成形体を超純水中で80℃において1時間抽出処理を実施して得られた抽出水を人工脂質膜からなる味センサを備えた味検査装置で苦味値と渋味値を測定した場合、前記抽出水の苦味値と超純水の苦味値の差及び前記抽出水の渋味値と超純水の渋味値の差が、それぞれ0.5以下であることを特徴とする芳香族ポリエステルである。
特開2002−107339号公報、特開2002−107338号公報、特開2001−264289号公報、特開2000−171423号公報、WO096/30753号公報などが挙げられ、特に苦味を感知する人工脂質膜および味検査装置は、例えば、前記の特開2002−107339号公報に開示されており、苦味、渋味以外に酸味などの味覚も同時に測定可能である。
本発明での苦味及び渋味試験法については下記の測定の項で説明する。
この場合において、環状エステルオリゴマーの含有量が0.70重量%以下であることができる。
この場合において、290℃の温度で60分間溶融したときの環状エステルオリゴマーの増加量が0.40重量%以下であることができる。
この場合において、芳香族ポリエステルが、重縮合後チップ状に形成したものを、20〜120℃において水と接触処理されたものであることができる。
この場合において、前記の芳香族ポリエステルを溶融成形してなるポリエステル成形体であることができる。
この場合において、前記の本発明のポリエステル成形体は、中空成形体、シート状物、前記シート状物を少なくとも一方向に延伸してなる延伸フィルムあるいは不織布のいずれかであることができる。
また、この場合において、前記の芳香族ポリエステルを基材上に溶融押出してなることを特徴とする被覆物であることができる。
本発明の芳香族ポリエステルは、芳香族ジカルボン酸成分とグリコール成分とからなる繰り返し単位を有する熱可塑性ポリエステルであり、芳香族ジカルボン酸単位は、酸成分の80モル%以上含むことが好ましく、さらに好ましくは、芳香族ジカルボン酸単位が酸成分の85モル%以上であり、芳香族ジカルボン酸単位が酸成分の95モル%以上含むことが特に好ましい。
本発明の芳香族ポリエステルを構成する芳香族ジカルボン酸成分としては、テレフタル酸、2,6−ナフタレンジカルボン酸、ジフェニール−4,4'−ジカルボン酸、ジフェノキシエタンジカルボン酸等の芳香族ジカルボン酸及びその機能的誘導体等が挙げられる。
さらに、本発明の芳香族ポリエステルが共重合体である場合に使用される共重合成分としての多官能化合物としては、酸成分として、トリメリット酸、ピロメリット酸等を挙げることができ、グリコール成分としてグリセリン、ペンタエリスリトールを挙げることができる。以上の共重合成分の使用量は、芳香族ポリエステルが実質的に線状を維持する程度でなければならない。また、単官能化合物、例えば安息香酸、ナフトエ酸等を共重合させてもよい。
これら芳香族ポリエステルの例としては、ポリエチレンテレフタレート(以下、PETと略称)、ポリ(エチレンテレフタレート−エチレンイソフタレート)共重合体、ポリ(エチレンテレフタレート−1,4−シクロヘキサンジメチレンテレフタレート)共重合体、ポリ(エチレンテレフタレート−ジオキシエチレンテレフタレート)共重合体、ポリ(エチレンテレフタレート−1,3−プロピレンテレフタレート)共重合体、ポリ(エチレンテレフタレート−エチレンシクロヘキシレンジカルボキシレート)共重合体などが挙げられる。
これらポリエステルの例としては、ポリプロピレンテレフタレート(PTT)、ポリ(1,3−プロピレンテレフタレート−1,3−プロピレンイソフタレート)共重合体、ポリ(1,3−プロピレンテレフタレート−1,4−シクロヘキサンジメチレンテレフタレート)共重合体などが挙げられる。
これら芳香族ポリエステルの例としては、ポリブチレンテレフタレート(PBT)、ポリ(ブチレンテレフタレート−ブチレンイソフタレート)共重合体、ポリ(ブレンテレフタレート−1,4−シクロヘキサンジメチレンテレフタレート)共重合体、ポリ(ブチレンテレフタレート−1,3−プロピレンテレフタレート)共重合体、ポリ(ブチレンテレフタレート−ブチレンシクロヘキシレンジカルボキシレート)共重合体などが挙げられる。
これら熱可塑性ポリエステルの例としては、ポリエチレン−2,6−ナフタレート(PEN)、ポリ(エチレン−2,6−ナフタレート−エチレンテレフタレート)共重合体、ポリ(エチレン−2,6−ナフタレート−エチレンイソフタレート)共重合体、ポリ(エチレン−2,6−ナフタレート−ジオキシエチレン−2,6−ナフタレート)共重合体などが挙げられる。
これら熱可塑性ポリエステルの例としては、ポリ−1,4−シクロヘキサンジメチレンテレフタレート(PCT)、ポリ(1,4−シクロヘキサンジメチレンテレフタレート−エチレンテレフタレート)共重合体などが挙げられる。
なお、PETやPENの場合は、アルデヒド類はアセトアルデヒド、ホルムアルデヒドであり、1,3−プロピレンテレフタレートを主たる構成単位とする芳香族ポリエステルの場合はアリルアルデヒドである。
前記蛍光発光強度(B)が15を超える場合は、苦味及び渋味試験評価結果が悪くなると同時に、ポリエステル成形体の色相なども悪くなり問題である。
なお、蛍光発光強度や蛍光発光強度の増加量の測定については測定法の項に於いて説明する。
まず、エステル化反応により低重合体を製造する場合には、テレフタル酸またはそのエステル誘導体1モルに対して1.02〜2.0モル、好ましくは1.03〜1.4モルのエチレングリコールが含まれたスラリーを調製し、これをエステル化反応工程に連続的に供給する。
特に、高純度テレフタル酸は通常粉末状であり、この粒子等の合間に空気を含んでおり、スラリー調合槽やスラリー貯蔵槽に酸素を持ち込むため、十分に酸素を追い出すか、テレフタル酸の貯蔵サイロ内の雰囲気を酸素濃度200ppm以下、好ましくは100ppm以下、さらに好ましくは50ppm以下、さらに一層好ましくは30ppm以下、最も好ましくは10ppm以下の不活性気体雰囲気にしておくことが望ましい。
上記エステル化反応は原料としてテレフタル酸を用いる場合は、テレフタル酸の酸としての触媒作用により無触媒でも反応させることができるが重縮合触媒の共存下に実施してもよい。
テレフタル酸ジメチル固形物の貯蔵槽やテレフタル酸ジメチル溶融物の貯蔵槽の気相部には前記エステル化反応による場合と同様の酸素濃度の不活性気体を流通させることが必要であり、またエチレングリコールに関しても前記と同様の注意が必要である。
Na ≦ 1.0(ppm) (1)
Mg ≦ 1.0(ppm) (2)
Si ≦ 2.0(ppm) (3)
Ca ≦ 1.0(ppm) (4)
COD ≦ 2.0(mg/l) (5)
冷却水中のナトリウム含有量(Na)は、好ましくはNa≦0.5ppmであり、さらに好ましくはNa≦0.1ppmである。冷却水中のマグネシウム含有量(Mg)は、好ましくはMg≦0.5ppmであり、さらに好ましくはMg≦0.1ppmである。また、冷却水中の珪素の含有量(Si)は、好ましくはSi≦0.5ppmであり、さらに好ましくはSi≦0.3ppmである。さらに、冷却水中のカルシウム含有量(Ca)は、好ましくはCa≦0.5ppmであり、さらに好ましくはCa≦0.1ppmである。
溶融重縮合ポリエステルチップの水分率が12000ppmを超えると、結晶化時に加水分解が起こり、分子量低下する傾向にあり好ましくない。また、3000ppm未満では、味覚官能試験や苦味及び渋味試験などで評価するフレーバー性に影響すると考えられるAAが多くなる傾向にあり、好ましくない。
次いで、酸素濃度が好ましくは100ppm以下、より好ましくは50ppm以下、さらに好ましくは30ppm以下、最も好ましくは20ppm以下の不活性気体雰囲気下において、少なくとも1段階の連続結晶化装置、好ましくは2段階以上の連続式結晶化装置で予備結晶化および結晶化されることが好ましい。
そこでPETレジンを予備結晶化、結晶化、固相重合において近赤外線ヒーターを用いて各種の特定波長で加熱することより、レジン内部より加熱されることで前記の成分がレジン内部より揮発するために苦味値や渋味値を下げることが出来たと推定される。従ってこのようなメカニズムが達成出来るのであれば、他の方法、例えば、遠赤外線やレーザー光線等々の組み合わせでも達成可能である。
1段目の予備結晶化では、酸素濃度が好ましくは100ppm以下、より好ましくは50ppm以下、さらに好ましくは30ppm以下、最も好ましくは20ppm以下の不活性ガス雰囲気下に100〜180℃の温度で1分〜5時間の条件で加熱処理をする。この際、予備結晶化装置には近赤外線ヒーターを設置することが必要である。
近赤外線ヒーターの波長と処理後の芳香族ポリエステルの結晶化度とは関係があり、前記近赤外線ヒーターの波長は、1550〜1800nm、好ましい波長は1600〜1700nm、最も好ましい波長は1650〜1680nmである。波長が1550nm未満の場合や1800nmを超える場合は芳香族ポリエステルチップの表面結晶化度が下記の範囲まで上がらない。
更に、2段目以降の結晶化装置には近赤外線ヒーターを設置することが必要であり、前記近赤外線ヒーターの波長は、1450nm〜1600nm、好ましくは、1500〜1550nmである。近赤外線の波長が1450nm未満や1600nmを超えると、味検査装置で測定した場合の苦味や渋味の値が高くなりフレーバー性が悪化する。
結晶化後のチップの表面結晶化度を40〜65%、好ましくは45〜63%、さらに好ましくは50〜60%の範囲とする。ポリマーの表面結晶化度は、40%未満では、固相重合温度を200℃以上に上げることが出来ず、得られた固相重合ポリエステル材質中の、フレーバー性に影響すると考えられる低分子量オリゴマーなどの含有量が多くなる傾向にあり、また、後記するように固相重合装置から排出され、精製装置で精製された不活性ガスに、新鮮な不活性ガスを一部混合して再使用される不活性ガス中の不純物がポリエステルチップ表面に吸着し易くなり、これらは、共にフレーバー性に悪影響を与えるため問題である。また、結晶化度が65%超えると、固相重合速度が遅くなり経済性が悪くなる問題となる。
なお、結晶化装置が1段階の設備の場合にはその前半部分と後半部分を別々に前記のような赤外線装置で照射できるようにしておくことが必要である。
なお、チップの表面結晶化度は、DSCより求めることができる。
結晶化後のチップの結晶化度は30〜60%、好ましくは35〜58%、さらに好ましくは40〜55%の範囲である。なお、結晶化度はチップの密度より求めることができる。
固相重合装置に設置した近赤外線ヒーターを使用することによって、味検査装置で測定した場合の苦味や渋味の値が改良されてフレーバー性が改良されるのである。好ましい波長は、1450〜1600nm、更に好ましい波長は1500〜1550nmであり、波長が1450nm未満の場合や1600nmを超える場合は、下記の苦味及び渋味試験による苦味や渋味の値が高くなりフレーバー性が悪化する。
また、精製された不活性ガスには、新鮮な不活性ガスを系外から10〜90%、好ましくは20〜70%、更に好ましくは30〜60%、特に好ましくは30〜50%、最も好ましくは35〜50%補給して不純物濃度や酸素濃度を低減させることも出来る。
固相重合装置に循環使用する精製不活性ガスの露点を−50℃以下とし、また、新鮮な不活性ガスを前記精製不活性ガスに10%以上補給することによって、加熱後に固相重合装置に戻す不活性ガス中の不純物量を低減することが芳香族ポリエステルのフレーバー性向上には重要である。不活性ガス中に残存する不純物が固相重合中にポリエステルチップ表面に吸着し、これがフレーバー性に影響を及ぼすと推定している。
1)テレフタル酸スラリー調合槽、貯蔵槽の気相部分に、酸素濃度が5ppm以下の不活性気体を流通。
2)テレフタル酸スラリー調合槽、貯蔵槽の気相部分の酸素濃度を100ppm以下に維持。
3)エチレングリコールに酸素濃度5ppm以下の不活性気体を通気。
4)触媒やリン化合物溶液を酸素濃度5ppm以下の不活性気体を通気させ、また、気相部分に前記の不活性気体を流通。
5)エステル化反応装置の気相部分には酸素濃度が5ppm以下の不活性気体を通気。
6)重縮合反応時の最終反応器の反応温度は265〜300℃に維持。
7)チップ化時の冷却水としては、下記の(1)〜(5)のすべてを満足する水を使用。
Na ≦ 1.0(ppm) (1)
Mg ≦ 1.0(ppm) (2)
Si ≦ 2.0(ppm) (3)
Ca ≦ 1.0(ppm) (4)
COD ≦ 2.0(mg/l) (5)
また、下記のような方法を追加することによって、本発明の目的をより容易に達成することが出来る。
8)テレフタル酸貯蔵サイロ内の雰囲気を酸素濃度200ppm以下の不活性気体雰囲気に維持。
1)酸素濃度が100ppm以下の不活性ガス雰囲気下、100〜180℃の温度で、1分〜5時間加熱処理。
2)近赤外線ヒーターの波長は、1550nm〜1800nm。
1)酸素濃度が100ppm以下の不活性ガス雰囲気下、100〜210℃の温度で、1分〜5時間加熱処理。
2)結晶化の近赤外線ヒーターの波長は、1450nm〜1600nm。
1)酸素濃度が100ppm以下の不活性ガス雰囲気下、215〜190℃の温度で、固相重合による極限粘度の増加が0.10デシリットル/グラム以上になるように加熱処理。
2)近赤外線ヒーターの波長は、1450nm〜1600nm。
この際、固相重合反応器から排出された使用済み不活性ガスは、前記の方法で精製された後、固相重合反応器などの装置内の不活性ガス雰囲気の酸素濃度を前記規制値内に管理出来るように新鮮な不活性ガスを混合後、所定温度に加熱して固相重合に再使用される。
なお、前記の各項の近赤外線ヒーターに使用するランプの波長は、単一波長が理想的であるが、コストの面より、ある程度分布を持っている物を使用することが出来る。全波長の50%以上、好ましくは60%以上有していることが好ましく、50%未満ではフレーバー性が低下する傾向にある。
なお、本発明の芳香族ポリエステルを下記の苦味及び渋味試験で評価した際に測定される苦味や渋味に関係する原因物質を明確に確認出来ていないが、特に前記のような近赤外線を用いることにより苦味や渋味を低減できているものと推定している。
本発明の前記の芳香族ポリエステルは、例えば、前記のようにして製造することができるがこれに限定されるものではない。
290℃の温度で60分間溶融した時の環状エステルオリゴマーの増加量が0.40重量%以下である芳香族ポリエステルは、重縮合触媒として用いる前記の金属化合物の添加量を調節する方法、あるいは、芳香族ポリエステル中に残存する重縮合触媒を失活処理することにより製造することができる。
ここで、290℃の温度で60分間溶融した時の環状エステルオリゴマー増加量は、下記の「測定法」の項で説明する成形方法によって芳香族ポリエステルから得られた段付成形板の3mm厚みのプレートからの試料について求めた値である。
芳香族ポリエステルにリン化合物を配合する方法としては、前記芳香族ポリエステルにリン化合物をドライブレンドする方法やリン化合物を溶融混練して配合した芳香族ポリエステルマスターバッチチップと芳香族ポリエステルチップを混合する方法によって所定量のリン化合物を芳香族ポリエステルに配合後、押出機や成形機中で溶融し、重縮合触媒を不活性化する方法、チップをリン化合物溶液、特にリン酸水溶液に浸漬する方法、マスターバッチとして添加する方法などが挙げられる。また、これらリン化合物は芳香族ポリエステルに共重合された状態であっても良い。具体的には、リン化合物をリン原子として100〜5000ppmの量を共重合または配合した芳香族ポリエステルマスターバッチを用いることが好ましい。芳香族ポリエステルマスターバッチ中のリン原子の量や前記マスターバッチの配合量を適宜変更することにより、290℃の温度で60分間溶融した時の環状3量体の増加量を制御できる。
使用されるリン化合物としては、リン酸系化合物、ホスホン酸系化合物、ホスフィン酸系化合物、亜リン酸系化合物、亜ホスホン酸系化合物、亜ホスフィン酸系化合物が挙げられる。具体例としては、前記に記載の化合物であり、これらは単独で使用してもよく、また二種以上を併用してもよい。
水による接触処理方法としては、芳香族ポリエステルを処理槽中において水中に浸ける方法やシャワーでこれらのチップ上に水をかける方法等が挙げられる。処理時間としては5分〜2日間、好ましくは10分〜1日間、さらに好ましくは30分〜10時間で、水の温度としては20〜180℃、好ましくは40〜150℃、さらに好ましくは50〜120℃である。使用する水は、前記の(1)〜(5)の少なくとも一つを満足する水が好ましく、さらには(1)〜(5)のすべてを満足する水であることが最も好ましい。
本発明における前記のポリオレフィン樹脂等を配合したポリエステル組成物の製造は、前記芳香族ポリエステルに前記ポリオレフィン樹脂等の樹脂を、その含有量が前記範囲となるように直接に添加し溶融混練する方法、または、マスターバッチとして添加し溶融混練する方法等の慣用の方法によるほか、前記樹脂を、前記芳香族ポリエステルの製造段階、例えば、溶融重縮合時、溶融重縮合直後、予備結晶化直後、固相重合時、固相重合直後等のいずれかの段階、または、製造段階を終えてから成形段階に到るまでの工程などで、粉粒体として直接に添加するか、或いは、前記芳香族ポリエステルのチップを流動条件下に前記樹脂製部材に接触させる等の方法で混入させる方法、または前記の接触処理後、溶融混練する方法等によることもできる。
前記アルデヒド低減剤は、例えば、本発明の芳香族ポリエステル100重量部に対して0.001〜5重量部、好ましくは0.01〜3重量部、さらに好ましくは0.1〜2重量部用いることができる。
延伸フィルムを製造するに当たっては、延伸温度は通常は80〜130℃である。延伸は一軸でも二軸でもよいが、好ましくはフィルム実用物性の点から二軸延伸である。延伸倍率は一軸の場合であれば通常1.1〜10倍、好ましくは1.5〜8倍の範囲で行い、二軸延伸であれば縦方向および横方向ともそれぞれ通常1.1〜8倍、好ましくは1.5〜5倍の範囲で行えばよい。また、縦方向倍率/横方向倍率は通常0.5〜2、好ましくは0.7〜1.3である。得られた延伸フィルムは、さらに熱固定して、耐熱性、機械的強度を改善することもできる。熱固定は通常緊張下、120〜240℃、好ましくは150〜230℃で、通常数秒〜数時間、好ましくは数十秒〜数分間行われる。
好ましいポリマーの滞留時間として、120秒以下、更に好まし滞留時間として110秒以下、最も好ましい滞留時間として100秒以下で、ポリマーの滞留時間が120秒を超えると、フレーバー性に影響する水に可溶性の低分子量オリゴマーやAAの含有量が多くなる傾向にあり好ましくない。
延伸温度は通常70〜120℃、好ましくは90〜110℃で、延伸倍率は通常縦方向に1.5〜3.5倍、円周方向に2〜5倍の範囲で行えばよい。得られた中空成形体は、そのまま使用できるが、特に果汁飲料、ウーロン茶などのように熱充填を必要とする飲料の場合には一般的に、さらにブロー金型内で熱固定処理を行い、耐熱性を付与して使用される。熱固定は通常、圧空などによる緊張下、100〜200℃、好ましくは120〜180℃で、数秒〜数時間、好ましくは数秒〜数分間行われる。
また、本発明の芳香族ポリエステルは、1次ブロー成形工程と2次ブロー成形工程を備える2段ブロー成形法による耐熱性ボトルの製造に用いられる予備成形体の製造にも用いることができる。
また、本発明の芳香族ポリエステルは、これを溶融押出し後に切断した溶融塊を圧縮成形して得たプリフォームを延伸ブロー成形する、所謂、圧縮成形法による延伸中空成形体の製造にも用いることができる。
また、本発明の芳香族ポリエステルの別の用途は、ラミネート金属板の片面あるいは両面にラミネートするフィルムである。用いられる金属板としては、ブリキ、ティンフリースチール、アルミニウム等が挙げられる。
なお、接着剤を用いてフィルムを金属板にラミネートできることはいうまでもない。
また、本発明の芳香族ポリエステルをフィルム用途に使用する場合には、滑り性、巻き性、耐ブロッキング性などのハンドリング性を改善するために、芳香族ポリエステル中に炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、硫酸カルシウム、硫酸バリウム、リン酸リチウム、リン酸カルシウム、リン酸マグネシウム等の無機粒子、蓚酸カルシウムやカルシウム、バリウム、亜鉛、マンガン、マグネシウム等のテレフタル酸塩等の有機塩粒子やジビニルベンゼン、スチレン、アクリル酸、メタクリル酸、アクリル酸またはメタクリル酸のビニル系モノマーの単独または共重合体等の架橋高分子粒子などの不活性粒子を含有させることが出来る。
なお、主な特性値の測定法を以下に説明する。
1,1,2,2−テトラクロルエタン/フェノール(2:3重量比)混合溶媒中30℃での溶液粘度から求めた。
(2)ポリエステルのジエチレングリコール含有量(以下[DEG含有量」という):
メタノールにより分解し、ガスクロマトグラフィーによりDEG量を定量し、全グリコール成分に対する割合(モル%)で表した。
冷凍粉砕した試料300mgをヘキサフルオロイソプロパノール/クロロフォルム混合液(容量比=2/3)3mlに溶解し、さらにクロロフォルム30mlを加えて希釈する。これにメタノール15mlを加えてポリマーを沈殿させた後、濾過する。濾液を蒸発乾固し、ジメチルフォルムアミド10mlで定容とし、高速液体クロマトグラフ法により環状3量体を定量した。
試料/蒸留水=1グラム/2ccを窒素置換したガラスアンプルに入れた上部を溶封し、160℃で2時間抽出処理を行い、冷却後抽出液中のアセトアルデヒドを高感度ガスクロマトグラフィーで測定し、濃度をppmで表示した。チップの場合は、チップそのままを用いた。
後記の方法で成形された3mm厚みのプレートから試料を採取し、140℃、0.1mmHg以下で16時間程度減圧乾燥後、その試料3gをガラス製試験管に入れ、窒素雰囲気下で290℃のオイルバスに60分浸漬させ溶融させる。溶融時の環状3量体増加量は、次式により求めた。
なお、溶融前の環状3量体含有量は、前記プレートの環状3量体含有量を用いた。
溶融時の環状3量体増加量(重量%)=
溶融後の環状3量体含有量(重量%)−溶融前の環状3量体含有量(重量%)
試料約1.000gを精秤し三角フラスコ中でヘキサフルオロイソプロパノール/クロロフォルム(2/3)混合溶媒8mlに溶解し、ついで蒸留水3mlを加え内容物を均一化する。混合溶媒を留去し、残留水相をガラス繊維フィルターを用いて濾過した。濾液を水で10mlに定容し、ガスクロマトグラフ法により定量した。
(7)酸価
ポリエステル0.1gをベンジルアルコール10mlに加熱溶解した後、0.1NのNaOHのメタノール/ベンジルアルコール=1/9の溶液を使用して滴定して求めた。
非作為的に取り出した試料チップ約5〜6グラムを固体試料測定用セル(内径24.5mm、高さ12mm)に密な状態に詰め、石英ガラス板でカバーして分光蛍光光度計(島津製作所製の分光けい光光度計、RF−540型)の試料ホルダーに装着する。45度の角度で励起光を入射して発光した蛍光を直角の方向に取り出し、分光器に導入して縦軸強度を0〜100とする蛍光スペクトルを下記の条件で測定する。図4にPETの蛍光スペクトルを示す。
蛍光発光強度(B)=(LB/L)×100
L(mm):スペクトル図において、蛍光発光強度0から100までの長さ
LB(mm):スペクトル図において、(a)から(b)までの長さ
加熱処理後の蛍光発光強度の増加量(Bh−B)=
熱処理後の蛍光発光強度(Bh)−熱処理前の蛍光発光強度(B)
ABSCISSA SCALE(横軸):×2
ORDINATE SCALE((縦軸):×4
SCAN SPEED(走査速度):FAST
SENSITIVITY(感度):LOW
EXCITATION SLIT(励起側のスリット)(nm):5
EMISSION SLIT(発光側のスリット)(nm):5
EXCITATION WAVELENGTH(励起光波長):343nm
EMISSION START WAVELENGTH(発光開始波長):350nm
EMISSION END WAVELENGTH(発光終了波長):600nm
約80℃で8時間10torr以下で真空乾燥した試料20グラムを100mlのガラス容器(口内径41mm、胴外径55mm、全高95mm)に入れ、ナガノ科学機械製作所社製のギヤー式老化試験器NH−202GTのターンテーブル上に置き、空気雰囲気下に180℃で10時間加熱処理をした。
(三菱化学製のカールフィシャー 微量水分測定装置CA−100型と水分気化装置VA−100にて測定)
三菱化学製の水分気化装置VA−100を、予め乾燥筒2本(シリカゲルと五酸化リンを充填)に乾燥した、窒素ガスを流速250ml/分で流しながら、加熱炉を230℃に加熱して、試料ボードを加熱炉に入れ、加熱炉と試料ボードから得られた乾燥窒素が無水になっていることを、微量水分測定装置CA−100で確認した後、試料 3gを乾燥しておいた専用サンプル容器に精秤し、速やかに、サンプルを試料ボードに入れる。サンプルから気化した水分は、乾燥窒素によって、微量水分測定装置CA−100型に運ばれカールフィシャー滴定され、水分率が求められる。
セイコー電子工業株式会社製の示差熱分析計(DSC)、RDC−220で測定した。レジン表面より0.1mmまでをミクロトームで削り、試料10mgを使用。昇温速度20度C/分で昇温し、その途中において観察される結晶化ピークと融点ピークの熱量比よりレジンの結晶化度を求めた。
(12)段付成形板の成形:
ヤマト科学社製真空乾燥器DP61型を用いて140℃で16時間程度真空乾燥したポリエステルを名機製作所社製射出成形機M−150C−DM型射出成形機により図1、図2に示すようにゲート部(G)を有する、2mm〜11mm(A部の厚み=2mm、B部の厚み=3mm、C部の厚み=4mm、D部の厚み=5mm、E部の厚み=10mm、F部の厚み=11mm)の厚さの段付成形板を射出成形した。
射出時間、保圧時間はそれぞれ上限を10秒、7秒、冷却時間は50秒に設定し、成形品取出時間も含めた全体のサイクルタイムは概ね75秒程度とした。
金型には常時、水温10℃の冷却水を導入して温調するが、成形安定時の金型表面温度は22℃前後であった。
成形品特性評価用のテストプレートは、成形材料導入し樹脂置換を行った後、成形開始から11〜18ショット目の安定した成形品の中から任意に選ぶものとした。
3mm厚みのプレート(図1のB部)を溶融時の環状3量体増加量(△CT量)の測定に、また、5mm厚みのプレート(図1のD部)をヘイズ測定に使用した。
前記と同様にして乾燥したポリエステルを用いて名機製作所社製M−150C−DM射出成形機により樹脂温度が290℃になるようにシリンダーおよびホットランナーの温度を設定し、射出圧力を1.8〜2.3kg/cm2としてサイクルタイムを45秒の条件下に予備成形体(外径29.4mm、長さ145.5mm、肉厚約3.7mm、重量60g)を成形した。成形安定時の金型温度は13℃(表面温度は17℃前後)で成形した。
前記で得た予備成形体の口栓部をフロンテア(株)製NC−01口栓部結晶化装置で加熱結晶化させた後、この予備成形体をCORPOPLAST社製のLB−01E成形機で二軸延伸ブローし、引き続き約150℃に設定した金型内で約5秒間熱固定し、容量が1500ccの容器を成形した。延伸温度は100℃にコントロールした。
前記で得た予備成形体の胴部を約10mmのサイズに切断した試料を用いて以下の方法で試験した。
試料40グラムを、超純水により超音波洗浄したガラス容器に入れ、これに超純水300mlを入れた後、超音波洗浄機で10分間洗浄した。
超純水を入れて超音波洗浄して乾燥した500ml三角フラスコに超純水500mlを入れ、これに前記の洗浄済み成形体試料を入れた後、80℃の恒温槽で1時間抽出処理を行った。
処理後に三角フラスコを取り出し、室温で放置して室温まで冷却後、溶液を前記と同様にして洗浄した三角フラスコ(300ml)に泡を立てずに、あふれるまで入れ、ヘッドスペースを作らず玉栓で栓をして、バルカーテープシール(ヤマト科学社製、厚み0.1mm、幅13mmのフッ素テープ)で巻き、苦味及び渋味試験まで、冷蔵庫保存した。なお、成形体の試料はピンセットで取り扱った。上記の方法で得た抽出水に塩化カリウムを加え10mMol%調整後(株)インテリジェントセンサーテクノロジー製の「味認識装置SA402B」により、超純水に塩化カリウムを加え10mMol%の調整品をブランクとして測定した。特に、苦味と渋味に感知するセンサでの測定を中心とした。
なお、超純水は、超純水製造装置WR600G(ヤマト科学社製)を用いて作成した。
前記(15)の成形開始10本目から20本の中空成形体を目視で観察し、下記のように評価した。
◎ : 透明で外観問題なし
△ : 白化した流れ模様はないが不透明
× : 中空成形体に白化した流れ模様や白化物が少し有り
××: 中空成形体に白化した流れ模様や白化物あり
岩城硝子社製1G1ガラスフィルタ−で濾過した冷却水をJIS−K0101の方法に準じて測定した。
粒子除去およびイオン交換済みの冷却水および導入水を採取し、岩城硝子社製1G1ガラスフィルタ−で濾過後、濾液を島津製作所製誘導結合プラズマ発光分析装置で測定した。
厚みが5mm、内径50mmのステンレス製円形リング中でポリエステルを融点+20℃に加熱して溶融させサンプルピースを作成し、蛍光X線分析により、元素量を求め、ppmで表示した。なお量の決定の際には予め各元素量既知のサンプルから求めた検量線を使用した。
(20)味覚官能試験
前記で得た予備成形体の胴部を約10mmのサイズに切断した試料を用いて以下の方法で試験した。
試料40グラムを、超純水により超音波洗浄したガラス容器に入れ、これに超純水300mlを入れた後、超音波洗浄機で10分間洗浄した。
超純水を入れて超音波洗浄して乾燥した500ml三角フラスコに超純水500mlを入れ、これに前記の洗浄済み成形体試料を入れた後、80℃の恒温槽で1時間抽出処理を行った。
処理後に三角フラスコを取り出し、室温で放置して室温まで冷却後、溶液を前記と同様にして洗浄した三角フラスコ(300ml)に泡を立てずに、あふれるまで入れ、ヘッドスペースを作らず玉栓で栓をして、バルカーテープシール(ヤマト科学社製、厚み0.1mm、幅13mmのフッ素テープ)で巻き、味覚官能試験まで、冷蔵庫保存した。なお、成形体の試料はピンセットで取り扱った。上記で得たサンプルを開栓後、風味、臭い等の試験を行った。比較用のブランクとして、超純水を使用。味覚官能試験は10人のパネラーにより次の基準により実施し、平均値で比較した。
(評価基準)
◎ :異味、臭いを感じない
○ :ブランクとの差をわずかに感じる
△ :ブランクとの差を感じる
× :ブランクとのかなりの差を感じる
××:ブランクとの非常に大きな差を感じる
予め反応物を含有している第1エステル化反応器に、スラリー調合槽で調製した後、スラリー貯蔵槽に貯めた高純度テレフタル酸とエチレングリコールとのスラリーを連続的に供給し、撹拌下、約250℃、0.5kg/cm2Gで平均滞留時間3時間反応を行った。この反応物を第2エステル化反応器に送付し、撹拌下、約260℃、0.05kg/cm2で所定の反応度まで反応を行った。また、結晶性二酸化ゲルマニウムのエチレングリコール溶液および燐酸のエチレングリコール溶液を別々に第2エステル化反応器に連続的に供給した。なお、これらの調合槽、貯蔵槽や各反応器には酸素濃度が1ppm以下の窒素ガスを流通させて、スラリー調合槽の気相中の酸素濃度は30ppm以下、第1及び第2エステル化反応器の気相中の酸素濃度は30ppm以下に維持した。また、調合した触媒溶液や燐酸溶液には酸素濃度が約1ppm以下の窒素ガスをバブリングさせ、触媒溶液槽および燐酸溶液槽には同様の窒素ガスを流通させた。このエステル化反応生成物を連続的に第1重縮合反応器に供給し、撹拌下、約265℃、25torrで1時間、次いで第2重縮合反応器で撹拌下、約265℃、3torrで1時間、さらに最終重縮合反応器で撹拌下、約275℃、0.5〜1torrで重縮合させた。
なお、高純度テレフタル酸の貯蔵サイロ内の雰囲気には酸素濃度が1ppm以下の窒素ガスを流通させて、酸素濃度10ppm以下の不活性気体雰囲気下に貯蔵した。また、貯槽中のエチレングリコールには酸素濃度1ppm以下の不活性気体を通気させて貯蔵した。
溶融重縮合プレポリマーの極限粘度は0.57dl/g、酸価は25当量/t、AA含有量は50ppm、蛍光発光強度(B)は3.2、加熱処理後の蛍光発光強度の増加量(Bh−B)は5.7であった。
スクラバーで洗浄後の窒素ガスの露点は−50℃以下であった。また、洗浄後の窒素ガスには10%の新鮮な窒素ガスを補給し、固相重合装置に供給する窒素ガス中の酸素濃度は50ppm以下であった。
なお、窒素ガス中の酸素濃度はテレダインアナリティカルインスツルメンツ社製のユナイテッドアナライザー形式310により、また、露点は東洋テクニカ社製のハイグロテックMMY150低露点計により測定した。
このPETについて、前記の方法により得られた成形板及び中空成形体による評価を実施した。結果を表1に示す。
苦味及び渋味試験の苦味は、0.3、渋味は、0.4と低く、更には、パネラーによる、味覚官能試験も問題なかった。
実施例1のPETを処理水温度95℃にコントロールされた下記の水処理槽へ50kg/時間の速度で処理槽上部の供給口(1)から連続投入して水処理し、処理槽下部の排出口(3)からPETチップとして50kg/時間の速度で処理水と共に連続的に抜き出した。水処理装置のイオン交換水導入口(9)の手前で採取した導入水中のナトリウム含有量が0.02ppm、マグネシウム含有量が0.05ppm、カルシウム含有量が0.05ppm、珪素含有量が0.07ppm、CODが0.4mg/lであった。水処理後、ファイン等の除去処理を行った。結果を表1に示す。
なお、ポリエステルチップの水処理には、図3に示す装置を用い、処理槽上部の原料チップ供給口(1)、処理槽の処理水上限レベルに位置するオーバーフロー排出口(2)、処理槽下部のポリエステルチップと処理水の混合物の排出口(3)、このオーバーフロー排出口から排出された処理水と、処理槽から排出された処理水と、処理槽下部の排出口から排出された水切り装置(4)を経由した処理水が、濾材が紙製の連続式フィルターである微粉除去装置(5)を経由して再び水処理槽へ送られる配管(6)、これらの微粉除去済み処理水の導入口(7)、微粉除去済み処理水中のアセトアルデヒドを吸着処理させる吸着塔(8)、及び新しいイオン交換水の導入口(9)を備えた内容量約50m3の塔型の処理槽を使用した。
重縮合触媒として三酸化アンチモンのエチレングリコール溶液、酢酸コバルトのエチレングリコール溶液、燐酸のエチレングリコール溶液を用いる以外は実施例1と同様にして反応させてPETを得た。もちろん、調合した触媒溶液や燐酸溶液には酸素濃度が約1ppm以下の窒素ガスをバブリングさせ、触媒溶液槽および燐酸溶液槽には同様の窒素ガスを流通させた。蛍光X線分析により測定したSb残存量は180ppm、Co残存量は15ppm、P残存量は10ppmであった。結果を表1に示す。
重縮合触媒として、塩基性酢酸アルミニウムのエチレングリコール溶液と、Irganox1222(チバ・スペシャルティーケミカルズ社製)とエチレングリコールを事前に加熱処理したエチレングリコール溶液を用いる以外は実施例1と同様にして反応させてPETを得、実施例1と同様に評価した。もちろん、調合した触媒溶液などには酸素濃度が約1ppm以下の窒素ガスをバブリングさせ、触媒溶液槽および燐酸溶液槽には同様の窒素ガスを流通させた。蛍光X線分析により測定したAl残存量は18ppm、またP残存量は44ppmであった。結果を表1に示す。
実施例4で得られたPETを実施例2と同様にして水処理を行い、実施例1と同様に評価した。結果を表1に示す。
重縮合触媒として、チタニウムテトラブトキシドのエチレングリコール溶液を用いる以外は実施例1と同様にして反応させてPETを得、実施例1と同様に評価した。もちろん、調合した触媒溶液には酸素濃度が約1ppm以下の窒素ガスをバブリングさせ、触媒溶液槽には同様の窒素ガスを流通させた。蛍光X線分析により測定したTi残存量は4ppmであった。結果を表1に示す。
重縮合触媒として、エチルアシッドホスフェートのエチレングリコール溶液、チタニウムテトラブトキシドのエチレングリコール溶液、酢酸マグネシウム4水和物のエチレングリコール溶液を用いる以外は実施例1と同様にして反応させてPETを得、実施例1と同様に評価した。
もちろん、調合した触媒溶液には酸素濃度が約1ppm以下の窒素ガスをバブリングさせ、触媒溶液槽には同様の窒素ガスを流通させた。蛍光X線分析により測定したTi残存量は5ppm、P残存量は24ppm、Mg残存量は30ppmであった。結果を表1に示す。
重縮合触媒として、アクゾノーベル社のC94(Ti:Si=90:10モル/モル)のエチレングリコール懸濁液を用いる以外は実施例1と同様にして反応させてPETを得、実施例1と同様に評価した。もちろん、調合した触媒溶液には酸素濃度が約1ppm以下の窒素ガスをバブリングさせ、触媒溶液槽には同様の窒素ガスを流通させた。蛍光X線分析により測定したTi残存量は5ppmであった。結果を表2に示す。
原料としてテレフタル酸/イソフタル酸=98.5重量部/1.5重量部の混合物を用い、重縮合触媒として三酸化アンチモンのエチレングリコール溶液、酢酸コバルトのエチレングリコール溶液、燐酸のエチレングリコール溶液を用い、固相重合温度を203℃とする以外は実施例1と同様にして反応させてPETを得、実施例1と同様に評価した。もちろん、調合した触媒溶液などには酸素濃度が約1ppm以下の窒素ガスをバブリングさせ、触媒溶液槽および燐酸溶液槽には同様の窒素ガスを流通させた。蛍光X線分析により測定したSb残存量は180ppm、P残存量は20ppm、Co残存量は15ppmであった。結果を表2に示す。
予め反応物を含有している第1エステル化反応器に、スラリー調合槽で調製した後、スラリー貯蔵槽に貯めた高純度テレフタル酸とエチレングリコールとのスラリーを連続的に供給し、撹拌下、約250℃、0.5kg/cm2Gで平均滞留時間2.0時間反応を行った。この反応物を第2エステル化反応器に送付し、撹拌下、約260℃、0.05kg/cm2で所定の反応度まで反応を行った。また、結晶性二酸化ゲルマニウムのエチレングリコール溶液および燐酸のエチレングリコール溶液を別々に第2エステル化反応器に連続的に供給した。なお、これらの調合槽、貯蔵槽や各反応器には酸素濃度が1ppm以下の窒素ガスを流通させて、スラリー調合槽の気相中の酸素濃度は30ppm以下、第1及び第2エステル化反応器の気相中の酸素濃度は30ppm以下に維持した。また、調合した触媒溶液や燐酸溶液には酸素濃度が約1ppm以下の窒素ガスをバブリングさせ、触媒溶液槽および燐酸溶液槽には同様の窒素ガスを流通させた。このエステル化反応生成物を連続的に第1重縮合反応器に供給し、撹拌下、約265℃、25torrで1時間、次いで第2重縮合反応器で撹拌下、約265℃、3torrで1時間、さらに最終重縮合反応器で撹拌下、約275℃、0.5〜1torrで重縮合させた。溶融重縮合プレポリマーの極限粘度は0.57dl/g、酸価は40当量/t、AA含有量は40ppm、蛍光発光強度(B)は3.5、加熱処理後の蛍光発光強度の増加量(Bh−B)は4.5であった。
なお、実施例1と同様に高純度テレフタル酸の貯蔵サイロ内の雰囲気には酸素濃度が1ppm以下の窒素ガスを流通させて、酸素濃度10ppm以下の不活性気体雰囲気下に貯蔵した。また、貯槽中のエチレングリコールには酸素濃度1ppm以下の不活性気体を通気させて貯蔵した。
なお、溶融重縮合反応器及び固相重合反応器の攪拌機のシール部には酸素濃度が1ppmの酸素濃度の窒素ガスを流した。
スクラバーで洗浄後の窒素ガスの露点は−60℃以下であった。また、洗浄後の窒素ガスには50%の新鮮な窒素ガスを補給し、固相重合装置に供給する窒素ガス中の酸素濃度は30ppm以下であった。
なお、窒素ガス中の酸素濃度はテレダインアナリティカルインスツルメンツ社製のユナイテッドアナライザー形式310により、また、露点は東洋テクニカ社製のハイグロテックMMY150低露点計により測定した。
このPETについて、前記の(9)および(10)の方法により得られた成形板及び中空成形体による評価を実施した。結果を表2に示す。
苦味及び渋味試験の苦味は0.4、渋味は0.3と低く、更には、パネラーによる、味覚官能試験も問題なかった。
予め反応物を含有している第1エステル化反応器に、スラリー調合槽で調製した後、スラリー貯蔵槽に貯めた高純度テレフタル酸とエチレングリコールとのスラリーを連続的に供給し、撹拌下、約250℃、0.5kg/cm2Gで平均滞留時間3時間反応を行った。この反応物を第2エステル化反応器に送付し、撹拌下、約260℃、0.05kg/cm2で所定の反応度まで反応を行った。また、結晶性二酸化ゲルマニウムのエチレングリコール溶液および燐酸のエチレングリコール溶液を別々に第2エステル化反応器に連続的に供給した。なお、これらの調合槽、貯蔵槽や各反応器には酸素濃度が1ppm以下の窒素ガスを流通させて、スラリー調合槽の気相中の酸素濃度は30ppm以下、第1及び第2エステル化反応器の気相中の酸素濃度は30ppm以下に維持した。また、調合した触媒溶液や燐酸溶液には酸素濃度が約1ppm以下の窒素ガスをバブリングさせ、触媒溶液槽および燐酸溶液槽には同様の窒素ガスを流通させた。このエステル化反応生成物を連続的に第1重縮合反応器に供給し、撹拌下、約265℃、25torrで1時間、次いで第2重縮合反応器で撹拌下、約265℃、3torrで1時間、さらに最終重縮合反応器で撹拌下、約275℃、0.5〜1torrで重縮合させた。
溶融重縮合プレポリマーの極限粘度は0.57dl/g、酸価は25当量/t、AA含有量は50ppm、蛍光発光強度(B)は3.2、加熱処理後の蛍光発光強度の増加量(
Bh−B)は5.7であった。
なお、実施例1と同様に高純度テレフタル酸の貯蔵サイロ内の雰囲気には酸素濃度が1ppm以下の窒素ガスを流通させて、酸素濃度10ppm以下の不活性気体雰囲気下に貯蔵した。また、貯槽中のエチレングリコールには酸素濃度1ppm以下の不活性気体を通気させて貯蔵した。
なお、溶融重縮合反応器及び固相重合反応器の攪拌機のシール部には酸素濃度が1ppmの酸素濃度の窒素ガスを流した。
スクラバーで洗浄後の窒素ガスの露点は−50℃以下であった。また、洗浄後の窒素ガスには10%の新鮮な窒素ガスを補給し、固相重合装置に供給する窒素ガス中の酸素濃度は50ppm以下であった。
なお、窒素ガス中の酸素濃度はテレダインアナリティカルインスツルメンツ社製のユナイテッドアナライザー形式310により、また、露点は東洋テクニカ社製のハイグロテックMMY150低露点計により測定した。
実施例1と同様に評価した。結果を表2に示す。
テレフタル酸貯蔵サイロ内の雰囲気の酸素濃度を約1000ppmに維持し、予備結晶化装置、結晶化装置及び固相重合装置の窒素ガス雰囲気の酸素濃度を90ppm以下とする以外は、実施例1と同様の評価を実施した。結果を表2に示す。
実施例1で得られたPETプレポリマーを、結晶化条件を変更してチップの表面結晶化度を変更する以外は実施例1と同様に処理し、評価した。結果を表2に示す。
(実施例15、16、比較例1、2、3)
実施例1の、予備結晶化装置の近赤外線ランプの波長を変える以外は、実施例1と同様に試作を実施後評価した。結果を表3、表4に示す。
重縮合触媒溶液や燐酸溶液調合時の窒素ガスバブリングや両者の溶液槽への窒素ガス流通を中止し、原料調合槽〜エステル化反応にかけての反応槽に窒素ガスを流通させず(これらの反応器の気相中の酸素濃度を1000ppm以上)、反応器の攪拌機のシール部へ窒素ガスを流さず、最終重縮合反応温度を305℃とし、またチップ冷却水としては約13〜15℃の工業用水をそのまま用いる以外は実施例1と同様にして溶融重縮合を行い、極限粘度が0.60dl/g、酸価は47当量/t、DEG含有量が5.7モル%, AA含有量は230ppm、蛍光発光強度(B)蛍光強度が37、加熱処理後の蛍光発光強度の増加量(Bh−B)が30のプレポリマーを得た。
チップ化時の冷却に用いた工業用水は、粒径1〜25μmの粒子が約60000〜80000個/10ml、ナトリウム含有量が3.5〜5.5ppm、マグネシウム含有量が0.8〜1.5ppm、カルシウム含有量が2.0〜2.5ppm、珪素含有量が3.0〜4.5ppm、CODが4.5〜6.8mg/lであり、チップ化時の付着水は約5000〜7000ppmであった。
極限粘度が0.72デシリットル/グラム、DEG含有量が5.7モル%、環状3量体の含有量が0.72重量%、AA含有量が18.9pmのPETを得た。また蛍光X線分析により測定したGe残存量は45ppm、またP残存量は30ppmであった。
スクラバーでの使用済み窒素ガス/洗浄エチレングリコールの気液比は実施例1の1/100、スクラバーでの洗浄エチレングリコールに対する新エチレングリコールの補給割合は実施例1の1/300、また、洗浄エチレングリコールの温度は実施例1より約20℃高くした。
洗浄後の窒素ガスには0.5%の新鮮な窒素ガスしか補給せず、固相重合装置に供給する洗浄後の窒素ガス中の酸素濃度は400〜700ppm、また、洗浄後の窒素ガスの露点は0℃であった。結果を表4に示す。
固相重合工程の予備結晶化装置、結晶化装置及び固相重合装置の窒素ガス雰囲気中の酸素濃度を、150ppmとする以外は実施例1と同様にして反応させてPETを得、実施例1と同様に評価した。結果を表4に示す。
重縮合触媒溶液や燐酸溶液調合時の窒素ガスバブリングや両者の溶液槽への窒素ガス流通を中止し、原料調合槽〜エステル化反応にかけての反応槽に窒素ガスを流通させず(これらの反応器の気相中の酸素濃度を1000ppm以上)、反応器の攪拌機のシール部へ窒素ガスを流さず、最終重縮合反応温度を290℃とし、またチップ冷却水としては約13〜15℃の工業用水(粒径1〜25μmの粒の個数、ナトリウムなどの金属含有量は比較例4とほぼ同じ)をそのまま用いる以外は実施例1と同様にして溶融重縮合を行い、極限粘度が0.56dl/g、酸価は49当量/t、DEG含有量が2.5モル%, AA含有量は120ppm、蛍光発光強度(B)蛍光強度が19、加熱処理後の蛍光発光強度の増加量(Bh−B)が23のプレポリマーを得た。
このプレポリマーを乾燥させた大気雰囲気下に約1ヵ月間放置した後、ポリエステルの水分率を2000ppmに調節し、また予備結晶化装置、結晶化装置及び固相重合装置の窒素雰囲気中の酸素濃度を300〜500ppmとする以外は実施例1と同様にして連続固相重合装置に供給して固相重合を実施した。なお、前記の固相重合装置に供給する窒素ガス中の酸素濃度は300〜900ppmであった。
極限粘度が0.76デシリットル/グラム、DEG含有量が2.5モル%、環状3量体の含有量が0.35重量%、AA含有量が14.9ppmのPETを得た。結果を表4に示す。
比較例6と同様にして溶融重縮合を行い、極限粘度が0.57dl/g、酸価は48当量/t、DEG含有量が2.5モル%, AA含有量は70ppm、蛍光発光強度(B)蛍光強度が19、加熱処理後の蛍光発光強度の増加量(Bh−B)が27のプレポリマーを得た。
次いで、振動式篩分工程および気流分級工程によってファインを除去することにより、ファイン含有量を約100ppm以下としたあと、実施例1と同様にして予備結晶化と結晶化を実施し(窒素ガス雰囲気中の酸素濃度は50ppm以下)、次いで、窒素雰囲気中の酸素濃度が300〜500ppmの雰囲気下で固相重合を実施した。但し、結晶化工程には酸素濃度は5ppm以下の窒素ガスを流通させたが、固相重合工程にはスクラバーで洗浄した露点は0℃以下で、0.5%の新鮮な窒素ガスしか補給していない、酸素濃度が200〜400ppmの窒素ガスを供給した。結果を表4に示す。
テレフタル酸貯蔵から溶融重縮合工程終了までの全工程において、下記のような条件を採用する以外は、実施例1と同様にして反応させてPETを得、実施例1と同様に評価した。
1)テレフタル酸貯蔵サイロ、テレフタル酸スラリー調合槽及び貯蔵槽の気相部分は大気雰囲気
2)エチレングリコールには不活性気体を通気しない
3)触媒やリン化合物溶液には不活性気体を通気せず、また、気相部分にも不活性気体を流通しない
4)エステル化反応装置の気相部分には不活性気体を通気しない
5)重縮合反応時の最終反応器の反応温度は約301℃に維持
結果を表5に示す。
実施例1の、予備結晶化装置、結晶化装置及び固相重合装置の近赤外線ランプの波長を表5のように変更する以外は、実施例1と同様にして反応させてPETを得、実施例1と同様に評価した。結果を表5に示す。
実施例1の、予備結晶化装置、結晶化装置及び固相重合装置の近赤外線ランプの波長及び窒素ガス雰囲気の酸素濃度を表5のように変更する以外は、実施例1と同様にして反応させてPETを得、実施例1と同様に評価した。結果を表5に示す。
実施例1の、予備結晶化装置の近赤外線ランプの波長及び窒素ガス雰囲気の酸素濃度を表5のように変更する以外は、実施例1と同様にして反応させてPETを得、実施例1と同様に評価した。結果を表5に示す。
実施例1の、予備結晶化装置と結晶化装置の近赤外線ランプの波長及び窒素ガス雰囲気の酸素濃度を表5のように変更する以外は、実施例1と同様にして反応させてPETを得、実施例1と同様に評価した。結果を表5に示す。
1)テレフタル酸スラリー調合槽、貯蔵槽の気相部分に、酸素濃度が5ppm以下の不活性気体を流通。
2)テレフタル酸スラリー調合槽、貯蔵槽の気相部分の酸素濃度を100ppm以下に維持。
3)エチレングリコールに酸素濃度5ppm以下の不活性気体を通気。
4)触媒やリン化合物溶液を酸素濃度5ppm以下の不活性気体を通気させ、また、気相部分に前記の不活性気体を流通。
5)エステル化反応装置の気相部分には酸素濃度が5ppm以下の不活性気体を通気。
6)重縮合反応時の最終反応器の反応温度は265〜300℃に維持。
7)チップ化時の冷却水としては、下記の(1)〜(5)のすべてを満足する水を使用。
Na ≦ 1.0(ppm) (1)
Mg ≦ 1.0(ppm) (2)
Si ≦ 2.0(ppm) (3)
Ca ≦ 1.0(ppm) (4)
COD ≦ 2.0(mg/l) (5)
8)テレフタル酸貯蔵サイロ内の雰囲気を酸素濃度200ppm以下の不活性気体雰囲気に維持。
(2): オーバーフロー排出口
(3): ポリエステルチップと処理水との排出口
(4): 水切り装置
(5): ファイン除去装置
(6): 配管
(7): リサイクル水または/およびイオン交換水の導入口
(8): 吸着塔
(9): イオン交換水導入口
Claims (8)
- 芳香族ジカルボン酸成分とグリコール成分とからなる繰り返し単位を有する芳香族ポリエステルであって、前記芳香族ポリエステルからなる成形体を超純水中で80℃において1時間抽出処理を実施して得られた抽出水を人工脂質膜からなる味センサを備えた味検査装置で苦味値と渋味値を測定した場合、前記抽出水の苦味値と超純水の苦味値の差及び前記抽出水の渋味値と超純水の渋味値の差が、それぞれ0.5以下であることを特徴とする芳香族ポリエステル。
- アセトアルデヒド含有量が10ppm以下であることを特徴とする請求項1に記載の芳香族ポリエステル。
- 環状エステルオリゴマーの含有量が0.70重量%以下であることを特徴とする請求項1に記載の芳香族ポリエステル。
- 290℃の温度で60分間溶融したときの環状エステルオリゴマーの増加量が0.40重量%以下であることを特徴とする請求項1〜3のいずれかに記載の芳香族ポリエステル。
- 芳香族ポリエステルが、重縮合後チップ状に形成したものを、20〜120℃において水と接触処理されたものであることを特徴とする請求項1〜4のいずれかに記載の芳香族ポリエステル。
- 請求項1〜5のいずれかに記載の芳香族ポリエステルを溶融成形してなることを特徴とするポリエステル成形体。
- ポリエステル成形体が、中空成形体、シート状物、あるいは、このシート状物を少なくとも一方向に延伸してなる延伸フィルム及び不織布のいずれかであることを特徴とする請求項6に記載のポリエステル成形体。
- ポリエステル成形体が、前記芳香族ポリエステルを基材上に溶融押出した被覆物であることを特徴とする請求項6に記載のポリエステル成形体。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010054387A JP2010235938A (ja) | 2009-03-11 | 2010-03-11 | 芳香族ポリエステル及びそれからなるポリエステル成形体 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009058082 | 2009-03-11 | ||
JP2010054387A JP2010235938A (ja) | 2009-03-11 | 2010-03-11 | 芳香族ポリエステル及びそれからなるポリエステル成形体 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010235938A true JP2010235938A (ja) | 2010-10-21 |
Family
ID=43090553
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010054387A Pending JP2010235938A (ja) | 2009-03-11 | 2010-03-11 | 芳香族ポリエステル及びそれからなるポリエステル成形体 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010235938A (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010235941A (ja) * | 2009-03-11 | 2010-10-21 | Toyobo Co Ltd | 芳香族ポリエステル及びそれからなるポリエステル成形体 |
WO2013005823A1 (ja) * | 2011-07-07 | 2013-01-10 | 東洋製罐株式会社 | 容器成形用エチレンテレフタレート系ポリエステル樹脂及びその製造方法 |
WO2018124294A1 (ja) * | 2016-12-29 | 2018-07-05 | 株式会社クラレ | ポリエステル、その製造方法及びそれからなる成形品 |
CN113670774A (zh) * | 2021-07-25 | 2021-11-19 | 安庆市虹泰新材料有限责任公司 | 一种用于二聚酸生产的配料检测装置及方法 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0959362A (ja) * | 1995-08-24 | 1997-03-04 | Mitsubishi Chem Corp | ポリエチレンテレフタレートの製造方法 |
JPH11181064A (ja) * | 1997-12-25 | 1999-07-06 | Toyobo Co Ltd | ポリエステル樹脂、それから成るシ−ト状物、中空成形体及び延伸フイルム |
JP2003291287A (ja) * | 2002-04-01 | 2003-10-14 | Unitika Ltd | 金属板ラミネート用ポリエステルフィルム |
JP2004285350A (ja) * | 2003-03-04 | 2004-10-14 | Toyobo Co Ltd | ポリエステル樹脂の製造方法および得られたポリエステル樹脂、ポリエステル樹脂組成物 |
JP2009052043A (ja) * | 2007-08-02 | 2009-03-12 | Toyobo Co Ltd | ポリエステル及びそれからなるポリエステル成形体 |
JP2009052039A (ja) * | 2007-08-02 | 2009-03-12 | Toyobo Co Ltd | ポリエステル及びそれからなるポリエステル成形体 |
JP2009052044A (ja) * | 2007-08-02 | 2009-03-12 | Toyobo Co Ltd | ポリエステル組成物及びそれからなるポリエステル成形体 |
JP2009052041A (ja) * | 2007-08-02 | 2009-03-12 | Toyobo Co Ltd | ポリエステルの製造方法 |
JP2010235941A (ja) * | 2009-03-11 | 2010-10-21 | Toyobo Co Ltd | 芳香族ポリエステル及びそれからなるポリエステル成形体 |
JP2010235940A (ja) * | 2009-03-11 | 2010-10-21 | Toyobo Co Ltd | 芳香族ポリエステル成形体 |
JP2010235939A (ja) * | 2009-03-11 | 2010-10-21 | Toyobo Co Ltd | 芳香族ポリエステル組成物及びそれからなる芳香族ポリエステル成形体 |
-
2010
- 2010-03-11 JP JP2010054387A patent/JP2010235938A/ja active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0959362A (ja) * | 1995-08-24 | 1997-03-04 | Mitsubishi Chem Corp | ポリエチレンテレフタレートの製造方法 |
JPH11181064A (ja) * | 1997-12-25 | 1999-07-06 | Toyobo Co Ltd | ポリエステル樹脂、それから成るシ−ト状物、中空成形体及び延伸フイルム |
JP2003291287A (ja) * | 2002-04-01 | 2003-10-14 | Unitika Ltd | 金属板ラミネート用ポリエステルフィルム |
JP2004285350A (ja) * | 2003-03-04 | 2004-10-14 | Toyobo Co Ltd | ポリエステル樹脂の製造方法および得られたポリエステル樹脂、ポリエステル樹脂組成物 |
JP2009052043A (ja) * | 2007-08-02 | 2009-03-12 | Toyobo Co Ltd | ポリエステル及びそれからなるポリエステル成形体 |
JP2009052039A (ja) * | 2007-08-02 | 2009-03-12 | Toyobo Co Ltd | ポリエステル及びそれからなるポリエステル成形体 |
JP2009052044A (ja) * | 2007-08-02 | 2009-03-12 | Toyobo Co Ltd | ポリエステル組成物及びそれからなるポリエステル成形体 |
JP2009052041A (ja) * | 2007-08-02 | 2009-03-12 | Toyobo Co Ltd | ポリエステルの製造方法 |
JP2010235941A (ja) * | 2009-03-11 | 2010-10-21 | Toyobo Co Ltd | 芳香族ポリエステル及びそれからなるポリエステル成形体 |
JP2010235940A (ja) * | 2009-03-11 | 2010-10-21 | Toyobo Co Ltd | 芳香族ポリエステル成形体 |
JP2010235939A (ja) * | 2009-03-11 | 2010-10-21 | Toyobo Co Ltd | 芳香族ポリエステル組成物及びそれからなる芳香族ポリエステル成形体 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010235941A (ja) * | 2009-03-11 | 2010-10-21 | Toyobo Co Ltd | 芳香族ポリエステル及びそれからなるポリエステル成形体 |
WO2013005823A1 (ja) * | 2011-07-07 | 2013-01-10 | 東洋製罐株式会社 | 容器成形用エチレンテレフタレート系ポリエステル樹脂及びその製造方法 |
JPWO2013005823A1 (ja) * | 2011-07-07 | 2015-02-23 | 東洋製罐株式会社 | 容器成形用エチレンテレフタレート系ポリエステル樹脂及びその製造方法 |
WO2018124294A1 (ja) * | 2016-12-29 | 2018-07-05 | 株式会社クラレ | ポリエステル、その製造方法及びそれからなる成形品 |
JPWO2018124294A1 (ja) * | 2016-12-29 | 2019-11-07 | 株式会社クラレ | ポリエステル、その製造方法及びそれからなる成形品 |
JP7033553B2 (ja) | 2016-12-29 | 2022-03-10 | 株式会社クラレ | ポリエステル、その製造方法及びそれからなる成形品 |
CN113670774A (zh) * | 2021-07-25 | 2021-11-19 | 安庆市虹泰新材料有限责任公司 | 一种用于二聚酸生产的配料检测装置及方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2010235940A (ja) | 芳香族ポリエステル成形体 | |
JP2010235941A (ja) | 芳香族ポリエステル及びそれからなるポリエステル成形体 | |
JP2009052041A (ja) | ポリエステルの製造方法 | |
JPWO2004076525A1 (ja) | ポリエステル樹脂 | |
JP2009052039A (ja) | ポリエステル及びそれからなるポリエステル成形体 | |
JP2009052044A (ja) | ポリエステル組成物及びそれからなるポリエステル成形体 | |
JP2010235938A (ja) | 芳香族ポリエステル及びそれからなるポリエステル成形体 | |
JP2010235939A (ja) | 芳香族ポリエステル組成物及びそれからなる芳香族ポリエステル成形体 | |
JP2009052043A (ja) | ポリエステル及びそれからなるポリエステル成形体 | |
JP2007138156A (ja) | ポリエステル組成物、それからなるポリエステル成形体およびポリエステル中空成形体の製造方法 | |
JP5320891B2 (ja) | ポリエステル成形体 | |
JPWO2005100440A1 (ja) | ポリエステル樹脂およびそれからなるポリエステル成形体並びにポリエステル成形体の製造方法 | |
JP2004300428A (ja) | ポリエステル樹脂組成物およびそれからなるポリエステル成形体 | |
JP2007138157A (ja) | ポリエステル組成物、それからなるポリエステル成形体およびポリエステル中空成形体の製造方法 | |
JP2007002239A (ja) | ポリエステル組成物及びそれからなるポリエステル成形体 | |
JP2007138159A (ja) | ポリエステル成形体およびポリエステル延伸中空成形体 | |
JP2006111873A (ja) | ポリエステル組成物及びそれからなるポリエステル成形体 | |
JP2007138158A (ja) | ポリエステル組成物、それからなるポリエステル成形体およびその製造方法 | |
JP2008254232A (ja) | 多層成形体および多層成形体の製造方法 | |
JP2007182477A (ja) | ポリエステル樹脂及びそれからなるポリエステル樹脂組成物並びにその用途 | |
JP2006188676A (ja) | ポリエステル組成物およびそれからなるポリエステル成形体 | |
JP2006111872A (ja) | ポリエステル組成物、それからなるポリエステル成形体およびその製造方法 | |
JP2005247886A (ja) | ポリエステル組成物ならびにそれからなるポリエステル成形体 | |
JP4752361B2 (ja) | ポリエステル、ポリエステル組成物並びにそれらからなるポリエステル成形体 | |
JP2004285332A (ja) | ポリエステル樹脂 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130204 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130705 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A132 Effective date: 20130710 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130905 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130924 |