Nothing Special   »   [go: up one dir, main page]

JP2010280235A - Noncontact current collector - Google Patents

Noncontact current collector Download PDF

Info

Publication number
JP2010280235A
JP2010280235A JP2009132789A JP2009132789A JP2010280235A JP 2010280235 A JP2010280235 A JP 2010280235A JP 2009132789 A JP2009132789 A JP 2009132789A JP 2009132789 A JP2009132789 A JP 2009132789A JP 2010280235 A JP2010280235 A JP 2010280235A
Authority
JP
Japan
Prior art keywords
capacitor
coil
pwm converter
current collector
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009132789A
Other languages
Japanese (ja)
Inventor
Takeshi Shioda
剛 塩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP2009132789A priority Critical patent/JP2010280235A/en
Publication of JP2010280235A publication Critical patent/JP2010280235A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve such a problem that a device which connects a serial capacitor with second coil output, and controls a PWM converter in noncontact current collection for taking out electric power from alternating current power with large internal inductance with a power factor of 1, needs to install the serial capacitor at a traveling vehicle side, and thus traveling vehicle becomes heavy. <P>SOLUTION: In the noncontact current collector, the PWM converter changes alternating current output inducted by a second coil to direct current output. In the noncontact current collector, a first side capacitor is serially connected to an input side of a first coil, the PWM converter is controlled to become an equivalent series circuit of a resistor and the capacitor by PWM modulation, and a total serial reactance in which the first side capacitor, leakage inductance of the first coil, leakage inductance of a second coil, and an equivalent capacitor of the PWM converter are expressed at the second coil side is made zero. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電気車両に非接触によって集電する装置に関するものである。   The present invention relates to an apparatus for collecting electricity in a non-contact manner on an electric vehicle.

本出願人は先に、大きな内部インピーダンスを有する交流電源に接続されるPWMコンバータの効率を上昇させ、スイッチング素子の小容量化を図るために、容量性インピーダンスを直列接続したPWMコンバータについて提案している(特許文献1参照)。   The present applicant has previously proposed a PWM converter in which capacitive impedances are connected in series in order to increase the efficiency of a PWM converter connected to an AC power supply having a large internal impedance and to reduce the capacity of a switching element. (See Patent Document 1).

かかる先願技術を、図5の先願の非接触集電装置の主回路と電源系統を示す図、図4の先願の非接触集電装置の主回路と電源系統の単相等価回路を示す図、および図3の先願の非接触集電装置に用いるPWMコンバータの制御回路図を参照して詳述する。
図5において、4はPWM変換器、5は負荷としての直流電源、7は交流電源、8は内部抵抗、9は内部インダクタンス、10はPWMコンバータ部、33は直列コンデンサである。
図4において、1は1次コイル、2は2次コイルを表す。
図3において、21は演算回路、22はF/V変換回路、23は容量指令発生器、24は割算器、25は比較器、26は三角波発生器、27はゲート発生回路を表す。
FIG. 5 shows the main circuit and power supply system of the non-contact current collector of the prior application shown in FIG. 5, and the single-phase equivalent circuit of the main circuit and power system of the non-contact current collector of FIG. This will be described in detail with reference to the drawings and the control circuit diagram of the PWM converter used in the non-contact current collector of the prior application of FIG.
In FIG. 5, 4 is a PWM converter, 5 is a DC power supply as a load, 7 is an AC power supply, 8 is an internal resistance, 9 is an internal inductance, 10 is a PWM converter unit, and 33 is a series capacitor.
In FIG. 4, 1 represents a primary coil and 2 represents a secondary coil.
In FIG. 3, 21 is an arithmetic circuit, 22 is an F / V conversion circuit, 23 is a capacity command generator, 24 is a divider, 25 is a comparator, 26 is a triangular wave generator, and 27 is a gate generation circuit.

図5において、3相の交流電源7に直列に内部抵抗8、内部インダクタンス9、および直列コンデンサ33が直列に接続されて、さらに直列に接続されたPWM変換器4および負荷としての直流電源5において交流出力が直流出力に変換される。
先願技術は、リニア新幹線の補助電源を対象とする非接触集電であり、車両走行速度によって商用周波数程度からその数倍程度の周波数を有する交流電源7は、図4の1次コイル1に供給する電源を示す。図4と図5の交流電源7は、同一品を表す。2次コイル2、直列コンデンサ33およびPWMコンバータ部10が図示しない走行車両上に搭載される。
In FIG. 5, an internal resistance 8, an internal inductance 9, and a series capacitor 33 are connected in series to a three-phase AC power supply 7, and further in a PWM converter 4 connected in series and a DC power supply 5 as a load. AC output is converted to DC output.
The prior application technology is a non-contact current collector for an auxiliary power source of a linear bullet train, and an AC power source 7 having a frequency that is about several times the commercial frequency depending on the vehicle traveling speed is connected to the primary coil 1 of FIG. Indicates the power to be supplied. 4 and 5 represent the same product. Secondary coil 2, series capacitor 33 and PWM converter unit 10 are mounted on a traveling vehicle (not shown).

図4において、1次コイル1は1次抵抗R、1次漏れインダクタンスL、主磁束によるインダクタンスL01で表される。また、2次コイル2は2次抵抗R、2次漏れインダクタンスL、主磁束によるインダクタンスL02で表される。この1次コイル1と2次コイル2の間には磁気結合による相互インダクタンスMが存在し、M=L01×L02の関係がある。1次コイル1と2次コイル2は非接触で集電するために、磁気ギャップが大きくなり、相互インダクタンスMは通常のトランスよりは小さく、両方のコイルの漏れインダクタンスは大きくなる。 In FIG. 4, the primary coil 1 is represented by a primary resistance R 1 , a primary leakage inductance L 1 , and an inductance L 01 due to the main magnetic flux. The secondary coil 2 is represented by a secondary resistance R 2 , a secondary leakage inductance L 2 , and an inductance L 02 due to the main magnetic flux. A mutual inductance M due to magnetic coupling exists between the primary coil 1 and the secondary coil 2, and there is a relationship of M 2 = L 01 × L 02 . Since the primary coil 1 and the secondary coil 2 collect current in a non-contact manner, the magnetic gap is increased, the mutual inductance M is smaller than that of a normal transformer, and the leakage inductance of both coils is increased.

1次コイル1と2次コイル2の巻数をN,Nとすれば、巻数比aはa=N/Nで表される。従って、図4の相互インダクタンスMを無視すると、図4と図5における抵抗とインダクタンスの関係は次のようになる。
図5の内部抵抗8の値Rは1次抵抗Rを2次コイル2側に換算し、2次抵抗Rおよび巻数比aを用いてR=R/a+Rで表される。同様に、内部インダクタンス9の値Lは1次漏れインダクタンスLを2次コイル2側に換算し、2次漏れインダクタンスLおよび巻数比aを用いてL=L/a+Lで表される。
If the number of turns of the primary coil 1 and the secondary coil 2 is N 1 and N 2 , the turn ratio a is expressed as a = N 1 / N 2 . Therefore, when the mutual inductance M in FIG. 4 is ignored, the relationship between the resistance and the inductance in FIGS. 4 and 5 is as follows.
The value R S of the internal resistance 8 in FIG. 5 is expressed as R S = R 1 / a 2 + R 2 by converting the primary resistance R 1 to the secondary coil 2 side and using the secondary resistance R 2 and the turn ratio a. Is done. Similarly, the value L S of the internal inductance 9 is obtained by converting the primary leakage inductance L 1 to the secondary coil 2 side, and using the secondary leakage inductance L 2 and the turn ratio a, L S = L 1 / a 2 + L 2 It is represented by

図4に示すように、従来技術においてPWM変換器4を力率=1となるように制御した場合に、PWMコンバータ部10は、等価容量Cbと負荷抵抗Rbの直列回路で表される。   As shown in FIG. 4, when the PWM converter 4 is controlled so that the power factor = 1 in the prior art, the PWM converter unit 10 is represented by a series circuit of an equivalent capacitor Cb and a load resistor Rb.

このように構成される先願の非接触集電主回路において、力率=1でPWM変換器4を制御する方法を説明する。
交流電源7から力率=1で電力を取り出すためには、1次コイル1と2次コイル2と負荷系統の全体のリアクタンスが零であることが必要である。すなわち、図6において内部インダクタンス9と直列コンデンサ33およびPWMコンバータ部10の直列回路のリアクタンスが零である必要がある。
すなわち、直列コンデンサ33およびPWMコンバータ部10の直列回路の合計容量をCとすれば、内部インダクタンス9の値Lとの間に式(1)の条件が成立すればリアクタンスが零となる。
しかしながら、容量Cを有する直列コンデンサ33が予め接続されているので、PWMコンバータ部10の等価容量Cbが式(2)を満たせば、式(1)を満たすことになる。
したがって、図5に示すPWM変換器4の3相入力端子電圧Eu ,Ev ,Ew が、次の式(3)〜(5)となれば、PWMコンバータ部10は等価的に図4と等しくなる。ここで(1/j)は位相を90°遅らせる演算子である。
A method of controlling the PWM converter 4 with a power factor = 1 in the non-contact current collecting main circuit of the prior application configured as above will be described.
In order to extract electric power from the AC power source 7 with a power factor = 1, it is necessary that reactances of the primary coil 1, the secondary coil 2, and the load system as a whole are zero. That is, in FIG. 6, the reactance of the series circuit of the internal inductance 9, the series capacitor 33, and the PWM converter unit 10 needs to be zero.
That is, if the total capacity of the series circuit of the series capacitor 33 and the PWM converter unit 10 is C, the reactance becomes zero if the condition of the expression (1) is established between the value L S of the internal inductance 9.
However, since the series capacitor 33 having a capacitance C C is previously connected, the equivalent capacitance Cb of the PWM converter section 10 satisfies the equation (2) will satisfy the equation (1).
Therefore, if the three-phase input terminal voltages Eu, Ev, and Ew of the PWM converter 4 shown in FIG. 5 are expressed by the following equations (3) to (5), the PWM converter unit 10 is equivalently equivalent to FIG. . Here, (1 / j) is an operator that delays the phase by 90 °.

Figure 2010280235
Figure 2010280235

図3は、このための従来のPWMコンバータの制御回路例を示すもので、21は検出された電流Iu ,Iv から入力端子電圧の指令値Eu
*, Ev * ,Ew *を算出する演算回路、24は割算器、25は比較器、27はゲート発生回路、26は三角波発生器、22はF/V変換器、23は容量指令発生器である。演算回路21は前記式(3)〜(5)の演算を行う。ここで、Iw
は(−Iu −Iv )と等しいことと、Iu とIv が120°位相差を持つことを利用して、入力端子電圧指令値Eu * ,Ev
* ,Ew * は次の式(6)〜(8)の如く算出される。
FIG. 3 shows an example of a control circuit of a conventional PWM converter for this purpose. Reference numeral 21 denotes an input terminal voltage command value Eu from detected currents Iu and Iv.
* , Ev * , Ew * calculation circuit, 24 is a divider, 25 is a comparator, 27 is a gate generation circuit, 26 is a triangular wave generator, 22 is an F / V converter, and 23 is a capacity command generator It is. The arithmetic circuit 21 performs the calculations of the above formulas (3) to (5). Where Iw
Is equal to (−Iu−Iv), and Iu and Iv have a 120 ° phase difference, and input terminal voltage command values Eu * and Ev.
* And Ew * are calculated as in the following equations (6) to (8).

Figure 2010280235
F/V変換器22は電流検出値Iuから2次コイルの電源角周波数ωを算出する。容量指令発生器23は、電源内部インダクタンスLsとF/V変換器22により算出されたωと外部容量Ccの値より前記式(2)により等価容量Cbの値を算出し、上記演算回路21に出力する。
この外部容量Ccの値は、例えば定格電源角周波数ωの時に式(1)で求められる値Cに近い値のコンデンサが接続される。
Figure 2010280235
The F / V converter 22 calculates the power supply angular frequency ω of the secondary coil from the current detection value Iu. The capacity command generator 23 calculates the value of the equivalent capacity Cb from the power supply internal inductance Ls, the value of ω calculated by the F / V converter 22 and the value of the external capacity Cc by the above equation (2), and Output.
As the value of the external capacitance Cc, for example, a capacitor having a value close to the value C obtained by Expression (1) at the rated power supply angular frequency ω is connected.

このように構成されるPWMコンバータ部10は、例えばω=2π×250Hz,C=Cc=1000μF、R=0.1Ωとすると、図4のPWMコンバータ部10の相インピーダンスの絶対値|Zb|、および直列コンデンサ33とPWMコンバータ部10の合計相インピーダンス|Za|は、それぞれ|Zb|=0.1Ω,
|Za|=0.64Ωとなり、|Za|/|Zb|=6.4である。
すなわち、Cc =Cとすると、図4において直列コンデンサ33とPWMコンバータ部10に印加される電圧Vdは、PWMコンバータ部10の負荷抵抗Rbおよび等価容量Cbの直列回路に印加される電圧の約6.4倍となる。逆に言うと、PWMコンバータ部10の負荷抵抗Rbおよび等価容量Cbの直列回路に印加される電圧は小さくすることができる。
For example, when the PWM converter unit 10 configured as described above has ω = 2π × 250 Hz, C = Cc = 1000 μF, and R = 0.1Ω, the absolute value | Zb | of the phase impedance of the PWM converter unit 10 in FIG. The total phase impedance | Za | of the series capacitor 33 and the PWM converter unit 10 is | Zb | = 0.1Ω,
| Za | = 0.64Ω, and | Za | / | Zb | = 6.4.
That is, when Cc = C, the voltage Vd applied to the series capacitor 33 and the PWM converter unit 10 in FIG. 4 is about 6 of the voltage applied to the series circuit of the load resistor Rb and the equivalent capacitance Cb of the PWM converter unit 10. .4 times. In other words, the voltage applied to the series circuit of the load resistor Rb and the equivalent capacitor Cb of the PWM converter unit 10 can be reduced.

特開2000−83379号公報JP 2000-83379 A

上記した交流電源7を商用周波数程度からその数倍程度の周波数を有する3相交流電源7で構成し、PWM変換器4に直列コンデンサ33を直列に接続する方法では、内部インダクタンスLの大きい交流電源から力率=1で電力を取り出すことができる。しかし、直列コンデンサ33を走行車両側に設置しなければならず、走行車両が重くなるという問題がある。
本発明は上記事情に鑑みなされたものであって、その目的とするところは、軽い走行車両を構成できる非接触集電装置を提供することである。
In the method in which the AC power source 7 described above is constituted by a three-phase AC power source 7 having a frequency of about several times the commercial frequency, and a series capacitor 33 is connected in series to the PWM converter 4, an AC having a large internal inductance L S is obtained. Electric power can be extracted from the power source at a power factor = 1. However, there is a problem that the series capacitor 33 must be installed on the traveling vehicle side and the traveling vehicle becomes heavy.
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a non-contact current collector capable of constituting a light traveling vehicle.

請求項1の発明によれば、地上の1次コイルから走行車両の2次コイルに誘導される交流出力をPWMコンバータにより直流出力にする非接触集電装置において、該1次コイルの入力側に1次側コンデンサを直列に接続し、該PWMコンバータをPWM変調により等価的に抵抗とコンデンサの直列回路となるように制御し、該1次側コンデンサと前記1次コイルの漏れインダクタンスと該2次コイルの漏れインダクタンスと前記PWMコンバータの等価容量を全て2次コイル側で表した合計直列リアクタンスが零となることを特徴とする非接触集電装置である。   According to the first aspect of the present invention, in the non-contact current collector that converts the AC output induced from the primary coil on the ground to the secondary coil of the traveling vehicle to the DC output by the PWM converter, on the input side of the primary coil A primary side capacitor is connected in series, and the PWM converter is controlled to be equivalently a series circuit of a resistor and a capacitor by PWM modulation, and the leakage inductance of the primary side capacitor and the primary coil and the secondary side are controlled. The non-contact current collector is characterized in that the total series reactance in which the leakage inductance of the coil and the equivalent capacity of the PWM converter are all expressed on the secondary coil side is zero.

非接触集電装置において、電源系統側の1次コイルに直列コンデンサを接続して、走行車両側の2次コイルに接続されるPWMコンバータにより力率=1を達成することができるので、PWMコンバータを小さく構成できるので走行車両を軽くすることができる。   In the non-contact current collector, the power factor = 1 can be achieved by connecting a series capacitor to the primary coil on the power system side and the PWM converter connected to the secondary coil on the traveling vehicle side. Since the vehicle can be made small, the traveling vehicle can be lightened.

本発明の実施例に係る非接触集電装置の主回路構成を説明するための図である。It is a figure for demonstrating the main circuit structure of the non-contact collector which concerns on the Example of this invention. 本発明の実施例に係る非接触集電装置の単相等価回路で表した図である。It is the figure represented with the single phase equivalent circuit of the non-contact collector which concerns on the Example of this invention. 本発明の実施例および先願に係る非接触集電装置に用いるPWMコンバータの制御回路を説明した図である。It is the figure explaining the control circuit of the PWM converter used for the non-contact current collecting apparatus which concerns on the Example of this invention, and a prior application. 従来の実施例に係る2次コイルに直列コンデンサを接続した非接触集電装置を単相等価回路で表した図である。It is the figure showing the non-contact current collecting device which connected the series capacitor to the secondary coil concerning the conventional example with the single phase equivalent circuit. 従来の実施例に係る2次コイルに直列コンデンサを接続した非接触集電装置の主回路構成を説明するための図である。It is a figure for demonstrating the main circuit structure of the non-contact collector which connected the series capacitor to the secondary coil which concerns on the conventional Example.

地上側1次コイルにコンデンサを直列接続して、2次コイル側のPMWコンバータにより力率=1を達成する。   A capacitor is connected in series to the ground side primary coil, and a power factor = 1 is achieved by the PMW converter on the secondary coil side.

以下、本発明の実施の形態について、詳細に説明する。
図1は、本発明が適用された電源系統に直列にコンデンサを接続した非接触集電装置の主回路結線図である。
図2は、電源系統に直列にコンデンサを接続した非接触集電装置の単相等価回路である。
34は電源系統に接続した1次側コンデンサである。
同図において、図5、図4と同一番号は類似した同一構成部品を表す。
以下、図1および図2について、図3を参照して説明する。
Hereinafter, embodiments of the present invention will be described in detail.
FIG. 1 is a main circuit connection diagram of a non-contact current collector in which a capacitor is connected in series to a power supply system to which the present invention is applied.
FIG. 2 is a single-phase equivalent circuit of a non-contact current collector in which a capacitor is connected in series with the power supply system.
Reference numeral 34 denotes a primary side capacitor connected to the power supply system.
In the figure, the same reference numerals as those in FIGS. 5 and 4 denote similar components.
Hereinafter, FIG. 1 and FIG. 2 will be described with reference to FIG.

図2において、1次コイル1および2次コイル2の抵抗およびインダクタンスの関係は、図4と同様に表される。ここで、1次コイル1と2次コイル2の巻数をN,Nとすれば、巻数比aはa=N/Nで表される。従って、図2の相互インダクタンスMを無視すると、図1と図2における抵抗とインダクタンスの関係は、R=R/a+RおよびL=L/a+Lで表される。
また、図2の交流電源7に接続される1次側コンデンサ34の容量CC1は、2次コイル2側に換算すると、C=a×CC1となる。従って、実際に接続される1次側コンデンサ34の容量CC1は巻数比aを用いてCC1=C/aから求められる。
In FIG. 2, the relationship between the resistance and inductance of the primary coil 1 and the secondary coil 2 is expressed in the same manner as in FIG. Here, if the number of turns of the primary coil 1 and the secondary coil 2 is N 1 and N 2 , the turn ratio a is expressed as a = N 1 / N 2 . Therefore, if the mutual inductance M in FIG. 2 is ignored, the relationship between the resistance and the inductance in FIGS. 1 and 2 is expressed as R S = R 1 / a 2 + R 2 and L S = L 1 / a 2 + L 2. .
Further, the capacitance C C1 of the primary side capacitor 34 connected to the AC power source 7 in FIG. 2 is C C = a 2 × C C1 when converted to the secondary coil 2 side. Therefore, the capacitance C C1 of the primary capacitor 34 that is actually connected is obtained from C C1 = C C / a 2 using the turns ratio a.

従って、非接触集電装置に用いられるPWMコンバータ4の容量指令発生器23は、1次側コンデンサ34の容量CC1と巻数比aを用いてC=a×CC1を求め、式(2)に基づいてCbを演算する。このCbを用いて、PWMコンバータ4は図3の制御回路により図5と同様に制御される。その結果、1次側コンデンサ34と1次コイルの漏れインダクタンスLと前記2次コイルの漏れインダクタンスLと前記PWMコンバータの等価容量Cbを全て2次コイル側で表した合計直列リアクタンスが零となり、力率=1で運転される。 Therefore, the capacity command generator 23 of the PWM converter 4 used in the non-contact current collector obtains C C = a 2 × C C1 using the capacity C C1 of the primary capacitor 34 and the turn ratio a, and the formula ( Cb is calculated based on 2). Using this Cb, the PWM converter 4 is controlled in the same manner as in FIG. 5 by the control circuit in FIG. As a result, the total series reactance becomes zero representing the leakage inductance L 2 and the equivalent capacitance Cb of the PWM converter of the primary side capacitor 34 and the leakage inductance L 1 of the primary coil and the secondary coil at all secondary coil , Operated with power factor = 1.

ここで、電源角周波数ωの値によって、式(2)の分母が零になることがないように、分母の演算結果にヒステリシスを設ける必要がある。また、式(2)の演算結果が負になることがあるが、そのような場合には等価容量Cbはインダクタンスとして動作し、結果として力率=1は保たれる。   Here, it is necessary to provide hysteresis in the calculation result of the denominator so that the denominator of Expression (2) does not become zero depending on the value of the power supply angular frequency ω. In addition, the calculation result of Expression (2) may be negative. In such a case, the equivalent capacitance Cb operates as an inductance, and as a result, power factor = 1 is maintained.

非接触集電装置は、供給側のコイルと集電側のコイルの間隔が大きいために、コイルの漏れインダクタンスが大きくなり、力率が悪いために大きな出力が取れないという問題があった。本発明は、非接触集電装置の1次コイル側に1次側コンデンサを接続し、2次コイル側にPWMコンバータを接続したものである。
この1次側コンデンサとPWMコンバータは、1次コイルおよび2次コイルの漏れインダクタンスによる誘導性リアクタンスを打ち消すように、容量性リアクタンスとして動作する。
予め接続する1次側コンデンサのために、PWMコンバータが発生するリアクタンス分の電圧ドロップは少なくなり、PWMコンバータの容量を小さくできる。従って、走行車両の集電装置を小さくできるので、走行車両を軽くできるので産業利用上非常に有用である。
The non-contact current collector has a problem that since the gap between the supply-side coil and the current-collection coil is large, the leakage inductance of the coil is large, and the power factor is low, so that a large output cannot be obtained. In the present invention, a primary capacitor is connected to the primary coil side of the non-contact current collector, and a PWM converter is connected to the secondary coil side.
The primary capacitor and the PWM converter operate as capacitive reactance so as to cancel out inductive reactance due to leakage inductance of the primary coil and the secondary coil.
Because of the primary capacitor connected in advance, the voltage drop corresponding to the reactance generated by the PWM converter is reduced, and the capacitance of the PWM converter can be reduced. Therefore, since the current collector of the traveling vehicle can be reduced, the traveling vehicle can be lightened, which is very useful for industrial use.

1 1次コイル
2 2次コイル
4 PWM変換器
5 直流電源
7 交流電源
8 内部抵抗
9 内部インダクタンス
10 PWMコンバータ部
21 演算回路
22 F/V変換器
23 容量指令発生器
24 割算器
25 比較器
26 三角波発生器
27 ゲート発生回路
33 直列コンデンサ
34 1次側コンデンサ
DESCRIPTION OF SYMBOLS 1 Primary coil 2 Secondary coil 4 PWM converter 5 DC power supply 7 AC power supply 8 Internal resistance 9 Internal inductance 10 PWM converter part 21 Calculation circuit 22 F / V converter 23 Capacity command generator 24 Divider 25 Comparator 26 Triangular wave generator 27 Gate generation circuit 33 Series capacitor 34 Primary side capacitor

Claims (1)

地上の1次コイルから走行車両の2次コイルに誘導される交流出力をPWMコンバータにより直流出力にする非接触集電装置において、該1次コイルの入力側に1次側コンデンサを直列に接続し、該PWMコンバータをPWM変調により等価的に抵抗とコンデンサの直列回路となるように制御し、該1次側コンデンサと前記1次コイルの漏れインダクタンスと該2次コイルの漏れインダクタンスと前記PWMコンバータの等価容量を全て2次コイル側で表した合計直列リアクタンスが零となることを特徴とする非接触集電装置。 In a non-contact current collector that converts an AC output induced from a primary coil on the ground to a secondary coil of a traveling vehicle into a DC output by a PWM converter, a primary side capacitor is connected in series to the input side of the primary coil. The PWM converter is controlled by PWM modulation to be equivalently a series circuit of a resistor and a capacitor, and the primary capacitor, the leakage inductance of the primary coil, the leakage inductance of the secondary coil, and the PWM converter A non-contact current collector characterized in that the total series reactance in which all equivalent capacitances are expressed on the secondary coil side is zero.
JP2009132789A 2009-06-02 2009-06-02 Noncontact current collector Pending JP2010280235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009132789A JP2010280235A (en) 2009-06-02 2009-06-02 Noncontact current collector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009132789A JP2010280235A (en) 2009-06-02 2009-06-02 Noncontact current collector

Publications (1)

Publication Number Publication Date
JP2010280235A true JP2010280235A (en) 2010-12-16

Family

ID=43537417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009132789A Pending JP2010280235A (en) 2009-06-02 2009-06-02 Noncontact current collector

Country Status (1)

Country Link
JP (1) JP2010280235A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012143106A (en) * 2011-01-05 2012-07-26 Showa Aircraft Ind Co Ltd Non-contact power feeding device of magnetic field resonance type
JP2012253924A (en) * 2011-06-03 2012-12-20 Toyo Electric Mfg Co Ltd Direct current output circuit of generator for distributed power source
JP2016025677A (en) * 2014-07-16 2016-02-08 学校法人東京理科大学 Power transmission device and electric apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012143106A (en) * 2011-01-05 2012-07-26 Showa Aircraft Ind Co Ltd Non-contact power feeding device of magnetic field resonance type
JP2012253924A (en) * 2011-06-03 2012-12-20 Toyo Electric Mfg Co Ltd Direct current output circuit of generator for distributed power source
JP2016025677A (en) * 2014-07-16 2016-02-08 学校法人東京理科大学 Power transmission device and electric apparatus

Similar Documents

Publication Publication Date Title
TWI535168B (en) Charging system
Wang et al. General stability criterions for zero phase angle controlled loosely coupled inductive power transfer systems
CN102474137B (en) Electric power generator and electric power generating system
US7724549B2 (en) Integrated power conditioning system and housing for delivering operational power to a motor
Liu et al. Wireless power and drive transfer for piping network
WO2015163035A1 (en) Power supply device
CN107112912A (en) Method and apparatus for inherent PFC
WO2008119218A1 (en) Induced power system
Ota et al. Design of compensation capacitor in S/P topology of inductive power transfer system with buck or boost converter on secondary side
CN102545671A (en) Power-generating system, power converter system and method of converting power
CN102299535A (en) Device for charging accumulator means
Joy et al. Analysis and comparison of four compensation topologies of contactless power transfer system
US20170317579A1 (en) Pfc circuits with very low thd
Zimmer et al. Design of a 3 kW primary power supply unit for inductive charging systems optimized for the compatibility to receiving units with 20 kw rated power
Chopra et al. A contactless power transfer—Supercapacitor based system for EV application
Rozario et al. A modified resonant converter for wireless capacitive power transfer systems used in battery charging applications
JP2011234527A (en) Charging circuit structure of storage battery charger mounted on work vehicle and charging circuit control method
JP2010280235A (en) Noncontact current collector
US12083912B2 (en) Electric system of electric vehicle
Madawala et al. A single controller for inductive power transfer systems
Zhang et al. Compensation technique for optimized efficiency and voltage controllability of IPT systems
Ayaz et al. Concurrent wireless power transfer and motor drive system with a single converter
Komeda et al. Constant load voltage characteristics in a parallel-parallel-compensated wireless power transfer system
Won et al. Auxiliary power supply for medium-voltage power electronics systems
Gunji et al. Operating point setting method for wireless power transfer with constant voltage load