Nothing Special   »   [go: up one dir, main page]

JP2010222241A - Igbt用シリコン単結晶ウェーハ及びigbt用シリコン単結晶ウェーハの製造方法 - Google Patents

Igbt用シリコン単結晶ウェーハ及びigbt用シリコン単結晶ウェーハの製造方法 Download PDF

Info

Publication number
JP2010222241A
JP2010222241A JP2010040351A JP2010040351A JP2010222241A JP 2010222241 A JP2010222241 A JP 2010222241A JP 2010040351 A JP2010040351 A JP 2010040351A JP 2010040351 A JP2010040351 A JP 2010040351A JP 2010222241 A JP2010222241 A JP 2010222241A
Authority
JP
Japan
Prior art keywords
single crystal
silicon single
wafer
silicon
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010040351A
Other languages
English (en)
Inventor
Michio Yanaba
三千雄 簗場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2010040351A priority Critical patent/JP2010222241A/ja
Publication of JP2010222241A publication Critical patent/JP2010222241A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

【課題】抵抗率のバラツキが小さく、かつ、IGBT製造プロセスを経ても酸素析出物の発生が極めて少ないウェーハの製造が可能とする。
【解決手段】チョクラルスキー法によってシリコン単結晶を育成することにより得られるIGBT用シリコン単結晶ウェーハの製造方法であって、磁場強度2000ガウス以上とし、石英ルツボ回転数 1.5rpm以下、結晶回転数7.0rpm以下とし、シリコン単結晶の引き上げ速度を転位クラスタ欠陥フリーなシリコン単結晶が引き上げ可能な速度で、格子間酸素濃度が6×1017atoms/cm以下の単結晶を育成する。
【選択図】図3

Description

本発明は、絶縁ゲートバイポーラトランジスタ(IGBT)の製造に用いられるIGBT用シリコン単結晶ウェーハ及びIGBT用シリコン単結晶ウェーハの製造方法に関する。
絶縁ゲートバイポーラトランジスター(Insulated Gate Bipolar Transistor、以下IGBTと記す)は、大電力を制御するのに適したゲート電圧駆動型スイッチング素子であり、電車、ハイブリッド車、空調機器、冷蔵庫などのインバータなどに用いられている。IGBTには、図5A〜図5Cに示すように、エミッタE、コレクタC、ゲートGという3つの電極が備えられており、絶縁酸化膜SiO2を介して素子の表面側に形成されたゲートに印加する電圧によって、素子表面側のエミッタEと裏面側のコレクタC間の電流を制御するものである。
上述のように、IGBTは酸化膜で絶縁されたゲートで電流を制御する素子なので、ゲート酸化膜の品質(Gate Oxide Integrity、以下GOIと記す)が重要である。シリコン単結晶ウェーハ中に欠陥が含まれていると、その欠陥がゲート酸化膜に取り込まれて、酸化膜の絶縁破壊の原因となる。
また、IGBTは、メモリ等のLSIのようにウェーハの表面近傍だけを横方向に使う素子ではなく、図5A〜図5Cに示すように、ウェーハを縦方向(厚み方向)に使う素子なので、その特性はウェーハのバルクの品質に影響される。特に、再結合ライフタイムと抵抗率は重要な品質である。再結合ライフタイムは、基板中の結晶欠陥によって低下するので、デバイスプロセスを経ても結晶欠陥が生じないように制御することが必要である。抵抗率に関しては、均一性と安定性が要求される。ウェーハの面内だけでなく、ウェーハ間、すなわち、シリコンインゴットの長さ方向でも均一で、且つデバイス熱プロセスを経ても変化しないことが重要である。
もし、ウェーハ平面上に複数の素子が並列に設けられていた場合、これらの素子間で抵抗率が異なると、抵抗率の低い素子に大電流が集中し破損してしまうので抵抗率の均一性と安定性が重要である。このように、複数の素子が並列に微細化された場合、抵抗率の差によって、大電流が集中し特定の素子に電流が集中し破損してしまうので抵抗率が均一で、しかも、デバイス熱プロセスを経ても変化しないことが重要である。
また、図5Aに示すように、電流のオフ時に空乏層がコレクタ側に接触する所謂パンチスルー(Punch Through、以下PTと記す)型IGBT用の基板として、エピキタキシャルウェーハ(以下エピウェーハと記す)が使用されている。しかし、PT型IGBTは、エピウェーハを使用するためコストが高いという問題がある。また、ライフタイムコントロールのため、高温でスイッチング損失が増加する。このため高温でオン電圧が低下して並列使用時に特定の素子に電流が集中し破損の原因となることもある。
PT型基板の欠点を克服する為に、オフ時に空乏層がコレクタ側に接触しないノンパンチスルー(Non Punch Through、以下NPTと記す)型のIGBTが開発されている。更に最近になって、トレンチゲート構造や、図5Cに示すように、コレクタ側にフィールドストップ(Field Stop、以下FSと記す)層を形成した、よりオン電圧が低くスイッチング損失の少ないFS−IGBTが製造されるようになっている。NPT型やFS型のIGBT用の基板としては、従来から浮遊帯域溶融法(Floating Zone Method、以下FZ法と記す)で育成したシリコン単結晶から切り出した直径150mm以下のウェーハ(以下、FZウェーハという)が使用されている。
エピウェーハに比べてFZウェーハは安価であるが、IGBTの製造コストを更に下げる為には、ウェーハを大口径化する必要がある。しかし、FZ法で直径150mmより大きい単結晶を育成することは極めて難しく、たとえ製造できたとしても、低価格で安定供給するのは困難である。
そこで、我々は直径200mm以上好ましくは直径300mm以上の大口径結晶が容易に育成できるチョクラルスキー法(CZ法)でIGBT用シリコン単結晶ウェーハを製造することを試みた。
以下に説明する特許文献1〜3に記載されている技術はいずれもウェーハ内の欠陥の低減を目的とするものであり、特許文献1には、CZ法によって育成され、窒素がドープされ、全面N−領域からなり、かつ格子間酸素濃度が8ppma以下、或は窒素がドープされ、全面から少なくともボイド型欠陥と転位クラスタが排除されており、かつ格子間酸素濃度が8ppma以下であるシリコン単結晶ウェーハが開示されている。
また特許文献2には、酸素及び窒素でドーピングされる間にチョクラルスキー法を使って引き上げられるシリコン単結晶の製造方法であって、単結晶が引き上げられる間に6.5×1017原子/cm未満の濃度の酸素、及び5×1013原子/cm超の濃度の窒素でドーピングされるシリコン単結晶の製造方法が開示されている。
更に特許文献3には、窒素を添加した融液からチョクラルスキー法により育成され、2×1014atoms/cm以上2×1016atoms/cm以下の窒素濃度、及び7×1017atoms/cm以下の酸素濃度を含有し、各種表面欠陥密度がFPD≦0.1個/cm、SEPD≦0.1個/cm、及びOSF≦0.1個/cmであり、内部欠陥密度がLSTD≦1×10個/cmであり、かつ酸化膜耐圧特性がTZDB高Cモード合格率≧90%及びTDDB合格率≧90%以上であるシリコン半導体基板が開示されている。
特開2001−146498号公報 特開2000−7486号公報 特開2002−29891号公報
しかし、特許文献1〜3には、結晶欠陥フリーとなるウェーハの製造方法について開示されているものの、IGBTに必要なウェーハ特性は明らかになっていない。また、製造時間を短縮し、製造コストを削減し、IGBT用のウェーハを効率よく安価に製造するためには、引き上げ速度を大きくする必要があるが、このような場合、特に空孔起因の結晶欠陥が存在するような引き上げ速度で引き上げた単結晶からスライスされたウェーハにおけるIGBT用ウェーハ特性ついては、明らかになっていない。特に、後述するような、IGBT製造プロセスにおける酸素ドナーによる抵抗率変動の問題や酸素析出物によるリーク不良の問題については何も解明されていない。また、このようなCZシリコンで格子間酸素濃度が6×1017atoms/cm以下であり、ウェーハ面内での抵抗率のばらつきが8%以下である結晶を育成するには、石英坩堝の回転速度や、結晶の回転速度を従来の条件から大幅に変更する必要があり、無欠陥結晶が育成できる引き上げ速度マージンが小さくなってしまい、歩留まりが低下する問題があった。
本発明は、上記事情に鑑みてなされたものであって、引き上げ速度マージンを拡大することが可能であるとともに、酸化膜耐圧特性の向上ならびに抵抗率のバラツキが小さく、かつ、IGBT製造プロセスにおいて酸素析出物の発生が極めて少ないウェーハの製造が安価に短時間で可能であるIGBT用シリコン単結晶ウェーハの製造方法及びIGBT用シリコン単結晶ウェーハを提供することを目的とする。
シリコン単結晶ウェーハを、チョクラルスキー法(以下、CZ法と言う場合がある)により製造すると、直径300mm程度の大口径のウェーハが製造可能であるが、CZ法で製造されたウェーハは次のような理由でIGBT用のウェーハには適していなかった。
(1)CZ法では、単結晶の育成時の過剰な空孔が凝集して0.2〜0.3μm程度のCOP欠陥(Crystal Originated Particle)が生じる。IGBTを製造する際には、ウェーハ表面にゲート酸化膜を形成するが、COP欠陥がウェーハ表面に露出して出来たピット、あるいはウェーハ表面近傍に存在するCOP欠陥がこのゲート酸化膜に取り込まれると、GOI(Gate Oxide Integrity)を劣化させる。従って、GOIが劣化しないように、COP欠陥の影響を低減したウェーハが必要になるが、CZ法ではこのようなウェーハの製造が難しい。
(2)CZ法により製造されたシリコン単結晶ウェーハには、1×1018atoms/cm程度の過剰な酸素が含まれており、このようなウェーハに対して450℃で1時間程度の低温熱処理(IGBT製造工程のシンタリング処理に相当する熱処理)を行うと酸素ドナーが発生し、熱処理前後でウェーハの抵抗率が変化してしまう。
(3)CZ法により製造されたシリコン単結晶ウェーハの抵抗率は、シリコン融液に添加するドーパント量によって制御でき、IGBT用のウェーハにはドーパントとしてリンが添加されるが、リンは偏析係数が小さい為にシリコン単結晶の長さ方向に渡って濃度が大きく変化する。そのため、一本のシリコン単結晶の中で、設計仕様に合致する抵抗率を有するウェーハの得られる範囲が狭い。
(4)CZ法により製造されたシリコン単結晶ウェーハには、1×1018atoms/cm程度の過剰な酸素が含まれており、このようなウェーハに対してデバイス形成プロセスを行うと、過剰な酸素がSiOとなって酸素析出し、再結合ライフタイムの劣化やリーク不良などの原因となり、IGBT特性を劣化させてしまう。
(5)CZシリコンには10×1017atoms/cm程度の酸素が含まれており、450℃程度の低温熱処理を受けると酸素ドナーが発生して、基板の抵抗率が変化してしまうが、この結果生ずる酸化膜耐圧特性の低下や抵抗率のばらつきを解消したいという要望があった。特に、従来の方法では、直径200mmウェーハ、つまり、200mm以上の径寸法とされるシリコン単結晶の育成において、低酸素のシリコン単結晶を製造しようとしても、酸素濃度6×1017atoms/cm(ASTM F121,1979)程度が限度であり、単結晶直胴部の結晶軸方向の広範囲に亘って、安定してこの酸素濃度以下のシリコン単結晶を育成することは 困難であり、特に面内の抵抗率の均一性を維持したまま、面内全域で酸素濃度6×1017atoms/cm以下のIGBT用シリコン単結晶ウェーハは実現できていなかった。
上記(1)〜(5)の問題点を解決すべく、本発明者らが鋭意研究を行ったところ、以下の構成を採用することによって、IGBTに必要なウェーハ特性を備えたウェーハを、CZ法を用いて製造できることが判明した。
本発明のIGBT用シリコン単結晶ウェーハの製造方法は、チョクラルスキー法によってシリコン単結晶を育成することにより得られるIGBT用シリコン単結晶ウェーハの製造方法であって、
磁場強度2000ガウス以上とし、石英ルツボ回転数1.5rpm以下、結晶回転数7.0rpm以下とし、
シリコン単結晶の引き上げ速度を転移クラスタ欠陥フリーなシリコン単結晶が引き上げ可能な速度で、格子間酸素濃度が6×1017atoms/cm以下の単結晶を育成することを特徴とする。
本発明のIGBT用シリコン単結晶ウェーハの製造方法は、チョクラルスキー法によってシリコン単結晶を育成することにより得られるIGBT用シリコン単結晶ウェーハの製造方法であって、
磁場強度2000ガウス以上とし、
石英ルツボ回転数R1(rpm)と、結晶回転数R2(rpm)とを、
添付図面図6に各点(R1,R2)で示すように、
点A (0.1,1)、点B(0.1,7)、点C(0.5,7)、点I(0.7,6)、点E(1,6)、点F(2,2)、点G(2,1)で囲まれる範囲内の値に設定し、
シリコン単結晶の引き上げ速度を転移クラスタ欠陥フリーなシリコン単結晶が引き上げ可能な速度で、格子間酸素濃度が6×1017atoms/cm以下の単結晶を育成することを特徴とする。
本発明において、前記シリコン単結晶からスライスされたシリコンウェーハに、1050℃以上シリコンの融点以下、1〜10時間とされるCOP影響排除熱処理をおこなうことが好ましい。
本発明のIGBT用シリコン単結晶ウェーハの製造方法は、チョクラルスキー法によってシリコン単結晶を育成する際に、シリコン融液にn型ドーパントを添加するか、シリコン融液にリンを2.9×1013atoms/cm以上2.9×1015atoms/cm以下、前記リンよりも偏析係数の小さなp型ドーパントを、その偏析係数に応じて結晶中の濃度が1×1013atoms/cm以上1×1015atoms/cm以下となるように添加するか、または、引き上げ後のシリコン単結晶に中性子照射を行うことで、リンをドープすることができる。
本発明のIGBT用シリコン単結晶ウェーハの製造方法は、チョクラルスキー法によってシリコン単結晶を育成することにより得られるIGBT用シリコン単結晶ウェーハの製造方法であって、
シリコン単結晶中の電気抵抗率を調整するためのドーパントが添加されていないシリコン溶融液を収容する石英ルツボに磁場強度2000ガウス以上の磁場を印加し、石英ルツボの回転数を1.5rpm以下かつ、育成中のシリコン単結晶の回転速度を7.0rpm以下として、酸素濃度が6×1017atoms/cm以下のシリコン単結晶を育成した後、引き上げ後のシリコン単結晶に中性子照射を施してリンをドープすることを特徴とする。
本発明は、前記シリコン単結晶の引き上げ速度を結晶径方向全域において、COP欠陥、転位クラスタを排除可能な引き上げ速度とすることができる。
本発明は、前記シリコン単結晶に窒素を6x1012atoms/cm以上5×1015atoms/cm以下の濃度で添加することができる。
本発明は、前記シリコン単結晶ウェーハの裏面側に50nm以上1000nm以下の多結晶シリコン層を形成することができる。
本発明のIGBT用シリコン単結晶ウェーハは、上記のいずれかに記載の製造方法により製造され、
結晶径方向全域において転位クラスタが排除されており、格子間酸素濃度が6×1017atoms/cm以下であり、ウェーハ面内における抵抗率のばらつきが8%以下であることができる。
本発明の前記シリコン単結晶が、前記チョクラルスキー法により育成される際に転移クラスタ欠陥フリーなシリコン単結晶を引き上げ可能な引き上げ速度で育成されたものであり、かつ、引き上げ後のシリコン単結晶に中性子照射がなされてリンがドープされてなるものであることができる。
本発明の前記シリコン単結晶が、前記チョクラルスキー法により育成される際に、n型ドーパントがドープされたシリコン融液から、転移クラスタ欠陥フリーなシリコン単結晶を引き上げ可能な引き上げ速度により育成されたものであることができる。
本発明のIGBT用のシリコン単結晶ウェーハは、リンと、前記リンよりも偏析係数の小さなp型ドーパントがそれぞれ、1×1013atoms/cm以上1×1015atoms/cm以下の濃度で含まれていることができる。
本発明のIGBT用のシリコン単結晶ウェーハは、ウェーハ表面におけるLPD密度が0.1個/cm以下であり、ライトエッチング欠陥密度が1×10個/cm以下であることができる。
本発明のIGBT用のシリコン単結晶ウェーハは、裏面側に50nm以上1000nm以下の多結晶シリコン層が形成されていることが可能である。
本発明は、前記シリコン単結晶が、前記チョクラルスキー法により育成される際に転位クラスタ欠陥フリーなシリコン単結晶を引き上げ可能な引き上げ速度で育成されたものであり、かつ、引き上げ後のシリコン単結晶に中性子照射がなされてリンがドープされてなるものである手段か、前記シリコン単結晶が、前記チョクラルスキー法により育成される際に、n型ドーパントがドープされたシリコン融液から、転位クラスタ欠陥フリーなシリコン単結晶を引き上げ可能な引き上げ速度により育成されたものである手段か、あるいは、リンと、前記リンよりも偏析係数の小さなp型ドーパントがそれぞれ、1×1012atoms/cm以上1×1015atoms/cm以下の濃度で含まれている手段を採用することが可能である。
本発明は、ウェーハ表面における0.1μmサイズ以上のLPD密度が0.1個/cm以下であり、ライトエッチング欠陥密度が1×10個/cm以下であることができる。
本発明は、裏面側に50nm以上1000nm以下の多結晶シリコン層が形成されていることができる。
従来、ドーパントが添加されたシリコン融液からシリコン単結晶を引き上げた場合、結晶回転速度を遅くするほど、結晶径方向(面内)の酸素濃度分布やドーパント濃度分布が不均一となり、酸素濃度や抵抗率のばらつきが大きくなってしまうことが知られている。このため、結晶回転速度を10rpm以上の高速にすることにより、面内の酸素濃度や抵抗率のばらつきを低減するようにして単結晶育成が行われていた。
ところが、本発明者らの実験によれば、石英ルツボの回転速度が1.5rpm以下という低速回転の状況においては、結晶回転速度は単結晶中の酸素濃度を低減できる制御因子であって、結晶回転速度を遅くすると、単結晶中の酸素濃度をより低減できることを知見した。なお、結晶回転速度を遅くすることにより面内の酸素濃度分布は悪化するものの、酸素濃度が6×1017atoms/cm以下のシリコン単結晶であれば、酸素濃度分布のばらつきはIGBT特性には影響しないことも判明した。
本発明では、抵抗率ばらつきを確実に8%以下にすることができる。
本発明は、前記シリコン単結晶に窒素を6×1012atoms/cm以上5×1015atoms/cm以下の濃度で添加することができる。
本発明で、シリコン単結晶育成の段階ではドーパントを添加していない場合、結晶回転速度を低下させてもシリコン単結晶中の抵抗率分布には何も影響しないので、育成が完了したシリコン単結晶に中性子照射によりリンをドープし抵抗率ばらつきを低減できる。
本発明のIGBT用シリコン単結晶ウェーハの製造方法は、チョクラルスキー法によってシリコン単結晶を育成することにより得られるIGBT用シリコン単結晶ウェーハの製造方法であって、
炉内(CZ炉内)の石英ルツボに貯留されたシリコン融液に磁場を印加し、前記石英ルツボを回転させ、前記シリコン融液からシリコン単結晶を前記石英ルツボと逆方向に回転させつつ引き上げながら育成するシリコン単結晶育成工程と、
前記シリコン単結晶からシリコンウェーハを切り出す工程とを含み、
前記シリコン単結晶育成工程において、前記シリコン融液に印加する磁場の強度を2000ガウス以上とし、前記石英ルツボの回転数を1.5rpm以下とし、前記シリコン単結晶の回転数を7.0rpm以下とし、
転位クラスタ欠陥フリーなシリコン単結晶が引き上げ可能な速度で前期シリコン単結晶の引き上げを行い、格子間酸素濃度が6×1017atoms/cm以下のシリコン単結晶を育成することを特徴とする、シリコン単結晶ウェーハの製造方法である。
上記シリコン単結晶ウェーハの製造方法においては、前記シリコン単結晶育成工程において、前記石英ルツボの回転数R1(rpm)と、前記シリコン単結晶の回転数R2(rpm)とを、添付図面図6に各点(R1,R2)で示すように、点A (0.1,1)、点B(0.1,7)、点C(0.5,7)、点I(0.7,6)、点E(1,6)、点F(2,2)、点G(2,1)で囲まれる範囲内の値に設定することが好ましい。
上記IGBT用シリコン単結晶ウェーハの製造方法において、チョクラルスキー法によってシリコン単結晶を育成する際に、シリコン融液にn型ドーパントを添加してもよい。
さらに、上記IGBT用シリコン単結晶ウェーハの製造方法において、チョクラルスキー法によってシリコン単結晶を育成する際に、前記シリコン融液にリンを結晶中の濃度が2.9×1013atoms/cm以上2.9×1015atoms/cm以下となるように添加し、前記リンよりも偏析係数の小さなp型ドーパントを、その偏析係数に応じて結晶中の濃度が1×1013atoms/cm以上1×1015atoms/cm以下となるように添加してもよい。
あるいは、上記IGBT用シリコン単結晶ウェーハの製造方法は、さらに引き上げ後のシリコン単結晶に中性子照射を行い、前記シリコン単結晶にリンをドープする工程を有してもよい。
前記シリコン単結晶育成工程において、前記シリコン融液に印加する磁場の強度を3000ガウス以上としてもよい。
前記シリコン単結晶育成工程において、前記シリコン融液に印加する磁場は水平磁場、垂直磁場、または、カスプ磁場であってもよい。
上記IGBT用シリコン単結晶ウェーハの製造方法において、シリコン単結晶育成工程における炉内の雰囲気ガスの圧力を1333Pa〜26660Paとすることが好ましい。好ましくは、前記炉内の雰囲気ガスの圧力を4000Pa〜9333Paとしてもよい。
本発明のIGBT用シリコン単結晶ウェーハの製造方法は、チョクラルスキー法によってシリコン単結晶を育成することにより得られるIGBT用シリコン単結晶ウェーハの製造方法であって、炉内の石英ルツボに貯留されたシリコン融液に磁場を印加し、前記石英ルツボを回転させ、前記シリコン融液からシリコン単結晶を前記石英ルツボと逆方向に回転させつつ引き上げながら育成するシリコン単結晶育成工程(Non−DopedおよびDopedを含む)と、
育成されたシリコン単結晶に中性子照射を施してリンをドープする工程と、前記シリコン単結晶からシリコンウェーハを切り出す工程とを含み、前記シリコン単結晶育成工程において、前記シリコン融液に印加する磁場の強度を2000ガウス以上とし、前記石英ルツボの回転数を1.5rpm以下とし、前記シリコン単結晶の回転数を7.0rpm以下とし、格子間酸素濃度が6×1017atoms/cm以下のシリコン単結晶を育成することを特徴とする、シリコン単結晶ウェーハの製造方法であってもよい。
上記IGBT用シリコン単結晶ウェーハの製造方法において、前記シリコン融液は、シリコン単結晶中の電気抵抗率を調整するためのドーパントが添加されていないものであってもよい。
本発明のIGBT用のシリコン単結晶ウェーハは、チョクラルスキー法によって育成されたシリコン単結晶からなるIGBT用シリコン単結晶ウェーハであって、結晶径方向全域において転位クラスタが排除されており、格子間酸素濃度が6×1017atoms/cm以下であり、ウェーハ面内における抵抗率のばらつきが8%以下である。
上記IGBT用のシリコン単結晶ウェーハは、上記のいずれかに記載の製造方法により製造されたシリコン単結晶ウェーハであってもよい。
上記シリコン単結晶ウェーハは、前記シリコン単結晶が、チョクラルスキー法により育成される際に、転移クラスタ欠陥フリーなシリコン単結晶を引き上げ可能な引き上げ速度で育成されたものであり、かつ、引き上げ後のシリコン単結晶に中性子照射がなされてリンがドープされているものであってもよい。
本発明のシリコンウェーハは、前記シリコン単結晶が、チョクラルスキー法により育成される際に、n型ドーパントがドープされたシリコン融液から、転移クラスタ欠陥フリーなシリコン単結晶を引き上げ可能な引き上げ速度で育成されたものであってもよい。
上記シリコン単結晶ウェーハは、リンと、前記リンよりも偏析係数の小さなp型ドーパントがそれぞれ、1×1013atoms/cm以上1×1015atoms/cm以下の濃度で含まれているシリコン単結晶ウェーハであってもよい。
上記シリコン単結晶ウェーハは、ウェーハ表面における0.1μmサイズ以上のLPD密度が0.1個/cm以下であり、ライトエッチング欠陥密度が1×10個/cm以下であってもよい。
上記IGBT用のシリコン単結晶ウェーハにおいては、前記シリコン単結晶に、6×1012atoms/cm以上5×1015atoms/cm以下の窒素がドープされていることが好ましい。
本発明のシリコンウェーハは、裏面側に50nm以上1000nm以下の多結晶シリコン層が形成されていてもよい。
上記本発明のIGBT用のシリコン単結晶ウェーハにおいては、破壊電界8MV/cmでのTZDB(タイムゼロ絶縁破壊)の合格率が90%以上であり、450℃で1時間の熱処理を行った場合に発生する酸素ドナーの濃度が9.8×1012個/cm以下であり、800℃で4時間と1000℃で16時間の二段階熱処理を行った場合に析出するBMDの密度が1×10個/cm以下であり、前記二段階熱処理を行った場合における再結合ライフタイムが100μ秒以上であることが好ましい。
本発明のIGBT用シリコン単結晶ウェーハの製造方法は、磁場強度2000ガウス以上とし、
石英ルツボ回転数R1(rpm)と、結晶回転数R2(rpm)とを、
添付図面図6に各点(R1,R2)で示すように、
点A (0.1,1)、点B(0.1,7)、点C(0.5,7)、点I(0.7,6)、点E(1,6)、点F(2,2)、点G(2,1)で囲まれる範囲内の値に設定することができる。これにより、格子間酸素濃度が4×1017atoms/cm以下の単結晶を育成することができる。実質的には、石英ルツボの回転数をR1(rpm)、結晶回転数をR2(rpm)とするとき、R1:0.1以上2以下、R2:1以上7以下、の範囲であって、R1:0.5以上0.7以下の場合、R2<7−5(R1−0.5)を満足し、R1:0.7以上1以下の場合、R2<6を満足し、R1:1以上2以下の場合、R2<6−4(R1−1)を満足する範囲に設定することができる。この場合、単結晶中の格子間酸素濃度を4.0×1017atoms/cm以下として低酸素濃度のシリコン単結晶を育成できる。
このため、この低酸素単結晶から、抵抗率のバラツキが小さく、かつ、IGBT製造プロセスを経ても酸素析出物の密度が極めて少ない450℃程度の低温熱処理を受けると酸素ドナーが発生して、基板の抵抗率が変化してしまうことを防止可能なIGBT用のシリコン単結晶ウェーハを提供することが可能となる。
また、石英ルツボ回転数R1(rpm)と、結晶回転数R2(rpm)とを、
添付図面図6に各点(R1,R2)で示すように、
点A (0.1,1)、点B(0.1,7)、点L(0.2,7)、点K(0.3,7)、点J(0.5,6)、点I(0.7,6)、点H(1,5)、点N(1,3)、点M(1,1)で囲まれる範囲内の値に設定してシリコン単結晶を引き上げることで、単結晶中の格子間酸素濃度を3.5×1017atoms/cm以下としてより低酸素濃度のシリコン単結晶を育成できる。実質的には、石英ルツボ回転数R1(rpm)と結晶回転数R2(rpm)とをR1:0.1以上1以下、R2:1以上7以下、の範囲であって、但しR1:0.3以上、0.5以下の場合、R2<7−5(R1−0.3)を満足し、R1:0.5以上0.7以下の場合、R2<6を満足し、R1:0.7以上1以下の場合、R2<6−3.4(R1−0.7)を満足する範囲に設定すればよい。この場合、単結晶中の格子間酸素濃度が3.5×1017atoms/cm以下として、低酸素濃度のシリコン単結晶を提供できる。
また、石英ルツボ回転数R1(rpm)と、結晶回転数R2(rpm)とを、
添付図面図6に各点(R1,R2)で示すように、
点A (0.1,1)、点B(0.1,7)、点L(0.2,7)、点Q(0.3,6)、点J(0.5,6)、点P(0.7,5)、点N(1,3)、点M(1,1)で囲まれる範囲内の値に設定してシリコン単結晶を引き上げてもよい。 実質的には、石英ルツボ回転数R1(rpm)と結晶回転数R2(rpm)とをR1:0.1以上1以下、R2:1以上7以下、の範囲であって、但しR1:0.2以上0.3以下の場合、R2<7−10(R1−0.2)を満足し、R1:0.3以上0.5以下の場合、R2<6を満足し、R1:0.5以上0.7以下の場合、R2<6−5(R1−0.5)を満足し、R1:0.7以上1以下の場合、R2<5−6.7(R1−0.7)を満足する範囲に設定することができる。この場合、単結晶中の格子間酸素濃度3.0×1017atoms/cm以下のシリコン単結晶を育成し、より低酸素濃度のシリコン単結晶を育成できる。
また、本発明では、シリコン融液に印加する磁場は水平磁場やカスプ磁場など採用することができ、例えば水平磁場の強度としては、2000〜5000G(0.2T〜0.5T)とすることができる。磁場強度が上記の範囲以下であるとシリコン融液の対流抑制効果が充分でなく固液界面の形状を好ましい形状とすることができない上、酸素濃度を充分低下することができず好ましくない。また、上記の範囲以上に磁場強度を上げると、対流が抑制されすぎて、高温のシリコン融液が石英ルツボ内表面の劣化を進め、結晶の無転位化率が低下するため好ましくない。
また、本発明では、磁場中心位置と結晶引き上げ時の融液表面位置を−75〜+50mm、より好ましくは、20〜45mmとすることが好ましい。ここで、磁場中心位置とは、水平磁場にあっては磁場発生コイルの中心が位置する高さ位置を意味し、−75mmとは、融液液面から上方75mmであることを意味している。
本発明のIGBT用シリコン単結晶ウェーハの製造方法は、直径200mm(8インチ)以上のCZシリコン単結晶において、酸素濃度6×1017atoms/cm(oldASTM)以下というレベルは、今までに類を見ないレベルを実現することができた。酸素濃度6×1017atoms/cm以下というシリコン単結晶は、従来結晶でいうCZ結晶とFZ結晶の中間に位置する結晶である。MCZ法で転移クラスタ欠陥フリー結晶を育成することにより、FZ結晶と同等の酸化膜耐圧を得ることができる。また、酸素濃度6×1017atoms/cm以下とすることにより、デバイス製造工程における熱処理での酸素ドナー発生の懸念を払拭することができ、さらに、CZ結晶特有の酸素起因不良がほとんど見られなくなる。MCZ法による引き上げにおいて、シリコン融液の対流を抑制し、石英ルツボの溶解量を減らすと共に、合成石英ルツボを使用して石英ルツボ中の不純物濃度を低減させ、よりFZ結晶に近い品質のCZ結晶を育成できる。
ここで、合成石英ルツボとは、少なくとも原料融液に当接する内表面が以下のような合成石英から形成されたものを意味する。
合成石英は、化学的に合成・製造した原料であり、合成石英ガラス粉は非晶質である。合成石英の原料は気体又は液体であるため、容易に精製することが可能であり、合成石英粉は天然石英粉よりも高純度とすることができる。合成石英ガラス原料としては四塩化炭素などの気体の原料由来とケイ素アルコキシドのような液体の原料由来がある。合成石英粉ガラスでは、すべての不純物を0.1ppm以下とすることが可能である。
合成石英ガラス粉を溶融して得られたガラスでは、光透過率を測定すると、波長200nm程度までの紫外線を良く透過し、紫外線光学用途に用いられている四塩化炭素を原料とした合成石英ガラスに近い特性であると考えられる。
合成石英ガラス粉を溶融して得られたガラスでは、波長245nmの紫外線で励起して得られる蛍光スペクトルを測定すると、天然石英粉の溶融品のような蛍光ピークは見られない。
含有する不純物濃度を測定するか、シラノール量の違い、あるいは、光透過率を測定するか、波長245nmの紫外線で励起して得られる蛍光スペクトルを測定することにより、ガラス材料が天然石英であったか合成石英であったかを判別することができる。
また、MCZ法により、8インチ直径のシリコン単結晶の育成がFZ法に比べて 簡単になるとともに石英ルツボの使用により大チャージ化が可能となり、FZ法に比べて原料コストの削減が可能となり、同時に、歩留りを向上することができる。
また、本発明では、シリコン融液表面のガス流状態を制御するために、炉内圧力は、1333Pa以上、好ましくは4000Pa〜26660Paが望ましい。炉内圧力の上限は、炉内の圧力が増大するとAr等の不活性ガスの融液上でのガス流速が低下することにより、融液から蒸発したSiO等の反応物ガスが排気しにくくなることにより、結晶中の酸素濃度が高くなり、また、SiOが炉内の融液上部の1100℃程度またはこれより低温の部分に凝集することで、ダストを発生させ融液に落下することで結晶の有転位化を引き起こすため、これらを防止するために上記の上限の圧力を規定した。
また、本発明では、シリコン融液表面のガス流状態を制御するために、炉内圧力は、1.3kPa以上、好ましくは4.0〜27kPa、さらに、好ましくは、4.0〜9.3kPaが望ましい。炉内圧力の上限は、炉内の圧力が増大するとAr等の不活性ガスの融液上でのガス流速が低下することにより、融液から蒸発したSiO等の反応物ガスが排気しにくくなることにより、結晶中の酸素濃度が高くなり、また、SiOが炉内の融液上部の1100℃程度またはより低温の部分に凝集することで、ダストを発生させ融液に落下することで結晶の有転位化を引き起こすため、これらを防止するために上記の上限の圧力を規定した。
また、本発明では、CZ炉内に供給する雰囲気ガス流量を100〜200リットル/min以上とし、CZ炉内の圧力を6700pa以下として、溶融液表面から蒸発するSiOを効果的に装置外に排出すると共に、溶融液表面を漂う異物もルツボ壁に追いやるとともに、結晶中の酸素濃度が高くなることを防止することができる。
さらに、本発明のIGBT用のシリコン単結晶ウェーハは、チョクラルスキー法によって育成されたシリコン単結晶からなるIGBT用シリコン単結晶ウェーハであって、結晶径方向全域においてCOP欠陥、転位クラスタが排除されており、格子間酸素濃度が4×1017atoms/cm以下であり、ウェーハ面内における抵抗率のばらつきが5%以下であることができる。
さらに、本発明のIGBT用のシリコン単結晶ウェーハにおいては、前記シリコン単結晶が、前記チョクラルスキー法により育成される際に転移クラスタ欠陥フリーなシリコン単結晶を引き上げ可能な引き上げ速度で育成されたものであり、かつ、引き上げ後のシリコン単結晶に中性子照射がなされてリンがドープされてなるものが好ましい。
また本発明のIGBT用のシリコン単結晶ウェーハにおいては、前記シリコン単結晶が、前記チョクラルスキー法により育成される際に、n型ドーパントがドープされたシリコン融液から、転移クラスタ欠陥フリーなシリコン単結晶を引き上げ可能な引き上げ速度により育成されたものであることが好ましい。
更に本発明のIGBT用のシリコン単結晶ウェーハにおいては、前記シリコン単結晶に、6×1012atoms/cm以上5×1015atoms/cm以下の窒素がドープされていることが好ましい。
更に本発明のIGBT用のシリコン単結晶ウェーハにおいては、破壊電界8MV/cmでのTZDBの合格率が90%以上であり、450℃で1時間の熱処理を行った場合に発生する酸素ドナーの濃度が9.8×1012cm−3以下であり、800℃で4時間と1000℃で16時間の二段階熱処理を行った場合に析出するBMDの密度が1×10個/cm以下であり、前記二段階熱処理を行った場合における再結合ライフタイムが100μ秒以上であることが好ましい。
更にまた、本発明のIGBT用のシリコン単結晶ウェーハにおいては、リンと、前記リンよりも偏析係数の小さなp型ドーパントがそれぞれ、1×1013atoms/cm以上1×1015atoms/cm以下の濃度で含まれていることが好ましい。
更にまた、本発明のIGBT用のシリコン単結晶ウェーハにおいては、ウェーハ表面におけるLPD密度が0.1個/cm以下であり、ライトエッチング欠陥密度が1×10個/cm以下であることが好ましい。
また本発明のIGBT用のシリコン単結晶ウェーハにおいては、裏面側に50nm以上1000nm以下の多結晶シリコン層が形成されていることが好ましい。
なお、本発明において、抵抗率のばらつき(%)は、ウェーハ中心、ウェーハ中心と外周の中間の位置、ウェーハ外周から5mmの位置の合計3カ所で抵抗率を測定し、その3カ所の抵抗率の中から最大値と最小値を選び、(最大値−最小値)×100/最小値の式で得られる値とする。
また、本発明において「転移クラスタ欠陥フリー」とは、COP欠陥や転位クラスタなどの結晶育成に伴って発生する可能性のある全てのGrown−in欠陥のうち、転位クラスタ欠陥は排除されており、COP欠陥は保有している状態を意味する。
また、本発明で、OSF領域とは、乾燥酸素雰囲気で900℃から1000℃まで、昇温速度5℃/minで昇温した後、乾燥酸素雰囲気で1000℃、1時間、その後、ウェット酸素雰囲気で1000℃から1150℃まで昇温速度3℃/minで昇温した後、ウェット酸素雰囲気で1150℃、2時間、その後900℃まで降温する熱処理後に、2μmのライトエッチングを実施してOSF領域を顕在化させ、OSF密度のウェーハ面内分布を測定した際に、OSFの密度が10個/cmの領域を意味するものである。
なお、Pv領域、Pi領域とは、チョクラルスキー法によりシリコン単結晶インゴットを育成し、前記インゴット内での格子間シリコン型点欠陥が支配的に存在する領域をI領域とし、空孔型点欠陥が支配的に存在する領域をV領域とし、格子間シリコン型点欠陥の凝集体及び空孔型点欠陥の凝集体が存在しない領域をP領域とするとき、前記I領域に隣接しかつ前記P領域に属し侵入型転位を形成し得る最低の格子間シリコン濃度未満の領域をPi領域とし、前記OSF領域に隣接しかつ前記P領域に属しCOPを形成し得る空孔濃度以下の領域をPv領域とする。
シリコンウェーハは、CZ法により炉内のシリコン融液からインゴットをボロンコフ(Voronkov)の理論に基づいた所定の引上げ速度プロファイルで引上げた後、このインゴットを切出して作製される。一般的に、CZ法により炉内のシリコン融液からシリコン単結晶のインゴットを引上げたときには、シリコン単結晶における欠陥として、点欠陥(point defect)と点欠陥の凝集体(agglomerates:三次元欠陥)が発生する。点欠陥は空孔と格子間シリコンという二つの一般的な形態がある。空孔は一つのシリコン原子がシリコン結晶格子で正常的な位置の一つから離脱したものである。一方、シリコン結晶の格子点以外の位置(インタースチシャルサイト)で存在するシリコン原子が格子間シリコン原子である。
点欠陥は一般的にシリコン融液(溶融シリコン)とインゴット(固状シリコン)の間の接触面で形成される。しかし、インゴットを継続的に引上げることによって接触面であった部分は引上げとともに冷却し始める。冷却の間、空孔又は格子間シリコン原子は拡散し、空孔の凝集体(vacancy agglomerates)であるCOP又は格子間シリコン原子の凝集体(interstitial agglomerates)である転位クラスタが形成される。言い換えれば、凝集体は点欠陥の合併に起因して発生する三次元構造である。空孔型点欠陥の凝集体は前述したCOPの他に、LSTD(Laser Scattering Tomograph Defects)又はFPD(Flow Pattern Defects)と呼ばれる欠陥を含み、格子間シリコン型点欠陥の凝集体はLD(Large Dislocation Loop;転位がエッチングされて形成されたピット状欠陥)と呼ばれる欠陥を含む。FPDとは、インゴットを切出して作製されたシリコンウェーハを30分間セコエッチング(Secco etching、HF:KCr (0.15mol/l)=2:1の混合液によるエッチング)したときに現れる特異なフローパターンを呈する痕跡の源であり、LSTDとは、シリコン単結晶内に赤外線を照射したときにシリコンとは異なる屈折率を有し散乱光を発生する源である。
ボロンコフの理論は、欠陥の数が少ないインゴットを成長させるために、インゴットの引上げ速度をV(mm/分)、インゴットとシリコン融液の界面近傍のインゴット鉛直方向の温度勾配をG(℃/mm)とするときに、V/G(mm /分・℃)を制御することである。
このV/Gの値が高い値から低い値と変化するのに対応して、上述したV領域、OSF領域、Pv領域、Pi領域、I領域の順となる。このため、電熱解析ソフトにより引き上げ装置固有のG(℃/mm)を算出しておき、引き上げ速度を徐々に低下させる引き上げ実験を実施し、これにより得られた単結晶の引き上げ長さ方向の欠陥分布を予め調べておくことにより、Pv領域、Pi領域、I領域を得るために必要な引き上げ速度V(mm/分)を算出することができる。あるいは、V/Gの値は、引き上げ炉上部におけるホットゾーンの構造等、各実機によって異なるが、COP密度、OSF密度、BMD密度、LSTD密度又はFPD、ライトエッチング欠陥密度などを測定することによって、判別可能である。
また、「ライトエッチング欠陥」とは、As−Grownのシリコン単結晶ウェーハを硫酸銅水溶液に浸漬した後自然乾燥し、窒素雰囲気中で900℃、20分程度の熱処理を行なうCuデコレーションを行ない、その後、試片表層のCuシリサイド層を除去するために、HF/HNO混合溶液中に浸漬して、表層を数十ミクロン程度エッチングして除去し、その後、ウェーハ表面を2μmライトエッチング(クロム酸エッチング)し、光学顕微鏡を用いて検出される欠陥である。この評価手法によれば、結晶育成時に形成した転位クラスタをCuデコレーションすることで顕在化させ、転位クラスタを感度良く検出することができる。即ちライトエッチング欠陥には、転位クラスタが含まれる。
また、本発明において、「LPD密度」とは、レーザ光散乱式パーティクルカウンター(SP1(surfscan SP1):KLA−Tencor社製)を用いて検出される0.1μmサイズ以上の欠陥の密度である。
また、TZDBとは、タイムゼロ絶縁破壊(Time Zero Dielectric Breakdown)の略であり、GOIを表す指標のひとつである。本発明におけるTZDBの合格率は、測定電極の電極面積を8mmとし、判定電流を1mAとした条件で、ウェーハ全体で416カ所程度の場所で電流−電圧曲線を測定し、静電破壊を起こさなかった確率をTZDBの合格率としている。なお、この合格率はCモード合格率とも呼ばれる。
本発明のシリコン単結晶ウェーハによれば、結晶径方向全域において転位クラスタが排除されていて、前記シリコン単結晶からスライスされたシリコンウェーハに、1050℃以上シリコンの融点以下、1〜10時間とされるCOP影響排除熱処理をおこなうことにより、COPを消失させることが可能であるので、ウェーハを縦方向に使う素子であるIGBT用のウェーハに用いて好適である。即ち、COP影響排除熱処理後におけるウェーハ径方向全域において転位クラスタ欠陥・COP欠陥が排除されているので、IGBT製造工程におけるウェーハ表面でのゲート酸化膜の形成時に、COP欠陥がゲート酸化膜に取り込まれることがなく、GOIを劣化させることがない。また、転位クラスタが排除されることによって、集積回路におけるリーク電流を防止できる。
さらに、OSF領域が排除されているので、IGBT製造工程におけるウェーハ表面でのゲート酸化膜の形成時に、COP欠陥がゲート酸化膜に取り込まれることがなく、GOIを劣化させることがない。また、集積回路におけるリーク電流を防止できる。さらに、良品率を90%以上とすることができる。
更に、格子間酸素濃度が6×1017atoms/cm以下なので、ウェーハの熱処理後に発生する酸素ドナーの濃度を9.8×1012個/cm以下に抑えることができ、熱処理前後でのウェーハの抵抗率の変化を防ぐことができ、シリコン単結晶ウェーハの品質を安定にできる。
なお、酸素ドナーの濃度を9.8×1012個/cm以下にする理由は次の通りである。高耐圧IGBTには、n型で抵抗率が30〜120Ω・cmのウェーハが使われる。例えば、基板の抵抗率の仕様が50±5Ω・cmの場合では、許容できるドナー濃度は9.8×1012個/cm以下となる。ここで、酸素に起因した酸素ドナーが最も発生しやすい温度は450℃である。例えばデバイスプロセスにおいてAl配線のシンタリング処理はこの温度前後で行われる。450℃で1時間の熱処理を施した場合に発生する酸素ドナーの濃度の酸素濃度依存性を調べた結果を図1に示す。図1から、酸素ドナーの濃度を9.8×1012個/cm以下に抑えるためには、ウェーハの格子間酸素濃度を8.5×1017atoms/cm以下に制御しなければならないことがわかる。本発明においては、引き上げ後における格子間酸素濃度を6×1017atoms/cm以下にしているので、確実に酸素ドナーの影響を排除することができる。
なお、通常のCZ法では格子間酸素濃度を8.5×1017atoms/cm以下にするのは困難な場合があるので、その場合は磁場を印加して単結晶を育成するMCZ法によって、格子間酸素濃度を8.5×1017atoms/cm以下にすることが可能である。また、石英ルツボの回転速度を低速にすることによっても格子間酸素濃度の低減が図られる。
また、本発明のシリコン単結晶ウェーハによれば、ウェーハ面内における抵抗率のばらつきが8%以下なので、IGBTの品質を安定にできる。
ところで、CZ法により製造されたシリコン単結晶ウェーハの抵抗率は、シリコン単結晶に含まれるドーパント量によって制御できるが、IGBT基板のドーパントとして良く使われるリンは、偏析係数が小さい為にシリコン単結晶の長さ方向にわたってその濃度が大きく変化する。そのため、一本の単結晶の中で設計仕様に合った抵抗率を有するウェーハの得られる範囲が狭い。このため本発明では、上述したように、中性子照射、シリコン融液へのn型ドーパントの添加、リンとリンよりも偏析係数の小さなp型ドーパントを所定量添加、その他様々な手段を採用する。いずれの場合も、不純物濃度の低いシリコン多結晶を原料とし、不純物の溶出が少ない合成石英ルツボを用いて単結晶を育成することが重要である。これらの手段を用いることで、シリコン単結晶の歩留まりを改善することができる。
中性子照射については、まず、シリコン融液に抵抗率を調整するためのドーパントを添加せずにシリコン単結晶を育成し、このノンドープのシリコン単結晶に中性子を照射することによって、結晶中の30Siが31Pに変換される現象を利用してリンをドープすることが出来る。30Siは単結晶中に約3%の濃度で均一に含まれているので、この中性子照射は、結晶の径方向にも軸方向にも最も均一にリンをドープできる方法である。
また、シリコン融液へのn型ドーパントの添加によっても、抵抗率を制御することができる。この時、所謂DLCZ法(Double Layered Czochralski;二層式引き上げ法)を適用することが望ましい。DLCZ法とは、リンのような偏析係数の小さなドーパントの結晶軸方向の濃度変化を抑制する方法である。この方法は、CZ法においてルツボ中で多結晶シリコンを一旦全部溶かしてシリコン融液としてからリンを添加し、ルツボの底部の温度を下げてシリコン融液を底より上方に向かって凝固させてシリコン凝固層を形成し、このシリコン凝固層を上方から底に向けて徐々に溶かしながら結晶を育成することによって、単結晶中に取り込まれるドーパント濃度をほぼ一定に保つ方法である。
本発明ではこのDLCZ法を採用することによっても、シリコン単結晶の結晶軸方向の抵抗率変化を抑制することができる。
また、リンと、リンよりも偏析係数の小さなp型ドーパントを所定量添加することによっても、シリコン単結晶の結晶軸方向の抵抗率変化を抑制することができる。これは所謂ダブルドープ法と呼ばれ、リンのような偏析係数の小さなドーパントをドープした結晶の軸方向の抵抗率変化を抑制する方法である。リンに対して、リンよりも偏析係数の小さなp型ドーパント(例えばAl、Ga、In)をカウンタードーパントとしてドープすることによってリンの濃度変化を補償する。リンだけをドープした場合とリンとアルミニウムを同時にドープした場合の結晶軸方向の抵抗率変化を図2に示す。ウェーハの抵抗率の仕様が50±5Ω・cmの場合、リンとアルミニウムを同時にドープすることによって、歩留まりが約3倍に向上する。単結晶の上端におけるリンに対するアルミニウムの濃度比を50%程度にすると歩留まりが最も高くなる。本発明では、リンと、リンよりも偏析係数の小さなp型ドーパントがそれぞれ、1×1013atoms/cm以上1×1015atoms/cm以下の濃度で含有されることで、シリコン単結晶の結晶軸方向の抵抗率変化を抑制することができる。
更に、本発明においては、所謂CCZ法と呼ばれる方法も適用可能である。この方法は、単結晶育成中に、リンを含んだシリコン融液にドーパントを含まない多結晶シリコンを添加することによって、単結晶中に取り込まれるドーパント濃度をほぼ一定に保つ方法である。
また、DLCZ法やCCZ法のようにシリコン融液にドーパントを添加する単結晶育成の場合には、ウェーハ面内の抵抗率バラツキを抑制するために、結晶育成中の結晶回転速度を速く回転させることが望ましく、直径200mm以下の単結晶育成では結晶回転速度を1.5〜3rpmであるが、直径300mm以上では0.8〜1.5rpmの範囲で回転させることが望ましい。なお、通常、結晶回転速度を増加させると、Grow−in欠陥フリー結晶を得るための引き上げ速度マージン幅が狭くなってしまい、転移クラスタ欠陥フリーな単結晶育成そのものが困難となるが、本発明では後述するように窒素添加でシリコン単結晶を育成することにより、Grow−in欠陥フリー結晶を得るための引き上げ速度マージンを十分に確保して、転移クラスタ欠陥フリーな単結晶を育成することができる。
次に、シリコン単結晶に、6×1012atoms/cm以上5×1015atoms/cm以下、または、1×1013atoms/cm以上5×1014atoms/cm以下の窒素がドープされることによって、転移クラスタ欠陥の排除が容易になる。窒素のドープ量が上記の範囲未満ではCOP欠陥、転位クラスタ、OSF領域およびPv領域の排除が完全になされない虞があり、上記の範囲を超えると、窒化物生成の影響で転位等が発生しシリコン単結晶が育成できなくなるため好ましくない。
さらに、シリコン単結晶に、1×1014atoms/cm以上5×1015atoms/cm以下の窒素がドープされることによって、転位クラスタの排除を容易にし、さらに、COP欠陥および転位クラスタの排除が容易になる。窒素のドープ量が1×1014atoms/cm未満では転位クラスタの排除が完全になされない虞があり、5×1015atoms/cmを超えると、窒化物が生成してシリコン単結晶が育成できなくなる。
また、本発明のシリコン単結晶ウェーハによれば、TZDBの合格率が90%以上であり、450℃で1時間の熱処理を行った場合に発生する酸素ドナーの濃度が9.8×1012cm−3以下であり、800℃で4時間と1000℃で16時間の二段階熱処理を行った場合に生じるBMDの密度が1×10個/cm以下であり、二段階熱処理を行った場合における再結合ライフタイムが100μ秒以上であるので、IGBT用のシリコン単結晶ウェーハに求められる特性を満たすことができる。
本発明におけるTZDBの合格率は、ウェーハに酸化膜を形成し、測定電極の電極面積を8mmとし、判定電流を1mAとした条件で、ウェーハ全体で416カ所程度の場所で電流−電圧曲線を測定し、静電破壊を起こさなかった確率をTZDBの合格率としている。なお、この合格率はCモード合格率とも呼ばれる。
再結合ライフタイムは、シリコン単結晶に含まれる格子間酸素が、デバイス形成プロセスを経ることでSiOとして析出することによって劣化される。本発明のウェーハによれば、上述のように格子間酸素濃度が上記の範囲以下なので、再結合ライフタイムを100μ秒以上にすることができる。
本発明のIGBT用のシリコン単結晶ウェーハの製造方法は、チョクラルスキー法によってシリコン単結晶を育成することにより得られるIGBT用シリコン単結晶ウェーハの製造方法であって、シリコン単結晶の引き上げ速度を転位クラスタ欠陥フリーなシリコン単結晶が引き上げ可能な速度で、格子間酸素濃度が6×1017atoms/cm以下、または、4×1017atoms/cm以下の単結晶を育成し、引き上げ後のシリコン単結晶に中性子照射を行ってリンをドープすることができる。
また本発明のIGBT用シリコン単結晶ウェーハの製造方法は、チョクラルスキー法によってシリコン単結晶を育成することにより得られるIGBT用シリコン単結晶ウェーハの製造方法であって、シリコン融液にn型ドーパントを添加し、シリコン単結晶の引き上げ速度を転位クラスタ欠陥フリーなシリコン単結晶が引き上げ可能な速度で、格子間酸素濃度が6×1017atoms/cm以下、または、4×1017atoms/cm以下の単結晶を育成することができる。
また本発明のIGBT用シリコン単結晶ウェーハの製造方法は、チョクラルスキー法によってシリコン単結晶を育成することにより得られるIGBT用シリコン単結晶ウェーハの製造方法であって、シリコン融液に、リンを2.9×1013atoms/cm以上2.9×1015atoms/cm以下、前記リンよりも偏析係数の小さなp型ドーパントを、その偏析係数に応じて結晶中の濃度が1×1013atoms/cm以上1×1015atoms/cm以下となるように添加し、シリコン単結晶の引き上げ速度をGrown−in欠陥フリーなシリコン単結晶が引き上げ可能な速度を含む転位クラスタ欠陥フリーなシリコン単結晶が引き上げ可能な速度で、格子間酸素濃度が8.5×1017atoms/cm以下の単結晶を育成することができる。
更に本発明のIGBT用シリコン単結晶ウェーハの製造方法においては、前記チョクラルスキー法によりシリコン単結晶を育成するシリコン融液に対して、窒素を5×1012atoms/cm以上5×1015atoms/cm以下、または、1×1014atoms/cm以上5×1015atoms/cm以下の濃度で添加することが好ましい。
ここで、CZ炉内の雰囲気ガスとしては、安価なArガスが好ましく、これ以外にもHe、Ne、Kr、Xeなどの各種希ガス単体またはこれらの混合ガスを用いることができる。
また本発明では、不活性ガスを雰囲気ガスとして引き上げることもできる。
また、引き上げ後のノンドープのシリコン単結晶に中性子照射を行ってリンをドープするか、もしくはシリコン融液にリン等のn型ドーパントを添加することで、ウェーハの面内における抵抗率のバラツキを8%以下、好ましくは5%以下にすることができる。また抵抗率のバラツキの低減は、シリコン融液にリンとリンよりも偏析係数の小さなp型ドーパントを添加することでも達成できる。
また、シリコン融液に窒素を添加することで、転位クラスタ欠陥フリーなシリコン単結晶が引き上げ可能な速度の許容幅を更に広げることができ、ウェーハの転位クラスタの排除が容易になる。
本発明によれば、抵抗率のバラツキが小さく、かつ、IGBT製造プロセスを経ても酸素析出物の発生が極めて少なく、引き上げ時間を低減することが可能であるとともに、抵抗率のバラツキが小さなウェーハの製造が可能であるIGBT用シリコン単結晶ウェーハの製造方法及びIGBT用シリコン単結晶ウェーハを提供できる。
図1は、格子間酸素濃度と、熱処理後の酸素ドナー濃度との関係を示すグラフである。 図2は、固化率と、抵抗率の関係を示すグラフである。 図3は、本発明の実施形態のシリコン単結晶ウェーハの製造方法を実施する際に使用されるCZ炉の縦断面模式図である。 図4は、本発明の実施形態のシリコン単結晶ウェーハの周縁部を示す断面模式図である。 図5は、IGBTを示す模式断面図である。 図6は、石英ルツボ回転数と結晶回転数と格子間酸素濃度との関係を示すグラフである。 図7は、本発明の実験例におけるシリコン単結晶軸方向の酸素濃度分布を示すグラフである。 図8は、本発明の実験例におけるシリコン単結晶軸方向の酸素濃度分布を示すグラフである。 図9は、石英ルツボ回転数と結晶回転数と格子間酸素濃度との関係を示すグラフである。 図10は、最高温度と酸素濃度と酸素析出物との関係を示すグラフである。 図11は、本発明におけるCOP影響排除熱処理の一例を示すグラフである。 図12は、本発明の実験例におけるシリコン単結晶軸方向の酸素濃度分布を示すグラフである。
以下、本発明に係るIGBT用のシリコン単結晶ウェーハの製造方法の一実施形態を、図面に基づいて説明する。
(CZ炉の構成)
図3は、本発明の実施形態におけるIGBT用のシリコン単結晶ウェーハの製造方法を実施するのに適したCZ炉の縦断面図である。
図3に示すCZ炉は、チャンバー内の中心部に配置されたルツボ1と、ルツボ1の外側に配置されたヒータ2と、ヒータ2の外側に配置された磁場供給装置9とを備えている。ルツボ1は、内側にシリコン融液3を収容する石英ルツボ1aを外側の黒鉛ルツボ1bで保持する二重構造であり、ペディスタルと呼ばれる支持軸1cにより回転および昇降駆動される。
ルツボ1の上方には、円筒形状の熱遮蔽体7が設けられている。熱遮蔽体7は、黒鉛で外殻を作り、内部に黒鉛フェルトを充填した構造である。熱遮蔽体7の内面は、上端部から下端部にかけて内径が漸減するテーパー面になっている。熱遮蔽体7の上部外面は内面に対応するテーパー面であり、下部外面は、熱遮蔽体7の厚みを下方に向かって漸増させるようにほぼストレート面に形成されている。
そして、シードチャック5に取り付けた種結晶Tをシリコン融液3に浸漬し、ルツボ1および引き上げ軸4を回転させつつ種結晶Tを引き上げることにより、シリコン単結晶6を形成できるようになっている。
熱遮蔽体7は、ヒータ2およびシリコン融液3面からシリコン単結晶6の側面部への輻射熱を遮断するものであり、育成中のシリコン単結晶6の側面を包囲するとともに、シリコン融液3面を包囲するものである。熱遮蔽体7の仕様例を挙げると次のとおりである。
半径方向の幅Wは例えば50mm、逆円錐台面である内面の垂直方向に対する傾きθは例えば21°、熱遮蔽体7の下端の融液面からの高さH1は30〜90mm、例えば50mmとする。
また、磁場供給装置9から供給される磁場は、水平磁場やカスプ磁場など採用することができ、例えば水平磁場の強度としては、2000〜5000G(0.2T〜0.5T)、3000〜4000G(0.3T〜0.4T)、より好ましくは3000〜3500G(0.30T〜0.35T)とされ、磁場中心高さが融液液面に対して−150〜+100mm、より好ましくは−75〜+50mmの範囲内になるように設定される。
(IGBT用のシリコン単結晶ウェーハの製造方法)
次に、図3に示すCZ炉を用いたIGBT用のシリコン単結晶ウェーハの製造方法を説明する。
先ず、ルツボ1内に高純度シリコンの多結晶を例えば100〜400Kg装入し、窒素源として例えば、窒化珪素からなるCVD膜を有するシリコンウェーハを投入する。シリコン結晶中の窒素濃度が6×1012atoms/cm以上5×1015atoms/cm以下、1×1013atoms/cm以上5×1014atoms/cm以下濃度、または、1×1014atoms/cm以上5×1015atoms/cm以下の濃度となるようにシリコン融液中の窒素濃度を調整することが好ましい。形成された抵抗率を調整するためのドーパントを添加する場合にはドーパント濃度を設定し、または、ドーパントを添加しないことが好ましい。
次に、CZ炉内を不活性ガスのみの雰囲気とし、雰囲気圧力を1.3〜26.6kPa、あるいは、1.3〜13.3kPa程度になるように調整する。
次いで、磁場供給装置9から例えば3000G(0.3T)の水平磁場を磁場中心高さが融液液面に対して−75〜+50mmとなるように印加するとともに、ヒータ2によりシリコンの多結晶を加熱してシリコン融液3とする。
次に、シードチャック5に取り付けた種結晶Tをシリコン融液3に浸漬し、ルツボ1および引き上げ軸4を回転させつつ結晶引き上げを行う。
引き上げ条件としては、アルゴン雰囲気の圧力1333〜26660Pa、磁場強度を3000〜5000Gaussといった条件を例示できる。特に、石英ルツボの回転数を1.5rpm以下にすることで、石英ルツボに含まれる酸素原子のシリコン融液への拡散を防止することができ、シリコン単結晶中の格子間酸素濃度を低減することができる。また、単結晶の回転速度を7.0rpm以下とすることで、シリコン単結晶内部における抵抗率のバラツキを低減できる。さらに、石英ルツボの回転数を0.2rpm以下にすることで、石英ルツボに含まれる酸素原子のシリコン融液への拡散を防止することができ、シリコン単結晶中の格子間酸素濃度を低減することができる。また、単結晶の回転速度を5rpm以下とすることで、シリコン単結晶内部における抵抗率のバラツキを低減できる。
さらに、石英ルツボ回転数R1(rpm)と、結晶回転数R2(rpm)とを、
添付図面図6に各点(R1,R2)で示すように、
点A (0.1,1)、点B(0.1,7)、点C(0.5,7)、点I(0.7,6)、点E(1,6)、点F(2,2)、点G(2,1)で囲まれる範囲内の値に設定してシリコン単結晶を引き上げることができる。実質的には、石英ルツボの回転数をR1(rpm)、結晶回転数をR2(rpm)とするとき、R1:0.1以上2以下、R2:1以上7以下、の範囲であって、R1:0.5以上0.7以下の場合、R2<7−5(R1−0.5)を満足し、R1:0.7以上1以下の場合、R2<6を満足し、R1:1以上2以下の場合、R2<6−4(R1−1)を満足する範囲に設定することができる。この場合、単結晶中の格子間酸素濃度を6.0×1017atoms/cm以下、さらには、4.0×1017atoms/cm以下とすることができる。
このように、格子間酸素濃度は、シリコン単結晶を育成する工程において、所定の回転数で石英ルツボを回転し、所定の回転数でシリコン単結晶を逆回転することにより調整できる。それら回転数の条件は、後述する実験により求めたものである。
また、石英ルツボ回転数R1(rpm)と、結晶回転数R2(rpm)とを、
添付図面図6に各点(R1,R2)で示すように、
点A(0.1,1)、点B(0.1,7)、点L(0.2,7)、点K(0.3,7)、点J(0.5,6)、点I(0.7,6)、点H(1,5)、点N(1,3)、点M(1,1)で囲まれる範囲内の値に設定してシリコン単結晶を引き上げること、実質的には、石英ルツボ回転数R1(rpm)と結晶回転数R2(rpm)とをR1:0.1以上2以下、R2:1以上7以下、の範囲であって、但しR1:0.3以上、0.5以下の場合、R2<7−5(R1−0.3)を満足し、R1:0.5以上0.7以下の場合、R2<6を満足し、R1:0.7以上1以下の場合、R2<6−3.4(R1−0.7)を満足する範囲に設定することで、単結晶中の格子間酸素濃度を6.0×1017atoms/cm以下、さらには、3.5×1017atoms/cm以下としてより低酸素濃度のシリコン単結晶を育成できる。
また、石英ルツボ回転数R1(rpm)と、結晶回転数R2(rpm)とを、
添付図面図6に各点(R1,R2)で示すように、
点A (0.1,1)、点B(0.1,7)、点L(0.2,7)、点Q(0.3,6)、点J(0.5,6)、点P(0.7,5)、点N(1,3)、点M(1,1)で囲まれる範囲内の値に設定してシリコン単結晶を引き上げること、実質的には、石英ルツボ回転数R1(rpm)と結晶回転数R2(rpm)とをR1:0.1以上1以下、R2:1以上7.0以下の範囲であって、但しR1:0.2以上0.3以下の場合、R2<7−10(R1−0.2)を満足し、R1:0.3以上0.5以下の場合、R2<6を満足し、R1:0.5以上0.7以下の場合、R2<6−5(R1−0.5)を満足し、R1:0.7以上、1以下の場合、R2<5−6.7(R1−0.7)を満足する範囲に設定することで、単結晶中の格子間酸素濃度を3.0×1017atoms/cm以下0.1以上としてより低酸素濃度のシリコン単結晶を育成できる。
以上の引き上げ条件に設定することで、シリコン単結晶中の格子間酸素濃度を上記の範囲より小さくすることができ、これによりIGBT製造工程での酸素ドナー発生を防止することができる。格子間酸素濃度が上記の範囲を越えるとIGBT製造工程で酸素析出物や酸素ドナーが生じ、IGBTの特性を変えてしまうので好ましくない。
次に、形成された抵抗率を調整するためのドーパントが添加されていない単結晶シリコンに対しては中性子線を照射する。この中性子線照射によって、シリコン原子の一部をリンに変換させ、これにより単結晶シリコンにリンを均一にドープさせることができ、抵抗率が均一な単結晶シリコンが得られる。中性子線の照射条件は、例えば、3.0×1012個/cm/s-1の中性子線束である位置において、結晶を約2rpmで回転させながら約80時間の照射とすると良い。こうして中性子線が照射されたシリコンインゴットは、抵抗率が48Ωcm〜52Ωcm程度になる。
また、中性子線の照射に代えて、シリコン融液に予めn型(P,As,Sb等)のドーパントを添加しておいても良いが、偏析係数が小さいためにシリコン単結晶の長さ方向で抵抗率が大きく変化する。こうしたn型ドーパントの濃度の変化を防止するためには、例えば上述したDLCZ法、ダブルドープ法、CCZ法を採用すればよい。更に、ウェーハ面内での抵抗率のばらつきを抑制するために、単結晶育成中の結晶回転速度を5.0rpm以上7.0rpm以下としても良い。
次に、単結晶シリコンからウェーハを切り出し、必要に応じてラッピングやエッチング、研削、研磨等をおこなうとともに、必要に応じてRTAなどの熱処理をおこなう。
ラッピングを行う際には、ウェーハの割れを防止するために、ウェーハの表面の周縁部に表面側面取り部を形成するべべリングをおこなうとともに、ウェーハの裏面の周縁部に裏面側面取り部を形成することが好ましい。図4には、ウェーハ加工完了後のウェーハ周縁部の断面を示す。
図4に示すように、ウェーハの表面22には、平坦面である主面23と、周縁部に形成された表面側面取り部24とが設けられている。また、裏面26には、平坦面である主面27と、周縁部に形成された裏面側面取り部28とが設けられている。表面側面取り部24は、その周縁端29からウェーハ半径方向内方に向けた方向の幅A1が、裏面側面取り部28の周縁端29からウェーハ半径方向内方に向けた方向の幅A2よりも狭められている。表面側面取り部24の幅A1は50μmから200μmの範囲が好ましい。また、裏面側面取り部28の幅A2は200μmから300μmの範囲が好ましい。
また、表面側面取り部24は、表面22の主面23に対して傾斜する第一傾斜面11を有しており、裏面側面取り部28は、裏面26の主面27に対して傾斜する第二傾斜面12を有している。第一傾斜面11の傾斜角度θ1は10°から50°の範囲が好ましく、第二傾斜面12の傾斜角度θ2は10°から30°の範囲が好ましく、更にθ1≦θ2とされていることが好ましい。
また、第一傾斜面11と周縁端29との間には、これらを接続する第一曲面13が設けられている。また、第二傾斜面12と周縁端29との間には、これらを接続する第二曲面14が設けられている。第一曲面13の曲率半径R1の範囲は80μmから250μmの範囲が好ましく、第二曲面14の曲率半径R2の範囲は100μmから300μmの範囲が好ましい。
さらに、このようなウェーハに対して、1050℃以上シリコンの融点以下、1〜10時間、1〜5℃/minの降温速度とされるCOP影響排除熱処理をおこなう。熱処理前後において、結晶径方向全域で転位クラスタが排除されている状態であり、また、このCOP影響排除熱処理によってCOPを消失させること、または、デバイスに影響ない程度に大きさ・密度を設定することが可能である。このCOP影響排除熱処理としては、COPを消滅させられる温度条件であればよいが、空孔の拡散速度に影響のある処理温度と処理時間、および降温速度は上記の範囲に設定されることが好ましく、特に、図11に示すような温度条件、処理時間、昇降温レートとすることがより好ましい。具体的には、700℃に加熱された炉内に1〜3cm/minの進入速度、好ましくは2cm/minの進入速度で投入し、ここから酸素濃度を1〜5%、好ましくは3%とした状態で1050〜1120℃、好ましくは1100℃までを昇温速度3〜7℃/min好ましくは5℃/minで昇温し、さらに、処理温度である1130〜1200℃、好ましくは1150℃まで1℃/minで昇温し、この処理温度1150℃となってから酸素濃度を50%以上、好ましくは100%に設定しこの状態で2〜10hr好ましくは3.5hr保持した後、1〜3℃/min好ましくは2℃/minで900℃まで降温して、1〜3cm/min好ましくは2cm/minの取り出し速度で取り出すことができる。熱処理炉としては、処理効率のために、複数枚を同時に処理可能なバッチ炉を使用することが好ましいが枚葉炉でも可能である。また、処理雰囲気として酸化雰囲気であればよく、酸素のみでなく、他の不活性ガスや窒素等を含む雰囲気とすることも可能である。さらに、このPv/Pi領域からなるウェーハや低酸素濃度のウェーハなど、デバイス処理におけるプロセス条件によってCOPの影響が心配ないウェーハにおいてはCOP影響排除熱処理をおこなわないこともできる。
次に、ウェーハの一面側にポリシリコン層を形成する。本実施形態のシリコン単結晶ウェーハは、格子間酸素濃度が極めて低いので、酸素析出物によるゲッタリング効果は期待できない。そのため、裏面側にゲッタリング層としての多結晶シリコン層を形成し、IGBT製造工程における重金属汚染を除去する必要がある。また、多結晶シリコン層を裏面側に形成することで、スリップ等の発生を防止して、ウェーハ表面側へのスリップの伝搬を未然に防ぐこともできる。ポリシリコン層の厚みは、50nm以上2000nm以下の範囲が好ましい。厚みが50nm以上であればゲッタリング効果及びスリップ発生の抑制効果を十分に発揮させることができ、厚みが2000nm以下であれば、ウェーハの反りを防止できる。
このようにして、本実施形態のIGBT用のシリコン単結晶ウェーハを製造できる。
上記の製造方法によれば、ウェーハの面内における抵抗率のバラツキを8%以下あるいは5%以下にすることができ、酸素濃度が6×1017atoms/cm以下あるいは4×1017atoms/cm以下の低酸素濃度に制限されているので、酸素ドナーによる抵抗率の変動や酸素析出物形成によるリーク不良の発生を確実に防止することができる。
また、引き上げ後のシリコン単結晶に中性子照射を行ってリンをドープするか、もしくはシリコン融液にリン等のn型ドーパントを添加することで、ウェーハの面内における抵抗率のバラツキを5%以下にすることができる。また抵抗率のバラツキの低減は、シリコン融液にリンとリンよりも偏析係数の小さなp型ドーパントを添加することでも達成できる。
また、シリコン融液に窒素を添加することで、転位クラスタ欠陥フリーなシリコン単結晶が引き上げ可能な速度の許容幅を更に広げることができ、ウェーハのCOP欠陥および転位クラスタの排除が容易になる。
(IGBT用のシリコン単結晶ウェーハ)
以上のようにして製造されたシリコン単結晶ウェーハは、結晶径方向全域においてCOP欠陥および転位クラスタが排除されており、格子間酸素濃度が6×1017atoms/cm以下であり、ウェーハ面内における抵抗率のばらつきが8%以下となっている。また、抵抗率自体は48Ω・cm〜52Ω・cm程度となる。更にシリコン単結晶ウェーハには、6×1012〜5×1015atoms/cmの窒素がドープされている。
更に本実施形態のIGBT用シリコン単結晶ウェーハにおいては、破壊電界8MV/cmでのTZDBの合格率が90%以上であり、450℃で1時間の熱処理を行った場合に析出する酸素ドナーの濃度が9.8×1012cm−3以下であり、800℃で4時間と1000℃で16時間の二段階熱処理を行った場合に生じるBMDの密度が1×10個/cm以下であり、前記二段階熱処理を行った場合における再結合ライフタイムが100μ秒以上となっている。
更にまた、本実施形態のシリコン単結晶ウェーハにおいては、ウェーハ表面における0.1μmサイズ以上のLPD密度が0.1個/cm以下であり、ライトエッチング欠陥密度が1×10個/cm以下になっている。更にまた、本実施形態のシリコン単結晶ウェーハには、裏面側に50nm以上2000nm以下の多結晶シリコン層が形成されており、ウェーハの表面の周縁部には表面側面取り部が形成され、ウェーハの裏面の周縁部には裏面側面取り部が形成されている。
本実施形態のIGBT用のシリコン単結晶ウェーハによれば、結晶径方向全域においてCOP欠陥および転位クラスタが排除されているので、IGBT製造工程におけるウェーハ表面でのゲート酸化膜の形成時に、COP欠陥がゲート酸化膜に取り込まれることがなく、GOIを劣化させることがない。
さらに、OSF領域が排除されて、OSFの密度が10個/cm以上である領域が存在しないので、IGBT製造工程におけるウェーハ表面でのゲート酸化膜の形成時に、COP欠陥がゲート酸化膜に取り込まれることがなく、GOIを劣化させることがない。また、集積回路におけるリーク電流を防止できる。さらに、良品率を90%以上とすることができる。
更に、結晶径方向全域においてCOP欠陥、転位クラスタが排除されることで、ウェーハを縦方向に使う素子であるIGBT用のウェーハとして好適に用いることができる。即ち、COP欠陥および転位クラスタが排除されているため、ウェーハのバルクの品質が優れたものとなり、IGBT用ウェーハとして重要な特性である再結合ライフタイムを向上させることができる。
更に、格子間酸素濃度が上記の範囲以下なので、ウェーハの熱処理後に発生する酸素ドナーの濃度を9.8×1012個/cm以下に抑えることができ、熱処理前後でのウェーハの抵抗率の変化を防ぐことができ、シリコン単結晶ウェーハの品質を安定にできる。
また、本発明のシリコン単結晶ウェーハによれば、ウェーハ面内における抵抗率のばらつきが5%以下なので、シリコン単結晶ウェーハの品質を安定にできる。
更に、シリコン単結晶に、6×1012〜5×1015atoms/cm、または、1×1014〜5×1015atoms/cm、1×1013〜5×1014atoms/cmの窒素がドープされることによって、COP欠陥および転位クラスタの排除が容易になる。窒素のドープ量が上記の範囲未満ではCOP欠陥および転位クラスタの排除が完全になされない虞があり、上記の範囲を超えると、窒化物が生成してシリコン単結晶が育成できなくなる。
また、TZDBの合格率が90%以上であり、450℃で1時間の熱処理を行った場合に発生する酸素ドナーの濃度が9.8×1012cm−3以下であり、800℃で4時間と1000℃で16時間の二段階熱処理を行った場合に析出するBMDの密度が1×10個/cm以下であり、二段階熱処理を行った場合における再結合ライフタイムが100μ秒以上であるので、IGBT用のシリコン単結晶ウェーハに求められる特性を満たすことができる。
(実験例1)
CZ法により、種々の格子間酸素濃度を有するシリコンインゴットを製造した。具体的には、多結晶シリコン塊を石英ルツボに投入し、アルゴン雰囲気中で多結晶シリコン塊を加熱してシリコン融液とした。シリコン融液にはドーパントとしてリンを添加した。リンの添加量は、シリコン単結晶の抵抗率が65Ω・cmになるように調整した。次に、磁場供給装置から3000G(0.3T)の水平磁場を磁場中心高さが融液液面に対して−75〜+50mmとなるように供給しながら、シリコン融液に種結晶を浸漬させ、次に種結晶及び石英ルツボを回転させながら種結晶を徐々に引き上げて種結晶の下に単結晶を成長させた。尚、単結晶の成長速度(引き上げ速度)をV(mm/分)とし、単結晶成長時の融点から1350℃の温度勾配をG(℃/分)としたときの比V/Gを0.185程度に設定し、Vを0.49mm/分に設定した。このようにして、条件1〜4の引き上げ条件で引き上げられてなる単結晶シリコンのインゴットを製造した。なお、シリコンインゴットにおける格子間酸素濃度は、石英ルツボの回転数を調整することにより制御した。また、条件4では、シリコン融液中に窒化珪素膜付きのシリコンウェーハを投入することにより、シリコン単結晶中に4.1×1014atoms/cmの窒素をドープした。
次に、引き上げられた単結晶シリコンのインゴットをスライスしてウェーハを切り出した。切り出されたウェーハには、ラッピング、エッチング等の表面処理を施した。このようにして、直径200mm、厚さ0.75mmのシリコン単結晶ウェーハを製造した。
得られたシリコン単結晶ウェーハについて、格子間酸素濃度を測定すると共に、ウェーハ表面の面内における抵抗率のばらつきを評価した。格子間酸素濃度は、ASTM F−121(1979)に規格されたフーリエ変換赤外分光光度法に準じて測定した。また、抵抗率のばらつきは、ウェーハ中心、ウェーハ中心と外周の中間の位置、ウェーハ外周から5mmの位置の合計3カ所で抵抗率を測定し、その3カ所の抵抗率の中から最大値と最小値を選び、「(最大値−最小値)×100/最小値」の式により算出した。結果を表1に示す。
更に表1には、引き上げ速度の許容幅を示す。この許容幅は、結晶の引き上げ速度を徐々に低下させ育成した結晶を育成方向に縦割り加工し転位クラスタ欠陥を含むGrown−in欠陥分布をCuデコレーション後にX−rayトポグラフィー法により観察することでCOP領域を、またライトエッチング欠陥を測定することで転位クラスタ領域を判定しもとめた、結晶径方向全域において転位クラスタが排除できる引き上げ速度マージンである。
Figure 2010222241
表1に示すように、ルツボ回転速度を7rpmから1rpmに低下させることによって(条件1→条件2〜4)、実際に格子間酸素濃度を低減できることがわかった。但し、条件1および2では、結晶回転速度が遅いことから引き上げ速度の許容幅をある程度確保できるものの、抵抗率のばらつきが非常に大きいものであった。
また、条件2と3を比較すると、条件3では結晶の回転速度の高速化によって抵抗率のばらつきは低減されたが、引き上げ速度の許容幅が大幅に低下した。これは、単結晶の回転速度の増大によって、シリコン融液と単結晶との間の固液界面形状が変化したためと考えられる。
更に、条件4については、条件3に対し、窒素をドープしたことによって引き上げ速度の許容幅が増大したが、抵抗率のばらつきも増大した。これは、窒素ドープによってシリコン融液の対流状態が変化したためと考えられる。
以上のことから、条件1〜4の引き上げ条件では、格子間酸素濃度の低減、抵抗率のばらつきの低減、引き上げ速度の許容幅の拡大を同時に達成することは困難であった。
(実験例2)
CZ法により、種々の格子間酸素濃度を有するシリコンインゴットを製造した。具体的には、多結晶シリコン塊を石英ルツボに投入し、アルゴン雰囲気中で多結晶シリコン塊を加熱してシリコン融液とした。次に、磁場供給装置から3000G(0.3T)の水平磁場を磁場中心高さが融液液面に対して−75〜+50mmとなるように供給しながら、シリコン融液に種結晶を浸漬させ、次に種結晶及び石英ルツボを回転させながら種結晶を徐々に引き上げて種結晶の下に単結晶を成長させた。尚、単結晶の成長速度(引き上げ速度)をV(mm/分)とし、単結晶成長時の融点から1350℃の温度勾配G(℃/分)としたときの比V/Gを0.185程度に設定し、Vを0.49mm/分に設定した。このようにして、条件5〜14の引き上げ条件で引き上げられてなる単結晶シリコンのインゴットを製造した。
なお、石英ルツボの回転速度は全ての条件で2rpmとし、単結晶の回転速度は全ての条件で20rpmとした。更に、条件5及び6では、シリコン融液中に窒化珪素膜付きのシリコンウェーハを投入して、シリコン単結晶中に窒素をドープした。また、条件7〜11では、アルゴンガス雰囲気に水素ガスを導入して水素分圧30〜400Paの条件で引き上げを行った。更に、条件12〜14では、窒素のドープと水素ガスの導入を同時に行った。更に、条件7〜10及び12〜13では、シリコン融液にリンを添加することにより抵抗率の調整を行い、他の条件では実験例1と同様にして引き上げられた単結晶シリコンに対して中性子線を照射してリンをドープした。中性子線の照射は、線束3.0×1012個/cm/sで80時間照射する条件とした。このようにして、シリコン単結晶の抵抗率を65Ω・cmに調整した。
その後、単結晶シリコンのインゴットをスライスしてウェーハを切り出した。切り出されたウェーハには、ラッピング、エッチング等の表面処理を施した。このようにして、直径200mm、厚さ0.75mmのシリコン単結晶ウェーハを製造した。
得られたシリコン単結晶ウェーハについて、実験例1と同様にして、格子間酸素濃度を測定すると共にウェーハ表面の面内における抵抗率のばらつきを評価した。結果を表2に示す。また表2には、ウェーハ中の窒素濃度、CZ炉の雰囲気中の水素分圧、ドーパントの導入方法の条件を同時に示す。また、実験例1と同様にして、引き上げ速度の許容幅を同時に示す。
Figure 2010222241
表1及び表2に示すように、条件4において窒素ドープにより悪化した抵抗率のばらつきは、条件5及び6に示すように中性子照射によるリンドープを行うことによって改善されたが、引き上げ速度の許容幅は十分なものではなかった。
また、条件3において結晶の回転速度の高速化によって低下した引き上げ速度の許容幅は、条件8〜10に示すように雰囲気中に水素を導入することによって改善された。条件8〜10のように、所定量の水素を導入すると共に、ルツボ回転速度並びに単結晶の回転速度を制御することによって、格子間酸素濃度の低減と、抵抗率のばらつきの低減と、引き上げ速度の許容幅の拡大を同時に実現できることが判明した。
また、条件4において窒素ドープによって増大した抵抗率のばらつきは、条件12及び13に示すように雰囲気中に水素を導入することによって改善された。これは、窒素ドープによって引き起こされたシリコン融液の対流状態の変動を水素の導入によって抑制できたためと考えられる。また条件12及び13では、引き上げ速度の許容幅についても、窒素ドープ単独(条件5〜6)、水素導入単独(条件7〜11)の場合と比べて拡大することができた。
更にこの条件12及び13に対して、リンの導入を中性子照射により行った条件14では、抵抗率のばらつきがより低減された。
(実験例3)
CZ法により、格子間酸素濃度を有するシリコンインゴットを製造した。具体的には、石英ルツボ内に単結晶直胴部トップ部で窒素濃度が8×1013atoms/cmとなるように窒化膜付きウェーハを投入した後、多結晶シリコン塊110kgを石英ルツボに投入し、アルゴン雰囲気中で多結晶シリコン塊を加熱してシリコン融液とした。
次に、シリコン融液には電気抵抗率を調整するためのドーパントは添加せずに、このシリコン融液に対して、磁場供給装置から3500G(0.35T)の水平磁場を印加した。
次に、シリコン融液に種結晶を浸漬させ、種結晶(単結晶)の回転速度を5rpm及び石英ルツボの回転速度を0.1rpmの回転速度で互いに逆方向に回転させながら、種結晶を徐々に引き上げて種結晶の下に、直径8インチで直胴部の長さが1200mmのシリコン単結晶を成長させた。なお、単結晶の成長速度(引き上げ速度)をV(mm/分)とし、単結晶成長時の融点から1350℃の温度勾配G(℃/分)としたときの比V/Gを0.185程度に設定し、Vを0.49mm/分に設定した。
上記で育成したシリコン単結晶において、単結晶引き上げ軸方向における結晶中心部分での酸素濃度変化を測定した。この結果を図7に示す。
この結果から、上記で育成したシリコン単結晶のうち、酸素濃度1.4×1017〜4×1017atoms/cm(oldASTM)以下で、COPも転位クラスタも含まない部分は800mmであり、広範囲に4×1017atoms/cm以下の低酸素シリコン単結晶を得ることができた。
(実験例4)
実験例3の条件において、窒素を添加せず、炉内のガス雰囲気をアルゴンガス94%、水素ガス6%の混合ガス雰囲気に変更した以外は、実施例3と同条件でシリコン単結晶の育成を行った。このときの単結晶引き上げ軸方向における結晶中心部分での酸素濃度変化を測定した結果を図8に示す。
この結果から、上記で育成したシリコン単結晶のうち 酸素濃度1.4×1017〜4.0×1017atoms/cmで COPも転位クラスタも含まない部分は1050mmであり、広範囲に4×1017atoms/cm以下の低酸素シリコン単結晶を得ることができた。
(実験例5)
次に、実験例3および実験例4の条件と同様にして引き上げられた各単結晶シリコンに対して中性子線を照射してリンをドープした。中性子線の照射は、線束3.0×1012個/cm/sで80時間照射する条件とした。このようにして、各シリコン単結晶の抵抗率を65Ω・cmに調整した。
その後、各単結晶シリコンのインゴットをスライスしてウェーハを切り出した。切り出されたウェーハには、ラッピング、エッチング等の表面処理を施した。このようにして、直径200mmのシリコン単結晶ウェーハを製造した。
得られた各シリコン単結晶ウェーハについて、ウェーハ表面の面内における抵抗率のばらつきを評価した。抵抗率のばらつきは、ウェーハ中心、ウェーハ中心と外周の中間の位置、ウェーハ外周から5mmの位置の合計3カ所で抵抗率を測定し、その3カ所の抵抗率の中から最大値と最小値を選び、「(最大値−最小値)×100/最小値」の式により算出した。
その結果、いずれのシリコンウェーハも抵抗率のばらつきが8%以下(5%以下)であることを確認した。これは、本実施例ではシリコン単結晶育成の段階ではドーパントを添加していないため、結晶回転速度を低下させてもシリコン単結晶中の抵抗率分布には何も影響せず、育成が完了したシリコン単結晶に中性子照射によりリンをドープしたことによるものである。
(実験例6)
次に、ウェーハ中の酸素濃度が4×1017atoms/cm以下となる、ルツボ回転数と結晶回転数の条件範囲について調査を行った。
具体的には、実施例1の条件において、ルツボの回転数を0.1rpm,0.2rpm,0.3rpm,0.7rpm,1.0rpm,2.0rpmの6水準とし、結晶の回転数を1〜8rpmの8水準として、シリコン単結晶の育成を行い、各シリコン単結晶の直胴部トップ部から200mmの位置から切り出したウェーハの酸素濃度を測定した。格子間酸素濃度は、ASTM F−121(1979)に規格されたフーリエ変換赤外分光光度法に準じて測定した。その結果を表3および図9に示す。
Figure 2010222241
表3および図9から明らかなように、ルツボの回転数が0.2rpm以下、かつ結晶の回転数が5rpm以下である場合に、ウェーハ中の酸素濃度を6×1017atoms/cm以下(または4×1017atoms/cm以下)にすることができる。
(実験例7)
次に、IGBT用デバイスプロセスで行われる熱処理の最高温度とウェーハ中の酸素濃度とウェーハ内に形成される酸素析出物(BMD: Bulk Micro Defect)密度のそれぞれの関係について調査を行った。
まず、COPと転位クラスタを含まず、ウェーハの中心付近の酸素濃度が1.5〜7.6×1017atoms/cmの間の範囲にある直径200mmのn型(50Ω・cm)ウェーハを用い、表4に示すようなIGBT用デバイスプロセス熱処理を模擬した熱処理を施した。この際、最高温度を1100℃〜1225℃まで変化させた。
Figure 2010222241
その後、ウェーハをへき開し、ウェーハ中のBMD密度を赤外トモグラフ(三井金属鉱業製MO441)で測定した。透過型電子顕微鏡(TEM)との比較から、MO441で検出可能なBMDサイズの下限は、20nmである。
ウェーハの中心付近で10μm(ビーム径)×260μm(深さ方向の範囲)×4000μm(径方向のスキャン距離)の体積を計測し、BMDが検出されなかった場合、すなわち、20nm以上のBMD密度が1×10個/cm未満だった場合をOK、20nm以上のBMD密度が1×10個/cm以上だった場合をNGと判定した。その結果を図10に示す。
図から明らかなように、ウェーハ中の酸素濃度が6×1017atoms/cm以下であれば、IGBTの製造プロセスにおける熱処理を模擬した熱処理後に20nm以上のBMD密度が1×10個/cm未満に制御することができる。これによりBMDに起因したリーク不良を低減することができる。
(実験例8)
CZ法により、格子間酸素濃度を有するシリコンインゴットを条件をC1〜5で表5に示すように変化させて製造した。具体的には、石英ルツボ内に単結晶直胴部トップ部で窒素濃度が8×1013atoms/cmとなるように窒化膜付きウェーハを投入および窒素投入なしを選択した後、多結晶シリコン塊110kgを石英ルツボに投入し、アルゴン雰囲気中で多結晶シリコン塊を加熱してシリコン融液とした。
次に、シリコン融液には電気抵抗率を調整するためのドーパントは添加せずに、このシリコン融液に対して、磁場供給装置から3500G(0.35T)の水平磁場の中心位置が−3から+153mmとなるように、つまり、磁場中心位置はシリコン融液液面より上側になるように印加した。
次に、シリコン融液に種結晶を浸漬させ、種結晶(単結晶)の回転速度を5〜8rpm及び石英ルツボの回転速度を0.1rpmの回転速度で互いに逆方向に回転させながら、種結晶を徐々に引き上げて種結晶の下に、直径8インチで直胴部の長さが1200mmのシリコン単結晶を成長させた。なお、単結晶の成長速度(引き上げ速度)をV(mm/分)とし、単結晶成長時の融点から1350℃の温度勾配をG(℃/分)としたときの比V/Gを0.2程度に設定し、Vを0.52mm/分に設定した。
上記で育成したシリコン単結晶において、単結晶引き上げ軸方向における結晶中心部分での酸素濃度変化を測定した。この結果をC1〜C5として、図12に示す。
Figure 2010222241
この結果から、上記で育成したシリコン単結晶のうち、酸素濃度6×1017atoms/cm(oldASTM)以下で、転位クラスタを含まずアニールでCOPの影響を排除できる低酸素シリコン単結晶を得ることができた。
3…シリコン融液
6…シリコン単結晶
T…種結晶

Claims (14)

  1. チョクラルスキー法によってシリコン単結晶を育成することにより得られるIGBT用シリコン単結晶ウェーハの製造方法であって、
    磁場強度2000ガウス以上とし、石英ルツボ回転数1.5rpm以下、結晶回転数7.0rpm以下とし、
    シリコン単結晶の引き上げ速度を転移クラスタ欠陥フリーなシリコン単結晶が引き上げ可能な速度で、格子間酸素濃度が6×1017atoms/cm以下の単結晶を育成することを特徴とするIGBT用シリコン単結晶ウェーハの製造方法。
  2. チョクラルスキー法によってシリコン単結晶を育成することにより得られるIGBT用シリコン単結晶ウェーハの製造方法であって、
    磁場強度2000ガウス以上とし、
    石英ルツボ回転数R1(rpm)と、結晶回転数R2(rpm)とを、
    添付図面図6に各点(R1,R2)で示すように、
    点A (0.1,1)、点B(0.1,7)、点C(0.5,7)、点I(0.7,6)、点E(1,6)、点F(2,2)、点G(2,1)で囲まれる範囲内の値に設定し、
    シリコン単結晶の引き上げ速度を転位クラスタ欠陥フリーなシリコン単結晶が引き上げ可能な速度で、格子間酸素濃度が6×1017atoms/cm以下の単結晶を育成することを特徴とするIGBT用シリコン単結晶ウェーハの製造方法。
  3. チョクラルスキー法によってシリコン単結晶を育成する際に、シリコン融液にn型ドーパントを添加するか、シリコン融液にリンを2.9×1013atoms/cm以上2.9×1015atoms/cm以下、前記リンよりも偏析係数の小さなp型ドーパントを、その偏析係数に応じて結晶中の濃度が1×1013atoms/cm以上1×1015atoms/cm以下となるように添加するか、または、引き上げ後のシリコン単結晶に中性子照射を行うことで、リンをドープすることを特徴とする請求項1または2に記載のIGBT用シリコン単結晶ウェーハの製造方法。
  4. チョクラルスキー法によってシリコン単結晶を育成することにより得られるIGBT用シリコン単結晶ウェーハの製造方法であって、
    シリコン単結晶中の電気抵抗率を調整するためのドーパントが添加されていないシリコン溶融液を収容する石英ルツボに磁場強度2000ガウス以上の磁場を印加し、石英ルツボの回転数を1.5rpm以下かつ、育成中のシリコン単結晶の回転速度を7.0rpm以下として、酸素濃度が6×1017atoms/cm以下のシリコン単結晶を育成した後、引き上げ後のシリコン単結晶に中性子照射を施してリンをドープすることを特徴とするIGBT用シリコン単結晶ウェーハの製造方法。
  5. 前記シリコン単結晶の引き上げ速度を結晶径方向全域において、COP欠陥、転位クラスタを排除可能な引き上げ速度とすることを特徴とする請求項4記載のIGBT用シリコン単結晶ウェーハの製造方法。
  6. 前記シリコン単結晶に窒素を6x1012atoms/cm以上5×1015atoms/cm以下の濃度で添加することを特徴とする請求項1から5のいずれかに記載のIGBT用シリコン単結晶ウェーハの製造方法。
  7. 前記シリコン単結晶ウェーハの裏面側に50nm以上1000nm以下の多結晶シリコン層を形成することを特徴とする請求項1〜6記載のIGBT用シリコン単結晶ウェーハの製造方法。
  8. 前記シリコン単結晶からスライスされたシリコンウェーハに、1050℃以上シリコンの融点以下、1〜10時間とされるCOP影響排除熱処理をおこなうことを特徴とする請求項1〜7記載のIGBT用シリコン単結晶ウェーハの製造方法。
  9. 請求項1から8のいずれかに記載の製造方法により製造され、
    結晶径方向全域において転位クラスタが排除されており、格子間酸素濃度が6×1017atoms/cm以下であり、ウェーハ面内における抵抗率のばらつきが8%以下であることを特徴とするIGBT用シリコン単結晶ウェーハ。
  10. 前記シリコン単結晶が、前記チョクラルスキー法により育成される際に転移クラスタ欠陥フリーなシリコン単結晶を引き上げ可能な引き上げ速度で育成されたものであり、かつ、引き上げ後のシリコン単結晶に中性子照射がなされてリンがドープされてなるものであることを特徴とする請求項9に記載のIGBT用シリコン単結晶ウェーハ。
  11. 前記シリコン単結晶が、前記チョクラルスキー法により育成される際に、n型ドーパントがドープされたシリコン融液から、転移クラスタ欠陥フリーなシリコン単結晶を引き上げ可能な引き上げ速度により育成されたものであることを特徴とする請求項9に記載のIGBT用シリコン単結晶ウェーハ。
  12. リンと、前記リンよりも偏析係数の小さなp型ドーパントがそれぞれ、1×1013atoms/cm以上1×1015atoms/cm以下の濃度で含まれていることを特徴とする請求項10に記載のIGBT用シリコン単結晶ウェーハ。
  13. ウェーハ表面におけるLPD密度が0.1個/cm以下であり、ライトエッチング欠陥密度が1×10個/cm以下であることを特徴とする請求項9から12のいずれかに記載のIGBT用シリコン単結晶ウェーハ。
  14. 裏面側に50nm以上1000nm以下の多結晶シリコン層が形成されていることを特徴とする請求項9から13のいずれかに記載のIGBT用シリコン単結晶ウェーハ。
JP2010040351A 2009-02-25 2010-02-25 Igbt用シリコン単結晶ウェーハ及びigbt用シリコン単結晶ウェーハの製造方法 Pending JP2010222241A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010040351A JP2010222241A (ja) 2009-02-25 2010-02-25 Igbt用シリコン単結晶ウェーハ及びigbt用シリコン単結晶ウェーハの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009042889 2009-02-25
JP2010040351A JP2010222241A (ja) 2009-02-25 2010-02-25 Igbt用シリコン単結晶ウェーハ及びigbt用シリコン単結晶ウェーハの製造方法

Publications (1)

Publication Number Publication Date
JP2010222241A true JP2010222241A (ja) 2010-10-07

Family

ID=43039841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010040351A Pending JP2010222241A (ja) 2009-02-25 2010-02-25 Igbt用シリコン単結晶ウェーハ及びigbt用シリコン単結晶ウェーハの製造方法

Country Status (1)

Country Link
JP (1) JP2010222241A (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012148949A (ja) * 2010-12-28 2012-08-09 Siltronic Ag シリコン単結晶の製造方法、シリコン単結晶、およびウエハ
WO2014073164A1 (ja) * 2012-11-08 2014-05-15 信越半導体株式会社 シリコン単結晶の製造方法、シリコン単結晶ウェーハの製造方法、及びシリコン単結晶ウェーハ
WO2014174752A1 (ja) * 2013-04-26 2014-10-30 信越半導体株式会社 シリコン単結晶の製造方法
WO2014188666A1 (ja) * 2013-05-23 2014-11-27 信越半導体株式会社 シリコン単結晶の製造方法
JP2016009868A (ja) * 2014-06-24 2016-01-18 インフィネオン テクノロジーズ アーゲーInfineon Technologies Ag 半導体ウエハを処理するための方法
JP2016519049A (ja) * 2013-05-24 2016-06-30 サンエディソン・セミコンダクター・リミテッドSunEdison Semiconductor Limited 低酸素シリコンインゴットの製造方法
JP6052392B2 (ja) * 2013-03-06 2016-12-27 トヨタ自動車株式会社 半導体ウエハの順電圧ばらつき低減方法
JP2021031356A (ja) * 2019-08-28 2021-03-01 グローバルウェーハズ・ジャパン株式会社 シリコン単結晶の製造方法
EP3831987A1 (en) * 2015-12-04 2021-06-09 GlobalWafers Co., Ltd. Systems and methods for production of low oxygen content silicon
CN113009075A (zh) * 2019-12-20 2021-06-22 胜高股份有限公司 单晶硅晶片的氧化膜耐压的评价方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0442894A (ja) * 1990-06-07 1992-02-13 Shin Etsu Handotai Co Ltd シリコン単結晶の成長方法
JPH05155682A (ja) * 1991-12-04 1993-06-22 Shin Etsu Handotai Co Ltd シリコン単結晶の引上げ方法
JP2006344823A (ja) * 2005-06-09 2006-12-21 Sumco Corp Igbt用のシリコンウェーハ及びその製造方法
JP2007254274A (ja) * 2006-02-21 2007-10-04 Sumco Corp Igbt用のシリコン単結晶ウェーハ及びigbt用のシリコン単結晶ウェーハの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0442894A (ja) * 1990-06-07 1992-02-13 Shin Etsu Handotai Co Ltd シリコン単結晶の成長方法
JPH05155682A (ja) * 1991-12-04 1993-06-22 Shin Etsu Handotai Co Ltd シリコン単結晶の引上げ方法
JP2006344823A (ja) * 2005-06-09 2006-12-21 Sumco Corp Igbt用のシリコンウェーハ及びその製造方法
JP2007254274A (ja) * 2006-02-21 2007-10-04 Sumco Corp Igbt用のシリコン単結晶ウェーハ及びigbt用のシリコン単結晶ウェーハの製造方法

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012148949A (ja) * 2010-12-28 2012-08-09 Siltronic Ag シリコン単結晶の製造方法、シリコン単結晶、およびウエハ
WO2014073164A1 (ja) * 2012-11-08 2014-05-15 信越半導体株式会社 シリコン単結晶の製造方法、シリコン単結晶ウェーハの製造方法、及びシリコン単結晶ウェーハ
JP2014094851A (ja) * 2012-11-08 2014-05-22 Shin Etsu Handotai Co Ltd シリコン単結晶の製造方法、シリコン単結晶ウェーハの製造方法、及びシリコン単結晶ウェーハ
JP6052392B2 (ja) * 2013-03-06 2016-12-27 トヨタ自動車株式会社 半導体ウエハの順電圧ばらつき低減方法
JPWO2014136215A1 (ja) * 2013-03-06 2017-02-09 トヨタ自動車株式会社 半導体ウエハの順電圧ばらつき低減方法
WO2014174752A1 (ja) * 2013-04-26 2014-10-30 信越半導体株式会社 シリコン単結晶の製造方法
WO2014188666A1 (ja) * 2013-05-23 2014-11-27 信越半導体株式会社 シリコン単結晶の製造方法
JP2014227321A (ja) * 2013-05-23 2014-12-08 信越半導体株式会社 シリコン単結晶の製造方法
JP2019031436A (ja) * 2013-05-24 2019-02-28 サンエディソン・セミコンダクター・リミテッドSunEdison Semiconductor Limited 低酸素シリコンインゴットの製造方法
US10513796B2 (en) 2013-05-24 2019-12-24 Globalwafers Co., Ltd. Methods for producing low oxygen silicon ingots
JP2016519049A (ja) * 2013-05-24 2016-06-30 サンエディソン・セミコンダクター・リミテッドSunEdison Semiconductor Limited 低酸素シリコンインゴットの製造方法
US9754787B2 (en) 2014-06-24 2017-09-05 Infineon Technologies Ag Method for treating a semiconductor wafer
JP2016009868A (ja) * 2014-06-24 2016-01-18 インフィネオン テクノロジーズ アーゲーInfineon Technologies Ag 半導体ウエハを処理するための方法
EP3831987A1 (en) * 2015-12-04 2021-06-09 GlobalWafers Co., Ltd. Systems and methods for production of low oxygen content silicon
US11136691B2 (en) 2015-12-04 2021-10-05 Globalwafers Co., Ltd. Systems and methods for production of low oxygen content silicon
US11668020B2 (en) 2015-12-04 2023-06-06 Globalwafers Co., Ltd. Systems and methods for production of low oxygen content silicon
US12037699B2 (en) 2015-12-04 2024-07-16 Globalwafers Co., Ltd. Systems for production of low oxygen content silicon
JP2021031356A (ja) * 2019-08-28 2021-03-01 グローバルウェーハズ・ジャパン株式会社 シリコン単結晶の製造方法
JP7249913B2 (ja) 2019-08-28 2023-03-31 グローバルウェーハズ・ジャパン株式会社 シリコン単結晶の製造方法
CN113009075A (zh) * 2019-12-20 2021-06-22 胜高股份有限公司 单晶硅晶片的氧化膜耐压的评价方法

Similar Documents

Publication Publication Date Title
JP5359874B2 (ja) Igbt用シリコン単結晶ウェーハの製造方法
JP4760729B2 (ja) Igbt用のシリコン単結晶ウェーハ及びigbt用のシリコン単結晶ウェーハの製造方法
JP6210125B2 (ja) シリコン単結晶ウェーハ
JP5321460B2 (ja) Igbt用シリコン単結晶ウェーハの製造方法
JP4631717B2 (ja) Igbt用シリコン単結晶ウェーハ及びigbt用シリコン単結晶ウェーハの製造方法
JP2010222241A (ja) Igbt用シリコン単結晶ウェーハ及びigbt用シリコン単結晶ウェーハの製造方法
JP5246163B2 (ja) Igbt用のシリコン単結晶ウェーハ及びigbt用のシリコン単結晶ウェーハの製造方法
JP3692812B2 (ja) 窒素ドープした低欠陥シリコン単結晶ウエーハおよびその製造方法
KR101323912B1 (ko) 실리콘 웨이퍼 및 그 제조 방법
JP2002187794A (ja) シリコンウェーハおよびこれに用いるシリコン単結晶の製造方法
JP5387408B2 (ja) Igbt用シリコン単結晶ウェーハの製造方法
JP5283543B2 (ja) シリコン単結晶の育成方法
JP5278324B2 (ja) Igbt用シリコン単結晶ウェーハの製造方法
US20100127354A1 (en) Silicon single crystal and method for growing thereof, and silicon wafer and method for manufacturing thereof
JP3614019B2 (ja) シリコン単結晶ウエーハの製造方法およびシリコン単結晶ウエーハ
JP5304649B2 (ja) Igbt用のシリコン単結晶ウェーハの製造方法
JPWO2009025339A1 (ja) Igbt用のシリコン単結晶ウェーハ及びigbt用のシリコン単結晶ウェーハの製造方法
JP4360208B2 (ja) シリコン単結晶の製造方法
JPWO2009025341A1 (ja) Igbt用のシリコン単結晶ウェーハ及びigbt用のシリコン単結晶ウェーハの製造方法
JP2005119964A (ja) 窒素ドープした低欠陥シリコン単結晶ウエーハおよびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140701

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150106