Nothing Special   »   [go: up one dir, main page]

JP2010232077A - Electrode for nonaqueous secondary battery and method for manufacturing the same - Google Patents

Electrode for nonaqueous secondary battery and method for manufacturing the same Download PDF

Info

Publication number
JP2010232077A
JP2010232077A JP2009079846A JP2009079846A JP2010232077A JP 2010232077 A JP2010232077 A JP 2010232077A JP 2009079846 A JP2009079846 A JP 2009079846A JP 2009079846 A JP2009079846 A JP 2009079846A JP 2010232077 A JP2010232077 A JP 2010232077A
Authority
JP
Japan
Prior art keywords
electrode
active material
secondary battery
carbon fibers
electrode mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009079846A
Other languages
Japanese (ja)
Other versions
JP5321192B2 (en
Inventor
Yuki Maehara
有貴 前原
Hideaki Ishikawa
英明 石川
Manabu Miyoshi
学 三好
Kimitoshi Murase
仁俊 村瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2009079846A priority Critical patent/JP5321192B2/en
Publication of JP2010232077A publication Critical patent/JP2010232077A/en
Application granted granted Critical
Publication of JP5321192B2 publication Critical patent/JP5321192B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode for a nonaqueous secondary battery, capable of suppressing deterioration of battery performance accompanied with pulverization of active material caused by repetition of charge and discharge, and to provide a method for manufacturing the same. <P>SOLUTION: The electrode is obtained by a preparing process of an electrode mixture for obtaining an electrode mixture by mixing an active material containing Si contained powder, composed of silicon and/or silicon compound, an electric conduction assistant composed of carbon powder containing aggregated particles with a knitting ball shape formed, by entangling carbon fibers which have an average fiber diameter of 5 nm or more to 100 nm or less and an average fiber length of 1 μm or more to 6 μm or less, and a binder, and by a coating process for coating a collector with the electrode mixture. In the electrode, there exist the active material, the electrically conducting assistants, and the binder binding the active material and the electrically conducting assistants, and the carbon fibers partially exist in an aggregated state. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、非水系二次電池に関するものであり、特に、非水系二次電池に用いられる電極に関するものである。   The present invention relates to a non-aqueous secondary battery, and particularly to an electrode used for a non-aqueous secondary battery.

リチウムイオン二次電池などの二次電池は、小型で大容量であるため、携帯電話やノートパソコンといった幅広い分野で用いられている。リチウムイオン二次電池は、リチウム(Li)を挿入および脱離することができる活物質を正極と負極にそれぞれ有する。そして、両極間に設けられた電解液内をLiイオンが移動することによって動作する。   Secondary batteries such as lithium ion secondary batteries are small and have a large capacity, and are therefore used in a wide range of fields such as mobile phones and notebook computers. A lithium ion secondary battery has an active material capable of inserting and removing lithium (Li) in each of a positive electrode and a negative electrode. And it operate | moves because Li ion moves in the electrolyte solution provided between both electrodes.

二次電池の性能は、二次電池を構成する正極、負極および電解質の材料に左右される。特に、電極を構成する電極材料の研究開発が活発に行われている。たとえば、リチウム二次電池の電極材料には、高エネルギー密度の電池が得られることから、リチウム金属またはリチウム合金を活物質として使用することが多い。また、最近では、リチウムと合金を形成することが可能な元素である珪素(Si)からなる活物質も注目されている。たとえば、特許文献1には、LiSi(0≦x≦5)を負極活物質として用いた非水電解質二次電池が記載されている。 The performance of the secondary battery depends on the materials of the positive electrode, the negative electrode, and the electrolyte constituting the secondary battery. In particular, research and development of electrode materials constituting electrodes are actively conducted. For example, lithium metal or a lithium alloy is often used as an active material for an electrode material of a lithium secondary battery because a battery having a high energy density is obtained. Recently, an active material made of silicon (Si), which is an element capable of forming an alloy with lithium, has attracted attention. For example, Patent Document 1 describes a non-aqueous electrolyte secondary battery using Li x Si (0 ≦ x ≦ 5) as a negative electrode active material.

しかしながら、LiSiのような珪素を含む活物質(珪素系活物質)は、充放電サイクルにより膨張・収縮が生じる。膨張・収縮が大きいと、電極が厚さ方向に大きく膨張することで集電体の集電性能が低下したり、電極が湾曲したり、さらには電池自体が膨れたり、といった問題が生じる。また、膨張・収縮により、電極内の導電パスが破壊されて容量が著しく低下したり、内部抵抗が増大したりする問題がある。 However, an active material containing silicon such as Li x Si (silicon-based active material) expands and contracts due to a charge / discharge cycle. If the expansion / contraction is large, the electrode expands greatly in the thickness direction, thereby causing problems such as a decrease in current collecting performance of the current collector, bending of the electrode, and further expansion of the battery itself. In addition, due to expansion / contraction, there is a problem that the conductive path in the electrode is broken and the capacity is remarkably lowered or the internal resistance is increased.

そこで、特許文献2では、金属発泡体または繊維状金属焼結体からなる集電体を用い、充放電を繰り返しても電極の膨張・収縮が大きくならないようにしている。また、特許文献3には、良好な導電パスを得るために、電極活物質、導電助材としての炭素繊維および結着剤を含み、炭素繊維が凝集しないようにこれらを混合してなるリチウム二次電池用電極が開示されている。つまり、特許文献3に記載の電極では、電極活物質と炭素繊維とが電極中で均一に分散しているため、多くの電極活物質が、一本の炭素繊維を介して導電パスを形成する。しかし、電極活物質として珪素系活物質を用いた具体例は記載されていない。   Therefore, in Patent Document 2, a current collector made of a metal foam or a fibrous metal sintered body is used so that the expansion / contraction of the electrode does not increase even when charging and discharging are repeated. Further, Patent Document 3 includes an electrode active material, carbon fiber as a conductive additive, and a binder in order to obtain a good conductive path, and a mixture of lithium two-piece formed so as not to aggregate the carbon fiber. A secondary battery electrode is disclosed. That is, in the electrode described in Patent Document 3, since the electrode active material and the carbon fiber are uniformly dispersed in the electrode, many electrode active materials form a conductive path through one carbon fiber. . However, no specific example using a silicon-based active material as an electrode active material is described.

特開平7−29602号公報Japanese Patent Laid-Open No. 7-29602 特開2003−308831号公報JP 2003-308831 A 特開2009− 16265号公報JP 2009-16265 A

ところで、珪素は、リチウムと化合物を形成することにより体積が最大で4倍程度になることが知られている。つまり、充電時と放電時との体積差が極めて大きい。そのため、珪素を含む珪素系活物質を用いると、繰り返しの充放電により活物質に大きな歪みが生じ、活物質が微粉化する。このことは、充放電試験前後のSi被膜の表面を観察することでわかる。たとえば、銅箔の表面に一般的な化学蒸着法により形成した結晶質Si薄膜(膜厚:5μm)に対して、0.2mAの定電流のもと充電終止電圧2V、放電終止電圧0Vの条件で充放電試験を行い、試験前と試験後のSi薄膜の表面を走査電子顕微鏡(SEM)で観察した結果を図10に示す。(a)が充放電前、(b)が複数回充放電後のSi薄膜の表面である。図10(b)より、Si薄膜の表面が、複数回の充放電により5〜10μm程度の同じ程度の大きさに分裂したことがわかる。分裂したそれぞれをさらに観察すると、さらに小さく分裂しかけている。このように充放電が繰り返されることで、珪素系活物質の粒子も微小に分裂して微粉化する。珪素系活物質は導電性が低いため、活物質が微粉化すると、導電パスが分断され、電気化学的な反応に関与できない部分が増加し、充放電容量が低下することがある。   By the way, it is known that the volume of silicon becomes about four times at maximum by forming a compound with lithium. That is, the volume difference between charging and discharging is extremely large. Therefore, when a silicon-based active material containing silicon is used, large distortion occurs in the active material due to repeated charging and discharging, and the active material is pulverized. This can be seen by observing the surface of the Si coating before and after the charge / discharge test. For example, with respect to a crystalline Si thin film (film thickness: 5 μm) formed on the surface of a copper foil by a general chemical vapor deposition method, a condition of a charge end voltage of 2 V and a discharge end voltage of 0 V under a constant current of 0.2 mA FIG. 10 shows the result of the charge / discharge test conducted and the surface of the Si thin film before and after the test observed with a scanning electron microscope (SEM). (A) is the surface of the Si thin film before charging and discharging, and (b) is the surface of the Si thin film after charging and discharging a plurality of times. From FIG. 10B, it can be seen that the surface of the Si thin film was split into the same size of about 5 to 10 μm by multiple times of charge and discharge. If you look at each of the splits further, it is splitting smaller. By repeating charging and discharging in this way, the silicon-based active material particles are also finely divided and pulverized. Since the silicon-based active material has low conductivity, when the active material is pulverized, the conductive path is broken, and the portion that cannot participate in the electrochemical reaction may increase, and the charge / discharge capacity may decrease.

本発明は、上記問題点に鑑み、繰り返しの充放電による活物質の微粉化にともなう電池性能の低下を抑制することができる非水系二次電池用電極およびその製造方法を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide an electrode for a non-aqueous secondary battery and a method for producing the same that can suppress a decrease in battery performance due to pulverization of an active material due to repeated charge and discharge. To do.

一般に、電極活物質、導電助材および結着剤からなる電極においては、活物質と導電助材とが均一に分散する状態が、導電性の観点から好ましいとされてきた。つまり、活物質が珪素系活物質で、導電助材が炭素繊維であっても、両者が均一に分散しているのが従来の望ましい状態である。しかし、本発明者等は、このような均一な分散状態は、珪素系活物質には不向きであることを見出した。珪素系活物質は導電性が低いため、仮に初期の状態でほとんどの活物質が炭素繊維と接触していても、充放電により微粉化することで接触しない活物質の割合が増加し、導電性が低下するからである。そして本発明者は、この思想を発展させ、以下に述べる発明を完成させるに至った。   In general, in an electrode composed of an electrode active material, a conductive additive and a binder, a state where the active material and the conductive additive are uniformly dispersed has been considered preferable from the viewpoint of conductivity. That is, even if the active material is a silicon-based active material and the conductive additive is carbon fiber, it is a conventional desirable state that both are uniformly dispersed. However, the present inventors have found that such a uniform dispersion state is not suitable for a silicon-based active material. Since the silicon-based active material has low conductivity, even if most of the active material is in contact with the carbon fiber in the initial state, the proportion of the active material that does not come into contact with the powder is increased by charging and discharging, and the conductivity is increased. This is because of a decrease. The inventor has developed this idea and completed the invention described below.

本発明の非水系二次電池用電極は、珪素および/または珪素化合物からなるSi含有粉末を含む活物質と、平均繊維径が5nm以上100nm以下で平均繊維長が1μm以上6μm以下である炭素繊維が絡み合ってなる毛玉状の凝集粒子を含む炭素粉末からなる導電助材と、結着剤と、を混合して電極合材を得る電極合材調製工程と、
前記電極合材を集電体に塗布する塗布工程と、
を経て得られ、前記活物質と前記導電助材と該活物質および該導電助材を結着する前記結着剤とを含んでなり前記炭素繊維が部分的に凝集して存在することを特徴とする。
An electrode for a non-aqueous secondary battery according to the present invention includes an active material containing Si-containing powder made of silicon and / or a silicon compound, and a carbon fiber having an average fiber diameter of 5 nm to 100 nm and an average fiber length of 1 μm to 6 μm An electrode mixture preparation step of obtaining an electrode mixture by mixing a conductive additive made of carbon powder containing fluff-shaped aggregated particles intertwined with each other, and a binder,
An application step of applying the electrode mixture to a current collector;
The carbon fiber is partially agglomerated and comprises the active material, the conductive additive, the active material, and the binder that binds the conductive additive. And

本発明の非水系二次電池用電極は、炭素繊維が絡み合ってなる「毛玉状」の凝集粒子からなる炭素粉末を導電助材として用いて得られた電極合材から作製される。電極合材調製工程では、炭素粉末とSi含有粉末とが混合されることで、炭素繊維がSi含有粉末に付着する。毛玉状の凝集粒子は、平均繊維径が5nm以上100nm以下の極細で平均繊維長が1μm以上6μm以下の比較的短い炭素繊維が絡み合ってなる。このように極細くて比較的短い炭素繊維は、非常に凝集しやすい。そのため、電極合材調製工程において、炭素粉末を他の成分と一緒に混合しても、炭素繊維は均一に分散しにくい。したがって、炭素繊維は、電極合材さらには塗布工程後に得られる電極の活物質層において、部分的に凝集して存在する。その結果、比較的大きな粒径のSi含有粉末は、凝集粒子からほつれた炭素繊維に絡まって存在するが、小さな粒径のSi含有粉末、あるいは充放電により微粉化したSi含有粉末は、炭素繊維が凝集して存在する部分に捕らえられる。特に、上記の範囲の平均繊維径および平均繊維長の炭素繊維であれば、微粉化したSi含有粉末を保持するのに良好な網目の大きさで凝集する。したがって、Si含有粉末は、その粒径にかかわらず炭素繊維に保持され、良好な導電パスを形成する。そして、繰り返しの充放電による活物質の微粉化にともなう電池性能の低下を抑制される。   The electrode for a non-aqueous secondary battery of the present invention is produced from an electrode mixture obtained by using, as a conductive additive, carbon powder made of “flooded” aggregated particles in which carbon fibers are intertwined. In the electrode mixture preparation step, carbon fibers adhere to the Si-containing powder by mixing the carbon powder and the Si-containing powder. The flocculated aggregated particles are formed by entanglement of ultrafine carbon fibers having an average fiber diameter of 5 nm to 100 nm and relatively short carbon fibers having an average fiber length of 1 μm to 6 μm. Such ultrafine and relatively short carbon fibers are very likely to agglomerate. Therefore, even if carbon powder is mixed with other components in the electrode mixture preparation step, the carbon fibers are difficult to uniformly disperse. Therefore, the carbon fibers are partially aggregated and present in the electrode mixture and further in the active material layer of the electrode obtained after the coating step. As a result, the Si-containing powder having a relatively large particle size is entangled with the carbon fibers loosened from the aggregated particles, but the Si-containing powder having a small particle size or finely pulverized by charging / discharging is a carbon fiber. Are captured in the part where they coagulate. In particular, carbon fibers having an average fiber diameter and an average fiber length in the above-mentioned range are aggregated with a good mesh size to hold the finely divided Si-containing powder. Therefore, the Si-containing powder is retained by the carbon fiber regardless of its particle size, and forms a good conductive path. And the fall of the battery performance accompanying the pulverization of the active material by repeated charging / discharging is suppressed.

また、本発明は、非水系二次電池用電極の製造方法として捉えることもできる。すなわち本発明の非水系二次電池用電極の製造方法は、珪素および/または珪素化合物からなるSi含有粉末を含む活物質と、平均繊維径が5nm以上100nm以下で平均繊維長が1μm以上6μm以下である炭素繊維が絡み合ってなる毛玉状の凝集粒子を含む炭素粉末からなる導電助材と、結着剤と、を混合して電極合材を得る電極合材調製工程と、
前記電極合材を集電体に塗布する塗布工程と、
を含み、前記活物質と前記導電助材と該活物質および該導電助材を結着する前記結着剤とを含んでなり前記炭素繊維が部分的に凝集して存在する非水系二次電池用電極を得ることを特徴とする。
Moreover, this invention can also be grasped | ascertained as a manufacturing method of the electrode for nonaqueous secondary batteries. That is, the method for producing an electrode for a non-aqueous secondary battery of the present invention includes an active material containing Si and / or a silicon-containing powder composed of a silicon compound, an average fiber diameter of 5 nm to 100 nm, and an average fiber length of 1 μm to 6 μm. An electrode mixture preparation step of obtaining an electrode mixture by mixing a conductive additive made of carbon powder containing fluffy aggregated particles formed by intertwining carbon fibers, and a binder,
An application step of applying the electrode mixture to a current collector;
A non-aqueous secondary battery comprising the active material, the conductive additive, the active material, and the binder that binds the conductive additive, wherein the carbon fibers are partially aggregated An electrode for use is obtained.

本発明の非水系二次電池用電極に好適な炭素粉末を示す図面代用写真であって、凝集粒子からなる炭素粉末を観察した低倍率の顕微鏡写真である。It is a drawing substitute photograph which shows the carbon powder suitable for the electrode for non-aqueous secondary batteries of this invention, Comprising: It is the low magnification microscope picture which observed the carbon powder which consists of aggregated particles. 本発明の非水系二次電池用電極に好適な炭素粉末を示す図面代用写真であって、凝集粒子を詳細に観察した高倍率の顕微鏡写真である。It is a drawing substitute photograph which shows the carbon powder suitable for the electrode for non-aqueous secondary batteries of this invention, Comprising: It is the microscope picture of the high magnification which observed the aggregated particle in detail. ラミネートセルの極板群の構成を示す説明図である。It is explanatory drawing which shows the structure of the electrode group of a laminate cell. 電極#C1(比較例)の活物質層の表面の走査型電子顕微鏡(SEM)像である。It is a scanning electron microscope (SEM) image of the surface of the active material layer of electrode # C1 (comparative example). 電極#C2(比較例)の活物質層の表面のSEM像である。It is a SEM image of the surface of the active material layer of electrode # C2 (comparative example). 電極#C3(比較例)の活物質層の表面のSEM像である。It is a SEM image of the surface of the active material layer of electrode # C3 (comparative example). 電極#01(実施例)の活物質層の表面のSEM像である。It is a SEM image of the surface of the active material layer of electrode # 01 (Example). 電極#01(実施例)の活物質層の表面を高倍率で観察したSEM像である。It is the SEM image which observed the surface of the active material layer of electrode # 01 (Example) at high magnification. 電極#01を正極としたラミネートセル(実施例)および電極#C0を正極としたラミネートセル(比較例)のサイクル特性を示すグラフであって、サイクル数に対する充電時の電流容量を示す。It is a graph which shows the cycle characteristic of the laminate cell (Example) which used the electrode # 01 as the positive electrode, and the laminate cell (Comparative example) which used the electrode # C0 as the positive electrode, Comprising: The current capacity at the time of charge with respect to the cycle number is shown. 充放電試験前後のSi薄膜の表面を観察したSEM像であって、(a)は充放電前、(b)は充放電後のSi薄膜の表面を示す。It is the SEM image which observed the surface of the Si thin film before and after a charging / discharging test, (a) is before charging / discharging, (b) shows the surface of the Si thin film after charging / discharging.

以下に、本発明の非水系二次電池用電極およびその製造方法を実施するための最良の形態を、図を用いて説明する。なお、特に断らない限り、本明細書に記載された数値範囲「x〜y」は、下限xおよび上限yをその範囲に含む。そして、本明細書に記載の上限値および下限値を任意に組み合わせることで数値範囲を構成し得る。   The best mode for carrying out the electrode for a non-aqueous secondary battery and the method for producing the same according to the present invention will be described below with reference to the drawings. Unless otherwise specified, the numerical range “x to y” described in this specification includes the lower limit x and the upper limit y. And a numerical range can be comprised by combining arbitrarily the upper limit value and lower limit value as described in this specification.

本発明の非水系二次電池用電極は、活物質、導電助材および両者を結着する結着剤を含んでなり、主として電極合材調製工程および塗布工程を経て得られる。以下に、各工程について説明する。   The electrode for a non-aqueous secondary battery of the present invention comprises an active material, a conductive additive and a binder that binds both, and is obtained mainly through an electrode mixture preparation step and a coating step. Below, each process is demonstrated.

<1.電極合材調製工程>
電極合材調製工程は、活物質、導電助材および結着剤を混合して電極合材を得る工程である。以下に、電極合材調製工程において混合される原料としての活物質、導電助材および結着剤を説明する。
<1. Electrode compound preparation process>
The electrode mixture preparation step is a step of obtaining an electrode mixture by mixing an active material, a conductive additive and a binder. Below, the active material, the conductive support material, and the binder as raw materials to be mixed in the electrode mixture preparation step will be described.

(活物質)
活物質は、珪素および/または珪素化合物からなるSi含有粉末を含む。Si含有粉末としては、たとえば、Siの単体、Siを含む酸化物、Siを含む窒化物、およびSiを含む合金などの粉末が挙げられる。合金であれば、Ti、Fe、Ni、Mo、Mn、Cu、Alよりなる群から選択される少なくとも1種を合金元素として含むとよい。なお、Siは、結晶質であってもよいし、非晶質であってもよい。これらのSi含有粉末は、当該分野で公知の方法を用いて製造することができる。
(Active material)
The active material includes Si-containing powder made of silicon and / or a silicon compound. Examples of the Si-containing powder include powders such as a simple substance of Si, an oxide containing Si, a nitride containing Si, and an alloy containing Si. If it is an alloy, it is good to contain at least 1 sort (s) selected from the group which consists of Ti, Fe, Ni, Mo, Mn, Cu, and Al as an alloy element. Si may be crystalline or amorphous. These Si-containing powders can be produced using methods known in the art.

Si含有粉末の平均粒径は、0.01〜10μmさらには0.01〜5μmであるのが好ましい。そのため、電極合材調製工程に先立ち、Si含有粉末を10μm以下さらには5μm以下に分級(篩い分け)しておくとよい。   The average particle size of the Si-containing powder is preferably 0.01 to 10 μm, more preferably 0.01 to 5 μm. Therefore, prior to the electrode mixture preparation step, the Si-containing powder may be classified (screened) to 10 μm or less, further 5 μm or less.

また、活物質は、Si含有粉末を主成分とし、既に公知の他の活物質を添加して用いてもよい。具体的には、黒鉛、Sn、Al、Ag等である。これらのうち1種または2種以上を混合して用いることができる。   Further, the active material may contain Si-containing powder as a main component, and other known active materials may be added and used. Specifically, graphite, Sn, Al, Ag or the like. Among these, one kind or a mixture of two or more kinds can be used.

(導電助材)
導電助材は、炭素繊維が絡み合ってなる毛玉状の凝集粒子を含む炭素粉末からなる。炭素粉末は、凝集粒子を主たる炭素粉末とし、さらに、カーボンブラック、アセチレンブラック、ケッチェンブラック、黒鉛などの炭素粉末を添加して用いてもよい。また、導電助材として非水系二次電池用電極で一般的に用いられている金属、導電性高分子などの炭素以外の粉末を導電助材に添加してもよい。これらの粉末は、1種を単独でまたは2種以上を混合して用いるとよい。
(Conductive aid)
The conductive aid is made of carbon powder containing fluffy aggregated particles in which carbon fibers are intertwined. The carbon powder is mainly composed of aggregated particles, and carbon powder such as carbon black, acetylene black, ketjen black, and graphite may be added and used. Moreover, you may add powder other than carbon, such as a metal generally used with the electrode for non-aqueous secondary batteries as a conductive support material, and a conductive polymer to a conductive support material. These powders may be used alone or in combination of two or more.

炭素繊維は、平均繊維径が5〜100nmで平均繊維長が1〜6μmであるのが好ましい。このように極細くて比較的短い炭素繊維は、凝集しやすい。そのため、混合しても毛玉状の凝集粒子はほぐれにくく、混合後も凝集した炭素繊維が残存する。そして、繊維径が小さく繊維長が短い炭素繊維が凝集して絡み合っていると、Si含有粉末が微粉化しても、微粉末は炭素繊維が絡み合ってなる微小な網目に捕らえられて導電性が保たれ、また、凝集した炭素繊維の内部に入り込むため微粉末の脱落も防止される。このような凝集を形成する炭素繊維の平均繊維径は、50nm以下さらには20nm以下であるのが好ましい。また、平均繊維径の下限に特に限定はないが、5nm以上さらには10nm以上である。特に好ましい炭素繊維の平均繊維径は、13〜18nmである。炭素繊維の平均繊維長は、5.5μm以下さらには5μm以下であるのが好ましい。また、平均繊維長の下限に特に限定はないが、1.5μm以上さらには2μm以上である。特に好ましい炭素繊維の平均繊維長は、3〜5μmである。なお、本明細書において、炭素繊維の「平均繊維径」および「平均繊維長」は、顕微鏡写真の複数箇所を測定して算出される数平均繊維径および数平均繊維長である。   The carbon fiber preferably has an average fiber diameter of 5 to 100 nm and an average fiber length of 1 to 6 μm. Such ultra-fine and relatively short carbon fibers tend to aggregate. Therefore, even if they are mixed, the flocculated aggregated particles are not easily loosened, and the aggregated carbon fibers remain after mixing. If carbon fibers with a small fiber diameter and a short fiber length are aggregated and entangled, even if the Si-containing powder is pulverized, the fine powder is caught in a fine mesh formed by the entanglement of carbon fibers and the conductivity is maintained. In addition, the fine powder is prevented from falling off because it enters the agglomerated carbon fiber. The average fiber diameter of the carbon fibers forming such agglomeration is preferably 50 nm or less, more preferably 20 nm or less. The lower limit of the average fiber diameter is not particularly limited, but is 5 nm or more, further 10 nm or more. A particularly preferable average fiber diameter of the carbon fibers is 13 to 18 nm. The average fiber length of the carbon fibers is preferably 5.5 μm or less, more preferably 5 μm or less. Moreover, although there is no limitation in particular in the minimum of average fiber length, it is 1.5 micrometers or more, Furthermore, it is 2 micrometers or more. The average fiber length of particularly preferable carbon fibers is 3 to 5 μm. In the present specification, “average fiber diameter” and “average fiber length” of a carbon fiber are a number average fiber diameter and a number average fiber length calculated by measuring a plurality of locations in a micrograph.

また、微粉化したSi含有粉末を良好に保持できる程度に凝集することができる炭素繊維は、アスペクト比(平均繊維長/平均繊維径)により規定することもできる。炭素繊維のアスペクト比は、10以上、100以上さらには200以上であるのが好ましい。また、アスペクト比の上限に特に限定はないが、1200以下さらには500以下であるのが好ましい。特に好ましいアスペクト比は、250〜300である。   Further, the carbon fibers that can be aggregated to such an extent that the finely divided Si-containing powder can be satisfactorily retained can also be defined by the aspect ratio (average fiber length / average fiber diameter). The aspect ratio of the carbon fiber is preferably 10 or more, 100 or more, and more preferably 200 or more. The upper limit of the aspect ratio is not particularly limited, but is preferably 1200 or less, more preferably 500 or less. A particularly preferred aspect ratio is 250 to 300.

凝集粒子の平均粒径は、1μm以上1000μm以下さらには300μm以上800μm以下であるのが好ましい。凝集粒子の平均粒径が1000μmを超えると、後述の塗布工程において、電極表面に凹凸が発生しやすくなり均一な塗布厚となりにくいため好ましくない。なお、本明細書において「凝集粒子の平均粒径」とは、炭素粉末を顕微鏡観察して得られる顕微鏡写真において複数の凝集粒子を2本の平行線で挟んだとき、その平行線の間隔の最大値を測定して算出される数平均値とする。   The average particle diameter of the aggregated particles is preferably 1 μm or more and 1000 μm or less, and more preferably 300 μm or more and 800 μm or less. When the average particle diameter of the aggregated particles exceeds 1000 μm, it is not preferable because unevenness is likely to occur on the electrode surface in the coating process described later, and it is difficult to achieve a uniform coating thickness. In the present specification, the “average particle diameter of the aggregated particles” means the interval between the parallel lines when a plurality of aggregated particles are sandwiched between two parallel lines in a micrograph obtained by observing the carbon powder under a microscope. The number average value calculated by measuring the maximum value is used.

1つの凝集粒子は、1000本以上2兆本以下さらには400億本以上1兆本以下の炭素繊維からなるのが好ましい。なお、1つの凝集粒子を構成する炭素繊維の本数は、[実施例]の欄で詳説するが、凝集粒子の顕微鏡写真より算出が可能である。炭素繊維の本数が1000本未満では、凝集粒子の炭素繊維がほぐれやすく、電極合材中さらには電極中で炭素繊維が凝集しにくい。また、炭素繊維の本数が2兆本を超えると、凝集粒子の粒径が大きくなりすぎるため好ましくない。   One aggregated particle is preferably composed of 1000 or more and 2 trillion or less, more preferably 40 billion or more and 1 trillion or less carbon fibers. The number of carbon fibers constituting one aggregated particle is described in detail in the column of [Example], but can be calculated from a micrograph of the aggregated particle. When the number of carbon fibers is less than 1000, the carbon fibers of the aggregated particles are easily loosened, and the carbon fibers are less likely to aggregate in the electrode mixture and further in the electrode. Further, if the number of carbon fibers exceeds 2 trillion, it is not preferable because the particle size of the aggregated particles becomes too large.

以上説明した凝集粒子からなる炭素粉末は、当該分野で公知の方法を用いて製造することができる。具体的には、気相法により作製した気相成長炭素繊維を造粒後、必要に応じて圧縮成形することで得られる。また、市販の炭素繊維造粒物も使用可能であり、たとえば、昭和電工株式会社製カーボンファイバーVGCF−X(繊維径:15nm、繊維長:4μm、嵩密度:0.1g/cm、毛玉状)が好適である。 The carbon powder composed of the agglomerated particles described above can be produced using a method known in the art. Specifically, it is obtained by granulating a vapor-grown carbon fiber produced by a vapor phase method and then compression-molding it as necessary. Commercially available carbon fiber granules can also be used. For example, carbon fiber VGCF-X (fiber diameter: 15 nm, fiber length: 4 μm, bulk density: 0.1 g / cm 3 , pill-shaped) manufactured by Showa Denko KK Is preferred.

(結着剤)
結着剤は、特に限定されるものではなく、たとえば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂などの既に公知のものを用いればよい。また、ポリイミド−シリカ、ポリアミドイミド−シリカ、エポキシ−シリカ、アクリル−シリカ、フェノール−シリカ、ポリウレタン−シリカ等のシリカハイブリッド樹脂も好適である。これらの結着剤は、液状であればそのままの状態で、あるいは、水またはN−メチル−2−ピロリドンなどの有機溶媒に溶解または分散させた状態で、活物質および導電助材と混合すればよい。
(Binder)
The binder is not particularly limited, and for example, a known material such as a fluorine-containing resin such as polytetrafluoroethylene or polyvinylidene fluoride, or a thermoplastic resin such as polypropylene or polyethylene may be used. Also suitable are silica hybrid resins such as polyimide-silica, polyamide-imide-silica, epoxy-silica, acrylic-silica, phenol-silica, polyurethane-silica. These binders can be used as they are in a liquid state or mixed with an active material and a conductive aid in a state dissolved or dispersed in water or an organic solvent such as N-methyl-2-pyrrolidone. Good.

(その他)
以上、活物質、導電助材および結着剤について説明したが、それぞれの配合割合に特に限定はなく、活物質の種類や導電助材に添加される添加粉末の種類や量に応じて決定するのがよい。たとえば、電極合材全体を100質量%としたとき、66〜98質量%さらには85〜89質量%の活物質および0.1〜20質量%さらには1〜5質量%の導電助材を含み、残部が主として結着剤からなるとよい。また、必要に応じて、電極合材に適量の溶剤を加え、粘度を調整してもよい。溶剤の添加量は、得られる電極合材が、集電体に塗布するのに適した粘度、具体的には、室温(25℃)における回転式(B型)粘度計による値で、3000〜5000mPa・sになるように選定することが望ましい。具体的な溶媒としては、N−メチル−2−ピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルホルムアミド、ジメチルアミン、アセトン、シクロヘキサノン等が挙げられ、結着剤の種類に応じて適宜選択するとよい。
(Other)
As described above, the active material, the conductive additive, and the binder have been described. However, there are no particular limitations on the mixing ratio of each, and it is determined according to the type of active material and the type and amount of additive powder added to the conductive additive. It is good. For example, when the total electrode mixture is 100% by mass, it contains 66 to 98% by mass, further 85 to 89% by mass of active material, and 0.1 to 20% by mass and further 1 to 5% by mass of conductive additive. The remainder is preferably mainly composed of a binder. If necessary, an appropriate amount of solvent may be added to the electrode mixture to adjust the viscosity. The amount of the solvent added is a viscosity suitable for the electrode mixture obtained to be applied to the current collector, specifically, a value by a rotary (B-type) viscometer at room temperature (25 ° C.), 3000 to It is desirable to select so as to be 5000 mPa · s. Specific examples of the solvent include N-methyl-2-pyrrolidone (NMP), dimethylformamide, dimethylacetamide, methylformamide, dimethylamine, acetone, and cyclohexanone, and may be appropriately selected depending on the type of the binder. .

また、電極合材の混合には、プラネタリーミキサー、脱泡ニーダー、ボールミル、ペイントシェーカー、振動ミル、ライカイ機、アジテーターミル等の一般的な混合装置を使用すればよい。混合条件に特に限定はないが、1000〜20000rpmさらには2000〜10000rpmで0.1〜20分間さらには0.5〜9分間の混合を1回以上行うと、炭素繊維が適度に凝集して存在する電極合材が容易に得られる。   Moreover, what is necessary is just to use general mixing apparatuses, such as a planetary mixer, a defoaming kneader, a ball mill, a paint shaker, a vibration mill, a reiki machine, an agitator mill, for mixing of electrode mixture. There are no particular limitations on the mixing conditions, but carbon fibers are appropriately aggregated and present once mixing is performed at 1000 to 20000 rpm, further 2000 to 10000 rpm for 0.1 to 20 minutes, and further 0.5 to 9 minutes. The electrode mixture to be obtained is easily obtained.

<2.塗布工程>
本発明の非水系二次電池用電極は、上記の活物質および導電助材が結着剤で結着されてなる活物質層が、集電体に付着してなるのが一般的である。そのため、塗布工程においては、電極合材を集電体に塗布する。集電体は、金属製のメッシュや金属箔を用いることができる。本発明を正極に用いるのであればアルミニウム、ニッケル、ステンレス鋼などの集電体、負極であればステンレス鋼、チタン、ニッケル、アルミニウム、銅などの金属材料または導電性樹脂からなる多孔性または無孔の導電性基板が挙げられる。多孔性導電性基板としては、たとえば、メッシュ体、ネット体、パンチングシート、ラス体、多孔質体、発泡体、不織布などの繊維群成形体、などが挙げられる。無孔の導電性基板としては、たとえば、箔、シート、フィルムなどが挙げられる。塗布方法としては、ドクターブレード、バーコーターなどの従来から公知の方法を用いればよい。
<2. Application process>
In the electrode for a non-aqueous secondary battery of the present invention, an active material layer obtained by binding the above active material and conductive additive with a binder is generally attached to a current collector. Therefore, in the application step, the electrode mixture is applied to the current collector. A metal mesh or metal foil can be used for the current collector. If the present invention is used for the positive electrode, a current collector such as aluminum, nickel, and stainless steel; if it is the negative electrode, porous or non-porous made of a metal material such as stainless steel, titanium, nickel, aluminum, or copper, or a conductive resin These conductive substrates can be mentioned. Examples of the porous conductive substrate include a mesh body, a net body, a punching sheet, a lath body, a porous body, a foamed body, a fiber group molded body such as a nonwoven fabric, and the like. Examples of the non-porous conductive substrate include a foil, a sheet, and a film. As a coating method, a conventionally known method such as a doctor blade or a bar coater may be used.

<3.付加的な工程>
なお、用いる結着剤の種類によっては、電極合材を塗布した集電体は、公知の方法で乾燥させた後、必要に応じて加熱して結着剤を硬化させる。すなわち、塗布工程後の電極合材を加熱して結着剤を硬化させる加熱工程を備えてもよい。また、乾燥または加熱の後、さらに、ロールプレス、加圧プレスなどの公知の方法により、所望の厚み、密度になるように成形してもよい。塗布工程後の電極は、シート状の電極であって、作製する非水系二次電池の仕様に応じた寸法に裁断して、電池用電極として用いられる。
<3. Additional steps>
Depending on the type of binder used, the current collector coated with the electrode mixture is dried by a known method and then heated as necessary to cure the binder. That is, you may provide the heating process of heating the electrode compound material after an application | coating process, and hardening a binder. Further, after drying or heating, it may be further molded by a known method such as a roll press or a pressure press so as to have a desired thickness and density. The electrode after the coating step is a sheet-like electrode, and is cut into dimensions according to the specifications of the non-aqueous secondary battery to be produced and used as a battery electrode.

<非水系二次電池用電極の構成>
上記の各工程を経て得られる本発明の非水系二次電池用電極は、活物質と導電助材と該活物質および該導電助材を結着する結着剤とを含んでなり、炭素繊維が部分的に凝集して存在する。上記の範囲の繊維径および繊維長をもつ炭素繊維が絡み合ってなる毛玉状の凝集粒子からなる炭素粉末を導電助材として用い、他の成分と混合することで、電極合材において炭素繊維は自ずと凝集する。このような電極合材を用いて作製される電極においても、凝集した炭素繊維が存在する。
<Configuration of electrode for non-aqueous secondary battery>
The electrode for a non-aqueous secondary battery of the present invention obtained through the above steps comprises an active material, a conductive additive, a binder for binding the active material and the conductive additive, and a carbon fiber. Are partially agglomerated. By using carbon powder consisting of fluffy aggregated particles in which carbon fibers having a fiber diameter and fiber length in the above range are intertwined as a conductive additive and mixing with other components, the carbon fibers are naturally aggregated in the electrode mixture. To do. Even in an electrode produced using such an electrode mixture, aggregated carbon fibers exist.

炭素繊維が凝集する状態を数値により規定するのは困難であるが、炭素繊維が凝集する密度は、100〜1500本/μmさらには500〜1000本/μmであるのが好ましい。なお、密度は、顕微鏡写真の複数箇所を測定して算出することができるが、測定方法については[実施例]の欄で説明する。 Although it is difficult to define the state in which the carbon fibers are aggregated by numerical values, the density at which the carbon fibers are aggregated is preferably 100 to 1500 / μm 3, more preferably 500 to 1000 / μm 3 . The density can be calculated by measuring a plurality of locations in the micrograph, and the measurement method will be described in the [Example] column.

そして、電極の作製直後は、炭素繊維には、凝集して存在する箇所と、一部がほつれた箇所と、が存在する。Si含有粉末は、主としてほつれた炭素繊維と絡まり合って互いに接触している。充放電によりSi含有粉末が微粉化すると、微粉化した粒子は凝集した炭素繊維の微小な網目に捕らえられたり、凝集している炭素繊維の内部に入り込んだりする。そのため、微粉化した粒子は脱落が抑制されるとともに、凝集部位において炭素繊維と接触して導電パスを形成する。   Immediately after the production of the electrode, the carbon fiber has an aggregated portion and a partially frayed portion. The Si-containing powders are intertwined with the frayed carbon fibers and in contact with each other. When the Si-containing powder is pulverized by charging / discharging, the pulverized particles are trapped in the fine mesh of aggregated carbon fibers or enter the interior of the aggregated carbon fibers. Therefore, the pulverized particles are prevented from falling off, and form a conductive path by contacting the carbon fiber at the aggregation site.

<非水系二次電池用電極を備える電池>
本発明の非水系二次電池用電極を備える非水系二次電池では、一般の二次電池と同様、正極および負極の他に、正極と負極の間に挟装されるセパレータ、非水電解液を備える。セパレータは、正極と負極とを分離し電解液を保持するものであり、ポリエチレン、ポリプロピレン等の薄い微多孔膜を用いることができる。また非水電解液は、有機溶媒に電解質であるアルカリ金属塩を溶解させたもので、有機溶媒としては、非プロトン性有機溶媒、たとえばエチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の1種またはこれらの2種以上の混合液を用いることができる。また、溶解させる電解質としては、LiPF、LiBF、LiAsF、LiI、LiClO、NaPF、NaBF、NaAsF等の有機溶媒に可溶なアルカリ金属塩を用いることができる。
<Battery provided with electrode for non-aqueous secondary battery>
In the non-aqueous secondary battery including the electrode for the non-aqueous secondary battery of the present invention, in addition to the positive electrode and the negative electrode, a separator sandwiched between the positive electrode and the negative electrode, a non-aqueous electrolyte, as in a general secondary battery Is provided. The separator separates the positive electrode and the negative electrode and holds the electrolytic solution, and a thin microporous film such as polyethylene or polypropylene can be used. The non-aqueous electrolyte is obtained by dissolving an alkali metal salt as an electrolyte in an organic solvent. Examples of the organic solvent include aprotic organic solvents such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate. Or a mixture of two or more thereof can be used. As the electrolyte to be dissolved, an alkali metal salt soluble in an organic solvent such as LiPF 6 , LiBF 4 , LiAsF 6 , LiI, LiClO 4 , NaPF 6 , NaBF 4 , NaAsF 6, or the like can be used.

なお、本発明の非水系二次電池用電極は、正極としても負極としても使用可能である。負極として用いる場合には、たとえば、リチウム含有遷移金属化合物などを活物質とする電極を正極とし、非水系二次電池を構成すればよい。一方、正極として用いる場合には、たとえば、Li、Na等のアルカリ金属、アルカリ金属の合金などを活物質とする電極を負極とし、非水系二次電池を構成すればよい。   In addition, the electrode for non-aqueous secondary batteries of this invention can be used as a positive electrode or a negative electrode. When used as a negative electrode, for example, an electrode using a lithium-containing transition metal compound or the like as an active material may be used as a positive electrode to constitute a non-aqueous secondary battery. On the other hand, when used as a positive electrode, for example, an electrode using an active material such as an alkali metal such as Li or Na, an alloy of an alkali metal, or the like may be used as a negative electrode to constitute a non-aqueous secondary battery.

非水系二次電池の形状に特に限定はなく、円筒型、積層型、コイン型等、種々の形状を採用することができる。いずれの形状を採る場合であっても、正極および負極にセパレータを挟装させ電極体とし、正極集電体および負極集電体から外部に通ずる正極端子および負極端子までの間を、集電用リード等を用いて接続した後、この電極体を非水電解液とともに電池ケースに密閉して電池となる。   The shape of the non-aqueous secondary battery is not particularly limited, and various shapes such as a cylindrical shape, a stacked shape, and a coin shape can be employed. Regardless of the shape, a separator is sandwiched between the positive electrode and the negative electrode to form an electrode body, and the space between the positive electrode current collector and the negative electrode current collector to the positive electrode terminal and the negative electrode terminal is used for current collection. After connecting using a lead or the like, the electrode body is sealed in a battery case together with a non-aqueous electrolyte to form a battery.

以上、本発明の非水系二次電池用電極およびその製造方法の実施形態を説明したが、本発明は、上記実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。   As mentioned above, although embodiment of the electrode for non-aqueous secondary batteries of this invention and its manufacturing method was described, this invention is not limited to the said embodiment. Without departing from the scope of the present invention, the present invention can be implemented in various forms with modifications and improvements that can be made by those skilled in the art.

以下に、本発明の非水系二次電池用電極およびその製造方法の実施例を挙げて、本発明を具体的に説明する。   Hereinafter, the present invention will be described in detail by way of examples of the nonaqueous secondary battery electrode and the method for producing the same of the present invention.

<リチウムイオン二次電池用電極の作製>
活物質として、純度99.9%以上の市販のSi粉末(福田金属製、粒径10μm以下)を準備た。導電助材として、5種類の炭素粉末、すなわち、ケッチェンブラック(KB,平均粒径:30〜50nm)および4種類の炭素繊維(昭和電工株式会社製カーボンファイバーVGCF、VGCF−H、VGCF−SおよびVGCF−X:いずれも毛玉状)を準備した。また、活物質および導電助材を結着する結着剤として、ポリイミド−シリカハイブリッド樹脂バインダを準備した。
<Preparation of electrode for lithium ion secondary battery>
As an active material, a commercially available Si powder (made by Fukuda Metals, particle size of 10 μm or less) having a purity of 99.9% or more was prepared. As conductive aids, five types of carbon powder, that is, ketjen black (KB, average particle size: 30 to 50 nm) and four types of carbon fibers (Showa Denko Co., Ltd. carbon fibers VGCF, VGCF-H, VGCF-S) And VGCF-X: both pills were prepared. Moreover, a polyimide-silica hybrid resin binder was prepared as a binder for binding the active material and the conductive additive.

炭素繊維の数平均繊維径(nm)、数平均繊維長(μm)および嵩密度(g/cm)を表1に示す。なお、表1には、公称値を記載しているが、たとえば、平均繊維径は、走査型電子顕微鏡(SEM)を用いて炭素繊維を観察したSEM像(たとえば図2)から、複数箇所の繊維径を測定し、それらを数平均して求めることが可能である。また、平均繊維長は、炭素繊維をエタノールに分散させてからSEMで観察したSEM像から、複数本について画像処理により繊維長を測定し、それらを数平均して求めることが可能である。 Table 1 shows the number average fiber diameter (nm), number average fiber length (μm), and bulk density (g / cm 3 ) of the carbon fibers. In addition, although the nominal value is described in Table 1, for example, the average fiber diameter is determined from the SEM image (for example, FIG. 2) obtained by observing the carbon fiber using a scanning electron microscope (SEM). It is possible to measure the fiber diameter and obtain the number average of them. The average fiber length can be obtained by measuring the fiber length by image processing for a plurality of SEM images obtained by dispersing carbon fibers in ethanol and then observing with SEM, and calculating the number average of them.

また、VGCF−XをSEMにより観察した結果を、図1および図2に示す。図1より、VGCF−Xの凝集粒子の平均粒径は600μmであった。なお、平均粒径は、炭素粉末を観察したSEM像(たとえば図1)から、10個程度の凝集粒子の粒径(凝集粒子を2本の平行線で挟んだときの平行線の間隔の最大値)を測定し、それらを数平均して求めた。   Moreover, the result of having observed VGCF-X by SEM is shown in FIG. 1 and FIG. From FIG. 1, the average particle diameter of the aggregated particles of VGCF-X was 600 μm. In addition, the average particle diameter is determined based on the SEM image (for example, FIG. 1) obtained by observing the carbon powder. Value) was measured, and they were obtained by number averaging.

また、図2から、1つの凝集粒子に含まれる炭素繊維の本数を求めた。図2のSEM像では、凝集粒子の表面から75nmまでの間に存在する炭素繊維が観察されていると仮定した。なお、75nmとしたのは、凝集する炭素繊維のうち最表面において隣接する炭素繊維の間隔を測定したところ、最も長くて150nmであったためである。最表面よりも奥で観察された炭素繊維は、最表面から75nm(すなわち150nmの半分の長さ)までに存在すると仮定した。図2のSEM像の□(点線)で囲まれた内には、それぞれが独立した炭素繊維であると仮定して、50本の炭素繊維が観察された。500nm×500nm×75nmの範囲に50本の炭素繊維があることから、1μmあたりの炭素繊維の密度は、50/(0.5×0.5×0.075)≒2700[本/μm]である。凝集粒子の平均粒径が600μmであったことから、凝集粒子を球形と仮定して、その体積は1.1×10μmである。したがって、1つの凝集粒子に含まれる炭素繊維の本数は、1.1×10×2700=3000億[本]である。 Further, from FIG. 2, the number of carbon fibers contained in one aggregated particle was obtained. In the SEM image of FIG. 2, it was assumed that carbon fibers existing between the surface of the aggregated particles and 75 nm were observed. The reason why the thickness was set to 75 nm is that the distance between adjacent carbon fibers on the outermost surface of the aggregated carbon fibers was measured to be 150 nm at the longest. The carbon fibers observed deeper than the outermost surface were assumed to exist from the outermost surface to 75 nm (that is, half the length of 150 nm). 50 carbon fibers were observed in the SEM image of FIG. 2 surrounded by □ (dotted line), assuming that each was an independent carbon fiber. Since there are 50 carbon fibers in the range of 500 nm × 500 nm × 75 nm, the density of carbon fibers per 1 μm 3 is 50 / (0.5 × 0.5 × 0.075) ≈2700 [lines / μm 3 ]. Since the average particle diameter of the aggregated particles was 600 μm, assuming that the aggregated particles are spherical, the volume is 1.1 × 10 8 μm 3 . Therefore, the number of carbon fibers contained in one aggregated particle is 1.1 × 10 8 × 2700 = 300 billion [pieces].

所定の量に秤量した上記Si粉末、上記5種類の炭素粉末のうちのいずれか1つおよび上記の結着剤を混合して、電極合材を調製した。これらの配合割合は、Si粉末:85質量%、炭素粉末:5質量%、結着剤:10質量%とした。なお、混合は、シンキー社製「あわとり練太郎」ARE−250型またはプライミクス社製「T.K.フィルミックス」30−25型を用いた。「あわとり練太郎」を用いる場合は2000rpmで8分間の混合を数回行った。「T.K.フィルミックス」を用いる場合は、10000rpmで30秒間の混合を数回行った。   An electrode mixture was prepared by mixing the Si powder weighed in a predetermined amount, any one of the five types of carbon powders, and the binder. These blending ratios were set to Si powder: 85% by mass, carbon powder: 5% by mass, and binder: 10% by mass. In addition, “Awatori Nertaro” ARE-250 type manufactured by Shinky Corporation or “TK Fillmix” 30-25 type manufactured by Primix Co., Ltd. was used for mixing. When “Awatori Neritaro” was used, mixing was performed several times at 2000 rpm for 8 minutes. When using “TK Fillmix”, mixing for 30 seconds at 10000 rpm was performed several times.

次に、この電極合材を厚さ18μmの銅箔の表面に80μmの厚さとなるように塗布し、乾燥後プレスした後、所定の形状に打ち抜いた。その後、真空炉で所定の温度および時間で加熱して結着剤を硬化させ、5種類の電極を得た。得られた電極の構成を、図3を用いて説明する。図3は、後に詳説するラミネートセルの極板群の構成を示す説明図であって、上記の手順で作製した電極は図3の電極11に相当する。電極11は、銅箔からなるシート状の集電箔12と、集電箔12の表面に形成された活物質層13と、からなる。集電箔12は、矩形状(25mm×30mm)の塗工部12aと、塗工部12aの隅部から延出するタブ溶接部12bと、を備える。塗工部12aの一方の面には、活物質層13が形成されている。活物質層13は、前述したように、Si粉末、炭素粉末および両者を結着する結着剤からなる。一方、集電箔12のタブ溶接部12bには、ニッケル製のタブ14が抵抗溶接されている。さらに、タブ溶接部12bには、樹脂フィルム15が被着されている。   Next, this electrode mixture was applied to the surface of a copper foil having a thickness of 18 μm so as to have a thickness of 80 μm, dried and pressed, and then punched into a predetermined shape. Thereafter, the binder was cured by heating at a predetermined temperature and time in a vacuum furnace to obtain five types of electrodes. The structure of the obtained electrode will be described with reference to FIG. FIG. 3 is an explanatory view showing the structure of the electrode plate group of the laminate cell, which will be described in detail later, and the electrode produced by the above procedure corresponds to the electrode 11 of FIG. The electrode 11 includes a sheet-shaped current collector foil 12 made of a copper foil, and an active material layer 13 formed on the surface of the current collector foil 12. The current collector foil 12 includes a rectangular (25 mm × 30 mm) coating portion 12a and a tab weld portion 12b extending from a corner of the coating portion 12a. An active material layer 13 is formed on one surface of the coating part 12a. As described above, the active material layer 13 is made of Si powder, carbon powder, and a binder that binds both. On the other hand, a nickel tab 14 is resistance-welded to the tab weld 12 b of the current collector foil 12. Furthermore, the resin film 15 is adhered to the tab weld portion 12b.

<活物質層の評価>
異なる炭素粉末を用いて上記の手順で作製された5種類の電極#C0〜#C3および#01について、4探針法により導電率(S/cm(S=Ω−1))を測定した。結果を表2に示す。なお、表2において、#C3の導電率は、#C2の導電率よりもさらに小さく測定不可能であった。また、5種類の電極のうち、炭素繊維を用いた電極#C1、#C2、#C3および#01の活物質層の表面をSEMにより観察した。結果を図4〜図8に示す。
<Evaluation of active material layer>
The conductivity (S / cm (S = Ω −1 )) was measured by the four-probe method for five types of electrodes # C0 to # C3 and # 01 produced using the different carbon powders according to the above procedure. The results are shown in Table 2. In Table 2, the conductivity of # C3 was even smaller than the conductivity of # C2 and could not be measured. Moreover, the surface of the active material layer of electrodes # C1, # C2, # C3, and # 01 using carbon fiber among the five types of electrodes was observed by SEM. The results are shown in FIGS.

#C0の電極では、粒子状のKBを導電助材として用いたため、活物質のSi粒子同士はKBにより一点で導電パスを形成した。一方、#C1〜#C3の電極では、図4〜図6のSEM像から明らかであるように、活物質層において炭素繊維の凝集は見られずSi粒子とともに均一に分散しており、一本の炭素繊維を介して多くのSi粒子が導電パスを形成した。しかし、炭素繊維と接触していないSi粒子も多く見られた。そのため、導電率が0.1S/cm未満となり、電極として望ましくなかった。特に、#C3の電極では、VGCF−Sの繊維が細いため、活物質層に炭素繊維が均一に分散することで、かえって炭素繊維とSi粒子とが良好に接触せず導電パスがほとんど形成されなかった。   In the # C0 electrode, since particulate KB was used as a conductive additive, the Si particles of the active material formed a conductive path at one point with KB. On the other hand, in the electrodes of # C1 to # C3, as is apparent from the SEM images of FIGS. 4 to 6, no aggregation of carbon fibers is observed in the active material layer, and the particles are uniformly dispersed together with the Si particles. Many Si particles formed conductive paths through the carbon fibers. However, many Si particles that were not in contact with the carbon fiber were also observed. Therefore, the conductivity is less than 0.1 S / cm, which is not desirable as an electrode. In particular, in the # C3 electrode, since the VGCF-S fibers are thin, the carbon fibers are uniformly dispersed in the active material layer, so that the carbon fibers and the Si particles are not in good contact with each other, and a conductive path is almost formed. There wasn't.

図7は電極#01の活物質層の表面のSEM像であって、図8はさらに高倍率で観察したSEM像である。図7のSEM像より、電極#01の活物質層では、複数本の炭素繊維が凝集した部分が複数箇所観察された。炭素繊維が凝集している様子は、混合前の凝集粒子を観察した場合(図2)と同様であり、微小な網目が観察された。また、炭素繊維がSi粒子に付着している様子が観察された。この電極#01は、電極として望ましい導電性(導電率が0.16S/cm)を示した。   FIG. 7 is an SEM image of the surface of the active material layer of electrode # 01, and FIG. 8 is an SEM image observed at a higher magnification. From the SEM image of FIG. 7, in the active material layer of electrode # 01, a plurality of portions where a plurality of carbon fibers were aggregated were observed. The state in which the carbon fibers are aggregated is the same as in the case of observing the aggregated particles before mixing (FIG. 2), and a fine mesh is observed. In addition, it was observed that the carbon fibers adhered to the Si particles. This electrode # 01 exhibited a desirable conductivity (conductivity: 0.16 S / cm) as an electrode.

炭素繊維が凝集している部分をさらに観察した図8のSEM像から、凝集する炭素繊維の密度を求めた。図8のSEM像では、凝集粒子の表面から0.15μmまでの間に存在する炭素繊維が観察されていると仮定した。なお、0.15μmとしたのは、凝集する炭素繊維のうち最表面において隣接する炭素繊維の間隔を測定したところ、最も長くて300nmであったためである。最表面よりも奥で観察された炭素繊維は、最表面から150nm(すなわち半分の長さ)までに存在すると仮定した。図8のSEM像の□(点線)で囲まれた内には、それぞれが独立した炭素繊維であると仮定して、20本の炭素繊維が観察された。0.5μm×0.5μm×0.15μmの範囲に20本の炭素繊維があることから、1μmあたりの炭素繊維の密度は、20/(0.5×0.5×0.15)≒530[本/μm]である。 From the SEM image of FIG. 8 in which the portion where the carbon fibers are aggregated was further observed, the density of the aggregated carbon fibers was determined. In the SEM image of FIG. 8, it was assumed that carbon fibers existing between the surface of the aggregated particles and 0.15 μm were observed. The reason why the thickness is 0.15 μm is that the distance between adjacent carbon fibers on the outermost surface of the aggregated carbon fibers is measured to be 300 nm at the longest. It was assumed that the carbon fibers observed deeper than the outermost surface existed up to 150 nm (ie, half the length) from the outermost surface. Within the SEM image of FIG. 8 surrounded by □ (dotted line), 20 carbon fibers were observed on the assumption that each was an independent carbon fiber. Since there are 20 carbon fibers in the range of 0.5 μm × 0.5 μm × 0.15 μm, the density of carbon fibers per 1 μm 3 is 20 / (0.5 × 0.5 × 0.15) ≈ 530 [lines / μm 3 ].

<リチウムイオン二次電池の作製>
リチウム(Li)箔を対極とし、ラミネートセルを作製した。ラミネートセルについて図3を用いて説明する。ラミネートセルは、上記#C0〜#C3および#01のうちのいずれかの電極11、対極16およびセパレータ19からなる極板群10と、極板群10を包み込んで密閉するラミネートフィルム(図示せず)と、ラミネートフィルム内に注入される電解質と、を備える。
<Production of lithium ion secondary battery>
A laminate cell was prepared using lithium (Li) foil as a counter electrode. The laminate cell will be described with reference to FIG. The laminate cell is composed of an electrode plate group 10 composed of the electrode 11, the counter electrode 16 and the separator 19 of any of # C0 to # C3 and # 01, and a laminate film (not shown) that encloses the electrode plate group 10 and seals it. ) And an electrolyte injected into the laminate film.

極板群10は、1枚の電極11と1枚の対極16とが積層され、その間に1枚のセパレータ19が介挿されて構成される。電極11の構成は、既に説明した通りである。対極16は、銅箔に圧着した厚さ200μmのLi箔を備える。対極16は、Li箔が圧着された矩形状(26mm×31mm)の本体部16aと、本体部16aの隅部から延出するタブ溶接部16bと、を備え、いずれも銅箔からなる。タブ溶接部16bには、ニッケル製のタブ17が抵抗溶接されている。さらに、タブ溶接部16bには、樹脂フィルム18が被着されている。セパレータ19は、ポリプロピレン樹脂からなる矩形状シート(27mm×32mm、厚さ27μm)である。なお、極板群10は、電極11の塗工部12a、セパレータ19、対極16の本体部16aの順に、本体部16aと活物質層13とがセパレータ19を介して対向するように積層される。   The electrode plate group 10 is configured by laminating one electrode 11 and one counter electrode 16 and interposing a separator 19 therebetween. The configuration of the electrode 11 is as already described. The counter electrode 16 includes a 200 μm thick Li foil that is pressure-bonded to a copper foil. The counter electrode 16 includes a rectangular (26 mm × 31 mm) main body portion 16a to which a Li foil is bonded, and a tab weld portion 16b extending from a corner of the main body portion 16a, both of which are made of copper foil. Nickel tabs 17 are resistance welded to the tab welds 16b. Further, a resin film 18 is attached to the tab weld 16b. The separator 19 is a rectangular sheet (27 mm × 32 mm, thickness 27 μm) made of polypropylene resin. The electrode plate group 10 is laminated in the order of the coating portion 12 a of the electrode 11, the separator 19, and the main body portion 16 a of the counter electrode 16 so that the main body portion 16 a and the active material layer 13 face each other with the separator 19 interposed therebetween. .

極板群10を包み込んで密閉するラミネートフィルムは、四辺が気密にシールされた袋状である。ラミネートフィルムの四辺のうちの一辺側からは、両極のタブ15および17の一部が、外部との電気的接続のため、外側へ延出している。また、ラミネートフィルム内には、エチレンカーボネートとジエチルカーボネートとを1:1(体積比)で混合した混合溶媒にLiPFを1モルの濃度で溶解した非水電解質が封入される。 The laminate film that encloses and seals the electrode plate group 10 has a bag shape in which four sides are hermetically sealed. From one side of the four sides of the laminate film, a part of the tabs 15 and 17 of both poles extends outward for electrical connection with the outside. Further, in the laminate film, a nonaqueous electrolyte in which LiPF 6 is dissolved at a concentration of 1 mol in a mixed solvent in which ethylene carbonate and diethyl carbonate are mixed at 1: 1 (volume ratio) is enclosed.

ラミネートセルは、上記極板群10を、三辺がシールされた袋状の上記ラミネートフィルムに収め、上記非水電解質を注入した後、残りの一辺をシールして得た。なお、いずれの電極を用いても、Li箔を対極として用いることで、電極11が正極、対極16は負極となった。   The laminate cell was obtained by placing the electrode plate group 10 in a bag-like laminate film sealed on three sides, injecting the nonaqueous electrolyte, and then sealing the remaining one side. Regardless of which electrode was used, the electrode 11 became a positive electrode and the counter electrode 16 became a negative electrode by using Li foil as a counter electrode.

<抵抗値の測定>
電極#C0〜#C3および#01のうちのいずれかを正極として備え、上記の手順で作製した5種類のラミネートセルの直流抵抗値を測定した。抵抗値の測定は、電流容量を300mAh/gに規制し、充電終止電圧1V、放電終止電圧0V、の条件で充放電を繰り返し行い、5サイクル目の放電開始から10秒後のラミネートセルの直流抵抗値を測定した。電流密度は1サイクル目が0.2C、2サイクル目が0.5C、3サイクル目が0.2C、4サイクル目が1C、5サイクル目が0.2C、で行った。結果を表3に示す。
<Measurement of resistance value>
One of the electrodes # C0 to # C3 and # 01 was provided as a positive electrode, and the DC resistance values of five types of laminate cells produced by the above procedure were measured. The resistance value is measured by regulating the current capacity to 300 mAh / g, repeatedly charging and discharging under the conditions of a charge end voltage of 1 V and a discharge end voltage of 0 V, and the direct current of the laminate cell 10 seconds after the start of the fifth cycle discharge. The resistance value was measured. The current density was 0.2C in the first cycle, 0.5C in the second cycle, 0.2C in the third cycle, 1C in the fourth cycle, and 0.2C in the fifth cycle. The results are shown in Table 3.

#01を正極とするラミネートセルでは、#C1〜#C3を正極とするラミネートセルに比べ、充放電後の抵抗値が小さかった。   In the laminate cell using # 01 as the positive electrode, the resistance value after charging / discharging was smaller than in the laminate cell using # C1 to # C3 as the positive electrode.

<サイクル特性>
表3において充放電後の抵抗値が小さかった上記の電極#C0または#01を正極として備える2種類のラミネートセルの充電電流容量を測定した。ラミネートセルは、それぞれ2つずつ作製した。容量測定は、電流容量を800mAh/gに規制し、充電終止電圧1V、放電終止電圧0V、の条件で充放電を繰り返し行い、各サイクルにおける充電時の電流容量を測定した。充放電は、1〜5サイクル目までを0.2C、6〜10サイクル目までを0.5C、11〜15サイクル目までを1.0C、で行ったサイクル数に対する充電時の電流容量を図9に示す。
<Cycle characteristics>
In Table 3, the charge current capacities of two types of laminate cells having the above-described electrode # C0 or # 01 having a small resistance value after charging / discharging as a positive electrode were measured. Two laminate cells were prepared for each. In the capacity measurement, the current capacity was regulated to 800 mAh / g, charge / discharge was repeated under the conditions of a charge end voltage of 1 V and a discharge end voltage of 0 V, and the current capacity during charging in each cycle was measured. Charging / discharging shows the current capacity at the time of charging with respect to the number of cycles performed at 0.2C up to the 1st to 5th cycles, 0.5C up to the 6th to 10th cycles, and 1.0C up to the 11th to 15th cycles. 9 shows.

電極#C0に関しては、Si粉末が微粉化したと考えられる6サイクル目以降の容量低下が顕著であった。しかし、電極#01を備えるラミネートセルでは、6サイクル目以降であっても容量低下が抑制された。また、測定は、同一の電極に対してそれぞれ2つずつ行ったが、電極#01では容量低下の抑制効果が再現性よく得られた。   Regarding the electrode # C0, the capacity reduction after the 6th cycle considered that the Si powder was pulverized was remarkable. However, in the laminate cell including the electrode # 01, the capacity reduction was suppressed even after the sixth cycle. In addition, two measurements were performed for each of the same electrodes, but the effect of suppressing the decrease in capacity was obtained with good reproducibility with electrode # 01.

Claims (8)

珪素および/または珪素化合物からなるSi含有粉末を含む活物質と、平均繊維径が5nm以上100nm以下で平均繊維長が1μm以上6μm以下である炭素繊維が絡み合ってなる毛玉状の凝集粒子を含む炭素粉末からなる導電助材と、結着剤と、を混合して電極合材を得る電極合材調製工程と、
前記電極合材を集電体に塗布する塗布工程と、
を経て得られ、前記活物質と前記導電助材と該活物質および該導電助材を結着する前記結着剤とを含んでなり前記炭素繊維が部分的に凝集して存在することを特徴とする非水系二次電池用電極。
Carbon powder containing fluffy aggregated particles formed by entanglement of an active material containing silicon-containing powder composed of silicon and / or silicon compound and carbon fibers having an average fiber diameter of 5 nm to 100 nm and an average fiber length of 1 μm to 6 μm An electrode mixture preparation step of obtaining an electrode mixture by mixing a conductive additive comprising a binder and a binder;
An application step of applying the electrode mixture to a current collector;
The carbon fiber is partially agglomerated and comprises the active material, the conductive additive, the active material, and the binder that binds the conductive additive. An electrode for a non-aqueous secondary battery.
前記電極合材調製工程にて混合される前記凝集粒子の平均粒径は、1μm以上1000μm以下である請求項1記載の非水系二次電池用電極。   The electrode for a non-aqueous secondary battery according to claim 1, wherein an average particle diameter of the aggregated particles mixed in the electrode mixture preparation step is 1 μm or more and 1000 μm or less. 前記炭素繊維のアスペクト比(平均繊維長/平均繊維径)は、10以上1200以下である請求項1または2記載の非水系二次電池用電極。   The electrode for a non-aqueous secondary battery according to claim 1 or 2, wherein an aspect ratio (average fiber length / average fiber diameter) of the carbon fiber is 10 or more and 1200 or less. 前記電極合材調製工程にて混合される前記Si含有粉末の平均粒径は、0.01μm以上10μm以下である請求項1〜3のいずれかに記載の非水系二次電池用電極。   The electrode for a non-aqueous secondary battery according to any one of claims 1 to 3, wherein an average particle diameter of the Si-containing powder mixed in the electrode mixture preparation step is 0.01 µm or more and 10 µm or less. 珪素および/または珪素化合物からなるSi含有粉末を含む活物質と、平均繊維径が5nm以上100nm以下で平均繊維長が1μm以上6μm以下である炭素繊維が絡み合ってなる毛玉状の凝集粒子を含む炭素粉末からなる導電助材と、結着剤と、を混合して電極合材を得る電極合材調製工程と、
前記電極合材を集電体に塗布する塗布工程と、
を含み、前記活物質と前記導電助材と該活物質および該導電助材を結着する前記結着剤とを含んでなり前記炭素繊維が部分的に凝集して存在する非水系二次電池用電極を得ることを特徴とする非水系二次電池用電極の製造方法。
Carbon powder containing fluffy aggregated particles formed by entanglement of an active material containing silicon-containing powder composed of silicon and / or silicon compound and carbon fibers having an average fiber diameter of 5 nm to 100 nm and an average fiber length of 1 μm to 6 μm An electrode mixture preparation step of obtaining an electrode mixture by mixing a conductive additive comprising a binder and a binder;
An application step of applying the electrode mixture to a current collector;
A non-aqueous secondary battery comprising the active material, the conductive additive, the active material, and the binder that binds the conductive additive, wherein the carbon fibers are partially aggregated A method for producing an electrode for a non-aqueous secondary battery, characterized in that an electrode is obtained.
前記電極合材調製工程にて混合される前記凝集粒子の平均粒径は、1μm以上1000μm以下である請求項5記載の非水系二次電池用電極の製造方法。   The method for producing an electrode for a non-aqueous secondary battery according to claim 5, wherein an average particle size of the aggregated particles mixed in the electrode mixture preparation step is 1 μm or more and 1000 μm or less. 前記炭素繊維のアスペクト比(平均繊維長/平均繊維径)は、10以上1200以下である請求項5または6記載の非水系二次電池用電極の製造方法。   The method for producing an electrode for a non-aqueous secondary battery according to claim 5 or 6, wherein an aspect ratio (average fiber length / average fiber diameter) of the carbon fiber is 10 or more and 1200 or less. 前記電極合材調製工程にて混合される前記Si含有粉末の平均粒径は、0.01μm以上10μm以下である請求項5〜7のいずれかに記載の非水系二次電池用電極の製造方法。   The method for producing an electrode for a non-aqueous secondary battery according to claim 5, wherein an average particle diameter of the Si-containing powder mixed in the electrode mixture preparation step is 0.01 μm or more and 10 μm or less. .
JP2009079846A 2009-03-27 2009-03-27 Non-aqueous secondary battery electrode and manufacturing method thereof Expired - Fee Related JP5321192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009079846A JP5321192B2 (en) 2009-03-27 2009-03-27 Non-aqueous secondary battery electrode and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009079846A JP5321192B2 (en) 2009-03-27 2009-03-27 Non-aqueous secondary battery electrode and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010232077A true JP2010232077A (en) 2010-10-14
JP5321192B2 JP5321192B2 (en) 2013-10-23

Family

ID=43047706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009079846A Expired - Fee Related JP5321192B2 (en) 2009-03-27 2009-03-27 Non-aqueous secondary battery electrode and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5321192B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012120574A1 (en) 2011-03-08 2012-09-13 株式会社豊田自動織機 Negative-electrode mixture and negative electrode for use in secondary battery, and secondary battery
CN103367727A (en) * 2013-07-12 2013-10-23 深圳市贝特瑞新能源材料股份有限公司 Lithium ion battery silicon-carbon anode material and preparation method thereof
US20130337314A1 (en) * 2012-06-18 2013-12-19 Kabushiki Kaisha Toshiba Negative Electrode Material for Non-Aqueous Electrolyte Secondary Battery, Negative Electrode Active Material for Non-Aqueous Electrolyte Secondary Battery, and Non-Aqueous Electrolyte Secondary Battery
CN104425804A (en) * 2013-08-28 2015-03-18 奇瑞汽车股份有限公司 Silicon/carbon composite material, preparation method of silicon/carbon composite material, as well as lithium ion battery
WO2015083262A1 (en) * 2013-12-05 2015-06-11 株式会社日立製作所 Negative electrode material for lithium ion secondary batteries, method for producing same, negative electrode for lithium ion secondary batteries, method for producing negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
US9496548B2 (en) 2013-05-15 2016-11-15 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery, method for preparing same, and rechargeable lithium battery including same
JP2017073363A (en) * 2015-10-09 2017-04-13 三井金属鉱業株式会社 Method for producing electrode mixture slurry
WO2023286579A1 (en) * 2021-07-13 2023-01-19 株式会社村田製作所 Negative electrode for secondary batteries, and secondary battery
JP7390516B1 (en) * 2023-06-30 2023-12-01 東洋インキScホールディングス株式会社 Composite for secondary battery electrodes

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10162811A (en) * 1996-11-29 1998-06-19 Showa Denko Kk Electrode material for battery and secondary battery
JPH11204105A (en) * 1998-01-08 1999-07-30 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JP2000173612A (en) * 1998-12-02 2000-06-23 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and negative electrode material thereof
JP2001068096A (en) * 1999-08-30 2001-03-16 Matsushita Electric Ind Co Ltd Negative electrode for nonaqueous electrolyte secondary battery, manufacture thereof and nonaqueous electrolyte secondary battery
JP2003227039A (en) * 2001-11-07 2003-08-15 Showa Denko Kk Fine carbon fiber, method for producing the same and use thereof
JP2004071542A (en) * 2002-06-14 2004-03-04 Japan Storage Battery Co Ltd Negative electrode active material, negative electrode using same, nonaqueous electrolyte battery using same, and manufacture of negative electrode active material
JP2004178922A (en) * 2002-11-26 2004-06-24 Showa Denko Kk Negative electrode material and secondary battery using the same
JP2005135925A (en) * 2002-02-07 2005-05-26 Hitachi Maxell Ltd Electrode material and its manufacturing method, and nonaqueous secondary battery and its manufacturing method
JP2006222073A (en) * 2005-01-11 2006-08-24 Matsushita Electric Ind Co Ltd Nonaqueous secondary battery and method of manufacturing its anode
JP2008016456A (en) * 2004-01-05 2008-01-24 Showa Denko Kk Negative electrode material for lithium battery and lithium battery
JP2008066053A (en) * 2006-09-06 2008-03-21 Fuji Heavy Ind Ltd Negative electrode active material for power storage device, and its manufacturing method
JP2009016265A (en) * 2007-07-06 2009-01-22 Showa Denko Kk Electrode for lithium battery, manufacturing method of electrode for lithium battery, lithium battery, and manufacturing method for lithium battery
JP2009043715A (en) * 2007-07-18 2009-02-26 Panasonic Corp Nonaqueous electrolyte secondary battery

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10162811A (en) * 1996-11-29 1998-06-19 Showa Denko Kk Electrode material for battery and secondary battery
JPH11204105A (en) * 1998-01-08 1999-07-30 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JP2000173612A (en) * 1998-12-02 2000-06-23 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and negative electrode material thereof
JP2001068096A (en) * 1999-08-30 2001-03-16 Matsushita Electric Ind Co Ltd Negative electrode for nonaqueous electrolyte secondary battery, manufacture thereof and nonaqueous electrolyte secondary battery
JP2003227039A (en) * 2001-11-07 2003-08-15 Showa Denko Kk Fine carbon fiber, method for producing the same and use thereof
JP2005135925A (en) * 2002-02-07 2005-05-26 Hitachi Maxell Ltd Electrode material and its manufacturing method, and nonaqueous secondary battery and its manufacturing method
JP2004071542A (en) * 2002-06-14 2004-03-04 Japan Storage Battery Co Ltd Negative electrode active material, negative electrode using same, nonaqueous electrolyte battery using same, and manufacture of negative electrode active material
JP2004178922A (en) * 2002-11-26 2004-06-24 Showa Denko Kk Negative electrode material and secondary battery using the same
JP2008016456A (en) * 2004-01-05 2008-01-24 Showa Denko Kk Negative electrode material for lithium battery and lithium battery
JP2006222073A (en) * 2005-01-11 2006-08-24 Matsushita Electric Ind Co Ltd Nonaqueous secondary battery and method of manufacturing its anode
JP2008066053A (en) * 2006-09-06 2008-03-21 Fuji Heavy Ind Ltd Negative electrode active material for power storage device, and its manufacturing method
JP2009016265A (en) * 2007-07-06 2009-01-22 Showa Denko Kk Electrode for lithium battery, manufacturing method of electrode for lithium battery, lithium battery, and manufacturing method for lithium battery
JP2009043715A (en) * 2007-07-18 2009-02-26 Panasonic Corp Nonaqueous electrolyte secondary battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012120574A1 (en) 2011-03-08 2012-09-13 株式会社豊田自動織機 Negative-electrode mixture and negative electrode for use in secondary battery, and secondary battery
US20130337314A1 (en) * 2012-06-18 2013-12-19 Kabushiki Kaisha Toshiba Negative Electrode Material for Non-Aqueous Electrolyte Secondary Battery, Negative Electrode Active Material for Non-Aqueous Electrolyte Secondary Battery, and Non-Aqueous Electrolyte Secondary Battery
US9318737B2 (en) * 2012-06-18 2016-04-19 Kabushiki Kaisha Toshiba Negative electrode material for non-aqueous electrolyte secondary battery, negative electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
US9496548B2 (en) 2013-05-15 2016-11-15 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery, method for preparing same, and rechargeable lithium battery including same
CN103367727A (en) * 2013-07-12 2013-10-23 深圳市贝特瑞新能源材料股份有限公司 Lithium ion battery silicon-carbon anode material and preparation method thereof
CN104425804A (en) * 2013-08-28 2015-03-18 奇瑞汽车股份有限公司 Silicon/carbon composite material, preparation method of silicon/carbon composite material, as well as lithium ion battery
WO2015083262A1 (en) * 2013-12-05 2015-06-11 株式会社日立製作所 Negative electrode material for lithium ion secondary batteries, method for producing same, negative electrode for lithium ion secondary batteries, method for producing negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
JP6051318B2 (en) * 2013-12-05 2016-12-27 株式会社日立製作所 Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery and method for producing the same, and lithium ion secondary battery
JP2017073363A (en) * 2015-10-09 2017-04-13 三井金属鉱業株式会社 Method for producing electrode mixture slurry
WO2023286579A1 (en) * 2021-07-13 2023-01-19 株式会社村田製作所 Negative electrode for secondary batteries, and secondary battery
JP7390516B1 (en) * 2023-06-30 2023-12-01 東洋インキScホールディングス株式会社 Composite for secondary battery electrodes

Also Published As

Publication number Publication date
JP5321192B2 (en) 2013-10-23

Similar Documents

Publication Publication Date Title
JP5321192B2 (en) Non-aqueous secondary battery electrode and manufacturing method thereof
JP5557003B2 (en) Negative electrode material, non-aqueous electrolyte secondary battery, and negative electrode material manufacturing method
KR101213300B1 (en) Negative electrode active material, lithium secondary battery using the same, and method of manufacturing negative electrode active material
TWI821837B (en) Method for manufacturing electrode for secondary battery using non-aqueous electrolyte
JP6491040B2 (en) Lithium ion secondary battery
KR20160037006A (en) Negative active material, lithium battery including the material, and method for manufacturing the material
KR102172024B1 (en) Electron collector structure and electrode and lithium battery containing the electron collector structure
EP2908370B1 (en) Low resistance electrode for electrochemical element, method for manufacturing same, and electrochemical element including same
JP2013084600A (en) Negative electrode active material and lithium battery employing the same material
JP5448555B2 (en) Negative electrode for lithium ion secondary battery, lithium ion secondary battery using the same, slurry for preparing negative electrode for lithium ion secondary battery, and method for producing negative electrode for lithium ion secondary battery
JP2020155223A (en) Positive electrode material for lithium ion secondary battery, lithium ion secondary battery, method for manufacturing positive electrode for lithium ion secondary battery, and method for manufacturing lithium ion secondary battery
EP4333116A1 (en) Method for manufacturing carbon-silicon composite powder, carbon-silicon composite powder manufactured thereby, and lithium secondary battery comprising same
US11735733B2 (en) Composite negative electrode for all-solid-state battery
JP2017120746A (en) Lithium ion secondary battery
JP7356232B2 (en) Negative electrode for lithium ion batteries and lithium ion batteries
JP2006222073A (en) Nonaqueous secondary battery and method of manufacturing its anode
JP6212305B2 (en) Composite current collector, and electrode and secondary battery using the same
JP2001089118A (en) Graphite particle, method for producing the same, negative electrode for lithium secondary battery and lithium secondary battery
JP4120439B2 (en) Lithium ion secondary battery
JP5533972B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
KR101804722B1 (en) Porous electrode current collector and electrode
JP7276218B2 (en) Negative electrode active material and battery
CN115039252A (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
US20240038996A1 (en) Cellulose-based fiber-type dispersant for hybrid capacitive electrodes and methods of making the same
JP2017016944A (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130701

R151 Written notification of patent or utility model registration

Ref document number: 5321192

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees