JP2010233436A - Motor - Google Patents
Motor Download PDFInfo
- Publication number
- JP2010233436A JP2010233436A JP2009092264A JP2009092264A JP2010233436A JP 2010233436 A JP2010233436 A JP 2010233436A JP 2009092264 A JP2009092264 A JP 2009092264A JP 2009092264 A JP2009092264 A JP 2009092264A JP 2010233436 A JP2010233436 A JP 2010233436A
- Authority
- JP
- Japan
- Prior art keywords
- core
- core sheet
- protrusion
- minute
- thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Iron Core Of Rotating Electric Machines (AREA)
Abstract
Description
本発明は、その積層コアを備えた電動機に関するものである。 The present invention relates to an electric motor including the laminated core.
電動機の鉄心は、順送り積層抜き型で打ち抜かれた積層コアで構成されている。これに使われる電磁鋼板は冷間圧延により製造されるが、その電磁鋼帯の厚み精度は、圧延ロールの弾性変形量によって決まる。一般的には、圧延方向と直角方向の板厚に差が生じ、この板厚の差は、電磁鋼帯の中央部付近では極めて小さいものの、両端付近では大きく生じている。ちなみに、JIS規格での板厚許容差は、板厚の±10%である。
実際に抜き型に使用される電磁鋼帯は、母材から必要幅にスリットされたものである。したがって、母材の中央部で材料取りされた電磁鋼帯では、精度の良い積層コアが生産できるが、端部で材料取りされた電磁鋼帯では、累積された板厚の差が顕著に現れ、積厚偏差や曲がりの大きい積層コアになる。これらコア精度の悪さは、コギングトルクや騒音、振動の原因となっている。
このような、抜き材料の板厚偏差による影響を解消する手段として、順送り積層抜き型で、打ち抜き形状の向きを材料幅方向で正、逆に配置した2種類のユニットを打ち抜き、その際に所定の枚数毎に抜き型のダイを180度回転させて、2種類のユニットを交互に抜き重ねて、板厚偏差を相殺するようにしている(例えば、特許文献1参照)。
また他の方法として、順送り積層抜き型に、板厚偏差がある電磁鋼帯の厚さが大きい側と厚さが小さい側を、隣接するように2枚重ねた状態で供給する装置を使い、2枚重ねた材料を供給して、同時に2枚打ち抜き加工して積層し板厚偏差を相殺するようにしている(例えば、特許文献2参照)。
The iron core of the electric motor is composed of a laminated core punched out by a progressive laminating die. The electrical steel sheet used for this is manufactured by cold rolling, but the thickness accuracy of the electrical steel strip is determined by the amount of elastic deformation of the rolling roll. In general, there is a difference in the thickness in the direction perpendicular to the rolling direction, and this difference in thickness is very small near the center of the electromagnetic steel strip, but large near both ends. Incidentally, the plate thickness tolerance in the JIS standard is ± 10% of the plate thickness.
The electromagnetic steel strip actually used for the punching die is slit from the base material to the required width. Therefore, a highly accurate laminated core can be produced in the electromagnetic steel strip that has been materialized at the center of the base metal, but the difference in accumulated plate thickness is noticeable in the electromagnetic steel strip that has been materialized at the end. It becomes a laminated core with large thickness deviation and bending. Such poor core accuracy causes cogging torque, noise, and vibration.
As a means for eliminating the influence due to the thickness deviation of the punched material, two types of units in which the direction of the punching shape is arranged in the forward and reverse directions in the material width direction are punched with a progressive feed punch, and at that time, predetermined The die is rotated 180 degrees for each number of sheets, and the two types of units are alternately pulled out to cancel the thickness deviation (see, for example, Patent Document 1).
In addition, as another method, using a device that feeds the progressively laminating die to the side where the thickness of the electromagnetic steel strip with the thickness deviation is large and the side where the thickness is small so as to be adjacent to each other, A material obtained by stacking two sheets is supplied, and two sheets are simultaneously punched and stacked so as to cancel out the thickness deviation (see, for example, Patent Document 2).
従来の、板厚偏差による影響を解消する手段として、順送り積層抜き型から排出され、薄い積厚に設定された積層コアブロックを、後工程で180度ずつ回転させて積み上げ、必要積厚にして板厚偏差を相殺する方式であるため、コアの揃い精度が悪くなる問題があった。また積み上げて再加圧する工程が必要になり、生産性が悪くなるという問題もあった。
また、順送り積層抜き型のダイを180度ずつ回転させて抜き、材料厚さが大きい側と小さい側を交互に抜き重ねることで板厚偏差を相殺する方式であるため、積層コア精度は向上するが、抜き型のダイを180度ずつ回転させるための複雑な機構が必要になるという問題があった。また抜き型のダイを180度ずつ回転させるためプレス速度が低下し、生産性が悪くなるという問題もあった。
また、順送り積層抜き型に、板厚偏差がある電磁鋼帯の、厚さが大きい側と厚さが小さい側を隣接するように2枚重ねた状態で供給する装置を使い、2枚重ねた材料を供給して、同時に2枚打ち抜き加工して積層し板厚偏差を相殺する方式であるため、所定の積厚を得るための打ち抜き回数は1/2で済み、生産性は大幅に向上するが、板厚偏差が逆向きの電磁鋼帯をわざわざ準備しなければならないことや、2本の電磁鋼帯を重ねて接着またはレーザ溶接する、非常に大掛りな材料供給装置が必要になるという問題があった。また2枚重ねた材料を抜いた場合、コア精度が悪くなるという問題もあった。
本発明はこのような問題点に鑑みてなされたものであり、板厚偏差を許容してコアの真円度が高く、モータ性能が高い積層コアおよび電磁モータを提供することを目的とする。
As a conventional means to eliminate the influence of plate thickness deviation, the laminated core blocks that are discharged from the progressive laminating die and set to a thin stacking thickness are rotated 180 degrees at a later step and stacked to obtain the required stacking thickness. Since this is a method of offsetting the thickness deviation, there is a problem that the alignment accuracy of the core is deteriorated. In addition, there is a problem that productivity is deteriorated because a process of stacking and repressurizing is required.
In addition, the progressive core punching die is rotated 180 degrees each time, and the sheet thickness deviation is offset by alternately pulling out the large and small material thicknesses, so the laminated core accuracy is improved. However, there has been a problem that a complicated mechanism for rotating the punching die by 180 degrees is required. In addition, since the punching die is rotated by 180 degrees, the pressing speed is lowered and the productivity is deteriorated.
In addition, using an apparatus that feeds the progressively laminating die in a state where two sheets of the electromagnetic steel strip with a thickness deviation are adjacent to each other on the large thickness side and the small thickness side, two sheets are stacked. Since the material is supplied and punched at the same time, the two sheets are stacked to cancel the thickness deviation, so the number of punching operations to obtain a predetermined stacking thickness is only 1/2, and the productivity is greatly improved. However, it is necessary to prepare electromagnetic steel strips with opposite thickness deviations, and it is necessary to have a very large material supply device that superimposes two magnetic steel strips and bonds or laser welds them. There was a problem. Moreover, there is a problem in that the core accuracy deteriorates when the two stacked materials are removed.
The present invention has been made in view of such problems, and an object of the present invention is to provide a laminated core and an electromagnetic motor having a high roundness of the core and high motor performance by allowing thickness deviation.
上記問題を解決するため、本発明は、次のように構成したのである。
請求項1に記載の発明は、順送り積層抜き型で生産される積層コアを連結して構成するモータであって、前記積層コアのコアシートを厚さに差がある電磁鋼帯を使用して形成する場合、前記コアシートの厚さが薄い側に微小な突起を設けて積層して形成した積層コアを用いたものである。
請求項2に記載の発明は、順送り積層抜き型で生産される積層コアを連結して構成するモータであって、前記積層コアのコアシートを厚さに差がある電磁鋼帯を使用して形成する場合、前記コアシートにかしめ部を備え、前記コアシートの厚さが薄い側と前記コアシートの厚さが厚い側に微小な突起と窪み部を設けて積層して形成した積層コアを用いたものである。
請求項3に記載の発明は、前記微小な突起と前記窪み部において、前記窪み部の穴径が前記突起の外径よりも大きく形成されたものである。
請求項4に記載の発明は、前記コアシートの厚さが薄い側の前記窪み部の深さが、前記コアシートの厚さが厚い側の前記窪み部の深さよりも浅く形成されているものである。
請求項5に記載の発明は、前記コアシートの厚さが薄い側の前記突起の高さが、前記コアシートの厚さが厚い側の前記突起の高さよりも高く形成されているものである。
請求項6に記載の発明は、前記操作装置が、前記かしめ部が、前記突起と前記窪み部が形成された前記コアシートの厚さが薄い側と前記コアシートの厚さが厚い側の間に形成されたものである。
請求項7に記載の発明は、順送り積層抜き型で生産される積層コアを連結して構成するモータであって、前記積層コアのコアシートを厚さに差がある電磁鋼帯を使用して形成する場合、前記コアシートにかしめ部を備え、前記コアシートの厚さが薄い側または前記コアシートの厚さが厚い側のいずれか一方に微小な突起と窪み部を設けて積層して形成した積層コアを用いたものである。
請求項8に記載の発明は、前記かしめ部が、微小窪み部と微小突起部が形成されたものである。
請求項9に記載の発明は、前記微小窪み部の直径が、前記微小突起部の直径より小さく形成されたものである。
In order to solve the above problem, the present invention is configured as follows.
The invention according to claim 1 is a motor configured by connecting laminated cores produced by a progressive laminating die, and uses an electromagnetic steel strip having a thickness difference in the core sheet of the laminated core. In the case of forming, a laminated core formed by laminating by providing minute protrusions on the side where the thickness of the core sheet is thin is used.
The invention according to claim 2 is a motor configured by connecting laminated cores produced by a progressive laminating die, using an electromagnetic steel strip having a difference in thickness as a core sheet of the laminated core. When forming, a laminated core formed by laminating the core sheet by providing a caulking portion and providing a minute protrusion and a depression on the thin side of the core sheet and the thick side of the core sheet. It is what was used.
According to a third aspect of the present invention, in the minute protrusion and the recess, the hole diameter of the recess is formed larger than the outer diameter of the protrusion.
According to a fourth aspect of the present invention, the depth of the recess on the side where the core sheet is thin is formed shallower than the depth of the recess on the side where the core sheet is thick. It is.
According to a fifth aspect of the present invention, the height of the protrusion on the side where the core sheet is thin is formed higher than the height of the protrusion on the side where the core sheet is thick. .
According to a sixth aspect of the present invention, in the operation device, the caulking portion is provided between the side on which the core sheet on which the protrusion and the depression are formed is thin and the side on which the core sheet is thick. It is formed.
The invention according to claim 7 is a motor configured by connecting laminated cores produced by a progressive laminating die, using an electromagnetic steel strip having a difference in thickness as a core sheet of the laminated core. When forming, the core sheet is provided with a caulking portion, and is formed by providing a minute protrusion and a depression on either the thin side of the core sheet or the thick side of the core sheet. The laminated core is used.
In the invention according to claim 8, the caulking portion is formed with a minute depression and a minute protrusion.
In a ninth aspect of the present invention, the diameter of the minute depression is smaller than the diameter of the minute protrusion.
請求項1から9に記載の発明によると、微小な突起や微小な窪みを設けたコアシートにすることで、板厚偏差が生じている電磁鋼帯を打ち抜き積層しても、積厚偏差や曲がりを解消した積層コアを得ることができ、安定した品質の積層コアを確保することができる。この積層コアを備えた電動機では、例えば分割方式のステータコアの場合、巻線時に巻線の張力による積層コアの変形を小さくすることができる。その結果整列巻による高密度巻きが可能になり、モータ特性を向上させることができる。
また、積層コアの変形が小さいため、ステータの精度が向上し、コギングトルクを減少させたり、騒音・振動を減少させることができる。
According to the invention described in claims 1 to 9, even if the electromagnetic steel strip having a thickness deviation is punched and laminated by using a core sheet provided with minute protrusions and minute depressions, A laminated core that eliminates bending can be obtained, and a laminated core with stable quality can be secured. In an electric motor provided with this laminated core, for example, in the case of a split-type stator core, deformation of the laminated core due to the tension of the winding can be reduced during winding. As a result, high-density winding by aligned winding is possible, and motor characteristics can be improved.
Further, since the deformation of the laminated core is small, the accuracy of the stator can be improved, the cogging torque can be reduced, and the noise and vibration can be reduced.
以下、本発明の実施の形態について図を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
以下、本発明の実施の形態について図を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図1は本発明の電動機の断面図である。図において、1は回転軸、2はロータコア、3はマグネット、4はステータコア、5はインシュレータ、6はコイル、7はフレーム、8は負荷側軸受、9は負荷側ブラケット、10は反負荷側軸受、11は反負荷側ブラケット、12は結線板、13はリセプタクルである。4のステータコアは、分割方式の積層コアを、円環状に連結した構造となっている。また、不図示のエンコーダを備えることによりサーボモータとして動作させることが可能である。
図2はステータコアの平面図である。14は積層コアブロックである。15は締結用かしめ突起、16はヨーク部接合面、17は内径オープニング部である。ステータコア4は、12個の積層コアブロック14から構成されている。
図3はステータコアの断面図である。18は内径寸法、19は外径寸法、20は積厚寸法である。
このように、分割方式の積層コアブロック14を、円環状に連結して構成されているステータコアでは、積層コアブロック14の単品精度が、例えば円環に連結後の内径寸法18とその真円度、外径寸法19とその真円度、ヨーク部接合面16の密着状態のバラツキや、内径オープニング部17の寸法のバラツキ、積厚寸法20のバラツキなどに影響するのである。特にコア材料の板厚偏差は、コア曲がりとなって現れ、巻線が施されることによって更に大きな変形へと拡大するのである。そしてこれらは、電気特性やコギングトルクに影響を与えることになるのである。つまり、図4に示すように、分割方式のステータコア2個取りした場合。21は電磁鋼帯、22は材料幅、23は材料の送り方向、24はコアシートA、25はコアシートB、26はかしめ突起である。また27は材料板厚の厚い側、28は材料板厚の薄い側とした時に、図5に示すように、 24はコアシートA、25はコアシートB、26はかしめ突起である。27は板厚の厚い側、28は板厚の薄い側で示され、積層した状態では、図6に示すように、29は積層コアA,30は積層コアBである。31は積層コアAに生じた曲がり量、32は積層コアBに生じた曲がり量であり、曲がった状態で積層コアA、Bが形成される。順送り積層抜き型でコアを多数個取りする場合の板取りでは、材料歩留まりを良くする目的で、図4のようにコアシートA24とは反対の向きにコアシートB25を配置している。こうして電磁鋼帯から抜き離された、図5のコアシートA24とコアシートB25では、板厚の厚い側と薄い側がコア形状で反対になってしまうのである。
こういう状態のコアシートを積み重ねたものが図6で、曲がりが生じてしまうが、積層コアA29と積層コアB30では、曲がりが逆方向に生じてしまうのである。このような積層コアで構成されたステータでは、安定した精度を確保できないのである。
このような問題を解決するために、本発明では、図7に示すように、板厚偏差解消のための微小な突起と微小な窪みを設け、かしめ突起を有したコアシートの構成とした。33はかしめ突起を有したコアシートで、34は微小突起と微小窪みの位置、35はかしめ突起、36は微小突起、37は微小突起の外径、38は微小突起の高さである。39は微小窪み、40は微小窪みの穴径、41は微小窪みの深さである。また42は板厚の厚い側、43は板厚の薄い側である。
図8は板厚偏差解消のための微小な突起と微小な窪みを設け、かしめ分離穴を有したコアシートの構成図である。44はかしめ分離穴を有したコアシートで、34は微小突起と微小窪みの位置、45は分離穴、36は微小突起、37は微小突起の外径、38は微小突起の高さである。39は微小窪み、40は微小窪みの穴径、41は微小窪みの深さである。また42は板厚の厚い側、43は板厚の薄い側である。
板厚の薄い側43に設ける微小窪み穴径40よりも板厚保の厚い側42の微小窪み穴径40は大きく、また、板厚の薄い側43に設ける微小窪み深さ41よりも板厚保の厚い側42の微小窪み深さ41は深く、さらに、板厚の薄い側43に設ける微小突起高さ38よりも板厚保の厚い側42の微小突起高さ38は低く構成されている。
かしめ突起を有するコアシート33の場合、かしめ突起35から板厚の薄い側43の微小突起高さ38、板厚の厚い側42の微小突起高さ38の順で突起高さが低く形成されているものである。
このような構成にすることにより、積層されるコアシートは、かしめ突起がコアシートに十分勘合され、板厚の薄い側と板厚の厚い側では、微小窪み深さと微小突起高さの関係から板厚の薄い側のコアシートは微小量離間して積層される構造となることで、曲がりが生じることなく、積層されるのである。
このような積層構造を示した積層コアブロックを図9に示す。図9は板厚偏差解消のための微小な突起と微小な窪みを設け、かしめ突起で締結された積層コアブロックの構成図である。33はかしめ突起を有したコアシート、44はかしめ分離穴を有したコアシート、35はかしめ突起部、36は微小突起、39は微小窪み部である。46は微小窪み底面から微小突起先端までの寸法、47は積層コアブロックの積厚寸法、48は板厚偏差量である。また49はコアシート間に生じた隙間である。
図7のかしめ突起を有したコアシート33と、図8のかしめ分離穴を有したコアシート44に、4箇所以上の微小突起36と微小窪み39を同位置に設けて積層するようにしたのである。
このとき微小窪みの穴径40は、微小突起の外径37よりも十分大きく、積み重ねたときに径方向が干渉することはない。またこのときの微小突起の高さ38は、電磁鋼帯に生じている板厚偏差量の2倍程度に設定し、微小窪みの深さ41は、板厚の厚い側を基準にして微小突起高さ38と同じ深さに設定している。つまり微小窪みの底面から微小突起の先端面までの寸法が、設けられたどの箇所でも同じ寸法になるように設定されているのである。
このように設定された微小突起36と微小窪み39とを有し、且つ、かしめ分離穴を有したコアシート44とかしめ突起を有したコアシート33を、かしめ突起で締結積層していくと、微小窪みの底面に、次に重ねられるコアシートの微小突起の先端面が接地し、コアシートはこの微小窪みと微小突起で支持され順次積層されていくのである。このとき板厚が厚かった側は接触して重なっているが、板厚が薄かった側は板厚偏差量分だけ隙間49を生じさせているのである。このことにより、地板同士が密着して生じる積厚偏差や曲がりを微小化しているのである。
FIG. 1 is a sectional view of an electric motor according to the present invention. In the figure, 1 is a rotating shaft, 2 is a rotor core, 3 is a magnet, 4 is a stator core, 5 is an insulator, 6 is a coil, 7 is a frame, 8 is a load side bearing, 9 is a load side bracket, and 10 is an anti-load side bearing. , 11 is an anti-load side bracket, 12 is a connection plate, and 13 is a receptacle. The stator core 4 has a structure in which split-type laminated cores are connected in an annular shape. Further, by providing an encoder (not shown), it can be operated as a servo motor.
FIG. 2 is a plan view of the stator core. Reference numeral 14 denotes a laminated core block. 15 is a caulking projection for fastening, 16 is a joint surface of the yoke portion, and 17 is an inner diameter opening portion. The stator core 4 is composed of twelve laminated core blocks 14.
FIG. 3 is a sectional view of the stator core. 18 is an inner diameter dimension, 19 is an outer diameter dimension, and 20 is a thickness dimension.
In this way, in the stator core configured by connecting the split-type stacked core blocks 14 in an annular shape, the single product accuracy of the stacked core block 14 is, for example, the inner diameter dimension 18 after being connected to the ring and its roundness. This affects the outer diameter dimension 19 and its roundness, the variation in the contact state of the yoke joint surface 16, the variation in the dimension of the inner diameter opening portion 17, the variation in the stacking dimension 20, and the like. In particular, the plate thickness deviation of the core material appears as a core bend and expands to a larger deformation when the winding is applied. These affect the electrical characteristics and cogging torque. That is, as shown in FIG. 4, when two split-type stator cores are taken. 21 is an electromagnetic steel strip, 22 is a material width, 23 is a material feeding direction, 24 is a core sheet A, 25 is a core sheet B, and 26 is a caulking projection. Further, when 27 is the side with the thicker material plate and 28 is the side with the thinner material plate, as shown in FIG. 5, 24 is the core sheet A, 25 is the core sheet B, and 26 is the caulking projection. 27 is a thick plate side, 28 is a thin plate side, and in the laminated state, 29 is a laminated core A and 30 is a laminated core B as shown in FIG. 31 is a bending amount generated in the laminated core A, 32 is a bending amount generated in the laminated core B, and the laminated cores A and B are formed in a bent state. In the case of taking a large number of cores with a progressive laminating die, the core sheet B25 is arranged in the direction opposite to the core sheet A24 as shown in FIG. 4 for the purpose of improving the material yield. In the core sheet A24 and the core sheet B25 of FIG. 5 thus separated from the electromagnetic steel strip, the thick side and the thin side are opposite in the core shape.
A stack of core sheets in such a state is bent in FIG. 6, but the bending occurs in the opposite direction in the laminated core A29 and the laminated core B30. A stator configured with such a laminated core cannot ensure stable accuracy.
In order to solve such a problem, in the present invention, as shown in FIG. 7, a minute projection and a minute depression for eliminating the plate thickness deviation are provided, and the core sheet has a caulking projection. Reference numeral 33 denotes a core sheet having caulking protrusions, 34 is the position of the minute protrusions and minute recesses, 35 is the caulking protrusion, 36 is the minute protrusion, 37 is the outer diameter of the minute protrusion, and 38 is the height of the minute protrusion. Reference numeral 39 denotes a minute recess, 40 denotes a hole diameter of the minute recess, and 41 denotes a depth of the minute recess. Reference numeral 42 denotes a thick side and 43 denotes a thin side.
FIG. 8 is a configuration diagram of a core sheet provided with minute protrusions and minute depressions for eliminating plate thickness deviation and having caulking separation holes. 44 is a core sheet having a caulking separation hole, 34 is a position of a minute protrusion and a minute recess, 45 is a separation hole, 36 is a minute protrusion, 37 is an outer diameter of the minute protrusion, and 38 is a height of the minute protrusion. Reference numeral 39 denotes a minute recess, 40 denotes a hole diameter of the minute recess, and 41 denotes a depth of the minute recess. Reference numeral 42 denotes a thick side and 43 denotes a thin side.
The fine recess hole diameter 40 on the thick plate thickness side 42 is larger than the fine recess hole diameter 40 provided on the thin plate thickness side 43, and the plate thickness retention is larger than the fine recess depth 41 provided on the thin plate thickness side 43. The micro-dent depth 41 on the thick side 42 is deep, and the micro-projection height 38 on the thick side 42 is lower than the micro-projection height 38 provided on the thin side 43.
In the case of the core sheet 33 having caulking protrusions, the protrusion heights are formed in a descending order from the caulking protrusion 35 to the minute protrusion height 38 on the thin plate side 43 and the minute protrusion height 38 on the thick plate side 42. It is what.
By adopting such a configuration, the core sheet to be laminated has the caulking protrusions sufficiently fitted into the core sheet, and the relationship between the micro-dent depth and the micro-projection height on the thin plate thickness side and the thick plate thickness side. The core sheet on the thin plate side has a structure in which the core sheets are separated by a minute amount so that the core sheets are laminated without bending.
A laminated core block having such a laminated structure is shown in FIG. FIG. 9 is a configuration diagram of a laminated core block provided with minute protrusions and minute recesses for eliminating the thickness deviation and fastened by caulking protrusions. Reference numeral 33 denotes a core sheet having caulking projections, 44 denotes a core sheet having caulking separation holes, 35 denotes caulking projections, 36 denotes minute projections, and 39 denotes minute recesses. Reference numeral 46 denotes a dimension from the bottom of the minute recess to the tip of the minute protrusion, 47 denotes a stacking dimension of the laminated core block, and 48 denotes a thickness deviation amount. Reference numeral 49 denotes a gap formed between the core sheets.
Since the core sheet 33 having the caulking protrusions in FIG. 7 and the core sheet 44 having the caulking separation holes in FIG. 8 are provided with four or more minute protrusions 36 and minute recesses 39 provided at the same position and laminated. is there.
At this time, the hole diameter 40 of the minute recess is sufficiently larger than the outer diameter 37 of the minute protrusion, and the radial direction does not interfere when stacked. Further, the height 38 of the minute protrusion at this time is set to about twice the thickness deviation amount generated in the electromagnetic steel strip, and the depth 41 of the minute recess is the minute protrusion on the thicker side as a reference. The same depth as the height 38 is set. That is, the dimension from the bottom surface of the micro-dent to the tip surface of the micro-protrusion is set so as to be the same at every provided location.
When the core sheet 44 having the fine protrusions 36 and the fine depressions 39 set in this way and having the caulking separation holes and the core sheet 33 having the caulking protrusions are fastened and laminated with the caulking protrusions, The tip surface of the microprojection of the core sheet to be stacked next is grounded to the bottom surface of the microrecess, and the core sheet is supported and sequentially laminated by the microrecess and the microrecess. At this time, the side having the larger thickness is in contact and overlapping, but the side having the smaller thickness causes the gap 49 to be generated by the thickness deviation amount. As a result, the thickness deviation and the bending caused by the close contact between the ground plates are miniaturized.
次に、積層コアブロックの第2の実施例について図10および図11を用いて説明する。
実施例1と異なる部分は、板厚の薄い側の微小窪み部をかしめ部分とで共用した点である。
図10に示すように、33はかしめ突起を有したコアシートで、34は微小突起と微小窪みを有したかしめ突起位置、36は微小突起、37はかしめ突起の外径、38は微小突起の高さである。39は微小窪みである。また42は板厚の厚い側、43は板厚の薄い側である。この曲がりや積厚偏差を微小化するための金型の工程の構成を説明すると、通常のかしめ突起の前工程に円錐形の微小窪みを成形することにより、板厚の反対側に微小突起51を出す。このとき微小突起の外径40よりも多少大きくなる。またこのときの微小突起の高さ38は、電磁鋼帯に生じている板厚偏差量の数倍程度に設定する、こののちにコアシート板厚を一定の隙間で挟み込むことで、かしめ部の板厚を揃える、かしめ成形前の板厚50を示す。その後通常のかしめ突起26を成形する。
図11に示す締結された積層コアブロックの構成において、33はかしめ突起を有したコアシート、44はかしめ分離穴を有したコアシート、35はかしめ突起部、36は微小突起、39は微小窪み部である。46は微小窪み底面から微小突起先端までの寸法、47は積層コアブロックの積厚寸法、48は板厚偏差量である。また49はコアシート間に生じた隙間である。
このように設定された微小突起36と微小窪み39とを有し、且つ、かしめ分離穴を有したコアシート44とかしめ突起を有したコアシート33を、かしめ突起で締結積層していくと、微小窪みの底面に、次に重ねられるコアシートの微小突起の先端面が接地し、コアシートはこの微小窪みと微小突起で支持され順次積層されていくのである。このとき板厚が厚かった側は接触して重なっているが、板厚が薄かった側は板厚偏差量分だけ隙間49を生じさせているのである。このことにより、地板同士が密着して生じる積厚偏差や曲がりを微小化しているのである。
Next, a second embodiment of the laminated core block will be described with reference to FIGS.
A different part from Example 1 is that the micro-dent part on the thin plate side is shared by the caulking part.
As shown in FIG. 10, 33 is a core sheet having caulking protrusions, 34 is a caulking protrusion position having minute protrusions and minute depressions, 36 is a minute protrusion, 37 is an outer diameter of the caulking protrusion, and 38 is a minute protrusion. It is height. Reference numeral 39 denotes a minute recess. Reference numeral 42 denotes a thick side and 43 denotes a thin side. Explaining the configuration of the mold process for minimizing the bending and stacking thickness deviation, by forming a conical minute depression in the previous process of the normal caulking protrusion, the minute protrusion 51 is formed on the opposite side of the plate thickness. Put out. At this time, it becomes slightly larger than the outer diameter 40 of the fine protrusion. The height 38 of the microprojections at this time is set to about several times the plate thickness deviation amount generated in the electromagnetic steel strip, and then the core sheet plate thickness is sandwiched with a certain gap, thereby The
In the structure of the fastened laminated core block shown in FIG. 11, 33 is a core sheet having caulking protrusions, 44 is a core sheet having caulking separation holes, 35 is caulking protrusions, 36 is minute protrusions, and 39 is minute depressions. Part. Reference numeral 46 denotes a dimension from the bottom of the minute recess to the tip of the minute protrusion, 47 denotes a stacking dimension of the laminated core block, and 48 denotes a thickness deviation amount. Reference numeral 49 denotes a gap formed between the core sheets.
When the core sheet 44 having the fine protrusions 36 and the fine depressions 39 set in this way and having the caulking separation holes and the core sheet 33 having the caulking protrusions are fastened and laminated with the caulking protrusions, The tip surface of the microprojection of the core sheet to be stacked next is grounded to the bottom surface of the microrecess, and the core sheet is supported and sequentially laminated by the microrecess and the microrecess. At this time, the side where the plate thickness is thick contacts and overlaps, but on the side where the plate thickness is thin, the gap 49 is generated by the amount of the plate thickness deviation. As a result, the thickness deviation and the bending caused by the close contact between the ground plates are miniaturized.
次に、積層コアブロックの第3の実施例について図12を用いて説明する。
実施例1と異なる部分は、板厚の薄い側にカエリを形成し、高さ調整した点である。
図12に示すようなモータコア打抜時に形成される抜きのカエリ53を利用し、板厚偏差を吸収し良好な積層精度を確保するものである。通常、打抜きされたモータコアには、打抜き方向によりカエリとダレが存在する。抜きのクリアランスが一定であれば、カエリとダレはモータコアの形状に沿い一定である。カエリ高さはクリアランスで主に決定されるので、抜材料の薄い部分のクリアランスを製品特性上可能な範囲金型上で変更し、図12に示すような積層状態を確保する。
Next, a third embodiment of the laminated core block will be described with reference to FIG.
A different part from Example 1 is that the burrs are formed on the thin side and the height is adjusted.
The punching 53 formed at the time of punching the motor core as shown in FIG. 12 is used to absorb the plate thickness deviation and ensure good stacking accuracy. Usually, the punched motor core has burrs and sagging depending on the punching direction. If the clearance is constant, burrs and sagging are constant along the shape of the motor core. Since the height of the burrs is mainly determined by the clearance, the clearance of the thin portion of the punched material is changed on a mold that is possible in terms of product characteristics, and a stacked state as shown in FIG.
1 回転軸
2 ロータコア
3 マグネット
4 ステータコア
5 インシュレータ
6 コイル
7 フレーム
8 負荷側軸受
9 負荷側ブラケット
10 反負荷側軸受
11 反負荷側ブラケット
12 結線板
13 リセプタクル
14 積層コアブロック
15 締結用かしめ突起
16 ヨーク部接合面
17 内径オープニング部
18 内径寸法
19 外径寸法
20 積厚寸法
21 電磁鋼帯
22 材料幅
23 材料送り方向
24 コアシートA
25 コアシートB
26 かしめ突起
27 板厚の厚い側
28 板厚の薄い側
29 積層コアA
30 積層コアB
31 積層コアAに生じた曲がり量
32 積層コアBに生じた曲がり量
33 かしめ突起を有したコアシート
34 微小突起と微小窪みの位置
35 かしめ突起
36 微小突起
37 微小突起外径
38 微小突起高さ
39 微小窪み
40 微小窪み穴径
41 微小窪み深さ
42 板厚の厚い側
43 板厚の薄い側
44 かしめ分離穴を有したコアシート
45 分離穴
46 微小窪み底面から微小突起先端までの寸法
47 積層コアブロックの積厚寸法
48 板厚偏差量
49 コアシート間に生じた隙間
DESCRIPTION OF SYMBOLS 1 Rotating shaft 2
25 Core sheet B
26 Caulking projection 27 Thick side 28 Thick side 29 Laminated core A
30 laminated core B
31 Bending amount generated in the laminated core A 32 Bending amount generated in the laminated core B 33 Core sheet 34 having caulking protrusions 35 Positions of the minute protrusions and the minute recesses 35 Caulking protrusions 36 Minute protrusions 37 Minute protrusion outer diameters 38 Minute protrusion heights 39 Microrecess 40 Microrecess hole diameter 41 Microrecess depth 42 Thick platen side 43 Thin platen side 44 Core sheet 45 with caulking separation hole Separation hole 46 Size 47 from microrecess bottom to microprojection tip Lamination Core block stacking dimension 48 Thickness deviation 49 Clearance created between core sheets
Claims (9)
前記積層コアのコアシートを厚さに差がある電磁鋼帯を使用して形成する場合、前記コアシートの厚さが薄い側に微小な突起を設けて積層して形成した積層コアを用いたことを特徴とするモータ。 A motor configured by connecting stacked cores produced by a progressive stacking die,
When the core sheet of the laminated core is formed using an electromagnetic steel strip having a difference in thickness, a laminated core formed by laminating the core sheet by providing a minute protrusion on the thin side is used. A motor characterized by that.
前記積層コアのコアシートを厚さに差がある電磁鋼帯を使用して形成する場合、前記コアシートにかしめ部を備え、前記コアシートの厚さが薄い側と前記コアシートの厚さが厚い側に微小な突起と窪み部を設けて積層して形成した積層コアを用いたことを特徴とするモータ。 A motor configured by connecting stacked cores produced by a progressive stacking die,
When the core sheet of the laminated core is formed using an electromagnetic steel strip having a difference in thickness, the core sheet is provided with a caulking portion, and the core sheet has a thin side and the core sheet has a thickness of A motor using a laminated core formed by laminating a thin protrusion and a recess on a thick side.
前記積層コアのコアシートを厚さに差がある電磁鋼帯を使用して形成する場合、前記コアシートにかしめ部を備え、前記コアシートの厚さが薄い側または前記コアシートの厚さが厚い側のいずれか一方に微小な突起と窪み部を設けて積層して形成した積層コアを用いたことを特徴とするモータ。 A motor configured by connecting stacked cores produced by a progressive stacking die,
When the core sheet of the laminated core is formed using electromagnetic steel strips having different thicknesses, the core sheet is provided with a caulking portion, and the thickness of the core sheet is small or the thickness of the core sheet is A motor using a laminated core formed by laminating a thin protrusion and a depression on either one of the thick sides.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009092264A JP2010233436A (en) | 2009-03-05 | 2009-04-06 | Motor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009051738 | 2009-03-05 | ||
JP2009092264A JP2010233436A (en) | 2009-03-05 | 2009-04-06 | Motor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010233436A true JP2010233436A (en) | 2010-10-14 |
Family
ID=43048723
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009092264A Pending JP2010233436A (en) | 2009-03-05 | 2009-04-06 | Motor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010233436A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102510178A (en) * | 2011-10-31 | 2012-06-20 | 上海电气电站设备有限公司 | Armature iron core compensating method of large-sized brushless exciter |
WO2012105350A1 (en) * | 2011-02-03 | 2012-08-09 | 株式会社三井ハイテック | Laminated iron core and method for manufacturing same |
JP5885890B1 (en) * | 2014-12-02 | 2016-03-16 | 三菱電機株式会社 | Stator core for rotating electric machine, rotating electric machine, and method of manufacturing rotating electric machine |
JP2018182840A (en) * | 2017-04-07 | 2018-11-15 | 三菱電機株式会社 | Stator core of rotary electric machine and production method for stator core of rotary electric machine |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07222409A (en) * | 1994-01-31 | 1995-08-18 | Yaskawa Electric Corp | Formation of iron core of electric apparatus |
JP2002272025A (en) * | 2001-03-09 | 2002-09-20 | Denso Corp | Stacked cores for rotating machine and manufacturing method thereof |
JP2003224939A (en) * | 2002-01-28 | 2003-08-08 | Mitsubishi Electric Corp | Laminated core and manufacturing method therefor |
-
2009
- 2009-04-06 JP JP2009092264A patent/JP2010233436A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07222409A (en) * | 1994-01-31 | 1995-08-18 | Yaskawa Electric Corp | Formation of iron core of electric apparatus |
JP2002272025A (en) * | 2001-03-09 | 2002-09-20 | Denso Corp | Stacked cores for rotating machine and manufacturing method thereof |
JP2003224939A (en) * | 2002-01-28 | 2003-08-08 | Mitsubishi Electric Corp | Laminated core and manufacturing method therefor |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012105350A1 (en) * | 2011-02-03 | 2012-08-09 | 株式会社三井ハイテック | Laminated iron core and method for manufacturing same |
CN103339828A (en) * | 2011-02-03 | 2013-10-02 | 株式会社三井高科技 | Laminated iron core and method for manufacturing same |
US9318923B2 (en) | 2011-02-03 | 2016-04-19 | Mitsui High-Tec, Inc. | Laminated iron core and method for manufacturing same |
CN103339828B (en) * | 2011-02-03 | 2016-08-10 | 株式会社三井高科技 | Lamination iron core and manufacture method thereof |
CN102510178A (en) * | 2011-10-31 | 2012-06-20 | 上海电气电站设备有限公司 | Armature iron core compensating method of large-sized brushless exciter |
JP5885890B1 (en) * | 2014-12-02 | 2016-03-16 | 三菱電機株式会社 | Stator core for rotating electric machine, rotating electric machine, and method of manufacturing rotating electric machine |
JP2018182840A (en) * | 2017-04-07 | 2018-11-15 | 三菱電機株式会社 | Stator core of rotary electric machine and production method for stator core of rotary electric machine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4932967B1 (en) | Manufacturing method of spiral core for rotating electrical machine and manufacturing apparatus of spiral core for rotating electrical machine | |
KR101253689B1 (en) | Stator core and method for manufacturing same | |
JP2008113529A (en) | Laminated core and manufacturing method therefor | |
WO2011077830A1 (en) | Core stack, motor provided with core stack, and method for manufacturing core stack | |
JP6723348B2 (en) | Stator core and electric motor equipped with the stator core | |
WO2018062490A1 (en) | Rotor core, rotor, motor, method for producing rotor core, and method for producing rotor | |
JP2010233436A (en) | Motor | |
JP4791387B2 (en) | Armature | |
US20130276296A1 (en) | Stator core manufacturing method | |
JP4630858B2 (en) | Laminated iron core and method for manufacturing the same | |
JP5484130B2 (en) | Manufacturing method and manufacturing apparatus of laminated iron core | |
JP4794650B2 (en) | Rotating electric machine | |
JP5154398B2 (en) | Manufacturing method of laminated iron core and manufacturing method of laminated stator | |
JP5536493B2 (en) | Manufacturing method and manufacturing apparatus of laminated iron core | |
JP2012217279A (en) | Stator core for rotary electric machine, the rotary electric machine, and manufacturing method of the stator core for the rotary electric machine | |
JP2009065833A (en) | Laminated core and manufacturing method thereof | |
JP4482550B2 (en) | Laminated iron core | |
JP4912088B2 (en) | Manufacturing method and manufacturing apparatus of laminated iron core | |
JP4989877B2 (en) | Manufacturing method of rotor laminated core | |
JP5885488B2 (en) | Laminated iron core and method for manufacturing the same | |
JP2011061958A (en) | Manufacturing method of laminated core and laminated core manufactured by the method | |
JP2011151923A (en) | Laminated core and manufacturing method for the same | |
JP2010104154A (en) | Manufacturing method for magnet mounting rotor core | |
JP4578460B2 (en) | Manufacturing method of stator laminated iron core | |
JP4648716B2 (en) | Laminated iron core and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20111214 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20120326 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130410 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130419 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130819 |