Nothing Special   »   [go: up one dir, main page]

JP2010232109A - Method and device for generation of line feed plasma jet - Google Patents

Method and device for generation of line feed plasma jet Download PDF

Info

Publication number
JP2010232109A
JP2010232109A JP2009080683A JP2009080683A JP2010232109A JP 2010232109 A JP2010232109 A JP 2010232109A JP 2009080683 A JP2009080683 A JP 2009080683A JP 2009080683 A JP2009080683 A JP 2009080683A JP 2010232109 A JP2010232109 A JP 2010232109A
Authority
JP
Japan
Prior art keywords
gas
plasma jet
plasma
helium
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009080683A
Other languages
Japanese (ja)
Inventor
Tomohiko Asai
朋彦 浅井
Yuki Komoriya
勇樹 小森谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon University
Original Assignee
Nihon University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon University filed Critical Nihon University
Priority to JP2009080683A priority Critical patent/JP2010232109A/en
Publication of JP2010232109A publication Critical patent/JP2010232109A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Plasma Technology (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To generate plasma jet by generating plasma with a lower voltage applied on gas (argon gas) with a higher ionization potential than helium gas, in an LF plasma jet generation method. <P>SOLUTION: Mixture of helium (He) gas and argon (Ar) gas is supplied to a gas supply tube 41, and a voltage of a given frequency is applied from a power supply 44 on an electrode 43 to have plasma generated, thereby, plasma jet 45 is generated. Later, supply of helium gas is stopped and production of the plasma jet 45 of argon gas is continued. The plasma of helium gas is used as an ignition means at generation of plasma by having argon gas discharged. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本願発明は、低周波電源により媒体ガスを大気圧中で放電させて低周波プラズマジェット(LFプラズマジェット)を生成するLFプラズマジェット生成方法とLFプラズマジェット生成装置に関する。   The present invention relates to an LF plasma jet generating method and an LF plasma jet generating apparatus for generating a low frequency plasma jet (LF plasma jet) by discharging a medium gas at atmospheric pressure by a low frequency power source.

LFプラズマジェット生成装置は、従来種々提案されているが、その一つとしてガラス管等のガス供給管の周囲に電極を同軸状に取付け、その電極にパルス電源を接続してLFプラズマジェットを生成する装置が提案されている(例えば特許文献1参照)。   Various LF plasma jet generators have been proposed in the past. As one of them, an electrode is coaxially mounted around a gas supply pipe such as a glass tube, and a pulse power source is connected to the electrode to generate an LF plasma jet. An apparatus has been proposed (see, for example, Patent Document 1).

図2は、従来のガス供給管の周囲に電極を同軸状に取付けたLFプラズマジェット生成装置の構成を示す。
図2(a1),(a2)は、媒体ガスにヘリウム(He)ガスを用いるLFプラズマジェット生成装置の構成を示し、図2(b)は、媒体ガスにアルゴンガスを用いるLFプラズマジェット生成装置の構成を示す。
まず図2(a1),(a2)について説明する。
図2(a1)は、LFプラズマジェット生成装置の平面図、図2(a2)は、図2(a1)のX1部分の矢印方向の断面図である。
FIG. 2 shows a configuration of an LF plasma jet generating apparatus in which electrodes are coaxially mounted around a conventional gas supply pipe.
FIGS. 2A1 and 2A2 show the configuration of an LF plasma jet generation apparatus that uses helium (He) gas as a medium gas, and FIG. 2B shows an LF plasma jet generation apparatus that uses argon gas as a medium gas. The structure of is shown.
First, FIGS. 2A1 and 2A2 will be described.
FIG. 2A1 is a plan view of the LF plasma jet generator, and FIG. 2A2 is a cross-sectional view of the X1 portion of FIG. 2A1 in the arrow direction.

ガラスからなるガス供給管11の周囲に電極12を同軸状に取付けてあり、電極12には、所定周波数の電源(例えばパルス電源)13の一端を接続し、電源13の他端は接地してある。ガス供給管11は、所定の内径(例えば数mm)のものを用い、電源13は、10kHz,6〜10kV程度のものを用いている。なおLFプラズマジェットの生成に用いる電源は、一般に数kHz〜300kHz帯の周波数が用いられているが、その範囲に限らず時間的に或いは周期的に電圧が変化する電源であればよい。
ガス供給管11へボンベ等のガス源(図示せず)からヘリウム(He)ガスを供給し、電極12に電源13から所定周波数の電圧(例えばパルス状の電圧)を印加すると、電極12によりその電極近傍に集中的に電場が発生し、ガラス管11内のヘリウムガスは、その電場により部分放電してプラズマ塊を周期的に発生する。プラズマ魂は、ガラス管11の端部の開口部からプラズマジェット14となって射出される。
ガス供給管11は、ガラス以外の誘電体、金属、プラスチック製のものも用いることもできる。また電極12は、ガス供給管11の外周の一部を覆うように設けてもよい。
An electrode 12 is coaxially attached around a gas supply pipe 11 made of glass, and one end of a power source (for example, a pulse power source) 13 having a predetermined frequency is connected to the electrode 12 and the other end of the power source 13 is grounded. is there. The gas supply pipe 11 has a predetermined inner diameter (for example, several mm), and the power supply 13 has a frequency of about 10 kHz and 6 to 10 kV. The power source used to generate the LF plasma jet generally has a frequency in the range of several kHz to 300 kHz. However, the power source is not limited to this range and may be any power source whose voltage changes temporally or periodically.
When helium (He) gas is supplied from a gas source (not shown) such as a cylinder to the gas supply pipe 11 and a voltage of a predetermined frequency (for example, a pulsed voltage) is applied to the electrode 12 from the power source 13, the electrode 12 An electric field is intensively generated in the vicinity of the electrode, and the helium gas in the glass tube 11 is partially discharged by the electric field to periodically generate a plasma lump. The plasma soul is ejected from the opening at the end of the glass tube 11 as a plasma jet 14.
The gas supply pipe 11 may be made of a dielectric other than glass, metal, or plastic. The electrode 12 may be provided so as to cover a part of the outer periphery of the gas supply pipe 11.

次に図2(b)について説明する。
図2(b)は、LFプラズマジェット生成装置の断面図である。
LFプラズマジェット生成装置は、ガス供給管211に隣接して補助ガス供給管212を設けてある。ガス供給管211は、図1(a1)のガス供給管11に相当し、周囲に電極221を取付けてある。補助ガス供給管212の内部には、補助電極222を設けてある。電源23は、電極221と補助電極222に接続してある。
ガス供給管211、補助ガス供給管212にガス源(図示せず)からアルゴン(Ar)ガスを供給し、両電極に電源23から所定周波数の電圧を印加すると、両ガス供給管内において電極221と補助電極222の間に沿面放電25が発生し、その沿面放電25によって電子、ラジカル等が発生する。ガス供給管211内のアルゴンガスは、電極221によって発生した電場と沿面放電25によって発生した電子、ラジカル等とが相俟って部分放電する。その放電によりアルゴンガスのプラズマ塊が発生し、プラズマ魂はプラズマジェット24となって射出される。
Next, FIG. 2B will be described.
FIG. 2B is a cross-sectional view of the LF plasma jet generator.
The LF plasma jet generator is provided with an auxiliary gas supply pipe 212 adjacent to the gas supply pipe 211. The gas supply pipe 211 corresponds to the gas supply pipe 11 of FIG. 1A1, and an electrode 221 is attached around the gas supply pipe 211. An auxiliary electrode 222 is provided inside the auxiliary gas supply pipe 212. The power source 23 is connected to the electrode 221 and the auxiliary electrode 222.
When argon (Ar) gas is supplied from a gas source (not shown) to the gas supply pipe 211 and the auxiliary gas supply pipe 212 and a voltage of a predetermined frequency is applied to both electrodes from the power source 23, the electrodes 221 and A creeping discharge 25 is generated between the auxiliary electrodes 222, and electrons, radicals, and the like are generated by the creeping discharge 25. The argon gas in the gas supply pipe 211 is partially discharged due to the combination of the electric field generated by the electrode 221 and the electrons, radicals, etc. generated by the creeping discharge 25. The discharge generates a plasma lump of argon gas, and the plasma soul is ejected as a plasma jet 24.

WO2008/072390号公報WO2008 / 072390

アルゴンガスは、ヘリウムガスよりも大気圧中における電離電圧(放電開始電圧)が高いため、図1(a1)の装置はプラズマを発生できないが、図2(b)の装置は、沿面放電25によって発生した電子、イオン、ラジカル等がアルゴンガスに作用するため大気圧中の電離電圧が低くなりプラズマを発生することができる。しかしながら、図2(b)の装置は、二つのガス供給管を隣接して配置し、また補助ガス供給管212の内部に補助電極を取付け、その補助電極に電源を接続しなければならないから、構造が複雑になり製造も容易でないためコストが高くなる。また補助電極222は、補助ガス供給管212の内部に取付けるから沿面放電によって損傷を受ける恐れがある。
本願発明は、図1(b)のLFプラズマジェット生成装置の前記問題点に鑑み、図1(b)の補助ガス供給管を設けることなく、アルゴンガス等ヘリウムガスよりも電離電圧の高いガスを低い電圧で放電させてプラズマを発生し、プラズマジェットを生成できるLFプラズマジェット生成方法及びLFプラズマジェット生成装置を提供することを目的とする。
Since argon gas has a higher ionization voltage (discharge start voltage) in atmospheric pressure than helium gas, the apparatus of FIG. 1 (a1) cannot generate plasma, but the apparatus of FIG. Since the generated electrons, ions, radicals, etc. act on the argon gas, the ionization voltage in the atmospheric pressure is lowered and plasma can be generated. However, in the apparatus of FIG. 2B, two gas supply pipes are arranged adjacent to each other, and an auxiliary electrode is attached inside the auxiliary gas supply pipe 212, and a power source must be connected to the auxiliary electrode. Since the structure is complicated and manufacturing is not easy, the cost increases. Further, since the auxiliary electrode 222 is attached inside the auxiliary gas supply pipe 212, there is a risk of being damaged by creeping discharge.
In view of the above-mentioned problem of the LF plasma jet generator of FIG. 1B, the present invention provides a gas having a higher ionization voltage than helium gas such as argon gas without providing the auxiliary gas supply pipe of FIG. An object of the present invention is to provide an LF plasma jet generation method and an LF plasma jet generation apparatus capable of generating plasma by generating plasma by discharging at a low voltage.

本願発明は、その目的を達成するため、請求項1に記載のLFプラズマジェット生成方法は、ガス供給管の外周に放電電場を発生する電極を設けたLFプラズマジェット生成装置において、ヘリウムガスとヘリウムガスより電離電圧の高いガスを混合してガス供給管へ供給し、電極に所定周波数の電圧を印加して両ガスのプラズマを発生し、その後ヘリウムガスの供給を停止することを特徴とする。
請求項2に記載のLFプラズマジェット生成方法は、請求項1に記載のLFプラズマジェット生成方法において、ヘリウムガスより電離電圧の高いガスは、アルゴンガスであることを特徴とする。
請求項3に記載のLFプラズマジェット生成装置は、ガス供給管の外周に放電電場を発生する電極を設けたLFプラズマジェット生成装置において、電極に所定周波数の電圧を印加する電源、ヘリウムガスとヘリウムガスより電離電圧の高いガスを混合してガス供給管へ供給する混合ガス供給手段を備え、両ガスのプラズマが発生した後ヘリウムガスの供給を停止する手段を備えていることを特徴とする。
請求項4に記載のLFプラズマジェット生成装置は、請求項3に記載のLFプラズマジェット生成装置において、ヘリウムガスより電離電圧の高いガスは、アルゴンガスであることを特徴とする。
In order to achieve the object of the present invention, an LF plasma jet generation method according to claim 1 is an LF plasma jet generation apparatus in which an electrode for generating a discharge electric field is provided on the outer periphery of a gas supply pipe. A gas having a higher ionization voltage than the gas is mixed and supplied to the gas supply pipe, a voltage of a predetermined frequency is applied to the electrodes to generate plasma of both gases, and then the supply of helium gas is stopped.
The LF plasma jet generation method according to claim 2 is the LF plasma jet generation method according to claim 1, wherein the gas having a higher ionization voltage than the helium gas is an argon gas.
The LF plasma jet generation device according to claim 3 is an LF plasma jet generation device in which an electrode for generating a discharge electric field is provided on the outer periphery of a gas supply pipe, a power source for applying a voltage of a predetermined frequency to the electrode, helium gas and helium It is characterized by comprising a mixed gas supply means for mixing a gas having a higher ionization voltage than the gas and supplying the mixed gas to the gas supply pipe, and a means for stopping the supply of helium gas after the plasma of both gases is generated.
The LF plasma jet generation device according to claim 4 is the LF plasma jet generation device according to claim 3, wherein the gas having a higher ionization voltage than the helium gas is an argon gas.

本願発明は、ヘリウムガスとヘリウムガスより電離電圧の高いアルゴンガス等を混合してガス供給管へ供給し、発生したヘリウムガスのプラズマをアルゴンガス等の点火手段として用いるから、アルゴンガス等は、単独の場合よりも低い電圧で放電してプラズマを発生する。したがって本願発明は、アルゴンガス等のプラズマの発生に用いる電源の電圧を低くできるから、その電源装置は、小型になりコストも安くなる。
本願発明は、LFプラズマジェット生成にヘリウムガスより安価なアルゴンガス等を用いることができるから、LFプラズマジェット生成装置を安価に稼動することができ、LFプラズマジェットを用いて各種の処理を安価に実施できる。
In the present invention, helium gas and argon gas having a higher ionization voltage than helium gas are mixed and supplied to the gas supply pipe, and the generated helium gas plasma is used as an ignition means such as argon gas. Plasma is generated by discharging at a lower voltage than that of a single case. Therefore, according to the present invention, the voltage of the power source used for generating plasma such as argon gas can be lowered. Therefore, the power source device is reduced in size and cost.
Since the present invention can use argon gas or the like that is cheaper than helium gas to generate the LF plasma jet, the LF plasma jet generating apparatus can be operated at a low cost, and various processes can be performed at low cost using the LF plasma jet. Can be implemented.

図1は、本願発明の実施例に係るLFプラズマジェット生成装置の構成を示す。FIG. 1 shows the configuration of an LF plasma jet generator according to an embodiment of the present invention. 図2は、従来のLFプラズマジェット生成装置の構成を示す。FIG. 2 shows the configuration of a conventional LF plasma jet generator.

本願発明は、大気圧中において電離電圧(放電開始電圧)がヘリウムガスよりも高いアルゴンガスを、より低い電圧で放電させて低周波プラズマジェット(LFプラズマジェット)を生成するため、ヘリウム予備電離法によりアルゴンガスの放電の点火を行う。本願発明のヘリウム予備電離法は、アルゴンガスが放電を開始する時だけヘリウムガスとアルゴンガスの混合ガスを用い、アルゴンガスの放電開始後は、ヘリウムガスの供給を停止してアルゴンガスのみで放電を持続し、プラズマジェットの生成を持続できる。放電開始時にヘリウムガスとアルゴンガスの混合ガスを用いると、ヘリウムガスは、アルゴンガスよりも低い電圧で放電して電子、ラジカル等を発生するから、その電子、ラジカル等がアルゴンガスに作用してアルゴンガスの電離電圧を低くすることができる。   In the present invention, since a low-frequency plasma jet (LF plasma jet) is generated by discharging argon gas having a higher ionization voltage (discharge start voltage) than helium gas at a lower voltage in the atmospheric pressure, a helium preionization method is used. To ignite the discharge of argon gas. The helium preionization method of the present invention uses a mixed gas of helium gas and argon gas only when the argon gas starts to discharge, and after starting the discharge of the argon gas, the supply of helium gas is stopped and the discharge is performed only with the argon gas. And the generation of the plasma jet can be continued. If a mixed gas of helium gas and argon gas is used at the start of discharge, the helium gas discharges at a lower voltage than the argon gas and generates electrons, radicals, etc., so that the electrons, radicals, etc. act on the argon gas. The ionization voltage of argon gas can be lowered.

ヘリウムガスとアルゴンガスは、最初から混合してガス供給管へ供給し、ヘリウムガスのプラズマによりアルゴンガスに点火してアルゴンガスのプラズマが発生した後にヘリウムガスの供給を停止するようにしてもよいし、或いは最初ヘリウムガスのみを供給してヘリウムガスのプラズマが発生した後、アルゴンガスを混合してアルゴンガスのプラズマを発生し、その後ヘリウムガスの供給を停止するようにしてもよい。
本願発明は、アルゴンガスに限らず、大気圧中における電離電圧(放電開始電圧)がヘリウムガスよりも高い媒体ガスのプラズマの発生に適用することができる。
The helium gas and the argon gas may be mixed from the beginning and supplied to the gas supply pipe, and the supply of the helium gas may be stopped after the argon gas plasma is generated by igniting the argon gas with the helium gas plasma. Alternatively, after only helium gas is first supplied to generate helium gas plasma, argon gas is mixed to generate argon gas plasma, and then the supply of helium gas may be stopped.
The present invention is not limited to argon gas, and can be applied to generation of plasma of a medium gas whose ionization voltage (discharge start voltage) in atmospheric pressure is higher than that of helium gas.

図1により本願発明の実施例に係るLFプラズマジェット生成装置とLFプラズマジェット生成方法を説明する。
まず図1(a1),(a2)について説明する。
図1(a1)は、LFプラズマジェット生成装置の平面図、図1(a2)は、図1(a1)のX1部分の矢印方向の断面図である。なお図1(a1)のLFプラズマジェット生成装置の構成及び使用する電源は、図2(a1)のLFプラズマジェット生成装置と同じものを使用できるから、一部の説明は省略してある。
ガラスからなるガス供給管41の周囲には、電極43を同軸状に取付けてあり、電極43には、所定周波数の電源(例えばパルス電源)44の一端を接続し、電源44の他端は接地してある。ガス供給管41は、所定の内径(例えば数mm)のものを用い、電源44は、例えば10kHz,10kV程度のものを用いる。
ガス供給管41は、ガラスの外金属、プラスチック製のものも用いることができる。また電極43は、放電電場を発成できればよいから、ガス供給管41の外周の一部を覆うように取付けてもよい。
An LF plasma jet generation apparatus and an LF plasma jet generation method according to an embodiment of the present invention will be described with reference to FIG.
First, FIGS. 1A1 and 1A2 will be described.
FIG. 1A1 is a plan view of the LF plasma jet generator, and FIG. 1A2 is a cross-sectional view of the X1 portion of FIG. 1A1 in the arrow direction. Note that the configuration of the LF plasma jet generation apparatus in FIG. 1A1 and the power source to be used can be the same as those in the LF plasma jet generation apparatus in FIG.
An electrode 43 is coaxially mounted around the gas supply pipe 41 made of glass, and one end of a power source (for example, a pulse power source) 44 having a predetermined frequency is connected to the electrode 43, and the other end of the power source 44 is grounded. It is. The gas supply pipe 41 has a predetermined inner diameter (for example, several mm), and the power supply 44 has a frequency of about 10 kHz and 10 kV, for example.
As the gas supply pipe 41, a glass outer metal or plastic one can also be used. Moreover, since the electrode 43 should just generate | occur | produce a discharge electric field, you may attach so that a part of outer periphery of the gas supply pipe | tube 41 may be covered.

ガス供給管41の一方の端部には、ヘリウム(He)ガスとアルゴン(Ar)ガスを混合して供給する混合ガス供給部42を取付けてある。混合ガス供給管部42は、ヘリウムガス供給管部421とアルゴンガス供給管部422を備えている。ヘリウムガス供給管部421とアルゴンガス供給管部422は、ゴム管等によってボンベ等のガス源(図示せず)に接続されている。ヘリウム(He)ガスとアルゴン(Ar)ガスは、混合ガス供給部42において混合してガス供給管41へ供給する。
ヘリウムガス供給管部421、アルゴンガス供給管部422とガス源の間、或いはヘリウムガス供給管部421とアルゴンガス供給管部422に、ガスの供給・停止を行う弁(バルブ、図示せず)を設けてある。弁は、手動で操作するものでもよいし、電磁弁のように電気的に作動するものでもよい。
At one end of the gas supply pipe 41, a mixed gas supply unit 42 for supplying a mixture of helium (He) gas and argon (Ar) gas is attached. The mixed gas supply pipe part 42 includes a helium gas supply pipe part 421 and an argon gas supply pipe part 422. The helium gas supply pipe 421 and the argon gas supply pipe 422 are connected to a gas source (not shown) such as a cylinder by a rubber tube or the like. Helium (He) gas and argon (Ar) gas are mixed in the mixed gas supply unit 42 and supplied to the gas supply pipe 41.
A valve (valve, not shown) for supplying and stopping gas between the helium gas supply pipe part 421, the argon gas supply pipe part 422 and the gas source or between the helium gas supply pipe part 421 and the argon gas supply pipe part 422. Is provided. The valve may be operated manually or may be electrically operated like a solenoid valve.

ヘリウムガスとアルゴンガスは、同時にガス供給管41へ供給し、電極43に電源43から所定周波数の電圧(例えばパルス状の電圧)を印加すると、ガス供給管41内のヘリウムガスは、電極43によりその電極近傍に集中的に発生した電場により部分放電してプラズマ塊を形成し、電子、ラジカル等を発生する。ガス供給管41内のアルゴンガスは、その電子、ラジカル等の衝突電離および、電極43によって発生した電場により放電してプラズマ塊を生成する。発生したプラズマ魂は、ガス供給管41の開口部からプラズマジェット45となって射出される。アルゴンガスが放電を開始すると、弁を作動してヘリウムガスの供給を停止する。以後はアルゴンガスのプラズマジェット45が持続して周期的に射出される。アルゴンガスは、ヘリウムガスのプラズマによって点火するから、アルゴンガス単独の場合よりも低い電圧で放電させることができる。
ヘリウムガスとアルゴンガスは、前記のように同時に供給する代わりに、まずヘリウムガスをガス供給管41へ供給してヘリウムガスのプラズマを発生してから、ヘリウムガスにアルゴンガスを混合して供給し、アルゴンガスが点火してプラズマが発生した後ヘリウムガスの供給を停止してもよい。
When helium gas and argon gas are simultaneously supplied to the gas supply pipe 41 and a voltage of a predetermined frequency (for example, a pulsed voltage) is applied to the electrode 43 from the power supply 43, the helium gas in the gas supply pipe 41 is A partial discharge is generated by an electric field concentrated in the vicinity of the electrode to form a plasma lump, generating electrons, radicals, and the like. The argon gas in the gas supply pipe 41 is discharged by the impact ionization of electrons and radicals and the electric field generated by the electrode 43 to generate a plasma mass. The generated plasma soul is emitted from the opening of the gas supply pipe 41 as a plasma jet 45. When the argon gas starts discharging, the valve is operated to stop the supply of helium gas. Thereafter, a plasma jet 45 of argon gas is continuously and periodically ejected. Since argon gas is ignited by plasma of helium gas, it can be discharged at a lower voltage than the case of argon gas alone.
Instead of supplying helium gas and argon gas simultaneously as described above, first helium gas is supplied to the gas supply pipe 41 to generate helium gas plasma, and then helium gas is mixed with argon gas and supplied. The supply of helium gas may be stopped after the argon gas is ignited and plasma is generated.

次に図1(b)について説明する。
図1(b)のLFプラズマジェット生成装置は、図1(a1),(a2)のLFプラズマジェット生成装置に電極432を付加した点が図1(a1),(a2)と相違している。即ち図1(a1),(a2)の場合は、電源44に接続する電極は電極43のみの単電極構造であるが、図1(b)の場合は、電極431,432を設けて両電極に電源44を接続する2電極構造である。図1(a1),(a2)の場合、ガス供給管41内の放電は、電極43と遠方の接地電位と間に発生するが、図1(b)の場合、放電は、電極431,432の間に発生する。
Next, FIG. 1B will be described.
The LF plasma jet generation apparatus of FIG. 1B is different from FIGS. 1A1 and 1A2 in that an electrode 432 is added to the LF plasma jet generation apparatus of FIGS. 1A1 and 1A2. . That is, in the case of FIGS. 1A1 and 1A2, the electrode connected to the power source 44 has a single electrode structure with only the electrode 43, but in the case of FIG. 1B, the electrodes 431 and 432 are provided and both electrodes are provided. It has a two-electrode structure in which a power source 44 is connected. In the case of FIGS. 1A1 and 1A2, the discharge in the gas supply pipe 41 occurs between the electrode 43 and a distant ground potential. In the case of FIG. 1B, the discharge is caused by the electrodes 431, 432. Occurs during.

前記実施例のLFプラズマジェット生成装置につき、アルゴンガスがプラズマを発生した後ヘリウムガスの供給を停止した状態におけるプラズマジェット45の成分を分光法により分析した結果、ヘリウムイオンおよび原子のスペクトルは検出されず、アルゴンが支配的であることが確認できた。その分析結果から、ヘリウムガスは、初期のアルゴンプラズマの発生にのみ寄与し、その点火後は、アルゴンガスのみでプラズマジェットが生成されていることが分かる。
前記実施例は、ヘリウムとアルゴンガスについて説明したが、本願発明のヘリウム予備電離法による点火方法は、大気圧における電離電圧がヘリウムガスよりも高いアルゴンガス以外の媒体ガスにも適用することができる。
As a result of analyzing the components of the plasma jet 45 in the state in which the supply of helium gas was stopped after the argon gas generated plasma with respect to the LF plasma jet generation apparatus of the above embodiment, the spectrum of helium ions and atoms was detected. It was confirmed that argon was dominant. From the analysis results, it can be seen that helium gas contributes only to the initial generation of argon plasma, and after ignition, a plasma jet is generated only with argon gas.
In the above embodiment, helium and argon gas have been described. However, the ignition method according to the helium preionization method of the present invention can be applied to medium gases other than argon gas whose ionization voltage at atmospheric pressure is higher than that of helium gas. .

41 ガス供給管
42 混合ガス供給部
421,422 ヘリウムガス供給管部、アルゴンガス供給管部
43,431,432 電極
44 電源
45 プラズマジェット
41 Gas supply pipe 42 Mixed gas supply part 421,422 Helium gas supply pipe part, Argon gas supply pipe part 43,431,432 Electrode 44 Power supply 45 Plasma jet

Claims (4)

ガス供給管の外周に放電電場を発生する電極を設けたLFプラズマジェット生成装置において、ヘリウムガスとヘリウムガスより電離電圧の高いガスを混合してガス供給管へ供給し、電極に所定周波数の電圧を印加して両ガスのプラズマを発生し、その後ヘリウムガスの供給を停止することを特徴とするLFプラズマジェット生成方法。   In an LF plasma jet generator having an electrode for generating a discharge electric field on the outer periphery of a gas supply tube, helium gas and a gas having a higher ionization voltage than helium gas are mixed and supplied to the gas supply tube, and a voltage of a predetermined frequency is applied to the electrode. Is applied to generate plasma of both gases, and then the supply of helium gas is stopped. 請求項1に記載のLFプラズマジェット生成方法において、前記ヘリウムガスより電離電圧の高いガスは、アルゴンガスであることを特徴とするLFプラズマジェット生成方法。   2. The LF plasma jet generation method according to claim 1, wherein the gas having an ionization voltage higher than that of the helium gas is an argon gas. 3. ガス供給管の外周に放電電場を発生する電極を設けたLFプラズマジェット生成装置において、電極に所定周波数の電圧を印加する電源、ヘリウムガスとヘリウムガスより電離電圧の高いガスを混合してガス供給管へ供給する混合ガス供給手段を備え、両ガスのプラズマが発生した後ヘリウムガスの供給を停止する手段を備えていることを特徴とするLFプラズマジェット生成装置。   In an LF plasma jet generator having an electrode for generating a discharge electric field on the outer periphery of a gas supply tube, a power source for applying a voltage of a predetermined frequency to the electrode, and a gas supplied by mixing helium gas and a gas having a higher ionization voltage than helium gas An LF plasma jet generating apparatus comprising a mixed gas supply means for supplying to a tube, and means for stopping the supply of helium gas after the plasma of both gases is generated. 請求項3に記載のLFプラズマジェット生成装置において、前記ヘリウムガスより電離電圧の高いガスは、アルゴンガスであることを特徴とするLFプラズマジェット生成装置。   4. The LF plasma jet generator according to claim 3, wherein the gas having an ionization voltage higher than that of the helium gas is an argon gas.
JP2009080683A 2009-03-28 2009-03-28 Method and device for generation of line feed plasma jet Pending JP2010232109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009080683A JP2010232109A (en) 2009-03-28 2009-03-28 Method and device for generation of line feed plasma jet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009080683A JP2010232109A (en) 2009-03-28 2009-03-28 Method and device for generation of line feed plasma jet

Publications (1)

Publication Number Publication Date
JP2010232109A true JP2010232109A (en) 2010-10-14

Family

ID=43047731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009080683A Pending JP2010232109A (en) 2009-03-28 2009-03-28 Method and device for generation of line feed plasma jet

Country Status (1)

Country Link
JP (1) JP2010232109A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015026057A1 (en) * 2013-08-22 2015-02-26 (주)클린팩터스 Plasma reactor
JP2018032488A (en) * 2016-08-23 2018-03-01 沖野 晃俊 Plasma transport method and plasma transport device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04334543A (en) * 1991-05-07 1992-11-20 Masuhiro Kokoma Method and apparatus for atmospheric in-pipe pressure glow plasma reaction
JPH09223595A (en) * 1995-12-14 1997-08-26 Fuji Electric Co Ltd Ignition method of high frequency inductive coupling arc plasma and plasma generator
JPH10275698A (en) * 1997-01-30 1998-10-13 Seiko Epson Corp Atmospheric pressure plasma generating method and device and surface treatment method
JPH1116696A (en) * 1997-06-25 1999-01-22 Seiko Epson Corp Plasma generating method under atmospheric pressure, its device and surface treatment method
JP2001007095A (en) * 1993-05-14 2001-01-12 Seiko Epson Corp Surface treatment method and apparatus thereof, method and apparatus for manufacturing semiconductor device, and method of manufacturing liquid crystal display
JP2001300298A (en) * 2000-04-27 2001-10-30 Fuji Electric Co Ltd Method and apparatus for decomposing sf6 gas
JP2003289067A (en) * 2002-03-28 2003-10-10 Iinuma Gauge Seisakusho:Kk Atmospheric-pressure plasma treatment device
WO2008072390A1 (en) * 2006-12-12 2008-06-19 Osaka Industrial Promotion Organization Plasma producing apparatus and method of plasma production
WO2010082561A1 (en) * 2009-01-13 2010-07-22 リバーベル株式会社 Apparatus and method for producing plasma

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04334543A (en) * 1991-05-07 1992-11-20 Masuhiro Kokoma Method and apparatus for atmospheric in-pipe pressure glow plasma reaction
JP2001007095A (en) * 1993-05-14 2001-01-12 Seiko Epson Corp Surface treatment method and apparatus thereof, method and apparatus for manufacturing semiconductor device, and method of manufacturing liquid crystal display
JPH09223595A (en) * 1995-12-14 1997-08-26 Fuji Electric Co Ltd Ignition method of high frequency inductive coupling arc plasma and plasma generator
JPH10275698A (en) * 1997-01-30 1998-10-13 Seiko Epson Corp Atmospheric pressure plasma generating method and device and surface treatment method
JPH1116696A (en) * 1997-06-25 1999-01-22 Seiko Epson Corp Plasma generating method under atmospheric pressure, its device and surface treatment method
JP2001300298A (en) * 2000-04-27 2001-10-30 Fuji Electric Co Ltd Method and apparatus for decomposing sf6 gas
JP2003289067A (en) * 2002-03-28 2003-10-10 Iinuma Gauge Seisakusho:Kk Atmospheric-pressure plasma treatment device
WO2008072390A1 (en) * 2006-12-12 2008-06-19 Osaka Industrial Promotion Organization Plasma producing apparatus and method of plasma production
WO2010082561A1 (en) * 2009-01-13 2010-07-22 リバーベル株式会社 Apparatus and method for producing plasma

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015026057A1 (en) * 2013-08-22 2015-02-26 (주)클린팩터스 Plasma reactor
JP2018032488A (en) * 2016-08-23 2018-03-01 沖野 晃俊 Plasma transport method and plasma transport device

Similar Documents

Publication Publication Date Title
JP4817407B2 (en) Plasma generating apparatus and plasma generating method
US8232729B2 (en) Plasma producing apparatus and method of plasma production
KR101435903B1 (en) Plasma ignition device, plasma ignition method, and plasma generation device
WO2012058140A3 (en) Non-thermal plasma ignition arc suppression
JP2006278058A (en) Plasma processing device
CN108322983B (en) Floating electrode reinforced dielectric barrier discharge dispersion plasma jet generating device
JP2009008100A (en) Ignition system and ignition method forming and holding corona discharge for igniting flammable gas mixture
TW200746295A (en) Etching apparatus and etching method for substrate bevel
WO2004086451A3 (en) Plasma generation using multi-step ionization
TWI400010B (en) Apparatus and method for forming a plasma
JP2019053977A (en) Atmospheric pressure plasma generation device
JP2012521627A (en) Plasma generator for directing electron flow to target
Niu et al. Atmospheric-pressure plasma jet produced by a unipolar nanosecond pulse generator in various gases
Panarin et al. Emission properties of apokamp discharge at atmospheric pressure in air, argon, and helium
JP2016130512A (en) Ignition method and ignition system
JP2010232109A (en) Method and device for generation of line feed plasma jet
Darny et al. Helical plasma propagation of microsecond plasma gun discharges
JP2009534791A (en) Multi-strike gas discharge lamp ignition apparatus and method
RU2270491C2 (en) High-frequency neutron source such as neutralizer
WO2006059275A3 (en) Method and apparatus for operating an electrical discharge device
JP3991252B2 (en) Equipment for decomposing organic substances in exhaust gas by pulse corona discharge
Seo et al. Correlation of striated discharge patterns with operating conditions in helium and argon atmospheric-pressure plasma jets
JP2001183297A (en) Inductively coupled plasma generator
US7279845B2 (en) Plasma processing method and apparatus
JP2006260948A (en) Ionizer equipped with x-ray generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130406

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140107