Nothing Special   »   [go: up one dir, main page]

JP2010210422A - Acceleration sensor - Google Patents

Acceleration sensor Download PDF

Info

Publication number
JP2010210422A
JP2010210422A JP2009056947A JP2009056947A JP2010210422A JP 2010210422 A JP2010210422 A JP 2010210422A JP 2009056947 A JP2009056947 A JP 2009056947A JP 2009056947 A JP2009056947 A JP 2009056947A JP 2010210422 A JP2010210422 A JP 2010210422A
Authority
JP
Japan
Prior art keywords
electrode
surface side
hole
portions
opening diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009056947A
Other languages
Japanese (ja)
Inventor
Hideki Ueda
英喜 上田
Nobuyuki Ibara
伸行 茨
Hitoshi Yoshida
仁 吉田
Masafumi Okada
全史 岡田
Takashi Mori
岳志 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2009056947A priority Critical patent/JP2010210422A/en
Publication of JP2010210422A publication Critical patent/JP2010210422A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Pressure Sensors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an acceleration sensor capable of reducing an influence of a stray capacitance, while enhancing sealability. <P>SOLUTION: Through-holes 80a, 80b, 90a, 90b of through-hole wiring parts 8a, 8b, 9a, 9b are blocked by electrode parts 81a, 81b, 91a, 91b made of silicon substrates. Hereby, sealability of a sensor chip 1 can be enhanced. Each dimension (longitudinal/lateral dimension) of the electrode parts 81a, 81b, 91a, 91b is set to be smaller than an opening diameter ϕ1 on each one surface side (each under surface side) of the through-holes 80a, 80b, 90a, 90b, and set to be larger than an opening diameter ϕ2 on each other surface side (each upper surface side) thereof, to thereby reduce an influence of a stray capacitance generated between the electrode parts 81a, 81b, 91a, 91b and the sensor chip 1. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、静電容量型の加速度センサに関するものである。   The present invention relates to a capacitance type acceleration sensor.

従来、図3に示すように可動電極を有する直方体形状の重り部100と、重り部100の長手方向における略中央において重り部100を回動自在に支持する一対のビーム部101と、一対のビーム部101を結ぶ直線(ビーム軸)を境界線とした重り部100の表面のそれぞれ一方側及び他方側に対し所定距離をあけて対向配置された第1及び第2の固定電極102,103とを備える加速度センサが知られている。この加速度センサは、ビーム軸を回動軸とした重り部100の回動に伴う可動電極(重り部100の固定電極102,103との対向部位)と第1および第2の固定電極102,103間の静電容量の変化を差動検出することにより、重り部100に印加された加速度を検出する。このような加速度センサでは、加速度が印加された際にビーム軸を回動軸としたモーメントが重り部100に発生するように、重り部100の裏面のビーム軸を境界線とした一方側(図3における右側)に凹部104を形成することにより、ビーム軸を境界線とした重り部100の一方側(右側)と他方側(左側)とで重量が異なるようにしている(例えば、特許文献1参照)。   Conventionally, as shown in FIG. 3, a rectangular parallelepiped weight portion 100 having a movable electrode, a pair of beam portions 101 that rotatably supports the weight portion 100 at a substantially center in the longitudinal direction of the weight portion 100, and a pair of beams First and second fixed electrodes 102 and 103 arranged to face each other on the one side and the other side of the weight part 100 with a straight line (beam axis) connecting the parts 101 as a boundary line. An acceleration sensor provided is known. This acceleration sensor includes a movable electrode (a portion facing the fixed electrodes 102 and 103 of the weight portion 100) and the first and second fixed electrodes 102 and 103 that accompany the rotation of the weight portion 100 about the beam axis. The acceleration applied to the weight part 100 is detected by differentially detecting the change in capacitance between the two. In such an acceleration sensor, when the acceleration is applied, a moment with the beam axis as the rotation axis is generated in the weight portion 100, so that the beam axis on the back surface of the weight portion 100 is used as one boundary (see FIG. 3 is formed on the one side (right side) and the other side (left side) of the weight part 100 with the beam axis as a boundary line (for example, Patent Document 1). reference).

ところで、上述のような加速度センサにおいては、使用に際して雰囲気の影響を受け難くし、かつ静電容量ギャップ部(固定電極102,103と可動電極の間のギャップ)に異物が混入しないようにするために、重り部が形成された半導体基板製のセンサチップを絶縁材料製の板材(例えば、ガラス板)で厚み方向に挟み込むとともに、固定電極や可動電極への配線のためにガラス板に貫設されている貫通孔を半導体基板で閉塞し、半導体基板から貫通孔配線(スルーホールめっき)を通じて固定電極や可動電極へ配線を接続した状態で静電容量ギャップ部を密閉する構成としている(例えば、特許文献2〜4参照)。   By the way, in the acceleration sensor as described above, it is difficult to be affected by the atmosphere during use, and foreign matter is prevented from entering the capacitance gap portion (the gap between the fixed electrodes 102 and 103 and the movable electrode). Further, a sensor chip made of a semiconductor substrate having a weight portion is sandwiched in a thickness direction by a plate material made of an insulating material (for example, a glass plate), and is inserted in the glass plate for wiring to a fixed electrode or a movable electrode. The through-hole is closed with a semiconductor substrate, and the capacitance gap is sealed with the wiring connected from the semiconductor substrate to the fixed electrode and the movable electrode through the through-hole wiring (through-hole plating) (for example, patents) References 2-4).

特表2008−544243号公報Special table 2008-544243 gazette 特開2000−275272号公報JP 2000-275272 A 特開平10−177034号公報JP-A-10-177034 特開平6−273442号公報JP-A-6-273442

しかしながら、引用文献2〜4に記載されている従来例においては、ガラス板の貫通孔を塞ぐ半導体基板の大きさが貫通孔の直径よりも大きくなっており、ガラス板を挟んで対向する半導体基板とセンサチップとの間に浮遊容量が発生し、当該浮遊容量によって固定電極と可動電極との間の静電容量が変化してしまう虞があった。   However, in the conventional examples described in the cited documents 2 to 4, the size of the semiconductor substrate that closes the through hole of the glass plate is larger than the diameter of the through hole, and the semiconductor substrate is opposed to the glass plate. There is a possibility that a stray capacitance is generated between the sensor chip and the sensor chip, and the capacitance between the fixed electrode and the movable electrode is changed by the stray capacitance.

本発明は上記事情に鑑みて為されたものであり、その目的は、密閉性を高めつつ浮遊容量の影響を低減することができる加速度センサを提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an acceleration sensor capable of reducing the influence of stray capacitance while improving hermeticity.

請求項1の発明は、上記目的を達成するために、一面に可動電極が設けられた重り部並びに重り部を回動軸の回りに回動自在に支持するビーム部が半導体基板を加工して形成されたセンサチップと、固定電極が一面に形成され当該固定電極を可動電極に対向させる向きでセンサチップの一面側に接合される絶縁性のカバーと、カバーを貫通する貫通孔と、固定電極と電気的に接続されるとともに貫通孔を通してカバーの他面に引き出される貫通孔配線部と、半導体基板からなりカバーの他面側において貫通孔を閉塞するとともに貫通孔配線部と導通する電極部とを備え、貫通孔は一面側の開口径よりも他面側の開口径の方が小さく、電極部は貫通孔の一面側の開口径よりも小さく且つ他面側の開口径よりも大きい寸法を有することを特徴とする。   In order to achieve the above object, the invention according to claim 1 is characterized in that a weight part provided with a movable electrode on one surface and a beam part for rotatably supporting the weight part around a rotation axis are formed on a semiconductor substrate. The formed sensor chip, an insulating cover that is formed on one surface and is bonded to one surface side of the sensor chip in a direction facing the fixed electrode to the movable electrode, a through-hole that penetrates the cover, and the fixed electrode A through-hole wiring portion that is electrically connected to the through-hole and drawn to the other surface of the cover, and an electrode portion that is made of a semiconductor substrate and closes the through-hole on the other surface side of the cover and is electrically connected to the through-hole wiring portion. The through hole has a smaller opening diameter on the other surface side than the opening diameter on the one surface side, and the electrode portion has a size smaller than the opening diameter on the one surface side of the through hole and larger than the opening diameter on the other surface side. It is characterized by having .

請求項1の発明によれば、半導体基板からなる電極部で貫通孔配線部を閉塞することにより密閉性を高めることができ、しかも、電極部の寸法を、貫通孔の一面側の開口径よりも小さく且つ他面側の開口径よりも大きい寸法とすることで電極部とセンサチップとの間に生じる浮遊容量の影響を低減することができる。   According to the first aspect of the present invention, sealing can be improved by closing the through hole wiring portion with the electrode portion made of a semiconductor substrate, and the size of the electrode portion can be made larger than the opening diameter on the one surface side of the through hole. In addition, the influence of stray capacitance generated between the electrode portion and the sensor chip can be reduced by setting the size to be smaller and larger than the opening diameter on the other surface side.

請求項1の発明によれば、密閉性を高めつつ浮遊容量の影響を低減することができる。   According to the first aspect of the present invention, the effect of stray capacitance can be reduced while improving the sealing performance.

本発明の実施形態を示し、(a)は平面図、(b)は断面図である。The embodiment of the present invention is shown, (a) is a top view and (b) is a sectional view. (a)〜(e)は同上の製造方法を説明するための断面図である。(A)-(e) is sectional drawing for demonstrating the manufacturing method same as the above. 従来例を示し、(a)は断面図、(b)は平面図である。A prior art example is shown, (a) is a sectional view and (b) is a plan view.

以下、図面を参照して本発明の実施形態を詳細に説明する。但し、以下の説明では図1におけるx軸方向を縦方向、y軸方向を横方向、z軸方向を上下方向と定める。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, in the following description, the x-axis direction in FIG. 1 is defined as the vertical direction, the y-axis direction is defined as the horizontal direction, and the z-axis direction is defined as the vertical direction.

本実施形態は、図1に示すように外形が矩形平板状であるセンサチップ1と、センサチップ1の上面側に固定される上カバー2aと、センサチップ1の下面側に固定される下カバー2bとを備えている。センサチップ1は、上下方向から見て矩形の2つの枠部3a,3bが長手方向(横方向)に並設されたフレーム部3と、枠部3a,3bの内周面に対して隙間を空けた状態で枠部3a,3b内に配置された直方体形状の重り部4,5と、枠部3a,3bの内周面と重り部4,5の側面を連結してフレーム部3に対して重り部4,5を回動軸の回りに回動自在に支持する各一対のビーム部6a,6b及び7a,7bと、重り部4,5の上面に形成される可動電極4a,5aとを備えている。   In the present embodiment, as shown in FIG. 1, the sensor chip 1 whose outer shape is a rectangular flat plate, the upper cover 2 a fixed to the upper surface side of the sensor chip 1, and the lower cover fixed to the lower surface side of the sensor chip 1 2b. The sensor chip 1 has a gap with respect to the frame part 3 in which two rectangular frame parts 3a and 3b viewed in the vertical direction are arranged in the longitudinal direction (lateral direction) and the inner peripheral surface of the frame parts 3a and 3b. The rectangular parallelepiped weight parts 4 and 5 arranged in the frame parts 3a and 3b in the opened state, the inner peripheral surface of the frame parts 3a and 3b and the side surfaces of the weight parts 4 and 5 are connected to the frame part 3 And a pair of beam portions 6a, 6b and 7a, 7b that support the weight portions 4, 5 so as to be rotatable about a rotation axis, and movable electrodes 4a, 5a formed on the upper surfaces of the weight portions 4, 5. It has.

一対のビーム部6a,6bは、横方向に対向する枠部3aの内周面における縦方向の中央部に一端が連結され、重り部4の側面における凹部11と充実部12の境界付近に他端が連結されている。同じく一対のビーム部7a,7bは、横方向に対向する枠部3bの内周面における縦方向の中央部に一端が連結され、重り部5の側面における凹部13と充実部14の境界付近に他端が連結されている。つまり、一対のビーム部6aと6b、7aと7bをそれぞれ結ぶ直線が回動軸となり、回動軸の回りに各重り部4,5が回動することになる。   One end of the pair of beam portions 6a and 6b is connected to the central portion in the vertical direction on the inner peripheral surface of the frame portion 3a facing in the horizontal direction, and the other is near the boundary between the concave portion 11 and the solid portion 12 on the side surface of the weight portion 4. The ends are connected. Similarly, one pair of beam portions 7a and 7b is connected at one end to the longitudinal center portion of the inner peripheral surface of the frame portion 3b facing in the lateral direction, and near the boundary between the concave portion 13 and the solid portion 14 on the side surface of the weight portion 5. The other end is connected. That is, a straight line connecting the pair of beam portions 6a and 6b and 7a and 7b serves as a rotation shaft, and the weight portions 4 and 5 rotate around the rotation shaft.

重り部4,5は、図1(b)に示すように回動軸を境界とする一方側(重り部4では図1における右側、重り部5では図1における左側)に、一面(下面)に開口した凹部11,13が設けられ、他方側(重り部4では図1における左側、重り部5では図1における右側)に、充実部12,14が形成されている。尚、凹部11,13は開口面の法線方向(上下方向)から見て平面視四角形に形成されている。また、センサチップ1は、後述するように半導体の微細加工技術によりシリコン基板(シリコンSOI基板)を加工して形成されるものであり、重り部4,5の上面を含む部分が可動電極4a,5aとなる。さらに、重り部4,5の上面及び下面における四隅には、重り部4,5が上カバー2a及び下カバー2bに直接衝突することを防止するために複数の突起部15が突設されている。   As shown in FIG. 1B, the weight portions 4 and 5 are arranged on one side (the lower surface) on one side (the right side in FIG. 1 for the weight portion 4 and the left side in FIG. 1 for the weight portion 5) with the rotation axis as a boundary. On the other side (the weight portion 4 on the left side in FIG. 1 and the weight portion 5 on the right side in FIG. 1), the solid portions 12 and 14 are formed. In addition, the recessed parts 11 and 13 are formed in the planar view square shape seeing from the normal line direction (up-down direction) of the opening surface. The sensor chip 1 is formed by processing a silicon substrate (silicon SOI substrate) by a semiconductor microfabrication technique as will be described later, and the portions including the upper surfaces of the weight portions 4 and 5 are movable electrodes 4a, 5a. Further, at the four corners on the upper surface and the lower surface of the weight portions 4 and 5, a plurality of protrusions 15 are provided so as to prevent the weight portions 4 and 5 from directly colliding with the upper cover 2a and the lower cover 2b. .

下カバー2bは、石英ガラスなどの絶縁材料により縦横の寸法がフレーム部3の縦横の寸法と略同一である矩形平板状に形成され、フレーム部3の下面に接合される。   The lower cover 2 b is formed in a rectangular flat plate shape whose vertical and horizontal dimensions are substantially the same as the vertical and horizontal dimensions of the frame portion 3 by an insulating material such as quartz glass, and is joined to the lower surface of the frame portion 3.

上カバー2aは、石英ガラスなどの絶縁材料製であって、その下面には、上下方向に沿ってセンサチップ1の重り部4(可動電極4a)と対向する位置に第1の固定電極20aと第2の固定電極20bが縦方向に並設されるとともに、上下方向に沿ってセンサチップ1の重り部5(可動電極5a)と対向する位置に第1の固定電極21aと第2の固定電極21bが縦方向に並設されている。また、上カバー2aには、枠部3a,3bと重り部4,5の間の隙間(ギャップ)と上下方向で対向する位置に各々貫通孔80a,80b、90a,90bが貫設されるとともに、各貫通孔80a,80b、90a,90bがスルーホールめっきされてそれぞれの固定電極20a,20b、21a,21bと電気的に接続されることで合計4つの貫通孔配線部8a,8b、9a,9bが形成されている。さらに、上カバー2aの上面に開口する貫通孔80a,80b、90a,90bが、半導体基板(シリコン基板)によって矩形平板状に形成された電極部81a,81b、91a,91bによって閉塞される。このとき、電極部81a,81b、91a,91bがそれぞれ対応する貫通孔配線部8a,8b、9a,9bと電気的に接続される。   The upper cover 2a is made of an insulating material such as quartz glass, and has a first fixed electrode 20a on the lower surface thereof at a position facing the weight portion 4 (movable electrode 4a) of the sensor chip 1 along the vertical direction. The second fixed electrode 20b is juxtaposed in the vertical direction, and the first fixed electrode 21a and the second fixed electrode are disposed at positions facing the weight portion 5 (movable electrode 5a) of the sensor chip 1 along the vertical direction. 21b is juxtaposed in the vertical direction. The upper cover 2a has through holes 80a, 80b, 90a, 90b penetratingly provided at positions facing the gaps (gap) between the frame portions 3a, 3b and the weight portions 4, 5 in the vertical direction. The through holes 80a, 80b, 90a, 90b are plated through holes and electrically connected to the fixed electrodes 20a, 20b, 21a, 21b, so that a total of four through hole wiring portions 8a, 8b, 9a, 9b is formed. Further, the through holes 80a, 80b, 90a, 90b opened on the upper surface of the upper cover 2a are closed by electrode portions 81a, 81b, 91a, 91b formed in a rectangular flat plate shape by a semiconductor substrate (silicon substrate). At this time, the electrode portions 81a, 81b, 91a, 91b are electrically connected to the corresponding through-hole wiring portions 8a, 8b, 9a, 9b, respectively.

ここで、上カバー2aに貫設される貫通孔80a,80b、90a,90bは下面側の開口径φ1に対して上面側の開口径φ2が小さくなっており、電極部81a,81b、91a,91bは、貫通孔80a,80b、90a,90bの下面側の開口径φ1よりも小さく且つ上面側の開口径φ2よりも大きい寸法(縦横寸法)に形成されている(図1参照)。尚、上カバー2aは横方向の寸法はセンサチップ1と略同一であるが、縦方向の寸法はセンサチップ1よりも若干短くなっており、横方向に沿った一方の側面(図1における左側の側面)に揃えてフレーム部3の上面に接合される。そして、センサチップ1上面の上カバー2aで覆われない端部(図1における右端部)が可動電極4a,5aと導通した接地用の電極部10となる。   Here, in the through holes 80a, 80b, 90a, 90b penetrating the upper cover 2a, the opening diameter φ2 on the upper surface side is smaller than the opening diameter φ1 on the lower surface side, and the electrode portions 81a, 81b, 91a, 91b is formed in dimensions (vertical and horizontal dimensions) smaller than the opening diameter φ1 on the lower surface side and larger than the opening diameter φ2 on the upper surface side of the through holes 80a, 80b, 90a, 90b (see FIG. 1). The upper cover 2a has substantially the same horizontal dimension as the sensor chip 1, but the vertical dimension is slightly shorter than that of the sensor chip 1, and one side surface along the horizontal direction (the left side in FIG. 1). To the upper surface of the frame portion 3. The end portion (the right end portion in FIG. 1) that is not covered with the upper cover 2a on the upper surface of the sensor chip 1 becomes the ground electrode portion 10 that is electrically connected to the movable electrodes 4a and 5a.

ここで、本実施形態では、枠部3a、重り部4、ビーム部6a,6b、可動電極4a、第1及び第2の固定電極20a,20b、貫通孔配線部8a,8b、電極部81a,81bと、枠部3b、重り部5、ビーム部7a,7b、可動電極5a、第1及び第2の固定電極21a,21b、貫通孔配線部9a,9b、電極部91a,91bとで各々加速度センサが構成され、重り部4,5の向き(凹部11,13と充実部12,14の配置)を180度反転させた状態で2つの加速度センサが一体に形成されている(図1(a)参照)。   Here, in this embodiment, the frame portion 3a, the weight portion 4, the beam portions 6a and 6b, the movable electrode 4a, the first and second fixed electrodes 20a and 20b, the through-hole wiring portions 8a and 8b, the electrode portion 81a, 81b, frame portion 3b, weight portion 5, beam portions 7a and 7b, movable electrode 5a, first and second fixed electrodes 21a and 21b, through-hole wiring portions 9a and 9b, and electrode portions 91a and 91b are accelerated. A sensor is formed, and two acceleration sensors are integrally formed with the directions of the weight portions 4 and 5 (the arrangement of the concave portions 11 and 13 and the solid portions 12 and 14) reversed by 180 degrees (FIG. 1A )reference).

次に、本実施形態の検出動作について説明する。   Next, the detection operation of this embodiment will be described.

まず、一方の重り部4にx軸方向の加速度が印加された場合を考える。x軸方向に加速度が印加されると重り部4が回動軸の回りに回動して可動電極4aと第1の固定電極20a並びに第2の固定電極20bとの間の距離が変化し、その結果、可動電極4aと各固定電極20a,20bとの間の静電容量C1,C2も変化する。ここで、x軸方向の加速度が印加されていないときの可動電極4aと各固定電極20a,20bとの間の静電容量をC0とし、加速度の印加によって生じる静電容量の変化分をΔCとすれば、x軸方向の加速度が印加されたときの静電容量C1,C2は、
C1=C0−ΔC …(1)
C2=C0+ΔC …(2)
と表すことができる。
First, consider a case where an acceleration in the x-axis direction is applied to one weight portion 4. When acceleration is applied in the x-axis direction, the weight portion 4 rotates around the rotation axis, and the distance between the movable electrode 4a and the first fixed electrode 20a and the second fixed electrode 20b changes. As a result, the capacitances C1 and C2 between the movable electrode 4a and the fixed electrodes 20a and 20b also change. Here, the capacitance between the movable electrode 4a and the fixed electrodes 20a and 20b when no acceleration in the x-axis direction is applied is C0, and the change in capacitance caused by the application of acceleration is ΔC. Then, the capacitances C1 and C2 when the acceleration in the x-axis direction is applied are
C1 = C0−ΔC (1)
C2 = C0 + ΔC (2)
It can be expressed as.

同様に、他方の重り部5にx軸方向の加速度が印加された場合、可動電極5aと各固定電極21a,21bとの間の静電容量C3,C4は、
C3=C0−ΔC …(3)
C4=C0+ΔC …(4)
と表すことができる。
Similarly, when acceleration in the x-axis direction is applied to the other weight portion 5, the capacitances C3 and C4 between the movable electrode 5a and the fixed electrodes 21a and 21b are:
C3 = C0−ΔC (3)
C4 = C0 + ΔC (4)
It can be expressed as.

ここで、静電容量C1〜C4の値は、電極部80a,80b及び81a,81bから取り出す電圧信号を演算処理することで検出することができる。そして、一方の加速度センサから得られる静電容量C1,C2の差分値CA(=C1−C2)と、他方の加速度センサから得られる静電容量C3,C4の差分値CB(=C3−C4)との和(±4ΔC)を算出すれば、この差分値CA,CBの和に基づいてx軸方向に印加された加速度の向きと大きさを演算することができる。   Here, the values of the electrostatic capacitances C1 to C4 can be detected by calculating voltage signals taken out from the electrode portions 80a and 80b and 81a and 81b. Then, the difference value CA (= C1-C2) between the capacitances C1, C2 obtained from one acceleration sensor and the difference value CB (= C3-C4) between the capacitances C3, C4 obtained from the other acceleration sensor. Is calculated (± 4ΔC), the direction and magnitude of the acceleration applied in the x-axis direction can be calculated based on the sum of the difference values CA and CB.

次に、一方の重り部4にz軸方向の加速度が印加された場合を考える。z軸方向に加速度が印加されると重り部4が回動軸の回りに回動して可動電極4aと第1の固定電極20a並びに第2の固定電極20bとの間の距離が変化し、その結果、可動電極4aと各固定電極20a,20bとの間の静電容量C1,C2も変化する。ここで、z軸方向の加速度が印加されていないときの可動電極4aと各固定電極20a,20bとの間の静電容量をC0とし、加速度の印加によって生じる静電容量の変化分をΔCとすれば、z軸方向の加速度が印加されたときの静電容量C1,C2は、
C1=C0+ΔC …(5)
C2=C0−ΔC …(6)
と表すことができる。
Next, consider a case where acceleration in the z-axis direction is applied to one weight portion 4. When acceleration is applied in the z-axis direction, the weight portion 4 rotates about the rotation axis, and the distance between the movable electrode 4a and the first fixed electrode 20a and the second fixed electrode 20b changes. As a result, the capacitances C1 and C2 between the movable electrode 4a and the fixed electrodes 20a and 20b also change. Here, the capacitance between the movable electrode 4a and the fixed electrodes 20a and 20b when no acceleration in the z-axis direction is applied is C0, and the change in capacitance caused by the application of acceleration is ΔC. Then, the capacitances C1 and C2 when the acceleration in the z-axis direction is applied are:
C1 = C0 + ΔC (5)
C2 = C0−ΔC (6)
It can be expressed as.

同様に、他方の重り部5にz軸方向の加速度が印加された場合、可動電極5aと各固定電極21a,21bとの間の静電容量C3,C4は、
C3=C0−ΔC …(7)
C4=C0+ΔC …(8)
と表すことができる。
Similarly, when acceleration in the z-axis direction is applied to the other weight portion 5, the capacitances C3 and C4 between the movable electrode 5a and the fixed electrodes 21a and 21b are:
C3 = C0−ΔC (7)
C4 = C0 + ΔC (8)
It can be expressed as.

そして、一方の加速度センサから得られる静電容量C1,C2の差分値CA(=C1−C2)と、他方の加速度センサから得られる静電容量C3,C4の差分値CB(=C3−C4)との差(±4ΔC)を算出すれば、この差分値CA,CBの差に基づいてz軸方向に印加された加速度の向きと大きさを演算することができる。尚、差分値CA,CBの和と差に基づいてx軸方向及びz軸方向の加速度の向き及び大きさを求める演算処理については従来周知であるから詳細な説明を省略する。   Then, the difference value CA (= C1-C2) between the capacitances C1, C2 obtained from one acceleration sensor and the difference value CB (= C3-C4) between the capacitances C3, C4 obtained from the other acceleration sensor. Is calculated (± 4ΔC), the direction and magnitude of the acceleration applied in the z-axis direction can be calculated based on the difference between the difference values CA and CB. Since the calculation processing for obtaining the direction and magnitude of acceleration in the x-axis direction and the z-axis direction based on the sum and difference of the difference values CA and CB is well known in the art, detailed description thereof will be omitted.

次に、図2を参照して本実施形態の製造方法を説明する。   Next, the manufacturing method of this embodiment will be described with reference to FIG.

本実施形態では、支持基板及び中間酸化膜、活性層からなるシリコンSOI基板を半導体の微細加工技術を利用して加工することによりセンサチップ1が形成される。まず、シリコンSOI基板の両面にシリコン酸化膜やフォトレジスト膜などのマスク材料を形成し、重り部4,5に対応する位置のマスク材料を除去した後、TMAH(テトラメチル水酸化アンモニウム溶液)やKOH(水酸化カリウム溶液)などを利用した湿式エッチング、あるいは反応性イオンエッチング(RIE)などの乾式エッチングを行うことにより、シリコンSOI基板の上面及び下面に重り部4,5が変位するための空間(凹所)を形成する。そして、凹所底面の所定位置にシリコン酸化膜又はカーボンナノチューブからなる突起部15を形成する。続いて、支持基板及び中間酸化膜の順にシリコンSOI基板の下面をエッチングすることで重り部4,5(凹部11,13並びに充実部12,14)を形成する。   In this embodiment, the sensor chip 1 is formed by processing a silicon SOI substrate composed of a support substrate, an intermediate oxide film, and an active layer using a semiconductor microfabrication technique. First, a mask material such as a silicon oxide film or a photoresist film is formed on both surfaces of a silicon SOI substrate, and after removing the mask material at a position corresponding to the weights 4 and 5, TMAH (tetramethyl ammonium hydroxide solution) or Space for displacing the weight portions 4 and 5 on the upper and lower surfaces of the silicon SOI substrate by performing wet etching using KOH (potassium hydroxide solution) or dry etching such as reactive ion etching (RIE). (Recess) is formed. And the projection part 15 which consists of a silicon oxide film or a carbon nanotube is formed in the predetermined position of a recess bottom face. Subsequently, the weight portions 4 and 5 (recess portions 11 and 13 and the solid portions 12 and 14) are formed by etching the lower surface of the silicon SOI substrate in the order of the support substrate and the intermediate oxide film.

一方、ガラス基板からなる上カバー2aにサンドブラストなどの加工方法で貫通孔80a,80b、90a,90bを貫設し(図2(a)参照)、上カバー2aの上面にシリコン基板100を接合する(図2(b)参照)。次に、エッチングによって電極部81a,81b、91a,91b以外のシリコン基板100を除去し(図2(c)参照)、スパッタリングによって上カバー2aの下面に固定電極20a,20b、21a,21bと貫通孔配線部8a,8b,9a,9bを同時に形成する(図2(d)参照)。   On the other hand, through holes 80a, 80b, 90a, and 90b are formed through the upper cover 2a made of a glass substrate by a processing method such as sandblasting (see FIG. 2A), and the silicon substrate 100 is joined to the upper surface of the upper cover 2a. (See FIG. 2 (b)). Next, the silicon substrate 100 other than the electrode portions 81a, 81b, 91a, 91b is removed by etching (see FIG. 2C), and the fixed electrodes 20a, 20b, 21a, 21b are penetrated into the lower surface of the upper cover 2a by sputtering. The hole wiring portions 8a, 8b, 9a, and 9b are formed at the same time (see FIG. 2D).

そして、センサチップ1の下面及び上面にそれぞれ下カバー2bと上カバー2aを陽極接合することにより、本実施形態の製造工程は完了する(図2(e)参照)。   And the manufacturing process of this embodiment is completed by anodically bonding the lower cover 2b and the upper cover 2a to the lower surface and the upper surface of the sensor chip 1, respectively (see FIG. 2E).

而して本実施形態では、半導体基板(シリコン基板)からなる電極部81a,81b,91a,91bで貫通孔配線部8a,8b,9a,9b(貫通孔80a,80b,90a,90b)を閉塞することにより密閉性を高めることができ、しかも、電極部81a,81b,91a,91bの寸法(縦横寸法)を、貫通孔80a,80b,90a,90bの一面側(下面側)の開口径φ1よりも小さく且つ他面側(上面側)の開口径φ2よりも大きい寸法とすることで電極部81a,81b,91a,91bとセンサチップ1との間に生じる浮遊容量の影響を低減することができる。   Thus, in this embodiment, the through-hole wiring portions 8a, 8b, 9a, 9b (through-holes 80a, 80b, 90a, 90b) are blocked by the electrode portions 81a, 81b, 91a, 91b made of a semiconductor substrate (silicon substrate). By doing so, the sealing property can be enhanced, and the dimensions (vertical and horizontal dimensions) of the electrode portions 81a, 81b, 91a, 91b are set to the opening diameter φ1 on one surface side (lower surface side) of the through holes 80a, 80b, 90a, 90b. By making the size smaller than the opening diameter φ2 on the other side (upper side), the influence of stray capacitance generated between the electrode portions 81a, 81b, 91a, 91b and the sensor chip 1 can be reduced. it can.

1 センサチップ
2a 上カバー(カバー)
4,5 重り部
4a,5a 可動電極
6a,6b ビーム部
7a,7b ビーム部
8a,8b 貫通孔配線部
9a,9b 貫通孔配線部
20a,21a 第1の固定電極
20b,21b 第2の固定電極
80a,80b 貫通孔
90a,90b 貫通孔
81a,81b 電極部
91a,91b 電極部
1 Sensor chip 2a Upper cover (cover)
4,5 Weight part 4a, 5a Movable electrode 6a, 6b Beam part 7a, 7b Beam part 8a, 8b Through-hole wiring part 9a, 9b Through-hole wiring part 20a, 21a First fixed electrode 20b, 21b Second fixed electrode 80a, 80b Through hole 90a, 90b Through hole 81a, 81b Electrode part 91a, 91b Electrode part

Claims (1)

一面に可動電極が設けられた重り部並びに重り部を回動軸の回りに回動自在に支持するビーム部が半導体基板を加工して形成されたセンサチップと、固定電極が一面に形成され当該固定電極を可動電極に対向させる向きでセンサチップの一面側に接合される絶縁性のカバーと、カバーを貫通する貫通孔と、固定電極と電気的に接続されるとともに貫通孔を通してカバーの他面に引き出される貫通孔配線部と、半導体基板からなりカバーの他面側において貫通孔を閉塞するとともに貫通孔配線部と導通する電極部とを備え、
貫通孔は一面側の開口径よりも他面側の開口径の方が小さく、電極部は貫通孔の一面側の開口径よりも小さく且つ他面側の開口径よりも大きい寸法を有することを特徴とする加速度センサ。
A sensor chip formed by processing a semiconductor substrate with a weight portion provided with a movable electrode on one surface and a beam portion that supports the weight portion so as to be rotatable about a rotation axis, and a fixed electrode is formed on one surface. An insulating cover joined to one surface side of the sensor chip with the fixed electrode facing the movable electrode, a through hole penetrating the cover, and the other surface of the cover electrically connected to the fixed electrode and through the through hole A through-hole wiring portion that is drawn out to an electrode, and an electrode portion that is made of a semiconductor substrate and closes the through-hole on the other surface side of the cover and is electrically connected to the through-hole wiring portion,
The through hole has a smaller opening diameter on the other surface side than the opening diameter on the one surface side, and the electrode portion has a size smaller than the opening diameter on the one surface side of the through hole and larger than the opening diameter on the other surface side. Acceleration sensor featuring.
JP2009056947A 2009-03-10 2009-03-10 Acceleration sensor Withdrawn JP2010210422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009056947A JP2010210422A (en) 2009-03-10 2009-03-10 Acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009056947A JP2010210422A (en) 2009-03-10 2009-03-10 Acceleration sensor

Publications (1)

Publication Number Publication Date
JP2010210422A true JP2010210422A (en) 2010-09-24

Family

ID=42970752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009056947A Withdrawn JP2010210422A (en) 2009-03-10 2009-03-10 Acceleration sensor

Country Status (1)

Country Link
JP (1) JP2010210422A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017061635A1 (en) * 2015-10-06 2017-04-13 주식회사 스탠딩에그 Mems device and method for preparing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017061635A1 (en) * 2015-10-06 2017-04-13 주식회사 스탠딩에그 Mems device and method for preparing same

Similar Documents

Publication Publication Date Title
JP6020392B2 (en) Acceleration sensor
JP6295435B2 (en) MEMS device
JP2012225920A (en) Micro-electromechanical system (mems) device
JP5426906B2 (en) Acceleration sensor
WO2010061777A1 (en) Acceleration sensor
US9274153B2 (en) Electrostatic capacitance sensor
JP6020341B2 (en) Capacitive physical quantity sensor and manufacturing method thereof
JP5789737B2 (en) Acceleration sensor
JP4965546B2 (en) Acceleration sensor
JP2010210422A (en) Acceleration sensor
JP4965547B2 (en) Acceleration sensor
JP5716149B2 (en) Acceleration sensor
JP2010210420A (en) Acceleration sensor
JP2010210424A (en) Acceleration sensor
JP4775412B2 (en) Semiconductor physical quantity sensor
JP2010107240A (en) Monoaxial acceleration sensor and triaxial acceleration sensor using the same
JP2010210423A (en) Acceleration sensor
JP2012220376A (en) Acceleration sensor
JP2010210418A (en) Acceleration sensor
JP2010210426A (en) Acceleration sensor and method for manufacturing the same
JP4752874B2 (en) Semiconductor physical quantity sensor
JP2013186061A (en) Capacitive sensor
JP2010210416A (en) Acceleration sensor
JP2011112392A (en) Acceleration sensor
JP2013217869A (en) Capacitive sensor

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100714

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120605