Nothing Special   »   [go: up one dir, main page]

JP2010285569A - Thermoconductive resin material and production method thereof - Google Patents

Thermoconductive resin material and production method thereof Download PDF

Info

Publication number
JP2010285569A
JP2010285569A JP2009141816A JP2009141816A JP2010285569A JP 2010285569 A JP2010285569 A JP 2010285569A JP 2009141816 A JP2009141816 A JP 2009141816A JP 2009141816 A JP2009141816 A JP 2009141816A JP 2010285569 A JP2010285569 A JP 2010285569A
Authority
JP
Japan
Prior art keywords
particles
resin material
mixed
average particle
particle diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009141816A
Other languages
Japanese (ja)
Inventor
Yoshiki Hayashida
芳樹 林田
Yoshiharu Yamamoto
義春 山本
Kenichi Ikeda
健一 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009141816A priority Critical patent/JP2010285569A/en
Publication of JP2010285569A publication Critical patent/JP2010285569A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoconductive resin material having high heat conductivity and easy to process, using a composite material provided by filling thermoconductive particles in an organic polymer resin at a high density without flocculation. <P>SOLUTION: As for the thermoconductive resin material 1 provided by filling the thermoconductive particles in the organic polymer resin 5, the thermoconductive particles are mixed particles 4 having different particle diameter distribution, the mixed particles 4 are composed of crude particles 2 having an average particle diameter of ≥100 μm but ≤500 μm and fine particles 3 having an average particle diameter less than that of the crude particles 2, and the ratio of the average particle diameter of the crude particles 2 to that of the fine particles 3 is ≥30/1 but ≤180/1. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、有機材料中に高熱伝導性粒子を含有させて複合化した熱伝導性樹脂材料およびその製造方法に関するものである。   The present invention relates to a thermally conductive resin material obtained by combining high thermal conductivity particles in an organic material and a method for producing the same.

従来、放熱のための熱伝導性を有する材料としては、銅、アルミニウム、マグネシウム等の高熱伝導率金属が一般的である。しかしながら、金属には導電性があるため、電気絶縁性を確保するといった観点からは使用できる範囲が限られている。例えば、コンピュータ等の電子回路基板では配線間の絶縁を保つ必要があることから、放熱部材として金属を使用することが制限されている。   Conventionally, high thermal conductivity metals such as copper, aluminum, and magnesium are generally used as materials having thermal conductivity for heat dissipation. However, since metal has conductivity, the usable range is limited from the viewpoint of ensuring electrical insulation. For example, since it is necessary to maintain insulation between wirings in an electronic circuit board such as a computer, the use of metal as a heat radiating member is limited.

一方、金属以外の電気絶縁性と熱伝導性を有した材料としては、アルミナ、窒化アルミニウム、窒化ホウ素等のセラミック材料がある。しかし、これらの材料は、硬い固体であることと、融点が2000℃以上と非常に高いといった理由から、プレス成形や射出成形が困難であるために任意の形状に加工することに制限がある。   On the other hand, ceramic materials such as alumina, aluminum nitride, and boron nitride are examples of materials having electrical insulation and thermal conductivity other than metal. However, because these materials are hard solids and have a very high melting point of 2000 ° C. or higher, it is difficult to perform press molding or injection molding, and therefore there are limitations on processing into arbitrary shapes.

また、小型軽量化が求められる電子機器では、放熱用のヒートシンクを設置するスペースも極めて小さく、回路基板やその他の電子部品の形状に合わせて任意の形状に加工できる熱伝導材料が求められている。   In addition, in electronic devices that are required to be reduced in size and weight, a space for installing a heat sink for heat dissipation is also extremely small, and a heat conductive material that can be processed into any shape according to the shape of a circuit board or other electronic components is required. .

近年になって、樹脂等の有機ポリマー(母材)中に無機微粒子を混合させて複合化することで、微粒子の持つ特異な物性と有機ポリマー樹脂の柔軟で容易な加工性とを併せ持つ微粒子複合化樹脂材料の技術が注目されている。例えば、アルミナ等の高い熱伝導率を有するセラミック粒子を有機ポリマー樹脂中に混合させて複合化することで、熱伝導率の低い樹脂材料を高い熱伝導性を有する樹脂材料とすることができる。このような複合化樹脂材料は、融点が低く、100℃〜200℃程度の低温度での射出、プレス成形などによる成形や、フィルム状に成形するなどの加工も容易である。   In recent years, fine particle composites that combine the unique physical properties of fine particles with the flexible and easy processability of organic polymer resins by mixing inorganic fine particles into organic polymers (base materials) such as resins. The technology of synthetic resin materials has attracted attention. For example, by mixing ceramic particles having a high thermal conductivity such as alumina into an organic polymer resin to form a composite, a resin material having a low thermal conductivity can be used as a resin material having a high thermal conductivity. Such a composite resin material has a low melting point, and can be easily processed by injection at a low temperature of about 100 ° C. to 200 ° C., molding by press molding, or molding into a film.

一方、このような複合化樹脂材料を放熱部材として利用するためには、樹脂材料中に充填する無機微粒子を高密度で充填して、複合化樹脂材料の熱伝導率を高めることが必要である。   On the other hand, in order to use such a composite resin material as a heat dissipation member, it is necessary to increase the thermal conductivity of the composite resin material by filling the resin material with inorganic fine particles at a high density. .

このような樹脂材料として、少なくとも0.2〜2μmと2〜63μmの粒度分布領域に頻度ピークを有するアルミナ粉末を樹脂に配合した熱伝導性樹脂材料が特許文献1に開示されている。   As such a resin material, Patent Document 1 discloses a heat conductive resin material in which an alumina powder having a frequency peak in a particle size distribution region of at least 0.2 to 2 μm and 2 to 63 μm is blended with a resin.

また、粒子径50〜350μmの粒子を90質量%以上含み、平均粒径が100〜300μmの窒化ホウ素粉末と、平均粒径が1〜10μmの球状アルミナ粉末とからなる無機粉末を樹脂に含有させた熱伝導性樹脂材料が特許文献2に開示されている。   Further, the resin contains an inorganic powder composed of boron nitride powder having an average particle diameter of 100 to 300 μm and spherical alumina powder having an average particle diameter of 1 to 10 μm, containing 90% by mass or more of particles having a particle diameter of 50 to 350 μm. A thermally conductive resin material disclosed in Patent Document 2 is disclosed.

特開2005−306718号公報JP-A-2005-306718 特開2005−343983号公報JP 2005-343983 A

前述のように、有機ポリマー樹脂中に熱伝導性の無機粒子を混合させた微粒子複合化樹脂材料の熱伝導率を高めるためには、熱伝導率の高い無機微粒子を樹脂材料中に高密度で充填することが重要である。そのために、特許文献1に記載されているように複数の粒度ピークを持つ粒子を用い、大きな粒子の隙間を小さな粒子で埋めて、高密度に充填する方法が採られている。   As described above, in order to increase the thermal conductivity of the fine particle composite resin material in which the thermal conductive inorganic particles are mixed in the organic polymer resin, the inorganic fine particles having high thermal conductivity are added at a high density in the resin material. It is important to fill. Therefore, as described in Patent Document 1, a method is used in which particles having a plurality of particle size peaks are used, gaps between large particles are filled with small particles, and the particles are filled with high density.

しかしながら、アルミナや窒化アルミニウムなどの粒子は、単一粒子同士が凝集しやすい特性を有している。特に、粒子径が2μmより小さくなると凝集が顕著となり、大きな粒子と小さな粒子とが均一に混じり合わずに、樹脂材料中での粒子の充填密度が不十分になるという問題があった。   However, particles such as alumina and aluminum nitride have a characteristic that single particles tend to aggregate. In particular, when the particle diameter is smaller than 2 μm, the aggregation becomes remarkable, and there is a problem that the packing density of the particles in the resin material becomes insufficient without uniformly mixing the large particles and the small particles.

粒子の充填密度が不十分であると、樹脂材料の熱伝導率が小さくなるため、発熱する回路基板の放熱部材としての適用することが困難となる。また、発熱部材の発熱量が大きい場合には、樹脂材料の温度が上昇して、樹脂材料自体が融解するなどの課題を有するものであった。   If the packing density of the particles is insufficient, the thermal conductivity of the resin material becomes small, making it difficult to apply as a heat dissipation member for a circuit board that generates heat. Further, when the heat generation amount of the heat generating member is large, the temperature of the resin material rises, and there is a problem that the resin material itself is melted.

本発明は、これらの課題を解決するためになされたもので、無機粒子を有機ポリマー樹脂中へ高密度に充填することで、高い熱伝導率を有し、かつ加工が容易で、ヒートシンクや放熱筐体等の用途に適した熱伝導性樹脂材料とその製造方法を提供することを目的とする。   The present invention has been made to solve these problems. By filling inorganic polymer particles in an organic polymer resin with high density, the present invention has high thermal conductivity and is easy to process, and can be used for heat sinks and heat dissipation. It aims at providing the heat conductive resin material suitable for uses, such as a housing | casing, and its manufacturing method.

上記目的を達成するために、本発明の熱伝導性樹脂材料は、熱伝導性粒子を有機ポリマー樹脂に充填した複合化材料からなる熱伝導性樹脂材料であって、熱導電性粒子は粒子径分布の異なる混合粒子であり、混合粒子は、100μm以上500μm以下の平均粒子径を有する第1粒子と、第1粒子よりも平均粒子径の小さな第2粒子とにより構成され、第1粒子の平均粒子径と第2粒子の平均粒子径との比が30:1以上180:1以下である。   In order to achieve the above object, the thermally conductive resin material of the present invention is a thermally conductive resin material composed of a composite material in which thermally conductive particles are filled with an organic polymer resin, and the thermally conductive particles have a particle size of Mixed particles having different distributions, and the mixed particles are composed of first particles having an average particle diameter of 100 μm or more and 500 μm or less, and second particles having an average particle diameter smaller than the first particles, and the average of the first particles The ratio of the particle diameter to the average particle diameter of the second particles is 30: 1 or more and 180: 1 or less.

このような構成によれば、粒子径の大きな第1粒子の間に第2粒子を高密度で充填することが可能となり、樹脂材料中の混合粒子の充填密度を高めて、樹脂材料の熱伝導率を高めることができる。   According to such a configuration, the second particles can be filled at a high density between the first particles having a large particle diameter, and the packing density of the mixed particles in the resin material can be increased to increase the heat conduction of the resin material. The rate can be increased.

さらに、混合粒子の全体積に占める第2粒子の体積の割合が20体積%以上50体積%以下であることが好ましい。このような構成によれば、無機粒子の充填率をさらに増加させて、より熱伝導率の高い樹脂材料を実現することができる。   Furthermore, the volume ratio of the second particles in the total volume of the mixed particles is preferably 20% by volume or more and 50% by volume or less. According to such a configuration, it is possible to further increase the filling rate of the inorganic particles and realize a resin material with higher thermal conductivity.

さらに、第2粒子の平均粒子径が2μm以上であることが望ましい。このような構成によれば、第2粒子の凝集を抑制して、隣接する第1粒子の間隙により高密度に第2粒子を充填させてより高い熱伝導率を実現することが可能となる。   Furthermore, it is desirable that the average particle diameter of the second particles is 2 μm or more. According to such a configuration, it is possible to suppress the aggregation of the second particles and to fill the second particles at a high density with the gap between the adjacent first particles to realize a higher thermal conductivity.

さらに、導電性粒子が窒化アルミニウム粒子または炭化ケイ素粒子であることが好ましい。このような構成によれば、高い熱伝導率の樹脂材料を実現することができる。   Furthermore, the conductive particles are preferably aluminum nitride particles or silicon carbide particles. According to such a configuration, a resin material having high thermal conductivity can be realized.

さらに、第1粒子が炭化ケイ素粒子であり、第2粒子が窒化アルミニウム粒子であることが好ましい。このような構成によれば、さらに高い熱伝導率の樹脂材料を実現することができる。   Furthermore, it is preferable that the first particles are silicon carbide particles and the second particles are aluminum nitride particles. According to such a configuration, it is possible to realize a resin material having a higher thermal conductivity.

また、本発明の熱伝導性樹脂材料の製造方法は、100μm以上500μm以下の平均粒子径を有する第1粒子と、第1粒子の平均粒子径に対して1/180以上1/30以下の平均粒子径を有する第2粒子との混合粒子を調合する工程と、加熱溶融した有機ポリマー樹脂に混合粒子を添加混合させて複合化樹脂材料を調製する工程と、複合化樹脂材料を所定の形状に加工する工程とを備える。   Moreover, the manufacturing method of the heat conductive resin material of this invention is the average of 1/180 or more and 1/30 or less with respect to the 1st particle | grains which have an average particle diameter of 100 micrometers or more and 500 micrometers or less, and the average particle diameter of 1st particle | grains. A step of preparing mixed particles with second particles having a particle size, a step of preparing a composite resin material by adding and mixing the mixed particles to a heated and melted organic polymer resin, and a composite resin material in a predetermined shape A processing step.

このような方法によれば、高い熱伝導率を有する混合粒子が高密度に充填されて高い熱伝導率を備え、なおかつ成型加工性に優れた熱伝導性樹脂材料を容易に実現することができる。   According to such a method, it is possible to easily realize a thermally conductive resin material having high thermal conductivity by being mixed with high density mixed particles having high thermal conductivity and having excellent moldability. .

また、本発明の熱伝導性樹脂材料の製造方法は、100μm以上500μm以下の平均粒子径を有する第1粒子と、第1粒子の平均粒子径に対して1/180以上1/30以下の平均粒子径を有する第2粒子とを溶媒液に分散させて混合粒子分散溶媒液を調合する工程と、混合粒子分散溶媒液を有機ポリマー樹脂に添加混合させて複合化樹脂材料を調製する工程と、複合化樹脂材料を所定の形状に加工する工程とを備える。   Moreover, the manufacturing method of the heat conductive resin material of this invention is the average of 1/180 or more and 1/30 or less with respect to the 1st particle | grains which have an average particle diameter of 100 micrometers or more and 500 micrometers or less, and the average particle diameter of 1st particle | grains. A step of dispersing a second particle having a particle size in a solvent liquid to prepare a mixed particle dispersion solvent liquid, a step of adding a mixed particle dispersion solvent liquid to an organic polymer resin and preparing a composite resin material, And a step of processing the composite resin material into a predetermined shape.

このような方法によれば、高い熱伝導率を有する混合粒子が高密度に充填されて高い熱伝導率を備え、なおかつ成型加工性に優れた熱伝導性樹脂材料を容易に実現することができる。   According to such a method, it is possible to easily realize a thermally conductive resin material having high thermal conductivity by being mixed with high density mixed particles having high thermal conductivity and having excellent moldability. .

さらに、溶媒液が有機ポリマー樹脂を溶解可能であり、溶媒液が含まれる混合粒子分散溶媒液を有機ポリマー樹脂に添加混合させた後に、溶媒留去法により溶媒液を揮発飛散させて複合化樹脂材料を調製してもよい。このような方法によれば、より確実に混合粒子の分散が良好で溶媒の残留がない複合化樹脂材料を実現することができる。   Furthermore, the solvent liquid can dissolve the organic polymer resin, and after the mixed particle dispersion solvent liquid containing the solvent liquid is added to and mixed with the organic polymer resin, the solvent liquid is volatilized and scattered by a solvent distillation method to form a composite resin. Materials may be prepared. According to such a method, it is possible to realize a composite resin material that can more reliably disperse mixed particles and has no solvent remaining.

さらに、溶媒液が、トルエン、キシレン、シクロヘキサン、エタノールのいずれか1種または複数を含むことが望ましい。このような方法によれば、溶媒液中での特に粒子径の小さな無機粒子の凝集を抑制した分散が可能となり、粒子径の大きな無機粒子間に粒子径の小さな無機粒子を充填することが可能となる。   Furthermore, it is desirable that the solvent liquid contains one or more of toluene, xylene, cyclohexane, and ethanol. According to such a method, it is possible to disperse the inorganic particles having a small particle size in the solvent liquid while suppressing aggregation, and it is possible to fill the inorganic particles having a small particle size between the inorganic particles having a large particle size. It becomes.

さらに、第1粒子と第2粒子とが、窒化アルミニウム粒子または炭化ケイ素粒子であることが望ましい。このような方法によれば、さらに高い熱伝導率を有する樹脂材料を実現することができる。   Furthermore, it is desirable that the first particles and the second particles are aluminum nitride particles or silicon carbide particles. According to such a method, a resin material having a higher thermal conductivity can be realized.

以上のように本発明の熱伝導性樹脂材料およびその製造方法によれば、無機粒子同士の凝集を抑制して有機ポリマー樹脂中に高密度で充填した樹脂材料を実現することができ、高い熱伝導率を有した放熱部材などに好適な熱伝導性樹脂材料を実現することができる。   As described above, according to the thermally conductive resin material and the manufacturing method thereof of the present invention, it is possible to realize a resin material filled with high density in an organic polymer resin by suppressing aggregation of inorganic particles. A heat conductive resin material suitable for a heat radiating member having conductivity can be realized.

本発明の実施の形態1における熱伝導性樹脂材料の構成を示す概略図である。It is the schematic which shows the structure of the heat conductive resin material in Embodiment 1 of this invention. 同熱伝導性樹脂材料の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the heat conductive resin material. 同熱伝導性樹脂材料に用いる窒化アルミニウムの粗粒子の粒子径分布を示す図である。It is a figure which shows the particle size distribution of the coarse particle of the aluminum nitride used for the heat conductive resin material. 同熱伝導性樹脂材料に用いる窒化アルミニウムの微粒子の粒子径分布を示す図である。It is a figure which shows the particle size distribution of the aluminum nitride microparticles | fine-particles used for the heat conductive resin material. 同熱伝導性樹脂材料における窒化アルミニウム粒子の微粒子混合率と混合粒子の充填密度との関係を示す図である。It is a figure which shows the relationship between the fine particle mixing rate of the aluminum nitride particle in the same heat conductive resin material, and the packing density of mixed particles. 同熱伝導性樹脂材料に用いる窒化アルミニウム粒子の粗粒子と微粒子の粒子径比と最大充填密度との関係を示す図である。It is a figure which shows the relationship between the particle diameter ratio of the coarse particle of aluminum nitride particle used for the heat conductive resin material, and microparticles | fine-particles, and the maximum packing density. 同熱伝導性樹脂材料に用いる窒化アルミニウム粒子の粗粒子の粒子径と最大充填密度との関係を示す図である。It is a figure which shows the relationship between the particle diameter of the coarse particle of the aluminum nitride particle used for the heat conductive resin material, and the maximum packing density. 同熱伝導性樹脂材料の熱伝導率を示す図である。It is a figure which shows the heat conductivity of the heat conductive resin material. 本発明の実施の形態2における熱伝導性樹脂材料の構成を示す概略図である。It is the schematic which shows the structure of the heat conductive resin material in Embodiment 2 of this invention. 同熱伝導性樹脂材料に用いる炭化ケイ素の粗粒子の粒子径分布を示す図である。It is a figure which shows the particle size distribution of the coarse particle of the silicon carbide used for the heat conductive resin material. 同熱伝導性樹脂材料に用いる窒化アルミニウムの微粒子の粒子径分布を示す図である。It is a figure which shows the particle size distribution of the aluminum nitride microparticles | fine-particles used for the heat conductive resin material. 同熱伝導性樹脂材料の熱伝導率を示す図である。It is a figure which shows the heat conductivity of the heat conductive resin material.

以下、本発明の実施の形態について、図面を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施の形態1)
本発明の実施の形態1における熱伝導性樹脂材料について図1〜図7を用いて説明する。
(Embodiment 1)
The heat conductive resin material in Embodiment 1 of this invention is demonstrated using FIGS.

図1は本発明の実施の形態1における熱伝導性樹脂材料の構成を示す概略図、図2は同熱伝導性樹脂材料の製造方法を示すフローチャート、図3Aは同熱伝導性樹脂材料に用いる窒化アルミニウム(AlN)の粗粒子の粒子径分布を示す図、図3Bは同熱伝導性樹脂材料に用いる窒化アルミニウム(AlN)の微粒子の粒子径分布を示す図、図4は同熱伝導性樹脂材料における窒化アルミニウム(AlN)粒子の微粒子混合率と混合粒子の充填密度との関係を示す図、図5は同熱伝導性樹脂材料に用いる窒化アルミニウム(AlN)粒子の粗粒子と微粒子の粒子径比と最大充填密度との関係を示す図、図6は同熱伝導性樹脂材料に用いる窒化アルミニウム(AlN)粒子の粗粒子の粒子径と最大充填密度との関係を示す図、図7は同熱伝導性樹脂材料の熱伝導率を示す図である。   FIG. 1 is a schematic diagram showing a configuration of a thermally conductive resin material in Embodiment 1 of the present invention, FIG. 2 is a flowchart showing a method for producing the thermally conductive resin material, and FIG. 3A is used for the thermally conductive resin material. FIG. 3B is a diagram showing the particle size distribution of aluminum nitride (AlN) coarse particles, FIG. 3B is a diagram showing the particle size distribution of aluminum nitride (AlN) particles used in the thermally conductive resin material, and FIG. 4 is the thermally conductive resin. The figure which shows the relationship between the fine particle mixing rate of the aluminum nitride (AlN) particle | grains in material, and the packing density of mixed particle | grains, FIG. 5 is the coarse particle of the aluminum nitride (AlN) particle | grain used for the heat conductive resin material, and the particle diameter of fine particle FIG. 6 is a diagram showing the relationship between the ratio and the maximum packing density, FIG. 6 is a diagram showing the relationship between the coarse particle size of the aluminum nitride (AlN) particles used in the thermally conductive resin material and the maximum packing density, and FIG. Thermal conductivity Is a diagram showing the thermal conductivity of the fat materials.

図1に示すように、本発明の実施の形態1における熱伝導性樹脂材料1は、第1粒子である窒化アルミニウム(AlN)の粗粒子2の隙間に、第2粒子である窒化アルミニウム(AlN)の微粒子3を充填させるようにした混合粒子4が、有機ポリマー樹脂5中に充填されて形成されている。   As shown in FIG. 1, the thermally conductive resin material 1 in Embodiment 1 of the present invention has aluminum nitride (AlN) as second particles in the gaps between coarse particles 2 of aluminum nitride (AlN) as first particles. The mixed particles 4 filled with the fine particles 3) are filled in the organic polymer resin 5 and formed.

すなわち、隣接する粗粒子2間の隙間に微粒子3が充填されるようにして窒化アルミニウム(AlN)粒子の嵩密度を増加させ、有機ポリマー樹脂5中への窒化アルミニウム(AlN)粒子の充填密度を増加させるようにしている。その結果、熱伝導性樹脂材料1中に占める熱伝導性の窒化アルミニウム(AlN)粒子の割合が増加して、熱伝導性樹脂材料1の熱伝導率を高めることができ、成形が容易な放熱部材として使用可能な熱伝導性樹脂材料1を実現することが可能となる。   That is, the bulk density of the aluminum nitride (AlN) particles is increased so that the gaps between the adjacent coarse particles 2 are filled with the fine particles 3, and the packing density of the aluminum nitride (AlN) particles in the organic polymer resin 5 is increased. Try to increase. As a result, the proportion of thermally conductive aluminum nitride (AlN) particles in the thermally conductive resin material 1 is increased, the thermal conductivity of the thermally conductive resin material 1 can be increased, and heat dissipation is easy. It becomes possible to realize the thermally conductive resin material 1 that can be used as a member.

以下、本発明の実施の形態1における熱伝導性樹脂材料1の製造方法を、図2に示すフローチャートを用いて詳しく説明する。   Hereinafter, the manufacturing method of the heat conductive resin material 1 in Embodiment 1 of this invention is demonstrated in detail using the flowchart shown in FIG.

まず、図3Aに示す粒子径分布を持った平均粒子径が300μmの窒化アルミニウム(AlN)の粗粒子2を60gと、図3Bに示す粒子径分布を持った平均粒子径が5μmの窒化アルミニウム(AlN)の微粒子3の40gとをそれぞれ秤量して準備する(ステップS101、S102)。   First, 60 g of aluminum nitride (AlN) coarse particles 2 having an average particle size of 300 μm having the particle size distribution shown in FIG. 3A and aluminum nitride having an average particle size of 5 μm having a particle size distribution shown in FIG. 3B ( 40 g of fine particles 3 of AlN) are weighed and prepared (steps S101 and S102).

その後、両者を混合して粒子全体に占める微粒子3の比率が40重量%となる窒化アルミニウム(AlN)の混合粒子4を100g調合する(ステップS103)。   Thereafter, both are mixed to prepare 100 g of mixed particles 4 of aluminum nitride (AlN) in which the ratio of the fine particles 3 to the entire particles is 40% by weight (step S103).

続いて、軟化点90℃、比重0.92の有機ポリマー樹脂5を12g準備し、190℃の温度で加熱溶融して溶融有機ポリマー樹脂を準備する(ステップS104)。   Subsequently, 12 g of an organic polymer resin 5 having a softening point of 90 ° C. and a specific gravity of 0.92 is prepared, and heated and melted at a temperature of 190 ° C. to prepare a molten organic polymer resin (step S104).

この溶融有機ポリマー樹脂に、上述の窒化アルミニウム(AlN)の混合粒子4の100gを添加して、有機ポリマー樹脂5と、粗粒子2と微粒子3よりなる混合粒子4の窒化アルミニウム粒子との混合物を作製し、190℃の温度の下でこの混合物を30分間攪拌する。この過程において、混合粒子4が有機ポリマー樹脂5に均一に混合した溶融混合物が調製される。次に、この溶融混合物を50℃以下の温度になるまで冷却して固化させる。このようにして、平均粒子径が300μmの粗粒子2と平均粒子径が5μmの微粒子3とからなる窒化アルミニウム(AlN)粒子の混合粒子4の100gが、有機ポリマー樹脂5の12gの内部に均一に分布した熱伝導性樹脂材料1が作製される(ステップS105)。ここで作製された熱伝導性樹脂材料1中の混合粒子4の充填密度は、重量百分率では89重量%となり、体積百分率に換算すると70体積%となる。   100 g of the above-mentioned mixed particles 4 of aluminum nitride (AlN) is added to the molten organic polymer resin, and a mixture of the organic polymer resin 5 and the aluminum nitride particles of the mixed particles 4 composed of the coarse particles 2 and the fine particles 3 is added. Make and stir the mixture for 30 minutes at a temperature of 190 ° C. In this process, a molten mixture in which the mixed particles 4 are uniformly mixed with the organic polymer resin 5 is prepared. Next, this molten mixture is cooled to a temperature of 50 ° C. or lower and solidified. In this way, 100 g of mixed particles 4 of aluminum nitride (AlN) particles composed of coarse particles 2 having an average particle diameter of 300 μm and fine particles 3 having an average particle diameter of 5 μm are uniformly distributed within 12 g of organic polymer resin 5. The thermally conductive resin material 1 distributed in the above is produced (step S105). The packing density of the mixed particles 4 in the thermally conductive resin material 1 produced here is 89% by weight in terms of weight percentage, and 70% by volume in terms of volume percentage.

このように、粒子径分布の異なる混合粒子4を有機ポリマー樹脂5に混合して、微粒子3を粗粒子2の隙間に充填するようにすると、有機ポリマー樹脂5中に混合粒子4を高密度で充填することが可能となり、熱伝導率の高い熱伝導性樹脂材料1を作製することができる。   As described above, when the mixed particles 4 having different particle size distributions are mixed with the organic polymer resin 5 and the fine particles 3 are filled in the gaps of the coarse particles 2, the mixed particles 4 are densely packed in the organic polymer resin 5. It becomes possible to fill, and the heat conductive resin material 1 with high heat conductivity can be produced.

特に、本発明の実施の形態1では、混合粒子4は、100μm以上500μm以下の平均粒子径を有する第1粒子である粗粒子2と、第1粒子よりも平均粒子径の小さな第2粒子である微粒子3とにより構成され、粗粒子2の平均粒子径と微粒子3の平均粒子径との比が30:1以上180:1以下となるようにしている。その結果、混合粒子4を調合する際の微粒子3の凝集が抑制されるとともに、微粒子3を隣接する粗粒子2の隙間に高密度に充填させることが可能となる。   In particular, in Embodiment 1 of the present invention, the mixed particles 4 are coarse particles 2 that are first particles having an average particle diameter of 100 μm or more and 500 μm or less, and second particles that are smaller in average particle diameter than the first particles. The ratio of the average particle diameter of the coarse particles 2 to the average particle diameter of the fine particles 3 is 30: 1 or more and 180: 1 or less. As a result, the aggregation of the fine particles 3 when preparing the mixed particles 4 is suppressed, and the fine particles 3 can be filled in the gaps between the adjacent coarse particles 2 with high density.

次に、このような熱伝導性樹脂材料1を、例えば射出成形やプレス成形などにより、放熱部材などに加工する(ステップS106)。   Next, the heat conductive resin material 1 is processed into a heat radiating member or the like by, for example, injection molding or press molding (step S106).

図4には、窒化アルミニウム(AlN)の混合粒子4のうちの微粒子3の割合である微粒子混合率(体積%)に対する、熱伝導性樹脂材料1中の混合粒子4の充填率(体積%)を示し、粗粒子2と微粒子3との粒子径比(粗粒子平均粒子径/微粒子平均粒子径)をパラメータとして示している。   FIG. 4 shows the filling rate (volume%) of the mixed particles 4 in the thermally conductive resin material 1 with respect to the fine particle mixing ratio (volume%) which is the ratio of the fine particles 3 in the mixed particles 4 of aluminum nitride (AlN). The particle size ratio between the coarse particles 2 and the fine particles 3 (coarse particle average particle size / fine particle average particle size) is shown as a parameter.

図4から、例えば、粗粒子2の平均粒子径が300μm、微粒子3の平均粒子径が5μmで粒子径比が60の混合粒子4では、微粒子3の微粒子混合率を40体積%としたときに、最大充填密度77体積%が得られる。また、粗粒子2の平均粒子径が300μm、微粒子3の平均粒子径が30μmで粒子径比が10の混合粒子4では、微粒子混合率を30体積%としたときに最大充填密度70体積%が得られる。さらに、粗粒子2の平均粒子径が300μm、微粒子3の平均粒子径が3μmで粒子径比が100の混合粒子4では、微粒子混合率を40体積%としたときに最大充填密度79体積%が得られる。   From FIG. 4, for example, in the mixed particle 4 in which the average particle diameter of the coarse particles 2 is 300 μm, the average particle diameter of the fine particles 3 is 5 μm, and the particle diameter ratio is 60, the fine particle 3 mixing ratio is 40% by volume. A maximum packing density of 77% by volume is obtained. Further, in the mixed particles 4 in which the average particle size of the coarse particles 2 is 300 μm, the average particle size of the fine particles 3 is 30 μm, and the particle size ratio is 10, the maximum packing density is 70% by volume when the fine particle mixing rate is 30% by volume. can get. Furthermore, in the mixed particles 4 in which the average particle diameter of the coarse particles 2 is 300 μm, the average particle diameter of the fine particles 3 is 3 μm, and the particle diameter ratio is 100, the maximum packing density is 79 volume% when the fine particle mixing ratio is 40 volume%. can get.

図4の結果から、粗粒子2と微粒子3のいずれの粒子径比を有する混合粒子4でも、最大充填率となる微粒子3の混合率は20体積%以上50体積%以下の範囲に存在する。したがって、この範囲の中に、微粒子3の混合率を設定することによって熱伝導性樹脂材料1への熱伝導性粒子の充填率を大きくすることができ、より熱伝導性に優れた熱伝導性樹脂材料1を実現することができる。   From the results shown in FIG. 4, the mixing ratio of the fine particles 3 having the maximum filling rate is in the range of 20% by volume or more and 50% by volume or less in the mixed particles 4 having any particle size ratio of the coarse particles 2 and the fine particles 3. Therefore, by setting the mixing ratio of the fine particles 3 within this range, the filling rate of the heat conductive particles into the heat conductive resin material 1 can be increased, and the heat conductivity having a higher heat conductivity can be achieved. The resin material 1 can be realized.

また、図5には、第1粒子として平均粒子径300μmの窒化アルミニウム(AlN)の粗粒子2を用い、混合粒子4に占める微粒子3の混合率を40体積%とした熱伝導性樹脂材料1において、粗粒子2と微粒子3の粒子径比(粗粒子平均粒子径/微粒子平均粒子径)と最大充填密度の関係を示している。   Further, in FIG. 5, heat conductive resin material 1 in which coarse particles 2 of aluminum nitride (AlN) having an average particle diameter of 300 μm are used as the first particles and the mixing ratio of fine particles 3 in mixed particles 4 is 40 volume%. 2 shows the relationship between the particle size ratio between the coarse particles 2 and the fine particles 3 (coarse particle average particle size / fine particle average particle size) and the maximum packing density.

図5から、粗粒子2と微粒子3の粒子径比が30以下になると、最大充填密度が急激に低下することがわかる。これは、微粒子3の粒子径が大きくなるか、または粗粒子2の粒子径が小さくなると、粗粒子2の隙間を微粒子3で埋めることができなくなるためである。   FIG. 5 shows that when the particle size ratio between the coarse particles 2 and the fine particles 3 is 30 or less, the maximum packing density rapidly decreases. This is because if the particle diameter of the fine particles 3 becomes large or the particle diameter of the coarse particles 2 becomes small, the gaps between the coarse particles 2 cannot be filled with the fine particles 3.

また、粒子径比が150以上となっても、最大充填密度は低下し、特に粒子径比が180以上で減少している。これは、粒子径比が150以上、すなわち微粒子3の平均粒子径が2μm以下となると、微粒子3が凝集して、粗粒子2と微粒子3とが均一に混じり合わなくなるためである。   Further, even when the particle size ratio is 150 or more, the maximum packing density is lowered, and in particular, the particle size ratio is reduced to 180 or more. This is because when the particle size ratio is 150 or more, that is, when the average particle size of the fine particles 3 is 2 μm or less, the fine particles 3 aggregate and the coarse particles 2 and the fine particles 3 are not mixed uniformly.

それ故に、混合粒子4における微粒子3の平均粒子径は、小さくとも2μm以上が望ましく、かつ、粗粒子2と微粒子3との粒子径比は30以上180以下、望ましくは、50以上150以下であれば熱伝導性樹脂材料1中に高密度に混合粒子4を充填させることができる。   Therefore, the average particle diameter of the fine particles 3 in the mixed particles 4 is desirably at least 2 μm, and the particle diameter ratio between the coarse particles 2 and the fine particles 3 is 30 or more and 180 or less, preferably 50 or more and 150 or less. For example, the mixed particles 4 can be filled in the heat conductive resin material 1 at a high density.

なお、上記の説明では、窒化アルミニウム(AlN)の粗粒子2の平均粒子径を300μmとしたが、粗粒子2の平均粒子径によっても充填密度が異なる。   In the above description, the average particle diameter of the aluminum nitride (AlN) coarse particles 2 is set to 300 μm, but the packing density varies depending on the average particle diameter of the coarse particles 2.

図6には、粗粒子2と微粒子3の粒子径比を50とし、混合粒子4全体に占める微粒子3の混合率を40重量%とした熱伝導性樹脂材料1において、粗粒子2の平均粒子径を変えた場合の最大充填密度の変化を示している。   FIG. 6 shows the average particle size of the coarse particles 2 in the thermally conductive resin material 1 in which the particle diameter ratio between the coarse particles 2 and the fine particles 3 is 50 and the mixing ratio of the fine particles 3 in the mixed particles 4 is 40% by weight. The change of the maximum packing density when the diameter is changed is shown.

図6から、粗粒子2の平均粒子径が100μm以下となると最大充填密度が低下することがわかる。これは、前述したように、粒子径比を50として粗粒子2の平均粒子径を100μmとすると、微粒子3の粒子径が2μm以下となり微粒子3が凝集して、粗粒子2と均一に混じり合わなくなるためである。   FIG. 6 shows that the maximum packing density decreases when the average particle diameter of the coarse particles 2 is 100 μm or less. As described above, when the particle size ratio is 50 and the average particle size of the coarse particles 2 is 100 μm, the particle size of the fine particles 3 is 2 μm or less, and the fine particles 3 are aggregated and uniformly mixed with the coarse particles 2. This is because it disappears.

一方、粗粒子2の平均粒子径が500μm以上になると、熱伝導性樹脂材料1の表面に窒化アルミニウム(AlN)の粗粒子2が露出して凹凸が発生する。   On the other hand, when the average particle diameter of the coarse particles 2 is 500 μm or more, the coarse particles 2 of aluminum nitride (AlN) are exposed on the surface of the heat conductive resin material 1 to generate irregularities.

このような凹凸の発生は、熱伝導性樹脂材料1の表面の密着性を低下させるので、発熱部材と熱伝導性樹脂材料1との間の熱伝導性を低下させる。それ故に、窒化アルミニウムの粗粒子2の平均粒子径は500μm以下とすることが好ましい。   The occurrence of such irregularities reduces the adhesion of the surface of the heat conductive resin material 1, and thus reduces the heat conductivity between the heat generating member and the heat conductive resin material 1. Therefore, the average particle diameter of the aluminum nitride coarse particles 2 is preferably 500 μm or less.

したがって、粒子の充填密度を向上させ、かつ熱伝導性樹脂材料の密着性を保つためには、窒化アルミニウム(AlN)粗粒子2の平均粒子径が100μm以上500μm以下で、かつ粗粒子2と微粒子3との粒子径比は30以上180以下であることが望ましい。   Therefore, in order to improve the packing density of the particles and maintain the adhesion of the heat conductive resin material, the average particle diameter of the aluminum nitride (AlN) coarse particles 2 is 100 μm or more and 500 μm or less, and the coarse particles 2 and the fine particles The particle size ratio with respect to 3 is preferably 30 or more and 180 or less.

次に、本発明の実施の形態1における熱伝導性樹脂材料1の熱伝導率について、図7を用いて説明する。   Next, the heat conductivity of the heat conductive resin material 1 in Embodiment 1 of this invention is demonstrated using FIG.

ここでは、熱伝導性樹脂材料1の熱伝導率を測定する試料片として、上述した製造方法に基づいて製造した熱伝導性樹脂材料1を温度180℃に加熱して再度溶融させて、プレス成形により直径10mm、厚み3mmの円盤状に加工し、その後冷却、固化して円盤状に形成した試料を用いている。   Here, as a sample piece for measuring the thermal conductivity of the thermal conductive resin material 1, the thermal conductive resin material 1 manufactured based on the above-described manufacturing method is heated to a temperature of 180 ° C. and melted again, and press molding is performed. Is used to prepare a sample that is processed into a disk shape having a diameter of 10 mm and a thickness of 3 mm, and then cooled and solidified to form a disk shape.

図7に、この試料片の熱伝導率をレーザーフラッシュ法により測定した結果を示し、比較例として粗粒子のみの窒化アルミニウム粒子で製造した場合、さらに、同じく比較例として有機ポリマー樹脂のみの熱伝導率を測定した結果を示している。   FIG. 7 shows the result of measurement of the thermal conductivity of this sample piece by the laser flash method. In the case where the sample is made of aluminum nitride particles having only coarse particles as a comparative example, the thermal conductivity of only an organic polymer resin is also used as a comparative example. The result of measuring the rate is shown.

図7において、サンプルAは本発明の実施の形態1における熱伝導性樹脂材料、すなわち平均粒子径が300μmの粗粒子2と平均粒子径が5μmの微粒子3とを充填密度40体積%で混合した窒化アルミニウム(AlN)粒子を用いた熱伝導性樹脂材料1の熱伝導率を示している。また、サンプルBは図3Aに示した平均粒子径300μmの窒化アルミニウム粒子のみの熱伝導性樹脂材料(充填密度40体積%)を用いた場合の熱伝導率を示し、サンプルCは有機ポリマー樹脂のみの熱伝導率を示している。   In FIG. 7, sample A is a heat conductive resin material according to Embodiment 1 of the present invention, that is, coarse particles 2 having an average particle diameter of 300 μm and fine particles 3 having an average particle diameter of 5 μm are mixed at a packing density of 40% by volume. The thermal conductivity of the thermally conductive resin material 1 using aluminum nitride (AlN) particles is shown. Sample B shows the thermal conductivity when only the aluminum nitride particles having an average particle diameter of 300 μm shown in FIG. 3A are used (packing density 40 vol%), and sample C is only organic polymer resin. The thermal conductivity of is shown.

図7から、サンプルAの熱伝導率は8.2W/m・Kであり、比較例としてのサンプルBの熱伝導率の1.9W/m・Kに比べて約4倍、サンプルCの熱伝導率の0.4W/m・Kに比べて約20倍に向上していることがわかる。   From FIG. 7, the thermal conductivity of sample A is 8.2 W / m · K, which is about four times the thermal conductivity of sample B as a comparative example, 1.9 W / m · K. It can be seen that the conductivity is improved by about 20 times compared to 0.4 W / m · K.

以上説明したように、本実施の形態によれば、窒化アルミニウム(AlN)の微粒子3の凝集を防止し、微粒子3と粗粒子2とを均一に混合することにより、粗粒子2間の隙間に微粒子3を高密度に充填することが可能となる。その結果、熱伝導性樹脂材料1内へ充填可能な最大充填密度が増加し、熱伝導性樹脂材料1内での熱伝導性粒子同士の接触面積が大きくなり、熱伝導性樹脂材料1として高い熱伝導率を実現することが可能となる。   As described above, according to the present embodiment, the aggregation of the aluminum nitride (AlN) fine particles 3 is prevented, and the fine particles 3 and the coarse particles 2 are uniformly mixed, so that the gaps between the coarse particles 2 are reduced. It becomes possible to fill the fine particles 3 with high density. As a result, the maximum packing density that can be filled into the heat conductive resin material 1 is increased, the contact area between the heat conductive particles in the heat conductive resin material 1 is increased, and the heat conductive resin material 1 is high. It becomes possible to realize thermal conductivity.

なお、本発明の実施の形態1における説明では、熱伝導性の粒子として窒化アルミニウム(AlN)の粒子を用いたが、窒化アルミニウム(AlN)に代えて炭化ケイ素(SiC)の粒子を用いても同様の効果が得られる。   In the description of Embodiment 1 of the present invention, aluminum nitride (AlN) particles are used as thermally conductive particles, but silicon carbide (SiC) particles may be used instead of aluminum nitride (AlN). Similar effects can be obtained.

(実施の形態2)
本発明の実施の形態2における熱伝導性樹脂材料について図8〜図10を用いて説明する。
(Embodiment 2)
The heat conductive resin material in Embodiment 2 of this invention is demonstrated using FIGS. 8-10.

図8は本発明の実施の形態2における熱伝導性樹脂材料の構成を示す概略図、図9Aは同熱伝導性樹脂材料に用いる炭化ケイ素(SiC)の粗粒子の粒子径分布を示す図、図9Bは同熱伝導性樹脂材料に用いる窒化アルミニウム(AlN)の微粒子の粒子径分布を示す図、図10は同熱伝導性樹脂材料の熱伝導率を示す図である。   FIG. 8 is a schematic diagram showing the configuration of the thermally conductive resin material in Embodiment 2 of the present invention, FIG. 9A is a diagram showing the particle size distribution of coarse particles of silicon carbide (SiC) used in the thermally conductive resin material, FIG. 9B is a view showing the particle size distribution of aluminum nitride (AlN) fine particles used for the thermally conductive resin material, and FIG. 10 is a view showing the thermal conductivity of the thermally conductive resin material.

図8に示すように、本発明の実施の形態2における熱伝導性樹脂材料10は、第1粒子である粗粒子6として炭化ケイ素(SiC)を用い、第2粒子である微粒子7として窒化アルミニウム(AlN)を用いている。炭化ケイ素(SiC)の粗粒子6の隙間に、窒化アルミニウム(AlN)の微粒子7を充填させた混合粒子8を、有機ポリマー樹脂9の中に充填している。   As shown in FIG. 8, the thermally conductive resin material 10 in Embodiment 2 of the present invention uses silicon carbide (SiC) as the coarse particles 6 that are the first particles, and aluminum nitride as the fine particles 7 that are the second particles. (AlN) is used. Mixed particles 8 in which fine particles 7 of aluminum nitride (AlN) are filled in gaps between coarse particles 6 of silicon carbide (SiC) are filled in an organic polymer resin 9.

炭化ケイ素(SiC)の粗粒子6の隙間に窒化アルミニウム(AlN)の微粒子7が入り込むことにより、炭化ケイ素(SiC)および窒化アルミニウム(AlN)からなる熱伝導性粒子の混合粒子8の嵩密度が増加し、有機ポリマー樹脂9への充填密度を増加させることが可能となる。その結果、熱伝導性樹脂材料10に占める熱伝導性の混合粒子8の割合が増加して、熱伝導性樹脂材料10の熱伝導率を高めることができ、成形が容易な放熱部材として使用可能な熱伝導性樹脂材料10を実現することが可能となる。   When the aluminum nitride (AlN) fine particles 7 enter the gaps between the silicon carbide (SiC) coarse particles 6, the bulk density of the mixed particles 8 of thermally conductive particles made of silicon carbide (SiC) and aluminum nitride (AlN) is reduced. It increases, and it becomes possible to increase the filling density to the organic polymer resin 9. As a result, the proportion of the thermally conductive mixed particles 8 in the thermally conductive resin material 10 increases, the thermal conductivity of the thermally conductive resin material 10 can be increased, and it can be used as a heat radiating member that can be easily molded. It is possible to realize a heat conductive resin material 10 that is stable.

本発明の実施の形態2における熱伝導性樹脂材料10の製造方法は、基本的には本発明の実施の形態1における熱伝導性樹脂材料1の製造方法と同様であるので、図2に示すフローチャートを用いてその製造方法について詳しく説明する。   Since the manufacturing method of the heat conductive resin material 10 in Embodiment 2 of this invention is fundamentally the same as the manufacturing method of the heat conductive resin material 1 in Embodiment 1 of this invention, it shows in FIG. The manufacturing method will be described in detail using a flowchart.

まず、図9Aに示すような粒子径分布を持った平均粒子径が300μmの炭化ケイ素(SiC)の粗粒子6の60g(体積18.6cmに相当)と、図9Bに示す粒子径分布を持った平均粒子径が5μmの窒化アルミニウム(AlN)の微粒子7の40g(体積12.3cmに相当)とをそれぞれ秤量し、準備する(ステップS101、S102)。その後、両者を混合して全体に占める窒化アルミニウム(AlN)の微粒子7の体積比率が40体積%となる混合粒子8を100g(体積30.9cmに相当)調合する(ステップS103)。 First, 60 g (corresponding to a volume of 18.6 cm 3 ) of silicon carbide (SiC) coarse particles 6 having a particle size distribution as shown in FIG. 9A and an average particle size of 300 μm, and the particle size distribution shown in FIG. 40 g (corresponding to a volume of 12.3 cm 3 ) of the aluminum nitride (AlN) fine particles 7 having an average particle diameter of 5 μm are weighed and prepared (steps S101 and S102). Thereafter, both are mixed to prepare 100 g (corresponding to a volume of 30.9 cm 3 ) of mixed particles 8 in which the volume ratio of aluminum nitride (AlN) fine particles 7 occupying the whole is 40 volume% (step S103).

続いて、軟化点90℃、比重0.92の有機ポリマー樹脂9の12g(体積13.0cmに相当)を190℃の温度で加熱溶融して溶融有機ポリマー樹脂を準備する(ステップS104)。 Subsequently, 12 g (corresponding to a volume of 13.0 cm 3 ) of the organic polymer resin 9 having a softening point of 90 ° C. and a specific gravity of 0.92 is heated and melted at a temperature of 190 ° C. to prepare a molten organic polymer resin (step S104).

この溶融有機ポリマー樹脂に対し、上記の混合粒子8の100gを添加して、有機ポリマー樹脂と混合粒子8とを混合させ、190℃の温度の下で30分間ほど攪拌する。   100 g of the mixed particles 8 are added to the molten organic polymer resin, the organic polymer resin and the mixed particles 8 are mixed, and stirred at a temperature of 190 ° C. for about 30 minutes.

この工程によって、炭化ケイ素(SiC)の粗粒子6と窒化アルミニウム(AlN)の微粒子7の混合粒子8が均一に混合した有機ポリマー樹脂9の溶融混合物が調製される。   By this step, a molten mixture of organic polymer resin 9 in which mixed particles 8 of coarse particles 6 of silicon carbide (SiC) and fine particles 7 of aluminum nitride (AlN) are uniformly mixed is prepared.

次に、この溶融混合物を50℃以下の温度になるまで冷却して固化させる。   Next, this molten mixture is cooled to a temperature of 50 ° C. or lower and solidified.

このようにして、平均粒子径が300μmの炭化ケイ素(SiC)の粗粒子6と平均粒子径が5μmの窒化アルミニウム(AlN)の微粒子7とが混合された混合粒子8の100gが、有機ポリマー樹脂9の12gの内部に均一に分布した熱伝導性樹脂材料10を作製できる(ステップS105)。   Thus, 100 g of the mixed particles 8 in which the coarse particles 6 of silicon carbide (SiC) having an average particle diameter of 300 μm and the fine particles 7 of aluminum nitride (AlN) having an average particle diameter of 5 μm are mixed together are organic polymer resins. 9 can be produced (step S105).

このとき、作製された熱伝導性樹脂材料10中の混合粒子8の充填密度は、重量百分率では89重量%となり、体積百分率に換算すると70体積%となる。   At this time, the packing density of the mixed particles 8 in the produced thermally conductive resin material 10 is 89% by weight in terms of weight percentage, and 70% by volume in terms of volume percentage.

特に、本発明の実施の形態2では、混合粒子8は、100μm以上500μm以下の平均粒子径を有する粗粒子6と、粗粒子6よりも平均粒子径の小さな微粒子7とにより構成され、粗粒子6の平均粒子径と微粒子7の平均粒子径との比が30:1以上180:1以下となるようにしている。その結果、混合粒子8を調合する際の微粒子7の凝集が抑制されるとともに、微粒子7を隣接する粗粒子6の隙間に高密度に充填させることが可能となる。   In particular, in Embodiment 2 of the present invention, the mixed particles 8 are composed of coarse particles 6 having an average particle diameter of 100 μm or more and 500 μm or less, and fine particles 7 having an average particle diameter smaller than the coarse particles 6, and the coarse particles The ratio of the average particle size of 6 to the average particle size of the fine particles 7 is set to be 30: 1 or more and 180: 1 or less. As a result, the aggregation of the fine particles 7 when the mixed particles 8 are prepared is suppressed, and the fine particles 7 can be filled in the gaps between the adjacent coarse particles 6 with high density.

次に、このような熱伝導性樹脂材料10を、例えば射出成形やプレス成形などにより、放熱部材などに加工する(ステップS106)。   Next, the heat conductive resin material 10 is processed into a heat radiating member or the like by, for example, injection molding or press molding (step S106).

上述の実施の形態2における熱伝導性樹脂材料10では、熱伝導性粒子の粗粒子6として窒化アルミニウム(AlN)よりも熱伝導率が高い炭化ケイ素(SiC)を使用しており、実施の形態1で説明した窒化アルミニウム(AlN)粒子のみの場合と比べて、熱伝導率をさらに高くすることができる。   In the heat conductive resin material 10 in the above-described second embodiment, silicon carbide (SiC) having a higher thermal conductivity than aluminum nitride (AlN) is used as the coarse particles 6 of the heat conductive particles. Compared with the case of only the aluminum nitride (AlN) particles described in 1, the thermal conductivity can be further increased.

一般的に、炭化ケイ素(SiC)は硬度が高いため、10μm以下の粒子径に粉砕しにくい。このため、本発明の実施の形態2では微粒子7に窒化アルミニウム(AlN)を用いて粗粒子6と微粒子7との混合による高密度充填を実現している。   Generally, since silicon carbide (SiC) has high hardness, it is difficult to grind to a particle size of 10 μm or less. For this reason, in Embodiment 2 of the present invention, high density filling is realized by mixing coarse particles 6 and fine particles 7 by using aluminum nitride (AlN) for fine particles 7.

次に、本発明の実施の形態2において作製した熱伝導性樹脂材料10の熱伝導率について図10を用いて説明する。   Next, the thermal conductivity of the thermally conductive resin material 10 produced in Embodiment 2 of the present invention will be described with reference to FIG.

ここでは、熱伝導性樹脂材料10の熱伝導率を測定する試料片として、上述した製造方法に基づいて製造した熱伝導性樹脂材料10を温度180℃に加熱して再度溶融させて、プレス成形により直径10mm厚み3mmの円盤状に加工し、その後冷却、固化して円盤状に形成した試料を用いている。   Here, as a sample piece for measuring the thermal conductivity of the thermally conductive resin material 10, the thermally conductive resin material 10 manufactured based on the above-described manufacturing method is heated to 180 ° C. and melted again, and press molding is performed. The sample which was processed into a disk shape with a diameter of 10 mm and a thickness of 3 mm, and then cooled and solidified to form a disk shape is used.

図10には、本発明の実施の形態2における試料片の熱伝導率をレーザーフラッシュ法により測定した結果をサンプルDとして示し、比較例として実施の形態1の窒化アルミニウム(AlN)のみの混合粒子を用いた熱伝導性樹脂材料の熱伝導率をサンプルE、同じく比較例として炭化ケイ素(SiC)の平均粒子径300μmの粗粒子のみを用いた熱伝導性樹脂材料の熱伝導率をサンプルFとして示している。   In FIG. 10, the result of measuring the thermal conductivity of the sample piece in Embodiment 2 of the present invention by the laser flash method is shown as Sample D, and as a comparative example, mixed particles of only the aluminum nitride (AlN) of Embodiment 1 The thermal conductivity of the thermally conductive resin material using the sample is the sample E, and the thermal conductivity of the thermally conductive resin material using only coarse particles of silicon carbide (SiC) having an average particle diameter of 300 μm as the comparative example is the sample F. Show.

図10から、本発明の実施の形態2における熱伝導性樹脂材料10は、熱伝導率が11.2W/m・Kであり、比較例としての実施の形態1における熱伝導性樹脂材料1の熱伝導率の8.2W/m・Kに比べて、約1.3倍に向上している。また、平均粒子径300μmの炭化ケイ素(SiC)粒子のみの熱伝導性樹脂材料の熱伝導率の2.2W/m・Kと比べると、約5倍に向上していることがわかる。   From FIG. 10, the heat conductive resin material 10 in the second embodiment of the present invention has a thermal conductivity of 11.2 W / m · K, and the heat conductive resin material 1 in the first embodiment as a comparative example. Compared to the thermal conductivity of 8.2 W / m · K, it is improved about 1.3 times. In addition, it can be seen that the thermal conductivity of the silicon resin (SiC) particles having an average particle diameter of 300 μm alone is improved by about 5 times compared with the thermal conductivity of 2.2 W / m · K.

以上説明したように、本発明の実施の形態2のような材料の異なる微粒子と粗粒子とを混合する場合でも、粗粒子間の隙間に微粒子が充填されて、熱伝導性樹脂材料内へ充填密度を高めて、熱伝導樹脂材料内での粒子同士の接触面積を大きくし、熱伝導率を向上させることができる。   As described above, even when mixing fine particles and coarse particles of different materials as in Embodiment 2 of the present invention, the fine particles are filled in the gaps between the coarse particles and filled into the thermally conductive resin material. It is possible to increase the density, increase the contact area between the particles in the heat conductive resin material, and improve the thermal conductivity.

なお、上述した実施の形態1、2では、図2に示した製造方法のフローチャートに従って、溶融した有機ポリマー樹脂に窒化アルミニウムまたは炭化ケイ素の粒子を添加混合させて、熱伝導性樹脂材料を作製した例を記載した。しかし、熱伝導性樹脂材料の製造方法は上記の方法に限定されることはない。   In the first and second embodiments described above, in accordance with the flowchart of the manufacturing method shown in FIG. 2, aluminum nitride or silicon carbide particles are added and mixed into the molten organic polymer resin to produce a heat conductive resin material. An example was given. However, the manufacturing method of a heat conductive resin material is not limited to said method.

例えば、有機ポリマー樹脂を溶解可能な溶媒中に、異なる粒子径分布を持つ熱伝導性粒子を分散させた溶媒分散液を添加調合し、この溶媒分散液を有機ポリマー樹脂中に添加して有機ポリマー樹脂を溶解させて有機ポリマー樹脂と熱伝導性粒子とを混合させた後に、溶媒を留去する方法も可能である。   For example, a solvent dispersion in which thermally conductive particles having different particle size distributions are dispersed in a solvent capable of dissolving the organic polymer resin is added and formulated, and the solvent dispersion is added to the organic polymer resin to form an organic polymer. A method of distilling off the solvent after dissolving the resin and mixing the organic polymer resin and the thermally conductive particles is also possible.

このとき、有機溶媒としてはトルエン、キシレン、シクロヘキサン、エタノール等を利用でき、これらの溶媒を単独または複数種で混合して用いてもよい。   At this time, toluene, xylene, cyclohexane, ethanol, or the like can be used as the organic solvent, and these solvents may be used alone or in combination.

また、有機ポリマー樹脂を溶解しない溶媒を用いる場合は、加熱溶融した有機ポリマー樹脂中に熱伝導性粒子の混合分散溶媒液を滴下して添加し、溶融状態で攪拌して有機ポリマー樹脂と熱伝導性粒子とを混合させることにより、異なる粒子径分布を持つ混合粒子が均一に分布した複合化放熱性樹脂材料を作製することもできる。   In addition, when using a solvent that does not dissolve the organic polymer resin, add the mixed dispersion solvent liquid of thermally conductive particles dropwise into the heated and melted organic polymer resin, and stir in the molten state to conduct heat with the organic polymer resin. By mixing the conductive particles, a composite heat-dissipating resin material in which mixed particles having different particle size distributions are uniformly distributed can be produced.

以上のように本発明の熱伝導性樹脂材料とその製造方法は、放熱を必要とする電子機器や電気回路に適用可能な高い熱伝導性を有する熱伝導性樹脂材料を実現し、射出成形などにより、様々な形状のヒートシンクや、放熱部材などへの利用が可能である。   As described above, the thermally conductive resin material and the manufacturing method thereof according to the present invention realizes a thermally conductive resin material having high thermal conductivity that can be applied to an electronic device or an electric circuit that requires heat dissipation, and injection molding. Therefore, it can be used for various shapes of heat sinks, heat radiating members, and the like.

1,10 熱伝導性樹脂材料
2,6 粗粒子
3,7 微粒子
4,8 混合粒子
5,9 有機ポリマー樹脂
1,10 Thermally conductive resin material 2,6 Coarse particles 3,7 Fine particles 4,8 Mixed particles 5,9 Organic polymer resin

Claims (11)

熱伝導性粒子を有機ポリマー樹脂に充填した熱伝導性樹脂材料であって、
前記熱伝導性粒子は粒子径分布の異なる混合粒子であり、前記混合粒子は、100μm以上500μm以下の平均粒子径を有する第1粒子と、前記第1粒子よりも平均粒子径の小さな第2粒子とにより構成され、前記第1粒子の平均粒子径と前記第2粒子の平均粒子径との比が30:1以上180:1以下であることを特徴とする熱伝導性樹脂材料。
A thermally conductive resin material in which thermally conductive particles are filled in an organic polymer resin,
The thermally conductive particles are mixed particles having different particle size distributions. The mixed particles include first particles having an average particle size of 100 μm or more and 500 μm or less, and second particles having an average particle size smaller than that of the first particles. And a ratio of the average particle diameter of the first particles to the average particle diameter of the second particles is 30: 1 or more and 180: 1 or less.
前記混合粒子の全粒子の体積に対して、前記第2粒子の体積が20体積%以上50体積%以下であることを特徴とする請求項1に記載の熱伝導性樹脂材料。 2. The thermally conductive resin material according to claim 1, wherein the volume of the second particles is 20 volume% or more and 50 volume% or less with respect to the volume of all the particles of the mixed particles. 前記第2粒子の平均粒子径が2μm以上であることを特徴とする請求項1または請求項2に記載の熱伝導性樹脂材料。 The heat conductive resin material according to claim 1 or 2, wherein an average particle diameter of the second particles is 2 µm or more. 前記熱伝導性粒子が窒化アルミニウム粒子または炭化ケイ素粒子であることを特徴とする請求項1から請求項3のいずれか一項に記載の熱伝導性樹脂材料。 The thermally conductive resin material according to any one of claims 1 to 3, wherein the thermally conductive particles are aluminum nitride particles or silicon carbide particles. 前記第1粒子が炭化ケイ素粒子であり、前記第2粒子が窒化アルミニウム粒子であることを特徴とする請求項1から請求項4のいずれか一項に記載の熱伝導性樹脂材料。 The thermally conductive resin material according to any one of claims 1 to 4, wherein the first particles are silicon carbide particles, and the second particles are aluminum nitride particles. 100μm以上500μm以下の平均粒子径を有する第1粒子と、前記第1粒子の平均粒子径に対して1/180以上1/30以下の平均粒子径を有する第2粒子との混合粒子を調合する工程と、
加熱溶融した有機ポリマー樹脂に前記混合粒子を添加混合させて複合化樹脂材料を調製する工程と、
前記複合化樹脂材料を所定の形状に加工する工程と
を備えることを特徴とする熱伝導性樹脂材料の製造方法。
A mixed particle of first particles having an average particle diameter of 100 μm or more and 500 μm or less and second particles having an average particle diameter of 1/180 or more and 1/30 or less with respect to the average particle diameter of the first particles is prepared. Process,
A step of preparing a composite resin material by adding and mixing the mixed particles to a heated and melted organic polymer resin; and
And a step of processing the composite resin material into a predetermined shape.
100μm以上500μm以下の平均粒子径を有する第1粒子と、前記第1粒子の平均粒子径に対して1/180以上1/30以下の平均粒子径を有する第2粒子とを溶媒液に分散させて混合粒子分散溶媒液を調合する工程と、
前記混合粒子分散溶媒液を有機ポリマー樹脂に添加混合させて複合化樹脂材料を調製する工程と、
前記複合化樹脂材料を所定の形状に加工する工程と
を備えることを特徴とする熱伝導性樹脂材料の製造方法。
First particles having an average particle diameter of 100 μm or more and 500 μm or less and second particles having an average particle diameter of 1/180 or more and 1/30 or less of the average particle diameter of the first particles are dispersed in a solvent liquid. Preparing a mixed particle dispersion solvent liquid,
A step of preparing a composite resin material by adding and mixing the mixed particle dispersion solvent liquid to an organic polymer resin; and
And a step of processing the composite resin material into a predetermined shape.
前記溶媒液が前記有機ポリマー樹脂を溶解可能であり、前記溶媒液が含まれる前記混合粒子分散溶媒液を有機ポリマー樹脂に添加混合させた後に、溶媒留去法により前記溶媒液を揮発飛散させて前記複合化樹脂材料を調製することを特徴とする請求項7に記載の熱伝導性樹脂材料の製造方法。 The solvent liquid can dissolve the organic polymer resin, and after the mixed particle dispersion solvent liquid containing the solvent liquid is added to and mixed with the organic polymer resin, the solvent liquid is volatilized and scattered by a solvent distillation method. The method for producing a thermally conductive resin material according to claim 7, wherein the composite resin material is prepared. 加熱溶融した前記有機ポリマー樹脂に前記混合粒子分散溶媒液を添加して攪拌混合させて前記複合化樹脂材料を調製することを特徴とする請求項7に記載の熱伝導性樹脂材料の製造方法。 The method for producing a thermally conductive resin material according to claim 7, wherein the mixed resin material is prepared by adding the mixed particle-dispersed solvent liquid to the heat-melted organic polymer resin and stirring and mixing the mixture. 前記溶媒液が、トルエン、キシレン、シクロヘキサン、エタノールのいずれか1種または複数を含むことを特徴とする請求項8に記載の熱伝導性樹脂材料の製造方法。 The method for producing a thermally conductive resin material according to claim 8, wherein the solvent liquid contains one or more of toluene, xylene, cyclohexane, and ethanol. 前記第1粒子と前記第2粒子とが、窒化アルミニウム粒子または炭化ケイ素粒子であることを特徴とする請求項6から請求項10のいずれか一項に記載の熱伝導性樹脂材料の製造方法。 The method for producing a thermally conductive resin material according to any one of claims 6 to 10, wherein the first particles and the second particles are aluminum nitride particles or silicon carbide particles.
JP2009141816A 2009-06-15 2009-06-15 Thermoconductive resin material and production method thereof Pending JP2010285569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009141816A JP2010285569A (en) 2009-06-15 2009-06-15 Thermoconductive resin material and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009141816A JP2010285569A (en) 2009-06-15 2009-06-15 Thermoconductive resin material and production method thereof

Publications (1)

Publication Number Publication Date
JP2010285569A true JP2010285569A (en) 2010-12-24

Family

ID=43541519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009141816A Pending JP2010285569A (en) 2009-06-15 2009-06-15 Thermoconductive resin material and production method thereof

Country Status (1)

Country Link
JP (1) JP2010285569A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101419740B1 (en) 2012-11-23 2014-07-17 채기웅 Bi-layer ceramic substrate for heat dissipation and method for manufacturing the same
JP2014520962A (en) * 2011-07-13 2014-08-25 ポスコ RESIN COMPOSITION FOR SURFACE TREATMENT AND STEEL COATED BY THE SAME
KR101532026B1 (en) * 2014-06-03 2015-06-29 지앤씨테크(주) Heat releasing composite and manufacturing method for the same
WO2019065150A1 (en) * 2017-09-28 2019-04-04 富士フイルム株式会社 Heat-radiating sheet and device having heat-radiating sheet
CN110776745A (en) * 2019-10-09 2020-02-11 苏州欣天新精密机械有限公司 Preparation method of thermal interface material
JP2021025163A (en) * 2019-08-06 2021-02-22 関東電化工業株式会社 Heat-conductive particle-filled fiber

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014520962A (en) * 2011-07-13 2014-08-25 ポスコ RESIN COMPOSITION FOR SURFACE TREATMENT AND STEEL COATED BY THE SAME
KR101419740B1 (en) 2012-11-23 2014-07-17 채기웅 Bi-layer ceramic substrate for heat dissipation and method for manufacturing the same
KR101532026B1 (en) * 2014-06-03 2015-06-29 지앤씨테크(주) Heat releasing composite and manufacturing method for the same
WO2015186959A1 (en) * 2014-06-03 2015-12-10 지앤씨테크(주) Composite material and preparation method therefor
WO2019065150A1 (en) * 2017-09-28 2019-04-04 富士フイルム株式会社 Heat-radiating sheet and device having heat-radiating sheet
CN111095540A (en) * 2017-09-28 2020-05-01 富士胶片株式会社 Radiating fin and device with radiating fin
JPWO2019065150A1 (en) * 2017-09-28 2020-09-17 富士フイルム株式会社 Heat dissipation sheet and device with heat dissipation sheet
JP7101693B2 (en) 2017-09-28 2022-07-15 富士フイルム株式会社 Heat dissipation sheet and device with heat dissipation sheet
CN111095540B (en) * 2017-09-28 2024-04-02 富士胶片株式会社 Radiating fin and device with radiating fin
JP2021025163A (en) * 2019-08-06 2021-02-22 関東電化工業株式会社 Heat-conductive particle-filled fiber
JP7352406B2 (en) 2019-08-06 2023-09-28 関東電化工業株式会社 thermally conductive particle filled fiber
CN110776745A (en) * 2019-10-09 2020-02-11 苏州欣天新精密机械有限公司 Preparation method of thermal interface material

Similar Documents

Publication Publication Date Title
JP5208060B2 (en) Thermosetting resin composition, thermally conductive resin sheet, method for producing the same, and power module
JP6022061B2 (en) Thermosetting resin composition, method for producing thermal conductive sheet, and power module
JP5089908B2 (en) High thermal conductive resin compound / high thermal conductive resin molding / mixing particles for heat radiating sheet, high thermal conductive resin compound / high thermal conductive resin molding / heat radiating sheet, and manufacturing method thereof
JP5565312B2 (en) Method for producing zinc oxide particles
JP2010285569A (en) Thermoconductive resin material and production method thereof
JP2009096961A (en) Heat-conductive silicone grease composition excellent in reworkability
JP5085050B2 (en) High thermal conductive resin compound / high thermal conductive resin molding / mixing particles for heat radiating sheet, high thermal conductive resin compound / high thermal conductive resin molding / heat radiating sheet, and manufacturing method thereof
JP2010157563A (en) Heat conductive sheet and power module
JP2011176024A (en) Thermosetting resin composition, b-stage heat conductive sheet, and power module
JPWO2012070289A1 (en) Thermally conductive sheet and power module
KR20140009107A (en) Resin composition, molded object and substrate material both obtained from the resin composition, and circuit board including the substrate material
JP2011178961A (en) Resin composition, heat-conductive sheet, method for producing the sheet, and power module
JP2014152299A (en) Thermosetting resin composition, conductive resin sheet, method for producing the same, and power module comprising the same
JP5791488B2 (en) Resin composition for heat conductive sheet, heat conductive sheet and power module
Permal et al. Enhanced thermal and mechanical properties of epoxy composites filled with hybrid filler system of aluminium nitride and boron nitride
WO2019031458A1 (en) Low-dielectric-constant thermally-conductive heat dissipation member
JP2005054099A (en) Thermally conductive grease
JP2017059704A (en) Thermally conducting composition, thermally conducting sheet, manufacturing method of thermally conducting sheet, and member
JP6748967B2 (en) Sheet-shaped thermosetting resin composition, and resin sheet, module component, power device and coil component using the same
JP2010183033A (en) Composition for electromagnetic wave suppression and heat dissipation, and method for manufacturing the composition for electromagnetic wave suppression
JP2014189701A (en) High thermal conductive resin cured product, high thermal conductive semi-cured resin film and high thermal conductive resin composition
JP7292941B2 (en) Aluminum nitride composite filler
TW202033643A (en) Inorganic powder for heat-dissipating resin composition, heat-dissipating resin composition using same, and methods for producing same
JP4014454B2 (en) Resin composition, method for producing the same, and heat radiating member
JP2013194223A (en) Heat conductive material