JP2010272492A - Sodium secondary battery manufacturing method and sodium secondary battery - Google Patents
Sodium secondary battery manufacturing method and sodium secondary battery Download PDFInfo
- Publication number
- JP2010272492A JP2010272492A JP2009125869A JP2009125869A JP2010272492A JP 2010272492 A JP2010272492 A JP 2010272492A JP 2009125869 A JP2009125869 A JP 2009125869A JP 2009125869 A JP2009125869 A JP 2009125869A JP 2010272492 A JP2010272492 A JP 2010272492A
- Authority
- JP
- Japan
- Prior art keywords
- battery
- secondary battery
- sodium
- electrode
- sodium secondary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 91
- 239000011734 sodium Substances 0.000 title claims abstract description 73
- 229910052708 sodium Inorganic materials 0.000 title claims abstract description 61
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 title claims abstract description 56
- 239000008151 electrolyte solution Substances 0.000 claims abstract description 73
- 238000002347 injection Methods 0.000 claims abstract description 43
- 239000007924 injection Substances 0.000 claims abstract description 43
- 229910001415 sodium ion Inorganic materials 0.000 claims abstract description 25
- 238000010030 laminating Methods 0.000 claims abstract description 9
- 238000004804 winding Methods 0.000 claims abstract description 8
- 238000000034 method Methods 0.000 claims description 83
- 239000003792 electrolyte Substances 0.000 claims description 40
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 claims description 17
- 239000012298 atmosphere Substances 0.000 claims description 7
- 238000007789 sealing Methods 0.000 claims description 6
- 239000007788 liquid Substances 0.000 claims description 5
- 230000032683 aging Effects 0.000 claims description 4
- 239000010408 film Substances 0.000 description 52
- -1 sodium inorganic compound Chemical class 0.000 description 42
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 37
- 230000000052 comparative effect Effects 0.000 description 33
- 239000003575 carbonaceous material Substances 0.000 description 30
- 229940021013 electrolyte solution Drugs 0.000 description 29
- 239000011368 organic material Substances 0.000 description 26
- 239000000843 powder Substances 0.000 description 26
- 239000010410 layer Substances 0.000 description 25
- 238000012360 testing method Methods 0.000 description 25
- 239000005011 phenolic resin Substances 0.000 description 24
- 239000000203 mixture Substances 0.000 description 23
- 125000003118 aryl group Chemical group 0.000 description 22
- 238000002360 preparation method Methods 0.000 description 22
- 229920005989 resin Polymers 0.000 description 21
- 239000011347 resin Substances 0.000 description 21
- 239000002245 particle Substances 0.000 description 19
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 18
- 239000007789 gas Substances 0.000 description 17
- 239000007773 negative electrode material Substances 0.000 description 16
- 239000011230 binding agent Substances 0.000 description 15
- 239000000178 monomer Substances 0.000 description 15
- 239000002904 solvent Substances 0.000 description 15
- 239000000945 filler Substances 0.000 description 14
- 239000007774 positive electrode material Substances 0.000 description 14
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 14
- 229920006015 heat resistant resin Polymers 0.000 description 13
- 229910052751 metal Inorganic materials 0.000 description 13
- 239000002184 metal Substances 0.000 description 13
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 12
- 239000000463 material Substances 0.000 description 12
- 229920005992 thermoplastic resin Polymers 0.000 description 12
- 239000006258 conductive agent Substances 0.000 description 11
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 11
- 239000011148 porous material Substances 0.000 description 11
- 229910052782 aluminium Inorganic materials 0.000 description 10
- 238000001723 curing Methods 0.000 description 10
- 230000014759 maintenance of location Effects 0.000 description 10
- 239000003921 oil Substances 0.000 description 10
- 229920001721 polyimide Polymers 0.000 description 10
- 239000004642 Polyimide Substances 0.000 description 9
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 9
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 9
- 238000003763 carbonization Methods 0.000 description 9
- 238000007599 discharging Methods 0.000 description 9
- 230000002829 reductive effect Effects 0.000 description 9
- 229910052723 transition metal Inorganic materials 0.000 description 9
- 239000004698 Polyethylene Substances 0.000 description 8
- 229920003235 aromatic polyamide Polymers 0.000 description 8
- 125000004432 carbon atom Chemical group C* 0.000 description 8
- 229920001577 copolymer Polymers 0.000 description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- 229920000573 polyethylene Polymers 0.000 description 8
- 229920000642 polymer Polymers 0.000 description 8
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 7
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 7
- 229910010272 inorganic material Inorganic materials 0.000 description 7
- 229910052744 lithium Inorganic materials 0.000 description 7
- 229920003986 novolac Polymers 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 241000196324 Embryophyta Species 0.000 description 6
- 239000004962 Polyamide-imide Substances 0.000 description 6
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 6
- 229910052786 argon Inorganic materials 0.000 description 6
- 238000010000 carbonizing Methods 0.000 description 6
- 125000001153 fluoro group Chemical group F* 0.000 description 6
- 230000006872 improvement Effects 0.000 description 6
- 239000003960 organic solvent Substances 0.000 description 6
- 229920002312 polyamide-imide Polymers 0.000 description 6
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 230000009471 action Effects 0.000 description 5
- 125000000217 alkyl group Chemical group 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 239000003822 epoxy resin Substances 0.000 description 5
- 229920000647 polyepoxide Polymers 0.000 description 5
- 230000000379 polymerizing effect Effects 0.000 description 5
- 238000010298 pulverizing process Methods 0.000 description 5
- 229920003987 resole Polymers 0.000 description 5
- 239000002023 wood Substances 0.000 description 5
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 4
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 4
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 4
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- 239000004952 Polyamide Substances 0.000 description 4
- 239000004760 aramid Substances 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 4
- 238000010304 firing Methods 0.000 description 4
- 229910052731 fluorine Inorganic materials 0.000 description 4
- 239000011888 foil Substances 0.000 description 4
- 239000011261 inert gas Substances 0.000 description 4
- 239000010687 lubricating oil Substances 0.000 description 4
- 230000000873 masking effect Effects 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 239000011255 nonaqueous electrolyte Substances 0.000 description 4
- 229920002647 polyamide Polymers 0.000 description 4
- 238000012643 polycondensation polymerization Methods 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- 229920000098 polyolefin Polymers 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 229920003002 synthetic resin Polymers 0.000 description 4
- 239000000057 synthetic resin Substances 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- HGINCPLSRVDWNT-UHFFFAOYSA-N Acrolein Chemical compound C=CC=O HGINCPLSRVDWNT-UHFFFAOYSA-N 0.000 description 3
- 241000218645 Cedrus Species 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 229920000877 Melamine resin Polymers 0.000 description 3
- 239000004640 Melamine resin Substances 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 239000002033 PVDF binder Substances 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 229920001807 Urea-formaldehyde Polymers 0.000 description 3
- GTDPSWPPOUPBNX-UHFFFAOYSA-N ac1mqpva Chemical compound CC12C(=O)OC(=O)C1(C)C1(C)C2(C)C(=O)OC1=O GTDPSWPPOUPBNX-UHFFFAOYSA-N 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 3
- ZTQSAGDEMFDKMZ-UHFFFAOYSA-N butyric aldehyde Natural products CCCC=O ZTQSAGDEMFDKMZ-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000006229 carbon black Substances 0.000 description 3
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 3
- 238000006482 condensation reaction Methods 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 150000002222 fluorine compounds Chemical class 0.000 description 3
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000003779 heat-resistant material Substances 0.000 description 3
- 238000007654 immersion Methods 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 229920001568 phenolic resin Polymers 0.000 description 3
- 229920005672 polyolefin resin Polymers 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- MHSKRLJMQQNJNC-UHFFFAOYSA-N terephthalamide Chemical compound NC(=O)C1=CC=C(C(N)=O)C=C1 MHSKRLJMQQNJNC-UHFFFAOYSA-N 0.000 description 3
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- XQUPVDVFXZDTLT-UHFFFAOYSA-N 1-[4-[[4-(2,5-dioxopyrrol-1-yl)phenyl]methyl]phenyl]pyrrole-2,5-dione Chemical compound O=C1C=CC(=O)N1C(C=C1)=CC=C1CC1=CC=C(N2C(C=CC2=O)=O)C=C1 XQUPVDVFXZDTLT-UHFFFAOYSA-N 0.000 description 2
- CRSBERNSMYQZNG-UHFFFAOYSA-N 1-dodecene Chemical compound CCCCCCCCCCC=C CRSBERNSMYQZNG-UHFFFAOYSA-N 0.000 description 2
- KJCVRFUGPWSIIH-UHFFFAOYSA-N 1-naphthol Chemical compound C1=CC=C2C(O)=CC=CC2=C1 KJCVRFUGPWSIIH-UHFFFAOYSA-N 0.000 description 2
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 2
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 2
- JWAZRIHNYRIHIV-UHFFFAOYSA-N 2-naphthol Chemical compound C1=CC=CC2=CC(O)=CC=C21 JWAZRIHNYRIHIV-UHFFFAOYSA-N 0.000 description 2
- CMLFRMDBDNHMRA-UHFFFAOYSA-N 2h-1,2-benzoxazine Chemical compound C1=CC=C2C=CNOC2=C1 CMLFRMDBDNHMRA-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 2
- ZHBXLZQQVCDGPA-UHFFFAOYSA-N 5-[(1,3-dioxo-2-benzofuran-5-yl)sulfonyl]-2-benzofuran-1,3-dione Chemical compound C1=C2C(=O)OC(=O)C2=CC(S(=O)(=O)C=2C=C3C(=O)OC(C3=CC=2)=O)=C1 ZHBXLZQQVCDGPA-UHFFFAOYSA-N 0.000 description 2
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- 229910000528 Na alloy Inorganic materials 0.000 description 2
- 229910020808 NaBF Inorganic materials 0.000 description 2
- 229910021314 NaFeO 2 Inorganic materials 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 229930040373 Paraformaldehyde Natural products 0.000 description 2
- 239000004695 Polyether sulfone Substances 0.000 description 2
- 239000004697 Polyetherimide Substances 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- NBBJYMSMWIIQGU-UHFFFAOYSA-N Propionic aldehyde Chemical compound CCC=O NBBJYMSMWIIQGU-UHFFFAOYSA-N 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 239000004699 Ultra-high molecular weight polyethylene Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 150000001336 alkenes Chemical class 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- 150000004984 aromatic diamines Chemical class 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- HUMNYLRZRPPJDN-UHFFFAOYSA-N benzaldehyde Chemical compound O=CC1=CC=CC=C1 HUMNYLRZRPPJDN-UHFFFAOYSA-N 0.000 description 2
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical compound OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 description 2
- 150000001786 chalcogen compounds Chemical class 0.000 description 2
- 239000003610 charcoal Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000011300 coal pitch Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 150000004985 diamines Chemical class 0.000 description 2
- 150000001993 dienes Chemical class 0.000 description 2
- 238000007606 doctor blade method Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 235000019441 ethanol Nutrition 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- HYBBIBNJHNGZAN-UHFFFAOYSA-N furfural Chemical compound O=CC1=CC=CO1 HYBBIBNJHNGZAN-UHFFFAOYSA-N 0.000 description 2
- LEQAOMBKQFMDFZ-UHFFFAOYSA-N glyoxal Chemical compound O=CC=O LEQAOMBKQFMDFZ-UHFFFAOYSA-N 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- JARKCYVAAOWBJS-UHFFFAOYSA-N hexanal Chemical compound CCCCCC=O JARKCYVAAOWBJS-UHFFFAOYSA-N 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- 238000009776 industrial production Methods 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 230000010220 ion permeability Effects 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- 229920005610 lignin Polymers 0.000 description 2
- RLSSMJSEOOYNOY-UHFFFAOYSA-N m-cresol Chemical compound CC1=CC=CC(O)=C1 RLSSMJSEOOYNOY-UHFFFAOYSA-N 0.000 description 2
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- 150000005673 monoalkenes Chemical class 0.000 description 2
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 229910021382 natural graphite Inorganic materials 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- QWVGKYWNOKOFNN-UHFFFAOYSA-N o-cresol Chemical compound CC1=CC=CC=C1O QWVGKYWNOKOFNN-UHFFFAOYSA-N 0.000 description 2
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- IWDCLRJOBJJRNH-UHFFFAOYSA-N p-cresol Chemical compound CC1=CC=C(O)C=C1 IWDCLRJOBJJRNH-UHFFFAOYSA-N 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 239000011301 petroleum pitch Substances 0.000 description 2
- DTUQWGWMVIHBKE-UHFFFAOYSA-N phenylacetaldehyde Chemical compound O=CCC1=CC=CC=C1 DTUQWGWMVIHBKE-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920003192 poly(bis maleimide) Polymers 0.000 description 2
- 229920006122 polyamide resin Polymers 0.000 description 2
- 229920006393 polyether sulfone Polymers 0.000 description 2
- 229920001601 polyetherimide Polymers 0.000 description 2
- 229920006324 polyoxymethylene Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000004080 punching Methods 0.000 description 2
- WQGWDDDVZFFDIG-UHFFFAOYSA-N pyrogallol Chemical compound OC1=CC=CC(O)=C1O WQGWDDDVZFFDIG-UHFFFAOYSA-N 0.000 description 2
- SMQUZDBALVYZAC-UHFFFAOYSA-N salicylaldehyde Chemical compound OC1=CC=CC=C1C=O SMQUZDBALVYZAC-UHFFFAOYSA-N 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 150000003568 thioethers Chemical class 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229920000785 ultra high molecular weight polyethylene Polymers 0.000 description 2
- 229920001567 vinyl ester resin Polymers 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- ZYAMKYAPIQPWQR-UHFFFAOYSA-N 1,1,1,2,2-pentafluoro-3-methoxypropane Chemical compound COCC(F)(F)C(F)(F)F ZYAMKYAPIQPWQR-UHFFFAOYSA-N 0.000 description 1
- MIZLGWKEZAPEFJ-UHFFFAOYSA-N 1,1,2-trifluoroethene Chemical class FC=C(F)F MIZLGWKEZAPEFJ-UHFFFAOYSA-N 0.000 description 1
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical class FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 1
- LEEANUDEDHYDTG-UHFFFAOYSA-N 1,2-dimethoxypropane Chemical compound COCC(C)OC LEEANUDEDHYDTG-UHFFFAOYSA-N 0.000 description 1
- BGJSXRVXTHVRSN-UHFFFAOYSA-N 1,3,5-trioxane Chemical compound C1OCOCO1 BGJSXRVXTHVRSN-UHFFFAOYSA-N 0.000 description 1
- FSSPGSAQUIYDCN-UHFFFAOYSA-N 1,3-Propane sultone Chemical compound O=S1(=O)CCCO1 FSSPGSAQUIYDCN-UHFFFAOYSA-N 0.000 description 1
- RTTZISZSHSCFRH-UHFFFAOYSA-N 1,3-bis(isocyanatomethyl)benzene Chemical compound O=C=NCC1=CC=CC(CN=C=O)=C1 RTTZISZSHSCFRH-UHFFFAOYSA-N 0.000 description 1
- UUAMLBIYJDPGFU-UHFFFAOYSA-N 1,3-dimethoxypropane Chemical compound COCCCOC UUAMLBIYJDPGFU-UHFFFAOYSA-N 0.000 description 1
- CBCKQZAAMUWICA-UHFFFAOYSA-N 1,4-phenylenediamine Chemical compound NC1=CC=C(N)C=C1 CBCKQZAAMUWICA-UHFFFAOYSA-N 0.000 description 1
- VLDPXPPHXDGHEW-UHFFFAOYSA-N 1-chloro-2-dichlorophosphoryloxybenzene Chemical compound ClC1=CC=CC=C1OP(Cl)(Cl)=O VLDPXPPHXDGHEW-UHFFFAOYSA-N 0.000 description 1
- STMDPCBYJCIZOD-UHFFFAOYSA-N 2-(2,4-dinitroanilino)-4-methylpentanoic acid Chemical compound CC(C)CC(C(O)=O)NC1=CC=C([N+]([O-])=O)C=C1[N+]([O-])=O STMDPCBYJCIZOD-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- POIUXCGIAGOITD-UHFFFAOYSA-N 2-[4-[2-[4-(2-hydroxyethyl)phenyl]propan-2-yl]phenyl]ethanol Chemical compound C=1C=C(CCO)C=CC=1C(C)(C)C1=CC=C(CCO)C=C1 POIUXCGIAGOITD-UHFFFAOYSA-N 0.000 description 1
- 125000001731 2-cyanoethyl group Chemical group [H]C([H])(*)C([H])([H])C#N 0.000 description 1
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 1
- DOMLQXFMDFZAAL-UHFFFAOYSA-N 2-methoxycarbonyloxyethyl methyl carbonate Chemical compound COC(=O)OCCOC(=O)OC DOMLQXFMDFZAAL-UHFFFAOYSA-N 0.000 description 1
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- FYQFWFHDPNXORA-UHFFFAOYSA-N 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooct-1-ene Chemical group FC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C=C FYQFWFHDPNXORA-UHFFFAOYSA-N 0.000 description 1
- LJGHYPLBDBRCRZ-UHFFFAOYSA-N 3-(3-aminophenyl)sulfonylaniline Chemical compound NC1=CC=CC(S(=O)(=O)C=2C=C(N)C=CC=2)=C1 LJGHYPLBDBRCRZ-UHFFFAOYSA-N 0.000 description 1
- PCTQNZRJAGLDPD-UHFFFAOYSA-N 3-(difluoromethoxy)-1,1,2,2-tetrafluoropropane Chemical compound FC(F)OCC(F)(F)C(F)F PCTQNZRJAGLDPD-UHFFFAOYSA-N 0.000 description 1
- CKOFBUUFHALZGK-UHFFFAOYSA-N 3-[(3-aminophenyl)methyl]aniline Chemical compound NC1=CC=CC(CC=2C=C(N)C=CC=2)=C1 CKOFBUUFHALZGK-UHFFFAOYSA-N 0.000 description 1
- VWIIJDNADIEEDB-UHFFFAOYSA-N 3-methyl-1,3-oxazolidin-2-one Chemical compound CN1CCOC1=O VWIIJDNADIEEDB-UHFFFAOYSA-N 0.000 description 1
- JSDZSLGMRRSAHD-UHFFFAOYSA-N 3-methylbutan-2-ylcyclopropane Chemical compound CC(C)C(C)C1CC1 JSDZSLGMRRSAHD-UHFFFAOYSA-N 0.000 description 1
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 1
- UITKHKNFVCYWNG-UHFFFAOYSA-N 4-(3,4-dicarboxybenzoyl)phthalic acid Chemical compound C1=C(C(O)=O)C(C(=O)O)=CC=C1C(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1 UITKHKNFVCYWNG-UHFFFAOYSA-N 0.000 description 1
- FZXVVMPYCPCKGU-UHFFFAOYSA-N 4-(3-chloro-7-azabicyclo[2.2.1]hepta-1,3,5-triene-7-carbonyl)benzamide Chemical compound C1=CC(C(=O)N)=CC=C1C(=O)N1C2=CC=C1C=C2Cl FZXVVMPYCPCKGU-UHFFFAOYSA-N 0.000 description 1
- HLBLWEWZXPIGSM-UHFFFAOYSA-N 4-Aminophenyl ether Chemical compound C1=CC(N)=CC=C1OC1=CC=C(N)C=C1 HLBLWEWZXPIGSM-UHFFFAOYSA-N 0.000 description 1
- LZHLUTZGFZAYCH-UHFFFAOYSA-N 4-cyano-2-methylidenebutanamide Chemical compound NC(=O)C(=C)CCC#N LZHLUTZGFZAYCH-UHFFFAOYSA-N 0.000 description 1
- FUGYGGDSWSUORM-UHFFFAOYSA-N 4-hydroxystyrene Chemical compound OC1=CC=C(C=C)C=C1 FUGYGGDSWSUORM-UHFFFAOYSA-N 0.000 description 1
- ISAVYTVYFVQUDY-UHFFFAOYSA-N 4-tert-Octylphenol Chemical compound CC(C)(C)CC(C)(C)C1=CC=C(O)C=C1 ISAVYTVYFVQUDY-UHFFFAOYSA-N 0.000 description 1
- QHPQWRBYOIRBIT-UHFFFAOYSA-N 4-tert-butylphenol Chemical compound CC(C)(C)C1=CC=C(O)C=C1 QHPQWRBYOIRBIT-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical group [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229930185605 Bisphenol Natural products 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 241000218631 Coniferophyta Species 0.000 description 1
- 241000218691 Cupressaceae Species 0.000 description 1
- 241000592295 Cycadophyta Species 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 1
- 244000194101 Ginkgo biloba Species 0.000 description 1
- 235000008100 Ginkgo biloba Nutrition 0.000 description 1
- 241000282818 Giraffidae Species 0.000 description 1
- 229920002488 Hemicellulose Polymers 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- 229910015118 LiMO Inorganic materials 0.000 description 1
- 241000218922 Magnoliophyta Species 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- 229910004602 Na2Fe5Si12O30 Inorganic materials 0.000 description 1
- 229910020538 Na6Fe2Si12O30 Inorganic materials 0.000 description 1
- 229910021260 NaFe Inorganic materials 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 235000000405 Pinus densiflora Nutrition 0.000 description 1
- 240000008670 Pinus densiflora Species 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- IKHGUXGNUITLKF-XPULMUKRSA-N acetaldehyde Chemical compound [14CH]([14CH3])=O IKHGUXGNUITLKF-XPULMUKRSA-N 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- ZOIORXHNWRGPMV-UHFFFAOYSA-N acetic acid;zinc Chemical compound [Zn].CC(O)=O.CC(O)=O ZOIORXHNWRGPMV-UHFFFAOYSA-N 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 239000003377 acid catalyst Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000003926 acrylamides Chemical class 0.000 description 1
- 150000001253 acrylic acids Chemical class 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 1
- OBETXYAYXDNJHR-UHFFFAOYSA-N alpha-ethylcaproic acid Natural products CCCCC(CC)C(O)=O OBETXYAYXDNJHR-UHFFFAOYSA-N 0.000 description 1
- IZJSTXINDUKPRP-UHFFFAOYSA-N aluminum lead Chemical compound [Al].[Pb] IZJSTXINDUKPRP-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- YXVFYQXJAXKLAK-UHFFFAOYSA-N biphenyl-4-ol Chemical compound C1=CC(O)=CC=C1C1=CC=CC=C1 YXVFYQXJAXKLAK-UHFFFAOYSA-N 0.000 description 1
- 125000002529 biphenylenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3C12)* 0.000 description 1
- TUQQUUXMCKXGDI-UHFFFAOYSA-N bis(3-aminophenyl)methanone Chemical compound NC1=CC=CC(C(=O)C=2C=C(N)C=CC=2)=C1 TUQQUUXMCKXGDI-UHFFFAOYSA-N 0.000 description 1
- WKDNYTOXBCRNPV-UHFFFAOYSA-N bpda Chemical compound C1=C2C(=O)OC(=O)C2=CC(C=2C=C3C(=O)OC(C3=CC=2)=O)=C1 WKDNYTOXBCRNPV-UHFFFAOYSA-N 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- KVNRLNFWIYMESJ-UHFFFAOYSA-N butyronitrile Chemical compound CCCC#N KVNRLNFWIYMESJ-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 150000004657 carbamic acid derivatives Chemical class 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 229920003090 carboxymethyl hydroxyethyl cellulose Polymers 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- YACLQRRMGMJLJV-UHFFFAOYSA-N chloroprene Chemical compound ClC(=C)C=C YACLQRRMGMJLJV-UHFFFAOYSA-N 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- MLUCVPSAIODCQM-NSCUHMNNSA-N crotonaldehyde Chemical compound C\C=C\C=O MLUCVPSAIODCQM-NSCUHMNNSA-N 0.000 description 1
- MLUCVPSAIODCQM-UHFFFAOYSA-N crotonaldehyde Natural products CC=CC=O MLUCVPSAIODCQM-UHFFFAOYSA-N 0.000 description 1
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 125000006159 dianhydride group Chemical group 0.000 description 1
- 125000005442 diisocyanate group Chemical group 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229940069096 dodecene Drugs 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- MEGHWIAOTJPCHQ-UHFFFAOYSA-N ethenyl butanoate Chemical compound CCCC(=O)OC=C MEGHWIAOTJPCHQ-UHFFFAOYSA-N 0.000 description 1
- UIWXSTHGICQLQT-UHFFFAOYSA-N ethenyl propanoate Chemical compound CCC(=O)OC=C UIWXSTHGICQLQT-UHFFFAOYSA-N 0.000 description 1
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 229920000840 ethylene tetrafluoroethylene copolymer Polymers 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000004231 fluid catalytic cracking Methods 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 239000007849 furan resin Substances 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 1
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 1
- 229940015043 glyoxal Drugs 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 239000011357 graphitized carbon fiber Substances 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical class FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 229920003063 hydroxymethyl cellulose Polymers 0.000 description 1
- 229940031574 hydroxymethyl cellulose Drugs 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate Chemical compound [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N itaconic acid Chemical compound OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000005001 laminate film Substances 0.000 description 1
- 229940046892 lead acetate Drugs 0.000 description 1
- HEPLMSKRHVKCAQ-UHFFFAOYSA-N lead nickel Chemical compound [Ni].[Pb] HEPLMSKRHVKCAQ-UHFFFAOYSA-N 0.000 description 1
- 229920001684 low density polyethylene Polymers 0.000 description 1
- 239000004702 low-density polyethylene Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 235000009973 maize Nutrition 0.000 description 1
- 229940049920 malate Drugs 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N malic acid Chemical compound OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000002931 mesocarbon microbead Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 150000004692 metal hydroxides Chemical class 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- RCIJMMSZBQEWKW-UHFFFAOYSA-N methyl propan-2-yl carbonate Chemical compound COC(=O)OC(C)C RCIJMMSZBQEWKW-UHFFFAOYSA-N 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 239000011325 microbead Substances 0.000 description 1
- 239000012982 microporous membrane Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 238000009740 moulding (composite fabrication) Methods 0.000 description 1
- OMNKZBIFPJNNIO-UHFFFAOYSA-N n-(2-methyl-4-oxopentan-2-yl)prop-2-enamide Chemical compound CC(=O)CC(C)(C)NC(=O)C=C OMNKZBIFPJNNIO-UHFFFAOYSA-N 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 239000011556 non-electrolytic solution Substances 0.000 description 1
- 229910021470 non-graphitizable carbon Inorganic materials 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- BTFQKIATRPGRBS-UHFFFAOYSA-N o-tolualdehyde Chemical compound CC1=CC=CC=C1C=O BTFQKIATRPGRBS-UHFFFAOYSA-N 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- RPQRDASANLAFCM-UHFFFAOYSA-N oxiran-2-ylmethyl prop-2-enoate Chemical compound C=CC(=O)OCC1CO1 RPQRDASANLAFCM-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- QNGNSVIICDLXHT-UHFFFAOYSA-N para-ethylbenzaldehyde Natural products CCC1=CC=C(C=O)C=C1 QNGNSVIICDLXHT-UHFFFAOYSA-N 0.000 description 1
- 229920002866 paraformaldehyde Polymers 0.000 description 1
- HVAMZGADVCBITI-UHFFFAOYSA-M pent-4-enoate Chemical compound [O-]C(=O)CCC=C HVAMZGADVCBITI-UHFFFAOYSA-M 0.000 description 1
- UCUUFSAXZMGPGH-UHFFFAOYSA-N penta-1,4-dien-3-one Chemical compound C=CC(=O)C=C UCUUFSAXZMGPGH-UHFFFAOYSA-N 0.000 description 1
- 125000005010 perfluoroalkyl group Chemical group 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229940100595 phenylacetaldehyde Drugs 0.000 description 1
- 125000000286 phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000011295 pitch Substances 0.000 description 1
- 238000007750 plasma spraying Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920001643 poly(ether ketone) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920006350 polyacrylonitrile resin Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- HJWLCRVIBGQPNF-UHFFFAOYSA-N prop-2-enylbenzene Chemical compound C=CCC1=CC=CC=C1 HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 229940079877 pyrogallol Drugs 0.000 description 1
- 239000002296 pyrolytic carbon Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 1
- BAZAXWOYCMUHIX-UHFFFAOYSA-M sodium perchlorate Chemical compound [Na+].[O-]Cl(=O)(=O)=O BAZAXWOYCMUHIX-UHFFFAOYSA-M 0.000 description 1
- 229910001488 sodium perchlorate Inorganic materials 0.000 description 1
- WSFQLUVWDKCYSW-UHFFFAOYSA-M sodium;2-hydroxy-3-morpholin-4-ylpropane-1-sulfonate Chemical compound [Na+].[O-]S(=O)(=O)CC(O)CN1CCOCC1 WSFQLUVWDKCYSW-UHFFFAOYSA-M 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 150000003440 styrenes Chemical class 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 150000008053 sultones Chemical class 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical class FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- 238000001029 thermal curing Methods 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 1
- RUELTTOHQODFPA-UHFFFAOYSA-N toluene 2,6-diisocyanate Chemical compound CC1=C(N=C=O)C=CC=C1N=C=O RUELTTOHQODFPA-UHFFFAOYSA-N 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- HFFLGKNGCAIQMO-UHFFFAOYSA-N trichloroacetaldehyde Chemical compound ClC(Cl)(Cl)C=O HFFLGKNGCAIQMO-UHFFFAOYSA-N 0.000 description 1
- SRPWOOOHEPICQU-UHFFFAOYSA-N trimellitic anhydride Chemical compound OC(=O)C1=CC=C2C(=O)OC(=O)C2=C1 SRPWOOOHEPICQU-UHFFFAOYSA-N 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
- 125000002256 xylenyl group Chemical class C1(C(C=CC=C1)C)(C)* 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 239000004246 zinc acetate Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
【課題】高容量で、かつサイクル特性に優れるナトリウム二次電池の製造方法を提供する。
【解決手段】ナトリウムイオンをドープ・脱ドープすることのできる正極、ナトリウムイオンをドープ・脱ドープすることのできる負極およびセパレータを積層して、または積層、巻回して得られる電極群と、電解液とを電池ケースに収容した後に、電池ケースを封口するナトリウム二次電池の製造方法であって、電解液の注液を、2回以上に分割して行う。
【選択図】なしA method for producing a sodium secondary battery having high capacity and excellent cycle characteristics is provided.
An electrode group obtained by laminating or laminating or winding a positive electrode capable of doping and dedoping sodium ions, a negative electrode capable of doping and dedoping sodium ions, and a separator, and an electrolytic solution Is stored in the battery case, and then the battery case is sealed, and the electrolytic solution injection is divided into two or more times.
[Selection figure] None
Description
本発明はナトリウム二次電池の製造方法に関する。 The present invention relates to a method for manufacturing a sodium secondary battery.
正極にLiMO2(MはCo,Mn,Ni等の遷移金属)等の酸化物を用い、負極に炭素材料やリチウムの低電位化合物等を用いたいわゆるリチウム二次電池は、携帯機器用電源として広く用いられている。一方、リチウム二次電池は、高価で希少なリチウムを多く使用することから、大型電池としての普及に難がある。 A so-called lithium secondary battery that uses an oxide such as LiMO 2 (M is a transition metal such as Co, Mn, or Ni) for the positive electrode and a carbon material or a low potential compound of lithium for the negative electrode is used as a power source for portable devices. Widely used. On the other hand, since lithium secondary batteries use a lot of expensive and rare lithium, they are difficult to spread as large batteries.
一方、電極活物質にナトリウムを用いるナトリウム二次電池の開発が進められている(例えば、特許文献1参照)。ナトリウム二次電池は、高価なリチウムに代えて安価なナトリウムを使用することから、リチウム二次電池と比較して材料コストを低減させることができる。 On the other hand, development of a sodium secondary battery using sodium as an electrode active material is underway (see, for example, Patent Document 1). Since the sodium secondary battery uses inexpensive sodium instead of expensive lithium, the material cost can be reduced as compared with the lithium secondary battery.
従来のナトリウム二次電池においては、リチウム二次電池のような実用に値する二次電池性能が得られておらず、未だ改良の余地がある。本発明の目的は、従来に比し、高い放電容量と、良好なサイクル特性を示すことのできるナトリウム二次電池を製造する方法を提供することにある。 Conventional sodium secondary batteries do not have practical secondary battery performance like lithium secondary batteries, and there is still room for improvement. An object of the present invention is to provide a method for producing a sodium secondary battery capable of exhibiting a high discharge capacity and good cycle characteristics as compared with the prior art.
本発明者らは、上記の課題を解決するためナトリウム二次電池の電池組立工程を最適化すべく鋭意研究を重ねた結果、電解液の注液方法によって、電池の放電容量、サイクル特性が大幅に向上することを見出し、本発明に至った。 As a result of intensive studies to optimize the battery assembly process of the sodium secondary battery in order to solve the above-mentioned problems, the inventors have greatly improved the discharge capacity and cycle characteristics of the battery by the electrolyte injection method. As a result, the present invention has been found.
すなわち、本発明は、以下の発明に係るものである。
<1> ナトリウムイオンをドープ・脱ドープすることのできる正極、ナトリウムイオンをドープ・脱ドープすることのできる負極およびセパレータを積層して、または積層、巻回して得られる電極群と、電解液とを電池ケースに収容した後に、電池ケースを封口するナトリウム二次電池の製造方法であって、電解液の注液を、2回以上に分割して行うナトリウム二次電池の製造方法。
<2> 初回の注液に用いる電解液の粘度が、2回目以降の注液に用いる電解液の粘度よりも低いことを特徴とする前記<1>記載のナトリウム二次電池の製造方法。
<3> 初回の注液に用いる電解液の電解質濃度が、2回目以降の注液に用いる電解液の電解質濃度より低いことを特徴とする前記<1>記載のナトリウム二次電池の製造方法。
<4> 少なくとも初回の注液に用いる電解液が、充電により電極表面に被膜を形成する成分を含む前記<1>記載のナトリウム二次電池の製造方法。
<5> 前記正極および前記負極のうち少なくとも一方の電極が、ナトリウム金属と電気的に接続されてナトリウムイオンが予備ドープされていることを特徴とする前記<1>から<4>のいずれかに記載のナトリウム二次電池の製造方法。
<6> 初回の注液を、電極群組み立て前の電極および/またはセパレータに対して行う前記<1>から<5>のいずれかに記載のナトリウム二次電池の製造方法。
<7> 電極群組み立て前の少なくとも一方の電極を電解液に浸漬することにより初回の注液を行い、前記少なくとも一方の電極と、ナトリウム金属とを電気的に接続し、ナトリウム金属を対極として外部電圧を印加することにより、前記電極にナトリウムイオンのドープを行い、電極群を組み立て、電池ケースに収容した後に、2回目以降の注液を行う前記<6>記載のナトリウム二次電池の製造方法。
<8> 注液と注液の間に充電を行う前記<1>から<7>のいずれかに記載のナトリウム二次電池の製造方法。
<9> いずれかの注液後に、30〜70℃においてエージングを行う前記<1>から<8>のいずれかに記載のナトリウム二次電池の製造方法。
<10> 充電後に少なくとも1回の放電を行う前記<8>記載のナトリウム二次電池の製造方法。
<11> 電極群が電池ケースに収容された後、電池ケースが封口される前までに、1回以上の雰囲気ガス加圧および/または減圧を行う前記<1>から<10>のいずれかに記載のナトリウム二次電池の製造方法。
<12> 前記<1>から<11>のいずれかに記載の製造方法で製造されたナトリウム二次電池。
That is, the present invention relates to the following inventions.
<1> Electrode group obtained by laminating or laminating or winding a positive electrode capable of doping and dedoping sodium ions, a negative electrode capable of doping and dedoping sodium ions, and a separator, and an electrolyte solution Is a method for manufacturing a sodium secondary battery in which the battery case is sealed after the battery is sealed in the battery case, and the injection of the electrolyte is divided into two or more times.
<2> The method for producing a sodium secondary battery according to <1>, wherein the viscosity of the electrolyte used for the first injection is lower than the viscosity of the electrolyte used for the second and subsequent injections.
<3> The method for producing a sodium secondary battery according to <1>, wherein the electrolyte concentration of the electrolyte solution used for the first injection is lower than the electrolyte concentration of the electrolyte solution used for the second and subsequent injections.
<4> The method for producing a sodium secondary battery according to <1>, wherein the electrolytic solution used for at least the first injection includes a component that forms a film on the electrode surface by charging.
<5> Any one of <1> to <4>, wherein at least one of the positive electrode and the negative electrode is electrically connected to sodium metal and pre-doped with sodium ions. The manufacturing method of the sodium secondary battery of description.
<6> The method for producing a sodium secondary battery according to any one of <1> to <5>, wherein the first injection is performed on the electrode and / or the separator before assembly of the electrode group.
<7> The first injection is performed by immersing at least one electrode before assembling the electrode group in an electrolytic solution, the at least one electrode is electrically connected to sodium metal, and sodium metal is used as a counter electrode. The method for producing a sodium secondary battery according to <6>, wherein by applying voltage, the electrode is doped with sodium ions, the electrode group is assembled, and the liquid is injected for the second time and thereafter after being accommodated in the battery case. .
<8> The method for producing a sodium secondary battery according to any one of <1> to <7>, wherein charging is performed between the injections.
<9> The method for producing a sodium secondary battery according to any one of <1> to <8>, wherein aging is performed at 30 to 70 ° C. after any of the injections.
<10> The method for producing a sodium secondary battery according to <8>, wherein discharging is performed at least once after charging.
<11> After the electrode group is accommodated in the battery case, before the battery case is sealed, the atmosphere gas is pressurized and / or decompressed at least once. The manufacturing method of the sodium secondary battery of description.
<12> A sodium secondary battery produced by the production method according to any one of <1> to <11>.
本発明によれば、従来に比し、放電容量、サイクル特性が大幅に向上した実用に値するナトリウム二次電池を得ることができる。また、大型電池への適用も可能であり、本発明は、極めて実用性に富む。 According to the present invention, it is possible to obtain a practical sodium secondary battery that has a significantly improved discharge capacity and cycle characteristics as compared with the prior art. Moreover, the present invention can be applied to a large battery, and the present invention is extremely practical.
本発明は、ナトリウムイオンをドープ・脱ドープすることのできる正極、ナトリウムイオンをドープ・脱ドープすることのできる負極およびセパレータを積層して、または積層、巻回して得られる電極群と、電解液とを電池ケースに収容した後に、電池ケースを封口するナトリウム二次電池の製造方法であって、電解液の注液を、2回以上に分割して行うナトリウム二次電池の製造方法に係るものである。 The present invention relates to an electrode group obtained by laminating or laminating or winding a positive electrode capable of doping and dedoping sodium ions, a negative electrode capable of doping and dedoping sodium ions, and a separator, and an electrolytic solution. Is a method for manufacturing a sodium secondary battery in which a battery case is sealed after the battery is sealed in the battery case, and the electrolytic solution injection is divided into two or more times. It is.
以下、本発明の電池の製造方法に係る、正極、負極、電解液、セパレータおよび電池ケースについて説明する。 Hereinafter, the positive electrode, the negative electrode, the electrolytic solution, the separator, and the battery case according to the battery manufacturing method of the present invention will be described.
(1)正極
正極は、正極活物質、結合剤および導電剤等を含む正極合剤が、正極集電体に担持されているものであり、通常、シート状である。より、具体的には、正極活物質、結合剤および導電剤等に溶剤を添加してなる正極合剤を、正極集電体に、ドクターブレード法などで塗工または浸漬し、乾燥する方法、正極活物質、結合剤および導電剤等に溶剤を添加して混練、成形し、乾燥して得たシートを正極集電体表面に導電性接着剤等を介して接合した後にプレス、乾燥する方法、正極活物質、結合剤、導電剤および液状潤滑剤等からなる混合物を正極集電体上に成形した後、液状潤滑剤を除去し、次いで、一軸または多軸方向に延伸処理する方法などが挙げられる。正極がシート状である場合、その厚みは、通常、5〜500μm程度である。
(1) Positive electrode The positive electrode is a sheet in which a positive electrode mixture containing a positive electrode active material, a binder, a conductive agent and the like is supported on a positive electrode current collector, and is usually in a sheet form. More specifically, a positive electrode mixture formed by adding a solvent to a positive electrode active material, a binder, a conductive agent, and the like, is applied to a positive electrode current collector by a doctor blade method or the like, and is dried. A method in which a sheet obtained by adding a solvent to a positive electrode active material, a binder, a conductive agent, etc., kneading, forming, and drying is bonded to the surface of the positive electrode current collector via a conductive adhesive, and then pressed and dried. A mixture of a positive electrode active material, a binder, a conductive agent, a liquid lubricant, and the like is formed on the positive electrode current collector, then the liquid lubricant is removed, and then a uniaxial or multiaxial direction is stretched. Can be mentioned. When the positive electrode has a sheet shape, the thickness is usually about 5 to 500 μm.
前記正極活物質としては、ナトリウムイオンをドープ・脱ドープすることのできる正極材料を用いることができる。得られるナトリウム二次電池のサイクル性の観点では、該材料としては、ナトリウム無機化合物を用いることが好ましい。ナトリウム無機化合物としては、次の化合物を挙げることができる。すなわち、NaFeO2、NaMnO2、NaNiO2およびNaCoO2等のNaM1 aO2で表される酸化物、Na0.44Mn1-aM1 aO2で表される酸化物、Na0.7Mn1-aM1 aO2.05で表される酸化物(M1は1種以上の遷移金属元素、0≦a<1);Na6Fe2Si12O30およびNa2Fe5Si12O30等のNabM2 cSi12O30で表される酸化物(M2は1種以上の遷移金属元素、2≦b≦6、2≦c≦5);Na2Fe2Si6O18およびNa2MnFeSi6O18等のNadM3 eSi6O18で表される酸化物(M3は1種以上の遷移金属元素、3≦d≦6、1≦e≦2);Na2FeSiO6等のNafM4 gSi2O6で表される酸化物(M4は遷移金属元素、MgおよびAlからなる群より選ばれる1種以上の元素、1≦f≦2、1≦g≦2);NaFePO4、NaMnPO4、NaNiPO4等のNaM6 aPO4で表されるリン酸塩(M6は1種以上の遷移金属元素);Na3Fe2(PO4)3等のリン酸塩;NaFeBO4、Na3Fe2(BO4)3等のホウ酸塩;Na3FeF6およびNa2MnF6等のNahM5F6で表されるフッ化物(M5は1種以上の遷移金属元素、2≦h≦3);等が挙げられる。 As the positive electrode active material, a positive electrode material that can be doped / undoped with sodium ions can be used. From the viewpoint of the cycleability of the obtained sodium secondary battery, it is preferable to use a sodium inorganic compound as the material. Examples of the sodium inorganic compound include the following compounds. That, NaFeO 2, NaMnO 2, NaNiO 2 and NaCoO oxide represented by NaM 1 a O 2, such as 2, oxide represented by Na 0.44 Mn 1-a M 1 a O 2, Na 0.7 Mn 1- a oxide represented by M 1 a O 2.05 (M 1 is one or more transition metal elements, 0 ≦ a <1); Na 6 Fe 2 Si 12 O 30 and Na 2 Fe 5 Si 12 O 30 Oxides represented by Na b M 2 c Si 12 O 30 (M 2 is one or more transition metal elements, 2 ≦ b ≦ 6, 2 ≦ c ≦ 5); Na 2 Fe 2 Si 6 O 18 and Na Na d M 3 e Si 6 oxide represented by O 18, such as 2 MnFeSi 6 O 18 (M 3 is one or more transition metal elements, 3 ≦ d ≦ 6,1 ≦ e ≦ 2); Na 2 FeSiO Na f M 4 g Si 2 oxide represented by O 6 (M 4 is at least one element selected from the group consisting of transition metal elements, Mg and Al, such as 6, 1 ≦ f ≦ 2, 1 ≦ g ≦ 2); phosphate represented by NaM 6 a PO 4 such as NaFePO 4 , NaMnPO 4 , NaNiPO 4 (M 6 is one or more transition metal elements); Na 3 Fe 2 Phosphate such as (PO 4 ) 3 ; Borate such as NaFeBO 4 and Na 3 Fe 2 (BO 4 ) 3 ; Represented by Na h M 5 F 6 such as Na 3 FeF 6 and Na 2 MnF 6 Fluoride (M 5 is one or more transition metal elements, 2 ≦ h ≦ 3);
また、前記正極材料として、硫化物等のカルコゲン化合物を用いることもできる。硫化物としてはTiS2、ZrS2、VS2、V2S5、TaS2、FeS2およびNiS2等のM6S2で表される化合物(M6は1種以上の遷移金属元素)等が挙げられる。この場合、負極としては、例えば、ナトリウム金属、ナトリウム合金などを用いればよい。 In addition, a chalcogen compound such as sulfide can be used as the positive electrode material. As sulfides, compounds represented by M 6 S 2 such as TiS 2 , ZrS 2 , VS 2 , V 2 S 5 , TaS 2 , FeS 2 and NiS 2 (M 6 is one or more transition metal elements), etc. Is mentioned. In this case, for example, sodium metal or sodium alloy may be used as the negative electrode.
上記のナトリウム無機化合物の中では、Feを含有する化合物を好ましく用いることができる。Feを含有する化合物を使用することは、資源量が豊富で安価な材料により、二次電池を構成する観点でも、非常に重要なことである。 Among the above-mentioned sodium inorganic compounds, a compound containing Fe can be preferably used. The use of a compound containing Fe is very important from the viewpoint of constituting a secondary battery with abundant and inexpensive materials.
前記の正極に用いられる導電剤としては、天然黒鉛、人造黒鉛、コークス類、カーボンブラックなどの炭素材料などを挙げることができる。 Examples of the conductive agent used for the positive electrode include natural graphite, artificial graphite, cokes, carbon materials such as carbon black, and the like.
前記の正極に用いられる結合剤としては、例えば、フッ素化合物の重合体が挙げられる。フッ素化合物としては、例えば、フッ素化アルキル(炭素数1〜18)(メタ)アクリレート、パーフルオロアルキル(メタ)アクリレート[例えば、パーフルオロドデシル(メタ)アクリレート、パーフルオロn−オクチル(メタ)アクリレート、パーフルオロn−ブチル(メタ)アクリレート]、パーフルオロアルキル置換アルキル(メタ)アクリレート[例えばパーフルオロヘキシルエチル(メタ)アクリレート、パーフルオロオクチルエチル(メタ)アクリレート]、パーフルオロオキシアルキル(メタ)アクリレート[例えば、パーフルオロドデシルオキシエチル(メタ)アクリレートおよびパーフルオロデシルオキシエチル(メタ)アクリレートなど]、フッ素化アルキル(炭素数1〜18)クロトネート、フッ素化アルキル(炭素数1〜18)マレートおよびフマレート、フッ素化アルキル(炭素数1〜18)イタコネート、フッ素化アルキル置換オレフィン(炭素数2〜10程度、フッ素原子数1〜17程度)、例えばパーフロオロヘキシルエチレン、炭素数2〜10程度、およびフッ素原子の数1〜20程度の二重結合炭素にフッ素原子が結合したフッ素化オレフィン、テトラフルオロエチレン、トリフルオロエチレン、フッ化ビニリデンまたはヘキサフルオロプロピレンなどが挙げられる。 Examples of the binder used for the positive electrode include a polymer of a fluorine compound. Examples of the fluorine compound include fluorinated alkyl (C1-18) (meth) acrylate, perfluoroalkyl (meth) acrylate [for example, perfluorododecyl (meth) acrylate, perfluoro n-octyl (meth) acrylate, Perfluoro n-butyl (meth) acrylate], perfluoroalkyl-substituted alkyl (meth) acrylate [for example, perfluorohexylethyl (meth) acrylate, perfluorooctylethyl (meth) acrylate], perfluorooxyalkyl (meth) acrylate [ For example, perfluorododecyloxyethyl (meth) acrylate and perfluorodecyloxyethyl (meth) acrylate, etc.], fluorinated alkyl (C1-18) crotonate, fluorinated alkyl ( Prime numbers 1 to 18) Malate and fumarate, fluorinated alkyl (1 to 18 carbon atoms) itaconate, fluorinated alkyl-substituted olefins (about 2 to 10 carbon atoms, about 1 to 17 fluorine atoms) such as perfluorohexylethylene, carbon Examples include fluorinated olefins, tetrafluoroethylene, trifluoroethylene, vinylidene fluoride, hexafluoropropylene, and the like in which fluorine atoms are bonded to double bond carbons of about 2 to 10 and about 1 to 20 fluorine atoms.
結合剤のその他の例示としては、フッ素原子を含まないエチレン性二重結合を含む単量体の付加重合体が挙げられる。かかる単量体としては、例えば、(シクロ)アルキル(炭素数1〜22)(メタ)アクリレート[例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n−ブチル(メタ)アクリレート、iso−ブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、オクタデシル(メタ)アクリレート等];芳香環含有(メタ)アクリレート[例えば、ベンジル(メタ)アクリレート、フェニルエチル(メタ)アクリレート等];アルキレングリコールもしくはジアルキレングリコール(アルキレン基の炭素数2〜4)のモノ(メタ)アクリレート[例えば、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、ジエチレングリコールモノ(メタ)アクリレート];(ポリ)グリセリン(重合度1〜4)モノ(メタ)アクリレート;多官能(メタ)アクリレート[例えば、(ポリ)エチレングリコール(重合度1〜100)ジ(メタ)アクリレート、(ポリ)プロピレングリコール(重合度1〜100)ジ(メタ)アクリレート、2,2−ビス(4−ヒドロキシエチルフェニル)プロパンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート等]などの(メタ)アクリル酸エステル系単量体;(メタ)アクリルアミド、(メタ)アクリルアミド系誘導体[例えば、N−メチロール(メタ)アクリルアミド、ダイアセトンアクリルアミド等]などの(メタ)アクリルアミド系単量体;(メタ)アクリロニトリル、2−シアノエチル(メタ)アクリレート、2−シアノエチルアクリルアミド等のシアノ基含有単量体;スチレンおよび炭素数7〜18のスチレン誘導体[例えば、α−メチルスチレン、ビニルトルエン、p−ヒドロキシスチレンおよびジビニルベンゼン等]などのスチレン系単量体;炭素数4〜12のアルカジエン[例えば、ブタジエン、イソプレン、クロロプレン等]などのジエン系単量体;カルボン酸(炭素数2〜12)ビニルエステル[例えば、酢酸ビニル、プロピオン酸ビニル、酪酸ビニルおよびオクタン酸ビニル等]、カルボン酸(炭素数2〜12)(メタ)アリルエステル[例えば、酢酸(メタ)アリル、プロピオン酸(メタ)アリルおよびオクタン酸(メタ)アリル等]などのアルケニルエステル系単量体;グリシジル(メタ)アクリレート、(メタ)アリルグリシジルエーテル等のエポキシ基含有単量体;炭素数2〜12のモノオレフィン[例えば、エチレン、プロピレン、1−ブテン、1−オクテンおよび1−ドデセン等]のモノオレフィン類;塩素、臭素またはヨウ素原子含有単量体、塩化ビニルおよび塩化ビニリデンなどのフッ素以外のハロゲン原子含有単量体;アクリル酸、メタクリル酸などの(メタ)アクリル酸;ブタジエン、イソプレンなどの共役二重結合含有単量体などが挙げられる。 Other examples of the binder include monomer addition polymers containing an ethylenic double bond that does not contain a fluorine atom. Examples of such monomers include (cyclo) alkyl (C1-22) (meth) acrylate [for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, iso-butyl (Meth) acrylate, cyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isodecyl (meth) acrylate, lauryl (meth) acrylate, octadecyl (meth) acrylate, etc.]; aromatic ring-containing (meth) acrylate [for example, benzyl (Meth) acrylate, phenylethyl (meth) acrylate, etc.]; mono (meth) acrylate of alkylene glycol or dialkylene glycol (alkylene group having 2 to 4 carbon atoms) [for example, 2-hydroxyethyl (meth) acrylate, 2- Hi Roxypropyl (meth) acrylate, diethylene glycol mono (meth) acrylate]; (poly) glycerin (degree of polymerization 1 to 4) mono (meth) acrylate; polyfunctional (meth) acrylate [for example, (poly) ethylene glycol (degree of polymerization 1) ~ 100) di (meth) acrylate, (poly) propylene glycol (degree of polymerization 1-100) di (meth) acrylate, 2,2-bis (4-hydroxyethylphenyl) propane di (meth) acrylate, trimethylolpropane tri ( (Meth) acrylate monomers such as (meth) acrylate]; (meth) acrylamide (meth) acrylamide, (meth) acrylamide derivatives [eg, N-methylol (meth) acrylamide, diacetone acrylamide, etc.] Acrylamide monomer; ) Cyano group-containing monomers such as acrylonitrile, 2-cyanoethyl (meth) acrylate, 2-cyanoethylacrylamide; styrene and styrene derivatives having 7 to 18 carbon atoms [for example, α-methylstyrene, vinyltoluene, p-hydroxystyrene and Styrene monomers such as divinylbenzene]; Diene monomers such as alkadienes having 4 to 12 carbon atoms [for example, butadiene, isoprene, chloroprene, etc.]; Carboxylic acid (2 to 12 carbon atoms) vinyl esters [for example, , Vinyl acetate, vinyl propionate, vinyl butyrate and vinyl octoate, etc.], carboxylic acid (2 to 12 carbon atoms) (meth) allyl ester [for example, (meth) allyl acetate, (meth) allyl propionate and octanoic acid ( Alkenyl ester based monomers such as (meth) allyl etc.] An epoxy group-containing monomer such as glycidyl (meth) acrylate and (meth) allyl glycidyl ether; a monoolefin having 2 to 12 carbon atoms [e.g., ethylene, propylene, 1-butene, 1-octene and 1-dodecene, etc.] Monoolefins of the following: Monomers containing chlorine, bromine or iodine atoms, monomers containing halogen atoms other than fluorine such as vinyl chloride and vinylidene chloride; (meth) acrylic acids such as acrylic acid and methacrylic acid; butadiene, isoprene, etc. And conjugated double bond-containing monomers.
また、付加重合体として、例えば、エチレン・酢酸ビニル共重合体、スチレン・ブタジエン共重合体またはエチレン・プロピレン共重合体などの共重合体でもよい。また、カルボン酸ビニルエステル重合体は、ポリビニルアルコールなどのように、部分的または完全にケン化されていてもよい。結合剤はフッ素化合物とフッ素原子を含まないエチレン性二重結合を含む単量体との共重合体であってもよい。 The addition polymer may be a copolymer such as an ethylene / vinyl acetate copolymer, a styrene / butadiene copolymer, or an ethylene / propylene copolymer. The carboxylic acid vinyl ester polymer may be partially or completely saponified, such as polyvinyl alcohol. The binder may be a copolymer of a fluorine compound and a monomer containing an ethylenic double bond not containing a fluorine atom.
結合剤のその他の例示としては、さらに、例えば、デンプン、メチルセルロース、カルボキシメチルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、カルボキシメチルヒドロキシエチルセルロース、ニトロセルロースなどの多糖類およびその誘導体;フェノール樹脂;メラミン樹脂;ポリウレタン樹脂;尿素樹脂;ポリアミド樹脂;ポリイミド樹脂;ポリアミドイミド樹脂;石油ピッチ;石炭ピッチなどが挙げられる。 Other examples of the binder further include, for example, polysaccharides and derivatives thereof such as starch, methylcellulose, carboxymethylcellulose, hydroxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, carboxymethylhydroxyethylcellulose, nitrocellulose; phenol resin; melamine resin Polyurethane resin, urea resin, polyamide resin, polyimide resin, polyamideimide resin, petroleum pitch, coal pitch, and the like.
前記の正極に用いられる溶剤としては、例えば、N−メチル−2−ピロリドンなどの非プロトン性極性溶媒、イソプロピルアルコール、エチルアルコール若しくはメチルアルコールなどのアルコール類、プロピレングリコールジメチルエーテルなどのエーテル類、アセトン、メチルエチルケトンまたはメチルイソブチルケトンなどのケトン類などが挙げられる。 Examples of the solvent used for the positive electrode include aprotic polar solvents such as N-methyl-2-pyrrolidone, alcohols such as isopropyl alcohol, ethyl alcohol or methyl alcohol, ethers such as propylene glycol dimethyl ether, acetone, Examples thereof include ketones such as methyl ethyl ketone and methyl isobutyl ketone.
導電性接着剤とは、導電剤と結合剤との混合物であり、特に、カーボンブラックとポリビニルアルコールとの混合物が溶剤を用いる必要もなく、調製が容易であり、さらに保存性にも優れることから好適である。 A conductive adhesive is a mixture of a conductive agent and a binder. In particular, the mixture of carbon black and polyvinyl alcohol does not require the use of a solvent, is easy to prepare, and is excellent in storage stability. Is preferred.
また、正極合剤において、その構成材料の配合量としては、適宜設定すればよいが、結合剤の配合量としては、正極活物質100重量部に対し、通常、0.5〜30重量部程度、好ましくは2〜30重量部程度であり、導電剤の配合量としては、正極活物質100重量部に対し、通常、1〜50重量部程度、好ましくは1〜30重量部程度であり、溶剤の配合量としては、正極活物質100重量部に対し、通常、50〜500重量部程度、好ましくは100〜200重量部程度である。 Further, in the positive electrode mixture, the amount of the constituent material may be set as appropriate, but the amount of the binder is usually about 0.5 to 30 parts by weight with respect to 100 parts by weight of the positive electrode active material. The amount of the conductive agent is usually about 1 to 50 parts by weight, preferably about 1 to 30 parts by weight with respect to 100 parts by weight of the positive electrode active material. The blending amount is usually about 50 to 500 parts by weight, preferably about 100 to 200 parts by weight with respect to 100 parts by weight of the positive electrode active material.
前記の正極に用いられる正極集電体としては、例えば、ニッケル、アルミニウム、チタン、銅、金、銀、白金、アルミニウム合金またはステンレス等の金属、例えば、炭素素材、活性炭繊維、ニッケル、アルミニウム、亜鉛、銅、スズ、鉛またはこれらの合金をプラズマ溶射、アーク溶射することによって形成されたもの、例えば、ゴムまたはスチレン−エチレン−ブチレン−スチレン共重合体(SEBS)など樹脂に導電剤を分散させた導電性フィルムなどが挙げられる。特に、アルミニウム、ニッケルまたはステンレスなどが好ましく、とりわけ、薄膜に加工しやすく、安価であるという点でアルミニウムが好ましい。正極集電体の形状としては、例えば、箔状、平板状、メッシュ状、ネット状、ラス状、パンチングメタル状若しくはエンボス状であるものまたはこれらを組み合わせたもの(例えば、メッシュ状平板など)等が挙げられる。正極集電体表面にエッチング処理による凹凸を形成させてもよい。 Examples of the positive electrode current collector used for the positive electrode include metals such as nickel, aluminum, titanium, copper, gold, silver, platinum, aluminum alloys, and stainless steel, such as carbon materials, activated carbon fibers, nickel, aluminum, and zinc. A conductive agent is dispersed in a resin formed by plasma spraying or arc spraying of copper, tin, lead or an alloy thereof, for example, rubber or a resin such as styrene-ethylene-butylene-styrene copolymer (SEBS). Examples include conductive films. In particular, aluminum, nickel, stainless steel, and the like are preferable. In particular, aluminum is preferable because it can be easily processed into a thin film and is inexpensive. Examples of the shape of the positive electrode current collector include a foil shape, a flat plate shape, a mesh shape, a net shape, a lath shape, a punching metal shape, an embossed shape, or a combination thereof (for example, a mesh flat plate). Is mentioned. Concavities and convexities by etching treatment may be formed on the surface of the positive electrode current collector.
(2)負極
次に、負極について、説明する。負極としては、負極活物質、結合剤および必要に応じて導電剤等を含む負極合剤が、負極集電体に担持されているもの、ナトリウム金属またはナトリウム合金を挙げることができ、通常、シート状である。より、具体的には、負極活物質および結合剤等に溶剤を添加してなる負極合剤を、負極集電体に、ドクターブレード法などで塗工または浸漬し乾燥する方法、負極活物質および結合等に溶剤を添加して混練、成形し、乾燥して得たシートを負極集電体表面に導電性接着剤等を介して接合した後にプレスおよび熱処理乾燥する方法、負極活物質、結合剤および液状潤滑剤等からなる混合物を負極集電体上に成形した後、液状潤滑剤を除去し、次いで、得られたシート状の成形物を一軸または多軸方向に延伸処理する方法などが挙げられる。負極がシート状である場合、その厚みは、通常、5〜500μm程度である。
(2) Negative Electrode Next, the negative electrode will be described. Examples of the negative electrode include those in which a negative electrode mixture containing a negative electrode active material, a binder and, if necessary, a conductive agent is supported on a negative electrode current collector, sodium metal or a sodium alloy. Is. More specifically, a negative electrode mixture formed by adding a solvent to a negative electrode active material and a binder, or the like, is applied to a negative electrode current collector by a doctor blade method or the like, and is dried to dry the negative electrode active material and A method in which a sheet obtained by adding a solvent to a bond or the like is kneaded, molded, and dried and bonded to the surface of the negative electrode current collector via a conductive adhesive or the like, followed by pressing and heat treatment drying, a negative electrode active material, a binder And a mixture of a liquid lubricant and the like formed on the negative electrode current collector, then the liquid lubricant is removed, and then the obtained sheet-like molded product is stretched in a uniaxial or multiaxial direction. It is done. When the negative electrode has a sheet shape, the thickness is usually about 5 to 500 μm.
前記負極活物質としては、ナトリウムイオンをドープ・脱ドープすることのできる負極材料を用いることができる。該材料としては、カーボンブラック、熱分解炭素類、炭素繊維、難黒鉛化炭素材料、有機材料焼成体などの炭素材料で、ナトリウムイオンをドープ・脱ドープすることのできる材料を用いることができる。炭素材料の形状としては、例えば天然黒鉛のような薄片状、メソカーボンマイクロビーズのような球状、黒鉛化炭素繊維のような繊維状、または微粉末の凝集体などのいずれでもよい。 As the negative electrode active material, a negative electrode material that can be doped / undoped with sodium ions can be used. As the material, a carbon material such as carbon black, pyrolytic carbon, carbon fiber, non-graphitizable carbon material, and fired organic material, which can be doped / undoped with sodium ions can be used. The shape of the carbon material may be any of a flake shape such as natural graphite, a spherical shape such as mesocarbon microbeads, a fibrous shape such as graphitized carbon fiber, or an aggregate of fine powder.
また、負極活物質として用いることのできる好適な炭素材料として、カーボンマイクロビーズを挙げることができ、具体的には、日本カーボン社製のICB(商品名:ニカビーズ)が挙げられる。 Moreover, as a suitable carbon material that can be used as the negative electrode active material, carbon microbeads can be cited, and specifically, ICB (trade name: Nika beads) manufactured by Nippon Carbon Co., Ltd. can be exemplified.
ナトリウムイオンをドープ・脱ドープすることのできる有機材料焼成体としては、種々の有機材料の炭化(焼成)により得られる炭素材料のうち、ナトリウムイオンをドープ・脱ドープすることのできる炭素材料を用いればよい。有機材料としては、石油や石炭等の天然鉱物資源や、これら資源を原料として合成した各種合成樹脂(熱硬化性樹脂、熱可塑性樹脂など)のほか、石油ピッチ、石炭ピッチ、紡糸用ピッチなどの種々のプラント残渣油、木材等の植物由来の有機材料等を挙げることができ、これらを単独または二種以上用いることが可能である。 As a fired organic material that can be doped / undoped with sodium ions, a carbon material that can be doped / undoped with sodium ions is used among carbon materials obtained by carbonization (firing) of various organic materials. That's fine. Organic materials include natural mineral resources such as petroleum and coal, and various synthetic resins (thermosetting resin, thermoplastic resin, etc.) synthesized from these resources as well as petroleum pitch, coal pitch, spinning pitch, etc. Examples include various plant residue oils, organic materials derived from plants such as wood, and the like, and these can be used alone or in combination of two or more.
上記合成樹脂としては、フェノール樹脂、レゾルシノール樹脂、フラン樹脂、エポキシ樹脂、ウレタン樹脂、不飽和ポリエステル樹脂、メラミン樹脂、尿素樹脂、アニリン樹脂、ビスマレイミド樹脂、ベンゾオキサジン樹脂、ポリアクリロニトリル樹脂、ポリスチレン樹脂、ポリアミド樹脂、シアネート樹脂、ケトン樹脂などを挙げることができ、これらを単独または二種以上用いることが可能である。また、硬化剤、添加剤を含有させて用いてもよい。硬化方法は、特に限定されないが、例えばフェノール樹脂を用いた場合では、熱硬化、熱酸化、エポキシ硬化、イソシアネート硬化などが挙げられる。また、エポキシ樹脂を用いた場合では、フェノール樹脂硬化、酸無水物硬化、アミン硬化等が挙げられる。 As the synthetic resin, phenol resin, resorcinol resin, furan resin, epoxy resin, urethane resin, unsaturated polyester resin, melamine resin, urea resin, aniline resin, bismaleimide resin, benzoxazine resin, polyacrylonitrile resin, polystyrene resin, Polyamide resin, cyanate resin, ketone resin, and the like can be given, and these can be used alone or in combination of two or more. Moreover, you may use it by making it contain a hardening | curing agent and an additive. Although the curing method is not particularly limited, for example, when a phenol resin is used, thermal curing, thermal oxidation, epoxy curing, isocyanate curing and the like can be mentioned. Moreover, when an epoxy resin is used, phenol resin curing, acid anhydride curing, amine curing, and the like can be given.
有機材料の中でも、芳香環を有する有機材料であることが好ましい。該有機材料を用いることにより、炭素材料を収率よく得ることができ、環境負荷が小さく、製造コストも小さくすることもでき、工業的な利用価値がより高い。 Among organic materials, an organic material having an aromatic ring is preferable. By using the organic material, the carbon material can be obtained with high yield, the environmental load is small, the production cost can be reduced, and the industrial utility value is higher.
芳香環を有する有機材料としては、例えば、上記合成樹脂の中で、フェノール樹脂(ノボラック型フェノール樹脂、レゾール型フェノール樹脂など)、エポキシ樹脂(ビスフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂など)、アニリン樹脂、ビスマレイミド樹脂、ベンゾオキサジン樹脂を挙げることができ、これらを単独または二種以上用いることが可能である。また、硬化剤、添加剤を含有していてもよい。 Examples of the organic material having an aromatic ring include, among the above synthetic resins, phenol resins (such as novolac type phenol resins and resol type phenol resins), epoxy resins (such as bisphenol type epoxy resins and novolac type epoxy resins), and aniline resins. , Bismaleimide resins and benzoxazine resins, and these can be used alone or in combination of two or more. Moreover, you may contain the hardening | curing agent and the additive.
芳香環を有する有機材料としては、フェノールまたはその誘導体とアルデヒド化合物とを重合させて得られる有機材料であることが好ましい。該有機材料は、芳香環を有する有機材料の中でも安価であり、工業的な生産量も多く、これを炭化して得られる炭素材料は好ましい炭素材料である。 The organic material having an aromatic ring is preferably an organic material obtained by polymerizing phenol or a derivative thereof and an aldehyde compound. The organic material is inexpensive among organic materials having an aromatic ring and has a large industrial production amount. A carbon material obtained by carbonizing the organic material is a preferable carbon material.
フェノールまたはその誘導体とアルデヒド化合物とを重合させて得られる有機材料としては、フェノール樹脂を挙げることができる。フェノール樹脂は安価であり、工業的な生産量も多く、炭素材料の原料として好ましい。フェノール樹脂を炭化して得られる炭素材料を、ナトリウム二次電池の負極活物質として用いた場合、二次電池の充放電容量、充放電を繰り返した後の放電容量が、特に大きい。フェノール樹脂は、三次元架橋の発達した構造を特徴とし、該樹脂を炭化して得られる炭素材料も、該特徴に由来した特異な三次元架橋の発達した構造を有する炭素材料となっているものと推定され、この推定が前記放電容量の特に大きい一因になっていると考えられる。 An example of an organic material obtained by polymerizing phenol or a derivative thereof and an aldehyde compound is a phenol resin. Phenolic resins are inexpensive and have a large industrial production amount, which is preferable as a raw material for carbon materials. When a carbon material obtained by carbonizing a phenol resin is used as a negative electrode active material for a sodium secondary battery, the charge / discharge capacity of the secondary battery and the discharge capacity after repeated charge / discharge are particularly large. A phenolic resin is characterized by a structure with developed three-dimensional crosslinking, and a carbon material obtained by carbonizing the resin is also a carbon material having a developed structure with unique three-dimensional crosslinking derived from the characteristics. It is considered that this estimation contributes particularly to the discharge capacity.
フェノールまたはその誘導体としては、例えば、フェノール、o−クレゾール、m−クレゾール、p−クレゾール、カテコール、レゾルシノール、ハイドロキノン、キシレノール、ピロガロール、ビスフェノールA、ビスフェノールF、p−フェニルフェノール、p−tert−ブチルフェノール、p−tert−オクチルフェノール、α−ナフトール、β−ナフトール等を挙げることができ、これらを単独または二種以上用いることが可能である。 Examples of phenol or derivatives thereof include phenol, o-cresol, m-cresol, p-cresol, catechol, resorcinol, hydroquinone, xylenol, pyrogallol, bisphenol A, bisphenol F, p-phenylphenol, p-tert-butylphenol, Examples thereof include p-tert-octylphenol, α-naphthol, β-naphthol and the like, and these can be used alone or in combination of two or more.
アルデヒド化合物としては、ホルムアルデヒド、パラホルムアルデヒド、トリオキサン、アセトアルデヒド、プロピオンアルデヒド、ポリオキシメチレン、クロラール、フルフラール、グリオキザール、n−ブチルアルデヒド、カプロアルデヒド、アリルアルデヒド、ベンズアルデヒド、クロトンアルデヒド、アクロレイン、テトラオキシメチレン、フェニルアセトアルデヒド、o−トルアルデヒド、サリチルアルデヒド等を挙げることができ、これらを単独または二種以上用いることが可能である。 Examples of the aldehyde compound include formaldehyde, paraformaldehyde, trioxane, acetaldehyde, propionaldehyde, polyoxymethylene, chloral, furfural, glyoxal, n-butyraldehyde, caproaldehyde, allylaldehyde, benzaldehyde, crotonaldehyde, acrolein, tetraoxymethylene, Examples thereof include phenylacetaldehyde, o-tolualdehyde, salicylaldehyde, and the like, and these can be used alone or in combination.
フェノール樹脂としては、特に限定されないが、レゾール型フェノール樹脂、ノボラック型フェノール樹脂などを用いることができる。レゾール型フェノール樹脂は、フェノールまたはその誘導体とアルデヒド化合物とを塩基性触媒の存在下で重合させることにより得ることができるし、ノボラック型フェノール樹脂は、フェノールまたはその誘導体とアルデヒド化合物とを酸性触媒の存在下で重合させることにより得ることができる。 Although it does not specifically limit as a phenol resin, A resol type phenol resin, a novolak type phenol resin, etc. can be used. The resol type phenol resin can be obtained by polymerizing phenol or a derivative thereof and an aldehyde compound in the presence of a basic catalyst, and the novolac type phenol resin can be obtained by using phenol or a derivative thereof and an aldehyde compound as an acidic catalyst. It can be obtained by polymerizing in the presence.
自硬性のレゾール型フェノール樹脂を用いる場合は、レゾール型フェノール樹脂に対して、酸や硬化剤を添加してもよいし、硬化度を低下させるためにノボラック型フェノール樹脂を添加しても良い。また、それらを組合せて添加してもよい。 When a self-hardening resol type phenol resin is used, an acid or a curing agent may be added to the resol type phenol resin, or a novolac type phenol resin may be added to reduce the degree of curing. Moreover, you may add combining them.
ノボラック型フェノール樹脂は、フェノールまたはその誘導体とアルデヒド化合物とを公知の有機酸および/または無機酸を触媒に用い、常圧100℃で数時間縮合反応し、その後脱水および未反応モノマー除去を行う方法により得られる、メチレン基結合位置がオルソ位とパラ位が同程度のランダムノボラックと呼ばれているタイプと、フェノールまたはその誘導体とアルデヒド化合物とを酢酸亜鉛、酢酸鉛、ナフテン酸亜鉛等の金属塩触媒により弱酸性下で付加縮合反応させた後、直接あるいは更に酸触媒を添加し脱水しながら縮合反応を進め、更に必要により未反応物を除去する工程により得られるオルソ位でのメチレン基結合の多いハイオルソノボラックが知られている。 The novolak-type phenol resin is a method in which phenol or a derivative thereof and an aldehyde compound are subjected to a condensation reaction at a normal pressure of 100 ° C. for several hours using a known organic acid and / or inorganic acid as a catalyst, followed by dehydration and removal of unreacted monomers. A metal salt such as zinc acetate, lead acetate, zinc naphthenate, and the like, which is obtained by a random novolak type in which the methylene group bonding positions are the same in the ortho and para positions, and phenol or a derivative thereof and an aldehyde compound. After the addition condensation reaction with a catalyst under weak acidity, the condensation reaction proceeds directly or with further addition of an acid catalyst while dehydrating, and if necessary, the step of removing unreacted substances. Many high ortho novolaks are known.
芳香環を分子構造中に有する有機材料としては、他にも多種多様な有機材料を利用することができる。 Various other organic materials can be used as the organic material having an aromatic ring in the molecular structure.
合成樹脂としては一般にモノマーを重合させ高分子となることが特徴的であるが、芳香環を有する有機材料として、数個〜数十個程度のモノマーが重合した有機材料を利用することもできる。 A synthetic resin is generally characterized by polymerizing monomers to form a polymer, but as an organic material having an aromatic ring, an organic material in which several to several tens of monomers are polymerized can also be used.
フェノールまたはその誘導体とアルデヒド化合物との重合の際には、副生物が生成したり、未重合物が残存したりする場合もあるが、これらの副生物、未重合物を、有機材料として、利用することもでき、廃棄物を減らすという点で環境負荷を低減できるとともに安価に炭素材料を得ることができ、工業的な利用価値がより高い。 During polymerization of phenol or its derivatives and aldehyde compounds, by-products may be generated or unpolymerized products may remain, but these by-products and unpolymerized products can be used as organic materials. In addition, the environmental load can be reduced in terms of reducing waste, and a carbon material can be obtained at a low cost, resulting in higher industrial utility value.
また、負極活物質に用いられる炭素材料として、植物由来の有機材料の炭化(焼成)により得られる炭素材料を用いることにより、環境負荷を低減することができ、工業的な利用価値がより高い。 Further, by using a carbon material obtained by carbonization (firing) of a plant-derived organic material as the carbon material used for the negative electrode active material, the environmental load can be reduced, and the industrial utility value is higher.
植物由来の有機材料として、木材等を挙げることができ、これを炭化して得られる木炭は、負極活物質に用いる炭素材料として、好ましい実施態様である。また、木材として、廃棄材木、おが屑等の木材加工プロセスにおいて発生する廃棄木材、森林の間伐木材等を利用することもできる。木材の構成成分としては一般にセルロース、ヘミセルロースおよびリグニンの3種が主成分として挙げられ、リグニンは、芳香環を有する有機材料でもあり、好ましい。 Wood and the like can be exemplified as the plant-derived organic material, and charcoal obtained by carbonizing this is a preferred embodiment as a carbon material used for the negative electrode active material. In addition, as the timber, waste timber, waste timber generated in a wood processing process such as sawdust, forest thinned timber, and the like can be used. As the constituent components of wood, three types of cellulose, hemicellulose and lignin are generally mentioned as main components, and lignin is also an organic material having an aromatic ring and is preferable.
木材としては、ソテツ類、イチョウ類、針葉樹類(スギ、ヒノキ、アカマツ等)、マオウ類等の裸子植物、広葉樹類(ミズナラ、ブナ、ポプラ、ハルニレ、カシ等)、草本植物、ヤシ類、竹類等の被子植物等を挙げることができる。 Wood includes cycads, ginkgo biloba, conifers (cedar, cypress, Japanese red pine, etc.), maize, etc. Angiosperms, etc. can be mentioned.
上記の木材の中でも、スギは建築材料として広く用いられており、その加工プロセスにおいて発生するスギのおが屑は、環境負荷を低減できるとともに安価に炭素材料を得ることができ、好ましい。また、カシを炭化して得られる備長炭も、負極活物質に用いる炭素材料として好ましい実施態様である。 Among the timbers, cedar is widely used as a building material, and cedar sawdust generated in the processing process is preferable because it can reduce the environmental burden and can obtain a carbon material at low cost. Bincho charcoal obtained by carbonizing oak is also a preferred embodiment as a carbon material used for the negative electrode active material.
また、負極活物質に用いる炭素材料として、プラント残渣油の炭化(焼成)により得られる炭素材料を用いることにより、資源を有効活用することができ、工業的な利用価値がより高い。 Further, by using a carbon material obtained by carbonization (firing) of plant residue oil as a carbon material used for the negative electrode active material, resources can be effectively used, and industrial utility value is higher.
プラント残渣油としては、エチレンなど各種石油化学製品の製造時における各種残渣油を挙げることができる。より具体的には、蒸留残渣油、流動接触分解残渣油、それらの水素化脱硫油、あるいはそれらの混合油から成る石油系重質油を挙げることができる。中でも、芳香環を有する石油化学製品の製造時における残渣油を用いることが好ましく、具体的には、レゾルシノール製造時の残渣油を挙げることができる。 Examples of plant residue oils include various residue oils during the production of various petrochemical products such as ethylene. More specifically, there can be mentioned petroleum heavy oil composed of distillation residue oil, fluid catalytic cracking residue oil, hydrodesulfurized oil thereof, or mixed oil thereof. Among them, it is preferable to use a residual oil at the time of producing a petrochemical product having an aromatic ring, and specifically, a residual oil at the time of producing resorcinol can be mentioned.
負極活物質に用いる炭素材料は、上述の種々の有機材料を、単独または2種以上用いて、これを炭化(焼成)して得ることができる。炭化の温度は、800℃以上2500℃以下の温度であることが好ましく、炭化は、不活性ガス雰囲気下で行うことが好ましい。また、有機材料をそのまま炭化してもよいし、有機材料を400℃以下の酸化性ガスの存在下で加熱して得られる加熱物を、不活性ガス雰囲気下で炭化してもよい。不活性ガスとしては、窒素、アルゴンなどを挙げることができ、酸化性ガスとしては、空気、H2O、CO2、O2などを挙げることができる。また、炭化は、減圧下で行ってもよい。これらの加熱、炭化は、例えば、ロータリーキルン、ローラーハースキルン、プッシャーキルン、多段炉、流動炉などの設備を用いればよい。ロータリーキリンは、汎用的である。 The carbon material used for the negative electrode active material can be obtained by carbonizing (sintering) the above-mentioned various organic materials singly or in combination of two or more. The carbonization temperature is preferably 800 ° C. or higher and 2500 ° C. or lower, and carbonization is preferably performed in an inert gas atmosphere. Further, the organic material may be carbonized as it is, or a heated product obtained by heating the organic material in the presence of an oxidizing gas of 400 ° C. or lower may be carbonized in an inert gas atmosphere. Examples of the inert gas include nitrogen and argon, and examples of the oxidizing gas include air, H 2 O, CO 2 , and O 2 . Carbonization may be performed under reduced pressure. These heating and carbonization may be performed using equipment such as a rotary kiln, a roller hearth kiln, a pusher kiln, a multi-stage furnace, and a fluidized furnace. Rotary giraffes are versatile.
また、炭化(焼成)して得られる炭素材料については、必要に応じて粉砕を行ってもよく、粉砕には、例えば、衝撃摩擦粉砕機、遠心力粉砕機、ボールミル(チューブミル、コンパウンドミル、円錐形ボールミル、ロッドミル)、振動ミル、コロイドミル、摩擦円盤ミルまたはジェットミルなどの微粉砕用の粉砕機が好適に用いられ、ボールミルによる粉砕が一般的である。この粉砕時には、金属粉の混入は避けたほうがよく、これら粉砕機における炭素材料の接触部分には、アルミナ、メノウなど、非金属材料の材質を用いた方がよい。 The carbon material obtained by carbonization (firing) may be pulverized as necessary. For pulverization, for example, impact friction pulverizer, centrifugal pulverizer, ball mill (tube mill, compound mill, A pulverizer for fine pulverization such as a conical ball mill, a rod mill), a vibration mill, a colloid mill, a friction disk mill or a jet mill is preferably used, and pulverization by a ball mill is generally used. During the pulverization, it is better to avoid mixing metal powder, and it is better to use a non-metallic material such as alumina or agate for the contact portion of the carbon material in these pulverizers.
結合剤および導電剤は正極で用いられるものと同様のものを用いることができる。負極において、ナトリウムイオンをドープ・脱ドープすることのできる炭素材料は、導電剤としての役割を果たす場合もある。 The same binder and conductive agent as those used in the positive electrode can be used. In the negative electrode, a carbon material that can be doped / undoped with sodium ions may serve as a conductive agent.
また、正極における正極活物質が、上述のナトリウム無機化合物である場合には、この正極よりも低い電位でナトリウムイオンをドープ・脱ドープすることのできる硫化物等のカルコゲン化合物を用いることもできる。ここで硫化物としてはTiS2、ZrS2、VS2、V2S5、TaS2、FeS2、NiS2、およびM6S2(ただし、M6は1種以上の遷移金属元素である。)で示される化合物等が挙げられる。 Further, when the positive electrode active material in the positive electrode is the above-described sodium inorganic compound, a chalcogen compound such as a sulfide that can be doped / dedoped with sodium ions at a lower potential than the positive electrode can also be used. Here, as sulfides, TiS 2 , ZrS 2 , VS 2 , V 2 S 5 , TaS 2 , FeS 2 , NiS 2 , and M 6 S 2 (where M 6 is one or more transition metal elements). ) And the like.
負極集電体としては、Cu、Ni、ステンレスなどを挙げることができ、ナトリウムと合金を作り難い点、薄膜に加工しやすいという点で、Cuが好ましい。負極集電体の形状としては、例えば、箔状、平板状、メッシュ状、ネット状、ラス状、パンチングメタル状若しくはエンボス状であるものまたはこれらを組み合わせたもの(例えば、メッシュ状平板など)等が挙げられる。負極集電体表面にエッチング処理による凹凸を形成させてもよい。 Examples of the negative electrode current collector include Cu, Ni, and stainless steel, and Cu is preferable because it is difficult to form an alloy with sodium and it can be easily processed into a thin film. Examples of the shape of the negative electrode current collector include a foil shape, a flat plate shape, a mesh shape, a net shape, a lath shape, a punching metal shape, an embossed shape, or a combination thereof (for example, a mesh flat plate). Is mentioned. Concavities and convexities by etching treatment may be formed on the surface of the negative electrode current collector.
(3)電解液
次に、電解液について説明する。本発明において、電解液は、通常、電解質が有機溶媒に溶解された非水電解液として用いられる。また、電解液は、注液後に、ゲル状になることもできる。電解質としては、NaClO4、NaPF6、NaAsF6、NaSbF6、NaBF4、NaCF3SO3、NaN(SO2CF3)2、低級脂肪族カルボン酸ナトリウム塩、NaAlCl4などが挙げられ、これらの2種以上の混合物を使用されてもいてもよい。これらの中でもフッ素を含むNaPF6、NaAsF6、NaSbF6、NaBF4、NaCF3SO3およびNaN(SO2CF3)2からなる群から選ばれた少なくとも1種を含むものを用いることが好ましい。
(3) Electrolytic Solution Next, the electrolytic solution will be described. In the present invention, the electrolytic solution is usually used as a non-aqueous electrolytic solution in which an electrolyte is dissolved in an organic solvent. Moreover, electrolyte solution can also become a gel form after injection. Examples of the electrolyte include NaClO 4 , NaPF 6 , NaAsF 6 , NaSbF 6 , NaBF 4 , NaCF 3 SO 3 , NaN (SO 2 CF 3 ) 2 , lower aliphatic carboxylic acid sodium salt, NaAlCl 4, and the like. A mixture of two or more kinds may be used. Among these, it is preferable to use those containing at least one selected from the group consisting of NaPF 6 , NaAsF 6 , NaSbF 6 , NaBF 4 , NaCF 3 SO 3 and NaN (SO 2 CF 3 ) 2 containing fluorine.
非水電解液における有機溶媒としては、例えばプロピレンカーボネート(粘度2.5mPa・s(25℃))、エチレンカーボネート(粘度1.9mPa・s(40℃))、ジメチルカーボネート(粘度0.59mPa・s(25℃))、ジエチルカーボネート(粘度0.75mPa・s(25℃))、エチルメチルカーボネート(粘度0.65mPa・s(25℃))、イソプロピルメチルカーボネート、ビニレンカーボネート、4−トリフルオロメチル−1,3−ジオキソラン−2−オン、1,2−ジ(メトキシカルボニルオキシ)エタンなどのカーボネート類;1,2−ジメトキシエタン、1,3−ジメトキシプロパン、ペンタフルオロプロピルメチルエーテル、2,2,3,3−テトラフルオロプロピルジフルオロメチルエーテル、テトラヒドロフラン、2−メチルテトラヒドロフランなどのエーテル類;ギ酸メチル、酢酸メチル、γ−ブチロラクトンなどのエステル類;アセトニトリル、ブチロニトリルなどのニトリル類;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドなどのアミド類;3−メチル−2−オキサゾリドンなどのカーバメート類;スルホラン、ジメチルスルホキシド、1,3−プロパンサルトンなどの含硫黄化合物;または上記の有機溶媒にさらにフッ素置換基を導入したものを用いることができる。有機溶媒として、これらのうちの二種以上を混合して用いてもよい。複数の有機溶媒を用いて、これらの混合比を変えることにより、非水電解液の粘度を制御することも可能である。 Examples of the organic solvent in the non-aqueous electrolyte include propylene carbonate (viscosity 2.5 mPa · s (25 ° C.)), ethylene carbonate (viscosity 1.9 mPa · s (40 ° C.)), and dimethyl carbonate (viscosity 0.59 mPa · s). (25 ° C.)), diethyl carbonate (viscosity 0.75 mPa · s (25 ° C.)), ethyl methyl carbonate (viscosity 0.65 mPa · s (25 ° C.)), isopropyl methyl carbonate, vinylene carbonate, 4-trifluoromethyl- Carbonates such as 1,3-dioxolan-2-one and 1,2-di (methoxycarbonyloxy) ethane; 1,2-dimethoxyethane, 1,3-dimethoxypropane, pentafluoropropyl methyl ether, 2,2, 3,3-tetrafluoropropyl difluoromethyl ether, Ethers such as trahydrofuran and 2-methyltetrahydrofuran; Esters such as methyl formate, methyl acetate and γ-butyrolactone; Nitriles such as acetonitrile and butyronitrile; N, N-dimethylformamide, N, N-dimethylacetamide and the like Amides; carbamates such as 3-methyl-2-oxazolidone; sulfur-containing compounds such as sulfolane, dimethyl sulfoxide and 1,3-propane sultone; or those obtained by further introducing a fluorine substituent into the above organic solvent Can do. Two or more of these may be mixed and used as the organic solvent. It is also possible to control the viscosity of the nonaqueous electrolytic solution by using a plurality of organic solvents and changing the mixing ratio thereof.
非水電解液における電解質の濃度は、通常、0.1モル/L〜2モル/L程度であり、好ましくは、0.3モル/L〜1.5モル/L程度である。 The concentration of the electrolyte in the nonaqueous electrolytic solution is usually about 0.1 mol / L to 2 mol / L, and preferably about 0.3 mol / L to 1.5 mol / L.
(4)セパレータ
セパレータとしては例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂、フッ素樹脂、含窒素芳香族重合体などの材質からなる、多孔質フィルム、不織布、織布などの形態を有する材料を用いることができる。また、これらの材質を2種以上用いた単層または積層セパレータとしてもよい。セパレータとしては、例えば特開2000−30686号公報、特開平10−324758号公報等に記載のセパレータを挙げることができる。セパレータの厚みは、電池の体積エネルギー密度が上がり、内部抵抗が小さくなるという点で、機械的強度が保たれる限り薄いほど好ましい。セパレータの厚みは一般に、5〜200μm程度が好ましく、より好ましくは5〜40μm程度である。
(4) Separator As the separator, for example, a material having a form of a porous film, a nonwoven fabric, a woven fabric, or the like made of a polyolefin resin such as polyethylene or polypropylene, a fluororesin, or a nitrogen-containing aromatic polymer is used. it can. Moreover, it is good also as a single layer or laminated separator which used 2 or more types of these materials. Examples of the separator include separators described in JP 2000-30686 A, JP 10-324758 A, and the like. The thickness of the separator is preferably as thin as possible as long as the mechanical strength is maintained in that the volume energy density of the battery is increased and the internal resistance is reduced. In general, the thickness of the separator is preferably about 5 to 200 μm, more preferably about 5 to 40 μm.
セパレータは、好ましくは、熱可塑性樹脂を含有する多孔質フィルムを有する。二次電池において、セパレータは、正極と負極の間に配置される。なお、正極−負極間の短絡等が原因で電池内に異常電流が流れた際に、電流を遮断して、過大電流が流れることを阻止する(シャットダウンする)役割を果たすことが好ましい。ここで、シャットダウンは、通常の使用温度を越えた場合に、セパレータにおける多孔質フィルムの微細孔を閉塞することによりなされる。そしてシャットダウンした後、ある程度の高温まで電池内の温度が上昇しても、その温度により破膜することなく、シャットダウンした状態を維持すること、換言すれば、耐熱性が高いことが好ましい。かかるセパレータとして、耐熱多孔層と多孔質フィルムとが積層されてなる積層フィルムなどの耐熱材料を有する多孔質フィルム、好ましくは、耐熱樹脂を含有する耐熱多孔層と熱可塑性樹脂を含有する多孔質フィルムとが積層されてなる積層フィルムを挙げることができ、このような耐熱材料を有する多孔質フィルムをセパレータとして用いることにより、二次電池の熱破膜をより防ぐことが可能となる。ここで、耐熱多孔層は、多孔質フィルムの両面に積層されていてもよい。 The separator preferably has a porous film containing a thermoplastic resin. In the secondary battery, the separator is disposed between the positive electrode and the negative electrode. In addition, when an abnormal current flows in the battery due to a short circuit between the positive electrode and the negative electrode, it is preferable to play a role of blocking (shutting down) an excessive current by blocking the current. Here, the shutdown is performed by closing the micropores of the porous film in the separator when the normal use temperature is exceeded. After the shutdown, even if the temperature in the battery rises to a certain high temperature, it is preferable to maintain the shutdown state without breaking the film due to the temperature, in other words, high heat resistance. As such a separator, a porous film having a heat resistant material such as a laminated film in which a heat resistant porous layer and a porous film are laminated, preferably a heat resistant porous layer containing a heat resistant resin and a porous film containing a thermoplastic resin Can be mentioned, and by using a porous film having such a heat-resistant material as a separator, it is possible to further prevent thermal breakage of the secondary battery. Here, the heat-resistant porous layer may be laminated on both surfaces of the porous film.
以下、セパレータとして好ましい耐熱多孔層と多孔質フィルムとが積層されてなる積層フィルムについて説明する。ここで、このセパレータの厚みは、通常5μm以上40μm以下、好ましくは20μm以下である。また、耐熱多孔層の厚みをA(μm)、多孔質フィルムの厚みをB(μm)としたときには、A/Bの値が、0.1以上1以下であることが好ましい。また更に、このセパレータは、イオン透過性の観点から、ガーレー法による透気度において、透気度が50〜300秒/100ccであることが好ましく、50〜200秒/100ccであることがさらに好ましい。このセパレータの空孔率は、通常30〜80体積%、好ましくは40〜70体積%である。 Hereinafter, a laminated film in which a heat resistant porous layer and a porous film preferable as a separator are laminated will be described. Here, the thickness of this separator is usually 5 μm or more and 40 μm or less, preferably 20 μm or less. Moreover, when the thickness of the heat resistant porous layer is A (μm) and the thickness of the porous film is B (μm), the value of A / B is preferably 0.1 or more and 1 or less. Furthermore, this separator preferably has an air permeability of 50 to 300 seconds / 100 cc, more preferably 50 to 200 seconds / 100 cc, from the viewpoint of ion permeability. . The porosity of this separator is usually 30 to 80% by volume, preferably 40 to 70% by volume.
積層フィルムにおいて、耐熱多孔層は、耐熱樹脂を含有することが好ましい。イオン透過性をより高めるために、耐熱多孔層の厚みは、1μm以上10μm以下、さらには1μm以上5μm以下、特に1μm以上4μm以下という薄い耐熱多孔層であることが好ましい。また、耐熱多孔層は微細孔を有し、その孔のサイズ(直径)は通常3μm以下、好ましくは1μm以下である。さらに、耐熱多孔層は、後述のフィラーを含有することもできる。また、耐熱多孔層は、無機粉末から形成されていてもよい。 In the laminated film, the heat resistant porous layer preferably contains a heat resistant resin. In order to further enhance the ion permeability, the heat-resistant porous layer is preferably a thin heat-resistant porous layer having a thickness of 1 μm to 10 μm, further 1 μm to 5 μm, particularly 1 μm to 4 μm. The heat-resistant porous layer has fine pores, and the size (diameter) of the pores is usually 3 μm or less, preferably 1 μm or less. Furthermore, the heat resistant porous layer can also contain a filler described later. Moreover, the heat resistant porous layer may be formed from an inorganic powder.
耐熱多孔層に含有される耐熱樹脂としては、ポリアミド、ポリイミド、ポリアミドイミド、ポリカーボネート、ポリアセタール、ポリサルホン、ポリフェニレンサルファイド、ポリエーテルケトン、芳香族ポリエステル、ポリエーテルサルホン、ポリエーテルイミドを挙げることができ、耐熱性をより高める観点で、ポリアミド、ポリイミド、ポリアミドイミド、ポリエーテルサルホン、ポリエーテルイミドが好ましく、ポリアミド、ポリイミド、ポリアミドイミドがより好ましい。さらにより好ましくは、耐熱樹脂は、芳香族ポリアミド(パラ配向芳香族ポリアミド、メタ配向芳香族ポリアミド)、芳香族ポリイミド、芳香族ポリアミドイミド等の含窒素芳香族重合体であり、とりわけ好ましくは芳香族ポリアミドであり、特に好ましくはパラ配向芳香族ポリアミド(以下、「パラアラミド」ということがある。)である。また、耐熱樹脂としては、ポリ−4−メチルペンテン−1、環状オレフィン系重合体を挙げることもできる。これらの耐熱樹脂を用いることにより、耐熱性を高めること、すなわち熱破膜温度を高めることができる。 Examples of the heat-resistant resin contained in the heat-resistant porous layer include polyamide, polyimide, polyamideimide, polycarbonate, polyacetal, polysulfone, polyphenylene sulfide, polyether ketone, aromatic polyester, polyether sulfone, and polyetherimide. From the viewpoint of further improving heat resistance, polyamide, polyimide, polyamideimide, polyethersulfone, and polyetherimide are preferable, and polyamide, polyimide, and polyamideimide are more preferable. Even more preferably, the heat-resistant resin is a nitrogen-containing aromatic polymer such as aromatic polyamide (para-oriented aromatic polyamide, meta-oriented aromatic polyamide), aromatic polyimide, aromatic polyamideimide, and particularly preferably aromatic. Polyamide, particularly preferably para-oriented aromatic polyamide (hereinafter sometimes referred to as “para-aramid”). Further, examples of the heat resistant resin include poly-4-methylpentene-1 and cyclic olefin polymers. By using these heat resistant resins, the heat resistance can be increased, that is, the thermal film breaking temperature can be increased.
熱破膜温度は、耐熱樹脂の種類に依存し、使用場面、使用目的に応じ、選択使用される。通常、熱破膜温度は160℃以上である。耐熱樹脂として、上記含窒素芳香族重合体を用いる場合は、400℃程度に、また、ポリ−4−メチルペンテン−1を用いる場合は250℃程度に、環状オレフィン系重合体を用いる場合は300℃程度に、夫々、熱破膜温度をコントロールすることができる。また、耐熱多孔層が、無機粉末からなる場合には、熱破膜温度を、例えば、500℃以上にコントロールすることも可能である。 The thermal film breaking temperature depends on the type of heat-resistant resin, and is selected and used according to the use scene and purpose of use. Usually, the thermal film breaking temperature is 160 ° C. or higher. When the nitrogen-containing aromatic polymer is used as the heat-resistant resin, the temperature is about 400 ° C., when poly-4-methylpentene-1 is used, about 250 ° C., and when the cyclic olefin polymer is used, 300 is used. The thermal film breaking temperature can be controlled to about 0 ° C., respectively. Moreover, when the heat resistant porous layer is made of an inorganic powder, the thermal film breaking temperature can be controlled to, for example, 500 ° C. or higher.
上記パラアラミドは、パラ配向芳香族ジアミンとパラ配向芳香族ジカルボン酸ハライドの縮合重合により得られるものであり、アミド結合が芳香族環のパラ位またはそれに準じた配向位(例えば、4,4’−ビフェニレン、1,5−ナフタレン、2,6−ナフタレン等のような反対方向に同軸または平行に延びる配向位)で結合される繰り返し単位から実質的になるものである。パラアラミドとしては、パラ配向型またはパラ配向型に準じた構造を有するパラアラミド、具体的には、ポリ(パラフェニレンテレフタルアミド)、ポリ(パラベンズアミド)、ポリ(4,4’−ベンズアニリドテレフタルアミド)、ポリ(パラフェニレン−4,4’−ビフェニレンジカルボン酸アミド)、ポリ(パラフェニレン−2,6−ナフタレンジカルボン酸アミド)、ポリ(2−クロロ−パラフェニレンテレフタルアミド)、パラフェニレンテレフタルアミド/2,6−ジクロロパラフェニレンテレフタルアミド共重合体等が例示される。 The para-aramid is obtained by condensation polymerization of a para-oriented aromatic diamine and a para-oriented aromatic dicarboxylic acid halide, and the amide bond is in the para position of the aromatic ring or an oriented position equivalent thereto (for example, 4,4′- It consists essentially of repeating units bonded at opposite orientations, such as biphenylene, 1,5-naphthalene, 2,6-naphthalene, etc., oriented in the opposite direction coaxially or in parallel. As para-aramid, para-aramid having a para-orientation type or a structure according to para-orientation type, specifically, poly (paraphenylene terephthalamide), poly (parabenzamide), poly (4,4′-benzanilide terephthalamide) , Poly (paraphenylene-4,4′-biphenylenedicarboxylic amide), poly (paraphenylene-2,6-naphthalenedicarboxylic acid amide), poly (2-chloro-paraphenylene terephthalamide), paraphenylene terephthalamide / 2 , 6-dichloroparaphenylene terephthalamide copolymer and the like.
上記芳香族ポリイミドとしては、芳香族の二酸無水物とジアミンの縮重合で製造される全芳香族ポリイミドが好ましい。二酸無水物の具体例としては、ピロメリット酸二無水物、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、2,2’−ビス(3,4―ジカルボキシフェニル)ヘキサフルオロプロパン、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物などがあげられる。ジアミンとしては、オキシジアニリン、パラフェニレンジアミン、ベンゾフェノンジアミン、3,3’−メチレンジアニリン、3,3’−ジアミノベンソフェノン、3,3’−ジアミノジフェニルスルフォン、1,5’−ナフタレンジアミンなどがあげられる。また、溶媒に可溶なポリイミドが好適に使用できる。このようなポリイミドとしては、例えば、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物と、芳香族ジアミンとの重縮合物のポリイミドが挙げられる。 The aromatic polyimide is preferably a wholly aromatic polyimide produced by condensation polymerization of an aromatic dianhydride and a diamine. Specific examples of the dianhydride include pyromellitic dianhydride, 3,3 ′, 4,4′-diphenylsulfone tetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic acid And dianhydrides, 2,2′-bis (3,4-dicarboxyphenyl) hexafluoropropane, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, and the like. Examples of the diamine include oxydianiline, paraphenylenediamine, benzophenonediamine, 3,3′-methylenedianiline, 3,3′-diaminobenzophenone, 3,3′-diaminodiphenylsulfone, 1,5′-naphthalenediamine Etc. Moreover, a polyimide soluble in a solvent can be preferably used. An example of such a polyimide is a polycondensate polyimide of 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride and an aromatic diamine.
上記芳香族ポリアミドイミドとしては、芳香族ジカルボン酸および芳香族ジイソシアネートを用いてこれらの縮合重合から得られるもの、芳香族二酸無水物および芳香族ジイソシアネートを用いてこれらの縮合重合から得られるものが挙げられる。芳香族ジカルボン酸の具体例としてはイソフタル酸、テレフタル酸などが挙げられる。また芳香族二酸無水物の具体例としては、無水トリメリット酸などが挙げられる。芳香族ジイソシアネートの具体例としては、4,4’−ジフェニルメタンジイソシアネート、2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート、オルソトリランジイソシアネート、m−キシレンジイソシアネートなどが挙げられる。 Examples of the aromatic polyamideimide include those obtained from condensation polymerization using aromatic dicarboxylic acid and aromatic diisocyanate, and those obtained from condensation polymerization using aromatic diacid anhydride and aromatic diisocyanate. Can be mentioned. Specific examples of the aromatic dicarboxylic acid include isophthalic acid and terephthalic acid. Specific examples of the aromatic dianhydride include trimellitic anhydride. Specific examples of the aromatic diisocyanate include 4,4'-diphenylmethane diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, orthotolylane diisocyanate, m-xylene diisocyanate, and the like.
耐熱多孔層が、耐熱樹脂を含有する場合には、耐熱多孔層は、1種以上のフィラーを含有していてもよい。耐熱多孔層に含有されていてもよいフィラーは、有機粉末、無機粉末またはこれらの混合物のいずれから選ばれるものであってよい。フィラーを構成する粒子は、その平均粒子径が、0.01μm以上1μm以下であることが好ましい。フィラーの形状としては、略球状、板状、柱状、針状、ウィスカー状、繊維状等が挙げられ、いずれの粒子も用いることができるが、均一な孔を形成しやすいことから、略球状粒子であることが好ましい。略球状粒子としては、粒子のアスペクト比(粒子の長径/粒子の短径)が1以上1.5以下の範囲の値である粒子が挙げられる。粒子のアスペクト比は、電子顕微鏡写真により測定することができる。 When the heat resistant porous layer contains a heat resistant resin, the heat resistant porous layer may contain one or more fillers. The filler that may be contained in the heat-resistant porous layer may be selected from any of organic powder, inorganic powder, or a mixture thereof. The particles constituting the filler preferably have an average particle size of 0.01 μm or more and 1 μm or less. Examples of the shape of the filler include a substantially spherical shape, a plate shape, a columnar shape, a needle shape, a whisker shape, a fiber shape, and the like, and any particle can be used. It is preferable that Examples of the substantially spherical particles include particles having a particle aspect ratio (particle major axis / particle minor axis) in the range of 1 to 1.5. The aspect ratio of the particles can be measured by an electron micrograph.
フィラーとしての有機粉末としては、例えば、スチレン、ビニルケトン、アクリロニトリル、メタクリル酸メチル、メタクリル酸エチル、グリシジルメタクリレート、グリシジルアクリレート、アクリル酸メチル等の単独あるいは2種類以上の共重合体;ポリテトラフルオロエチレン、4フッ化エチレン−6フッ化プロピレン共重合体、4フッ化エチレン−エチレン共重合体、ポリビニリデンフルオライド等のフッ素系樹脂;メラミン樹脂;尿素樹脂;ポリオレフィン;ポリメタクリレート等の有機物からなる粉末が挙げられる。有機粉末は、単独で用いてもよいし、2種以上を混合して用いることもできる。これらの有機粉末の中でも、化学的安定性の点で、ポリテトラフルオロエチレン粉末が好ましい。 Examples of the organic powder as the filler include, for example, styrene, vinyl ketone, acrylonitrile, methyl methacrylate, ethyl methacrylate, glycidyl methacrylate, glycidyl acrylate, methyl acrylate, and the like, or two or more kinds of copolymers; polytetrafluoroethylene, Fluororesin such as tetrafluoroethylene-6 fluorinated propylene copolymer, tetrafluoroethylene-ethylene copolymer, polyvinylidene fluoride, etc .; melamine resin; urea resin; polyolefin; powder made of organic matter such as polymethacrylate Can be mentioned. An organic powder may be used independently and can also be used in mixture of 2 or more types. Among these organic powders, polytetrafluoroethylene powder is preferable from the viewpoint of chemical stability.
フィラーとしての無機粉末としては、例えば、金属酸化物、金属窒化物、金属炭化物、金属水酸化物、炭酸塩、硫酸塩等の無機物からなる粉末が挙げられ、これらの中でも、導電性の低い無機物からなる粉末が好ましく用いられる。具体的に例示すると、アルミナ、シリカ、二酸化チタン、硫酸バリウムまたは炭酸カルシウム等からなる粉末が挙げられる。無機粉末は、単独で用いてもよいし、2種以上を混合して用いることもできる。これらの無機粉末の中でも、化学的安定性の点で、アルミナ粉末が好ましい。フィラーを構成する粒子のすべてがアルミナ粒子であることがより好ましく、フィラーを構成する粒子のすべてがアルミナ粒子であり、かつその一部または全部が略球状のアルミナ粒子であることがさらにより好ましい。因みに、耐熱多孔層が、無機粉末から形成される場合には、上記例示の無機粉末を用いればよく、必要に応じてバインダーと混ぜて用いればよい。 Examples of the inorganic powder as the filler include powders made of inorganic materials such as metal oxides, metal nitrides, metal carbides, metal hydroxides, carbonates, sulfates, etc. Among these, inorganic materials having low conductivity The powder consisting of is preferably used. Specific examples include powders made of alumina, silica, titanium dioxide, barium sulfate, calcium carbonate, or the like. An inorganic powder may be used independently and can also be used in mixture of 2 or more types. Among these inorganic powders, alumina powder is preferable from the viewpoint of chemical stability. It is more preferable that all of the particles constituting the filler are alumina particles, and it is even more preferable that all of the particles constituting the filler are alumina particles, and part or all of them are substantially spherical alumina particles. Incidentally, when the heat-resistant porous layer is formed from an inorganic powder, the inorganic powder exemplified above may be used, and may be mixed with a binder as necessary.
耐熱多孔層が耐熱樹脂を含有する場合におけるフィラーの含有量は、フィラーの材質の比重にもよるが、例えば、フィラーを構成する粒子のすべてがアルミナ粒子である場合には、耐熱多孔層の総重量を100としたとき、フィラーの重量は、通常5以上95以下であり、好ましくは20以上95以下、より好ましくは30以上90以下である。これらの範囲は、フィラーの材質の比重に依存して適宜設定できる。 When the heat-resistant porous layer contains a heat-resistant resin, the filler content depends on the specific gravity of the filler material. For example, when all of the particles constituting the filler are alumina particles, the total amount of the heat-resistant porous layer is When the weight is 100, the weight of the filler is usually 5 or more and 95 or less, preferably 20 or more and 95 or less, more preferably 30 or more and 90 or less. These ranges can be appropriately set depending on the specific gravity of the filler material.
積層フィルムにおいて、多孔質フィルムは、微細孔を有し、シャットダウンすることが好ましい。この場合、多孔質フィルムは、熱可塑性樹脂を含有する。この多孔質フィルムの厚みは、通常、3〜30μmであり、さらに好ましくは3〜25μmである。多孔質フィルムは、上記耐熱多孔層と同様に、微細孔を有し、その孔のサイズは通常3μm以下、好ましくは1μm以下である。多孔質フィルムの空孔率は、通常30〜80体積%、好ましくは40〜70体積%である。ナトリウム二次電池において、通常の使用温度を越えた場合には、多孔質フィルムは、それを構成する熱可塑性樹脂の軟化により、微細孔を閉塞することができる。 In the laminated film, the porous film preferably has micropores and is preferably shut down. In this case, the porous film contains a thermoplastic resin. The thickness of this porous film is usually 3 to 30 μm, more preferably 3 to 25 μm. Similar to the heat resistant porous layer, the porous film has fine pores, and the pore size is usually 3 μm or less, preferably 1 μm or less. The porosity of the porous film is usually 30 to 80% by volume, preferably 40 to 70% by volume. In the sodium secondary battery, when the normal use temperature is exceeded, the porous film can close the micropores by softening the thermoplastic resin constituting the porous film.
多孔質フィルムに含有される熱可塑性樹脂としては、80〜180℃で軟化するものを挙げることができ、非水電解液を用いる場合には、これに溶解しないものを選択すればよい。具体的には、熱可塑性樹脂としては、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂、熱可塑性ポリウレタン樹脂を挙げることができ、これらの2種以上の混合物を用いてもよい。より低温で軟化してシャットダウンさせるためには、熱可塑性樹脂としては、ポリエチレンを含有することが好ましい。ポリエチレンとしては、具体的には、低密度ポリエチレン、高密度ポリエチレン、線状ポリエチレン等のポリエチレンを挙げることができ、分子量が100万以上の超高分子量ポリエチレンを挙げることもできる。多孔質フィルムの突刺し強度をより高めるためには、熱可塑性樹脂は、少なくとも超高分子量ポリエチレンを含有することが好ましい。また、多孔質フィルムの製造面において、熱可塑性樹脂は、低分子量(重量平均分子量1万以下)のポリオレフィンからなるワックスを含有することが好ましい場合もある。 Examples of the thermoplastic resin contained in the porous film include those that soften at 80 to 180 ° C. When a non-aqueous electrolyte is used, a resin that does not dissolve therein may be selected. Specifically, examples of the thermoplastic resin include polyolefin resins such as polyethylene and polypropylene, and thermoplastic polyurethane resins, and a mixture of two or more of these may be used. In order to soften and shut down at a lower temperature, the thermoplastic resin preferably contains polyethylene. Specific examples of polyethylene include polyethylene such as low density polyethylene, high density polyethylene, and linear polyethylene, and ultra high molecular weight polyethylene having a molecular weight of 1,000,000 or more. In order to further increase the puncture strength of the porous film, the thermoplastic resin preferably contains at least ultra high molecular weight polyethylene. In addition, in terms of production of the porous film, the thermoplastic resin may preferably contain a wax made of polyolefin having a low molecular weight (weight average molecular weight of 10,000 or less).
また、上記積層フィルムとは異なる耐熱材料を有する多孔質フィルムとしては、耐熱樹脂および/または無機粉末からなる多孔質フィルムや、耐熱樹脂および/または無機粉末が、ポリオレフィン樹脂や熱可塑性ポリウレタン樹脂等の熱可塑性樹脂フィルムに分散した多孔質フィルムを挙げることもできる。ここで、耐熱樹脂、無機粉末としては、上述のものを挙げることができる。 The porous film having a heat resistant material different from the laminated film includes a porous film made of a heat resistant resin and / or an inorganic powder, and a heat resistant resin and / or an inorganic powder such as a polyolefin resin or a thermoplastic polyurethane resin. A porous film dispersed in a thermoplastic resin film can also be exemplified. Here, the above-mentioned thing can be mentioned as a heat resistant resin and inorganic powder.
(5)電池ケース
電池ケースは、従来公知のあらゆるものでよく、必要な機械的強度と重量を考慮に入れて用途に応じて決定される。例えば、有底円筒形、有底角筒形のスチール缶やアルミニウム缶などの外装缶型や、金属ラミネート樹脂フィルムで構成されたフィルムケース型などを挙げられる。
(5) Battery Case The battery case may be any conventionally known battery case, and is determined according to the intended use in consideration of necessary mechanical strength and weight. For example, an outer can type such as a bottomed cylindrical shape or a bottomed rectangular tube shaped steel can or an aluminum can, or a film case type formed of a metal laminated resin film can be used.
なお、フィルムケース型電池ケースで使用される金属ラミネート樹脂フィルムにおける金属層は、外気の透過を抑制することで該フィルムに気密性を持たせることができるものであればよく、アルミニウム、チタンやこれらを含む合金などを材料とするが、特にアルミニウムが好ましい。フィルムの樹脂層としては、適度な柔軟性と強度を有するものであればよく、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレートなどの熱可塑性樹脂を好適に使用することができる。また、金属ラミネート樹脂フィルムの金属層および樹脂層は、1層でもよく複層でもよい。 In addition, the metal layer in the metal laminate resin film used in the film case type battery case may be any one that can impart airtightness to the film by suppressing the permeation of outside air, such as aluminum, titanium, and the like. An alloy containing, for example, is used as the material, and aluminum is particularly preferable. The resin layer of the film is not particularly limited as long as it has appropriate flexibility and strength, and a thermoplastic resin such as polyethylene, polypropylene, and polyethylene terephthalate can be suitably used. Further, the metal layer and the resin layer of the metal laminated resin film may be one layer or multiple layers.
次に本発明のナトリウム二次電池の製造方法における具体的な手順を説明する。 Next, the specific procedure in the manufacturing method of the sodium secondary battery of this invention is demonstrated.
電極群の組立手順としては、上述の正極、負極、およびセパレータを、積層する方法、または積層、巻回する方法が挙げられる。電極群の形状としては、電極群の断面(積層、巻回の場合は、巻回の軸と垂直方向に切断したときの断面)が、例えば、円、楕円、長方形、角がとれたような長方形等となるような形状が挙げられる。 As a procedure for assembling the electrode group, a method of laminating the above-described positive electrode, negative electrode, and separator, or a method of laminating and winding are mentioned. As the shape of the electrode group, the cross section of the electrode group (in the case of stacking and winding, the cross section when cut in the direction perpendicular to the winding axis) is, for example, a circle, an ellipse, a rectangle, or a corner. Examples of the shape include a rectangle.
得られた電極群を、電池ケース内に収容し、電解液が注液された後に電池ケースを封口することで、ナトリウム二次電池を製造することができる。なお、電池の形状としては、特に制限はなく、例えば、ペーパー型、コイン型、円筒型、角型などの形状を挙げることができる。 The obtained electrode group is housed in a battery case, and after the electrolyte solution is injected, the battery case is sealed to manufacture a sodium secondary battery. The shape of the battery is not particularly limited, and examples thereof include a paper shape, a coin shape, a cylindrical shape, and a square shape.
本発明の製造方法における特徴の一つは、電解液の注液を、2回以上に分割して行うことにある。詳細な理由は現時点では不明だが、電解液の注液を、1回で行わずに2回以上に分割して行うことにより、放電容量、サイクル特性の向上を実現することができる。 One of the features of the production method of the present invention is that the electrolytic solution is divided into two or more times. Although the detailed reason is unknown at present, the discharge capacity and the cycle characteristics can be improved by dividing the electrolyte solution into two or more times instead of once.
なお、「電解液の注液」は、電池ケースに電極群が収容されたのちに行われるのみならず、電極群組立前に電極群の構成要素(正極、負極およびセパレータ)に対して行ってもよい。但し、電池ケースに電極群が収容されたのちに少なくとも1回の注液が行われる。
電極群組立前における、電極群の構成要素への注液の方法としては、例えば、各電極群の構成要素を電解液中に含浸する方法や、電極群の構成要素に対して、電解液をスポイトなどで滴下して行う方法などが挙げられる。
ここで、電極群組み立て前の電極および/またはセパレータに対して注液を行うことで、(1)高粘度電解質成分を含有する電解液を注液する場合であっても、適当な溶剤によって希釈して注液したあと溶剤を揮発させるという工程を採用でき、電解液における電解質濃度を高めやすい、(2)各電極における好ましい電解質をそれぞれ選択して注液できる、(3)電極に予めナトリウムイオンを予備ドープしたり、電極を予め表面処理するなど、別の工程の併用が可能となる、などの利点がある。
The “electrolyte injection” is performed not only after the electrode group is accommodated in the battery case, but also on the components of the electrode group (positive electrode, negative electrode, and separator) before assembly of the electrode group. May be. However, the liquid injection is performed at least once after the electrode group is accommodated in the battery case.
Examples of the method for injecting the components of the electrode group before assembling the electrode group include, for example, a method of impregnating the components of each electrode group in the electrolyte solution, and an electrolyte solution for the components of the electrode group The method of dropping by using a dropper or the like.
Here, by injecting the electrode and / or the separator before assembling the electrode group, (1) Even when injecting an electrolyte containing a high-viscosity electrolyte component, it is diluted with an appropriate solvent. Then, the process of volatilizing the solvent after injecting can be adopted, and it is easy to increase the electrolyte concentration in the electrolyte. (2) It is possible to select and inject a preferable electrolyte in each electrode. There is an advantage that it can be used in combination with another process such as pre-doping or surface treatment of the electrode in advance.
本発明の製造方法において、初回の注液に用いる電解液の粘度が、2回目以降の注液に用いる電解液の粘度よりも低いことが望ましい。
このようにすることで、電極が有する細孔内において、電解液と空気等とを置換しやすく、電解液を細孔内に十分に行き渡らせることができ、また、そのために要する時間を短縮するとともに、得られる電池において何らかの作用による充放電阻害要因の発生を予め排除できるという利点がある。
In the production method of the present invention, it is desirable that the viscosity of the electrolyte used for the first injection is lower than the viscosity of the electrolyte used for the second and subsequent injections.
By doing so, it is easy to replace the electrolyte solution with air or the like in the pores of the electrode, and the electrolyte solution can be sufficiently distributed in the pores, and the time required for that is shortened. In addition, there is an advantage that the occurrence of charge / discharge inhibition factors due to some action can be eliminated in advance in the obtained battery.
初回の注液に好適な電解液としては、電解液を構成する成分のなかで、比較的低粘度電解質成分を多く含むものであることが好ましく、電解質濃度がより低濃度のものが好ましい。 The electrolyte solution suitable for the first injection is preferably one containing a relatively low viscosity electrolyte component among the components constituting the electrolyte solution, and preferably one having a lower electrolyte concentration.
本発明の製造方法において、初回の注液に用いる電解液の電解質濃度が、2回目以降の注液に用いる電解液の電解質濃度より低いことが望ましい。
このようにすることで、電解液が、電極が有する細孔に浸透しやすく、また、得られる電池において、電極全体にわたって電気化学反応の均一性が確保されやすい傾向となり、また、何らかの複合的作用により充放電阻害要因が生起する場合であっても、これを緩和する一助となる場合がある。
電解質としては、特に限定はなく、上述の電解質のいずれを使用してもよい。
電解液における電解質の濃度としては、初回の電解液の電解質濃度を1としたとき、2回目以降の電解液の電解質濃度は、1.1以上3以下程度であることが好ましい。
In the production method of the present invention, it is desirable that the electrolyte concentration of the electrolyte solution used for the first injection is lower than the electrolyte concentration of the electrolyte solution used for the second and subsequent injections.
By doing so, the electrolyte tends to penetrate into the pores of the electrode, and in the obtained battery, the uniformity of the electrochemical reaction tends to be ensured over the entire electrode, and some complex action is caused. Even if a charging / discharging inhibiting factor occurs due to this, it may help to alleviate this.
The electrolyte is not particularly limited, and any of the above-described electrolytes may be used.
As the concentration of the electrolyte in the electrolytic solution, when the electrolytic concentration of the first electrolytic solution is 1, the electrolytic concentration of the second and subsequent electrolytic solutions is preferably about 1.1 or more and 3 or less.
また、本発明の製造方法において、電極群と電解液とを電池ケースに収容した後に、充電を行ってもよい。
なお、少なくとも初回の注液に用いる電解液が、充電により電極表面に被膜を形成する成分を含むと、電極表面に保護被膜が形成され、これにより電解液の分解を抑制し、何らかの複合的作用による充放電阻害要因の発生を抑制でき、保存、サイクル劣化特性が改善されるので、好ましい。皮膜を形成する成分としては、エチレンカーボネート、スルホニウム化合物、ビニレンカーボネート、スルトン類などが挙げられ、例えば、これら1種以上を10重量%程度以下含有する電解液を用いることができる。
Moreover, in the manufacturing method of this invention, you may charge, after accommodating an electrode group and electrolyte solution in a battery case.
If the electrolyte used for at least the first injection contains a component that forms a film on the electrode surface by charging, a protective film is formed on the electrode surface, thereby suppressing the decomposition of the electrolyte solution, and some complex action This is preferable because the occurrence of charging / discharging inhibiting factors due to the above can be suppressed, and the storage and cycle deterioration characteristics are improved. Examples of the component that forms the film include ethylene carbonate, sulfonium compound, vinylene carbonate, sultone, and the like. For example, an electrolytic solution containing at least 10% by weight of one or more of these can be used.
また、正極および負極のうち少なくとも一方の電極が、ナトリウム金属と電気的に接続されてナトリウムイオンが予備ドープされていることが好ましい。電極がナトリウム金属と電気的に接続されて、ナトリウムイオンが予備ドープされることにより不可逆容量に相当するナトリウム成分が補給され、充放電反応に寄与する有効なナトリウム成分が増加し、得られるナトリウム二次電池の容量を増やすことができるので好ましい。また、通常、ナトリウム金属から、電極にナトリウムイオンが予備ドープされるに従い、ナトリウム金属は消失していく。ナトリウムイオンの予備ドープがなされた電極には、ナトリウムがイオン状態または金属状態で保持されている。 Moreover, it is preferable that at least one of the positive electrode and the negative electrode is electrically connected to sodium metal and pre-doped with sodium ions. When the electrode is electrically connected to sodium metal and sodium ions are pre-doped, the sodium component corresponding to the irreversible capacity is replenished, the effective sodium component contributing to the charge / discharge reaction is increased, and the obtained sodium This is preferable because the capacity of the secondary battery can be increased. Also, sodium metal usually disappears from sodium metal as sodium ions are pre-doped on the electrode. The electrode pre-doped with sodium ions holds sodium in an ionic or metallic state.
また、電極群組み立て前の少なくとも一方の電極(好適には負極)を電解液に浸漬することにより初回の注液を行い、前記少なくとも一方の電極(好適には負極)と、ナトリウム金属とを電気的に接続し、ナトリウム金属を対極として外部電圧を印加することにより、前記電極にナトリウムイオンのドープを行い、電極群を組み立て、電池ケースに収容した後に、2回目以降の注液を行うことが望ましい。 In addition, at least one electrode (preferably a negative electrode) before assembly of the electrode group is immersed in an electrolytic solution to perform an initial injection, and the at least one electrode (preferably a negative electrode) and sodium metal are electrically connected. By connecting externally with sodium metal as a counter electrode, doping the electrodes with sodium ions, assembling the electrode group and storing it in the battery case, the second and subsequent injections may be performed. desirable.
また、注液と注液の間に充電が行ったり、いずれかの注液後に、30〜70℃においてエージングを行ったりすることにより、電解液と電極とを馴染ませ、電極と電解液との接触界面を安定化させ、何らかの複合的作用による充放電阻害要因の発生を抑制することが可能である。 In addition, charging is performed between injections, or aging is performed at 30 to 70 ° C. after any of the injections, so that the electrolyte and the electrode are mixed together. It is possible to stabilize the contact interface and suppress the occurrence of charge / discharge inhibiting factors due to some complex action.
さらに、充電後に、少なくとも1回の放電を行うことが効果的である。放電を行うことにより、何らかの複合的作用による充放電阻害要因の発生を抑制することが可能である。 Furthermore, it is effective to perform at least one discharge after charging. By performing the discharge, it is possible to suppress the occurrence of charge / discharge inhibition factors due to some complex action.
また、電極群が電池ケースに収容された後、電池ケースが封口される前までに、1回以上の雰囲気ガス加圧および/または減圧が行うことは好適であり、この雰囲気ガス加圧および/または減圧は、充放電反応を阻害する初期生成物を除去する効果があり、このことは、特にナトリウム二次電池における電池特性低下の抑制に、極めて有効である。
また、減圧することによって、正極、負極およびセパレータが有する微細な隙間や細孔に含まれるガスを除去することができ、該隙間や細孔への電解液の浸透を促進することができる。一方、雰囲気ガス加圧することによっても、前記正極、負極およびセパレータが有する微細な隙間や細孔への電解液の浸透を促進することができる。特に雰囲気ガス加圧と減圧を交互に行うことにより、微細な隙間や細孔への電解液の浸透をより均一に行い、電池内の電解質分散性を向上させることができ、より効果的である。
雰囲気ガス加圧および/または減圧する方法として具体的には、組み立て中の電池を耐圧容器に入れ、容器内部を雰囲気ガスで置換した後に、真空ポンプで減圧する方法、高圧ボンベから減圧弁を通して雰囲気ガスを導入して加圧する方法が挙げられる。
雰囲気ガスとしては、不活性ガスである窒素、ヘリウム、アルゴンが通常使用される。
In addition, after the electrode group is accommodated in the battery case, it is preferable to perform atmospheric gas pressurization and / or pressure reduction at least once before the battery case is sealed. Alternatively, the reduced pressure has an effect of removing an initial product that inhibits the charge / discharge reaction, which is extremely effective for suppressing deterioration of battery characteristics particularly in a sodium secondary battery.
Further, by reducing the pressure, gas contained in fine gaps and pores of the positive electrode, the negative electrode, and the separator can be removed, and penetration of the electrolytic solution into the gaps and pores can be promoted. On the other hand, also by pressurizing the atmospheric gas, it is possible to promote the penetration of the electrolytic solution into the fine gaps and pores of the positive electrode, the negative electrode, and the separator. In particular, by alternately performing atmospheric gas pressurization and pressure reduction, the electrolyte solution can be more uniformly penetrated into fine gaps and pores, and the electrolyte dispersibility in the battery can be improved, which is more effective. .
Specifically, the atmospheric gas can be pressurized and / or decompressed by placing the assembled battery in a pressure-resistant container, replacing the inside of the container with the atmospheric gas, and then depressurizing with a vacuum pump. The method of introducing and pressurizing gas is mentioned.
As the atmospheric gas, inert gases such as nitrogen, helium, and argon are usually used.
以上説明した本発明の製造方法によって製造されたナトリウム二次電池は、放電容量が大きく、かつサイクル特性に優れるナトリウム二次電池となる。 The sodium secondary battery manufactured by the manufacturing method of the present invention described above is a sodium secondary battery having a large discharge capacity and excellent cycle characteristics.
以下、実施例により本発明を更に詳細に説明するが、本発明は、これら実施例に限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples.
(1−1)正極活物質の作製
アルゴン雰囲気のグローブボックス内で、Na2O2(Fluka Chemie AG 製)とFe3O4(Aldrich Chemical Company,Inc.製)をNaとFeがNaFeO2の化学量論比となるように秤取した後、メノウ乳鉢でよく混合した。得られた混合物をアルミナ製ルツボにいれ、あらかじめ真空ポンプで雰囲気を排気した後にアルゴンを導入して置換した電気炉に入れて、炉内の雰囲気をアルゴンにして昇温を開始した。100℃に達する直前に電気炉内を空気中に開放し、その後は空気雰囲気で加熱を行い、650℃で12時間保持し、取り出して、正極活物質であるナトリウム無機化合物(MC1)を得た。
(1-1) Production of Positive Electrode Active Material In a glove box in an argon atmosphere, Na 2 O 2 (manufactured by Fluka Chemie AG) and Fe 3 O 4 (manufactured by Aldrich Chemical Company, Inc.) were mixed with NaFe and NaFeO 2 . After weighing to a stoichiometric ratio, the mixture was mixed well in an agate mortar. The obtained mixture was put in an alumina crucible, and the atmosphere was evacuated with a vacuum pump in advance, and then placed in an electric furnace where argon was introduced and replaced. Immediately before reaching 100 ° C., the electric furnace was opened to the air, and thereafter heated in an air atmosphere, held at 650 ° C. for 12 hours, and taken out to obtain a sodium inorganic compound (MC1) as a positive electrode active material. .
(1−2)正極の作製
正極活物質としてのMC1と、アセチレンブラックと、ポリフッ化ビニリデンとを85:10:5の比率で混合したものに、更にN−メチルピロリドンを適量加え混合し、塗料状スラリーを得た。厚さ20μmのアルミ箔の一部にマスキングテープを貼り、表面にドクターブレードにて前記スラリーを塗布したのちに乾燥して塗膜を形成した。次に反対側の面にも同様に塗膜を形成後、ロールプレスを施し、幅約50mm、長さ約300mm、厚さ約180μmの電極(正極)を作製し、正極とした。続いて、集電体用として厚さ50μm、幅5mmのアルミリード板を、マスキングテープを剥がした電極(正極)の一端に、超音波溶接により接続した。
(1-2) Preparation of positive electrode MC1 as a positive electrode active material, acetylene black, and polyvinylidene fluoride were mixed at a ratio of 85: 10: 5, and an appropriate amount of N-methylpyrrolidone was further added and mixed. A slurry was obtained. A masking tape was applied to a part of an aluminum foil having a thickness of 20 μm, and the slurry was applied to the surface with a doctor blade, followed by drying to form a coating film. Next, after a coating film was similarly formed on the opposite surface, a roll press was applied to produce an electrode (positive electrode) having a width of about 50 mm, a length of about 300 mm, and a thickness of about 180 μm. Subsequently, an aluminum lead plate having a thickness of 50 μm and a width of 5 mm for the current collector was connected to one end of the electrode (positive electrode) from which the masking tape was peeled off by ultrasonic welding.
(2−1)負極活物質の作製
フェノール樹脂(粉末状フェノール樹脂、商品名、スミライトレジン、PR−217)粉末をアルミナボートにのせ、環状炉内に設置し、アルゴンガス雰囲気中、1000℃で保持して、フェノール樹脂粉末を炭化した。炉内において、アルゴンガス流量はフェノール樹脂粉末1gあたり0.1L/分とし、室温から1000℃までの昇温速度を約5℃/分、1000℃での保持時間を1時間とした。炭化後、ボールミル(メノウ製ボール、28rpm、5分間)で粉砕して、負極活物質である炭素材料(MA1)を得た。平均粒径は50μm以下であった。平均粒径は、炭素材料を中性洗剤含有水溶液で分散させ、レーザー回折式粒度分布測定装置SALD2000J(登録商標、島津製作所製)を用いて測定された体積平均粒径として測定した。
(2-1) Preparation of negative electrode active material Phenol resin (powdered phenol resin, trade name, Sumilite resin, PR-217) powder was placed on an alumina boat, placed in an annular furnace, and 1000 ° C. in an argon gas atmosphere. And the phenolic resin powder was carbonized. In the furnace, the argon gas flow rate was 0.1 L / min per 1 g of the phenol resin powder, the temperature rising rate from room temperature to 1000 ° C. was about 5 ° C./min, and the holding time at 1000 ° C. was 1 hour. After carbonization, the carbon material (MA1) which is a negative electrode active material was obtained by pulverizing with a ball mill (agate ball, 28 rpm, 5 minutes). The average particle size was 50 μm or less. The average particle size was measured as a volume average particle size measured using a laser diffraction particle size distribution analyzer SALD2000J (registered trademark, manufactured by Shimadzu Corporation) after dispersing the carbon material with a neutral detergent-containing aqueous solution.
(2−2)負極の作製
負極活物質としてのMA1と、ポリフッ化ビニリデンとを95:5の比率で混合したものに、N−メチルピロリドンを適量加え混合し、塗料状スラリーを得た。厚さ10μmの銅箔の一部にマスキングテープを貼り、表面にドクターブレードにて前記スラリーを塗布したのちに乾燥して塗膜を形成した。次に反対側の面にも同様に塗膜を形成後、ロールプレスを施し、幅約55mm、長さ約330mm、厚さ約230μmの電極を作製し、負極とした。続いて、集電体用として厚さ30μm、幅5mmのニッケルリード板を、マスキングテープを剥がした電極(負極)の一端に、抵抗溶接により接続した。
(2-2) Production of negative electrode An appropriate amount of N-methylpyrrolidone was added to and mixed with MA1 as a negative electrode active material and polyvinylidene fluoride mixed at a ratio of 95: 5 to obtain a paint-like slurry. A masking tape was applied to a part of a copper foil having a thickness of 10 μm, and the slurry was applied to the surface with a doctor blade, followed by drying to form a coating film. Next, after forming a coating film on the opposite surface in the same manner, a roll press was applied to produce an electrode having a width of about 55 mm, a length of about 330 mm, and a thickness of about 230 μm, which was used as a negative electrode. Subsequently, a nickel lead plate having a thickness of 30 μm and a width of 5 mm for the current collector was connected to one end of the electrode (negative electrode) from which the masking tape was peeled off by resistance welding.
(3)電池の作製
ここで、ナトリウム二次電池の基本的な電池作製手順を示す(以降、作製手順[1]〜[10]と称す。)。
[1]ドライボックス中に、真空乾燥機にて110℃で乾燥を行った上記正極および上記負極を用意した。
[2]ドライボックス中に、真空乾燥機にて60℃で乾燥を行った、幅約60mm、厚さ約20μmのポリオレフィン製微多孔膜セパレータを用意した。
[3]前記ドライボックス中において、前記セパレータを前記正極と負極の間でショートが発生しないように、該セパレータの幅方向の両端が電極端からほぼ均等に出るようにして、該正負電極ではさんで積層し、巻回機を用いて、巻き断面長円形状に巻いて、高さ約60mm、幅約55mm、厚さ約3mmの電極群を得た。
[4]次に、アルミ箔の両面にポリオレフィン製フィルムが接着された90mm角のラミネートフィルムを2枚用意し重ね、3辺について変性ポリエチレンシートを挟んで熱溶着して袋状に成形し、ラミネート容器を得て、真空乾燥機中、60℃で乾燥を行った。
[5]乾燥後ラミネート容器を前記ドライボックスに移動し、ラミネート容器に前記電極群を挿入した。
[6]次に過塩素酸ナトリウム(電解質)を有機溶媒であるプロピレンカーボネート溶媒中に溶解し、1モル/Lの非水電解液を得た。
[7]該電解液の一部をラミネート容器内に注液し、電解液が電極群に吸収されたことを確認した。
[8]クリップにて開口部の仮留めを行った。
[9]仮留めを外し、ラミネート容器内に、電解液の注液を行ったあと、仮留めを行った。
[10]仮留めを外し、減圧チャンバー内で開口部を熱溶着することによって封口を行い、電池を得た。
(3) Battery Production Here, a basic battery production procedure for a sodium secondary battery is shown (hereinafter referred to as production procedures [1] to [10]).
[1] The positive electrode and the negative electrode dried at 110 ° C. in a vacuum dryer were prepared in a dry box.
[2] A polyolefin microporous membrane separator having a width of about 60 mm and a thickness of about 20 μm, which was dried in a dry box at 60 ° C. in a dry box, was prepared.
[3] In the dry box, the separator is sandwiched between the positive and negative electrodes so that both ends in the width direction of the separator protrude almost evenly from the electrode end so that no short circuit occurs between the positive electrode and the negative electrode. Then, using a winding machine, the wound cross section was wound into an oval shape to obtain an electrode group having a height of about 60 mm, a width of about 55 mm, and a thickness of about 3 mm.
[4] Next, two 90 mm square laminate films with polyolefin films bonded on both sides of an aluminum foil were prepared, stacked and heat-sealed with a modified polyethylene sheet on three sides, and formed into a bag shape. A container was obtained and dried at 60 ° C. in a vacuum dryer.
[5] After drying, the laminate container was moved to the dry box, and the electrode group was inserted into the laminate container.
[6] Next, sodium perchlorate (electrolyte) was dissolved in a propylene carbonate solvent as an organic solvent to obtain a 1 mol / L nonaqueous electrolytic solution.
[7] A part of the electrolytic solution was poured into the laminate container, and it was confirmed that the electrolytic solution was absorbed by the electrode group.
[8] The opening was temporarily fixed with a clip.
[9] The temporary fixing was removed, and after the electrolyte solution was poured into the laminate container, the temporary fixing was performed.
[10] The temporary fixing was removed, and the opening was thermally welded in a vacuum chamber to perform sealing, thereby obtaining a battery.
(実施例1)
作製手順[7]において、電解液5mlを注液し、次いで、作製手順[8]を行い、6時間静置した後、作製手順[9]において電解液5mlの注液を行って、作製手順[10]を行い、実施例1の電池を得た。
Example 1
In the production procedure [7], 5 ml of the electrolytic solution was injected, and then the production procedure [8] was performed. After standing for 6 hours, 5 ml of the electrolytic solution was injected in the production procedure [9]. [10] was performed to obtain the battery of Example 1.
(比較例1)
上記作製手順[7]において、電解液10mlを注入し、作製手順[9]を行わず、[10]を行って比較例1の電池を得た。
(Comparative Example 1)
In the production procedure [7], 10 ml of the electrolytic solution was injected, the production procedure [9] was not performed, and [10] was performed to obtain a battery of Comparative Example 1.
実施例1の電池、比較例1の電池について、初充電として、充電電流5mAで4.0Vまで充電を行った後、20mAで2.0Vまで定電流で放電を行い、放電容量を確認した。試験は25℃および10℃で行った。なお、比較例1については封口後6時間静置した後、試験に供した。結果を表1−1に示す。実施例は比較例に比べ、大幅な容量増加が認められた。
次に充電電流のみを20mAに変えた以外、同様の充放電条件で充放電サイクル試験を行った。100サイクルにおける放電容量維持率を表1−2に示す。実施例は比較例に比べ、大幅なサイクル特性向上が確認できた。なお、放電容量維持率(以下、「容量維持率」と記載する場合もある。)は、以下の式で定義される。
放電容量維持率=(100サイクル目の放電容量)/(1サイクル目の放電容量)
About the battery of Example 1 and the battery of Comparative Example 1, after charging to 4.0 V at a charging current of 5 mA as the initial charge, discharging was performed at a constant current of up to 2.0 V at 20 mA to confirm the discharge capacity. The test was performed at 25 ° C and 10 ° C. In addition, about Comparative Example 1, after leaving still for 6 hours after sealing, it used for the test. The results are shown in Table 1-1. In the example, a significant increase in capacity was observed compared to the comparative example.
Next, a charge / discharge cycle test was performed under the same charge / discharge conditions except that only the charge current was changed to 20 mA. Table 1-2 shows the discharge capacity retention rate in 100 cycles. Compared with the comparative example, the example confirmed a significant improvement in cycle characteristics. Note that the discharge capacity maintenance ratio (hereinafter sometimes referred to as “capacity maintenance ratio”) is defined by the following equation.
Discharge capacity retention ratio = (discharge capacity at the 100th cycle) / (discharge capacity at the first cycle)
(実施例2)
作製手順[6]において、溶媒をプロピレンカーボネート(PC)から、PCとエチルメチルカーボネート(EMC)とからなる混合溶媒(溶媒組成PC:EMC=40:60)にかえたものを用意し、作製手順[7]において電解液5mlを注液し、次いで、作製手順[8]を行い、6時間静置した後、作製手順[9]において、前記溶媒組成をPC:EMC=40:60にかえてPC:EMC=60:40とした電解液5mlの注液を行って、作製手順[10]を行い、実施例2の電池を得た。なお、PC:EMC=40:60の非水電解液の粘度の方が、PC:EMC=60:40の非水電解液の粘度より低くなる。
(Example 2)
In the production procedure [6], the solvent was changed from propylene carbonate (PC) to a mixed solvent consisting of PC and ethyl methyl carbonate (EMC) (solvent composition PC: EMC = 40: 60), and the production procedure was prepared. In [7], 5 ml of the electrolyte solution was injected, and then the preparation procedure [8] was performed, and after standing for 6 hours, in the preparation procedure [9], the solvent composition was changed to PC: EMC = 40: 60. A battery of Example 2 was obtained by injecting 5 ml of an electrolytic solution with PC: EMC = 60: 40 and performing the production procedure [10]. In addition, the viscosity of the non-aqueous electrolyte of PC: EMC = 40: 60 is lower than the viscosity of the non-aqueous electrolyte of PC: EMC = 60: 40.
(比較例2)
作製手順[6]において、溶媒をプロピレンカーボネート(PC)から、PCとエチルメチルカーボネート(EMC)とからなる混合溶媒(溶媒組成PC:EMC=50:50)にかえたものを用意し、上記作製手順[7]において、電解液10mlを注入し、作製手順[9]を行わず、[10]を行って比較例2の電池を得た。
(Comparative Example 2)
In the preparation procedure [6], the solvent is changed from propylene carbonate (PC) to a mixed solvent composed of PC and ethyl methyl carbonate (EMC) (solvent composition PC: EMC = 50: 50), and the above preparation is made. In the procedure [7], 10 ml of the electrolyte solution was injected, and the battery of Comparative Example 2 was obtained by performing [10] without performing the production procedure [9].
実施例2の電池、比較例2の電池について、初充電として、充電電流5mAで4.0Vまで充電を行った後、20mA定電流で2.0Vまで放電を行い、放電容量を確認した。試験は25℃および10℃で行った。結果を表2−1に示す。実施例は比較例に比べ、大幅な容量増加が認められた。
次に充電電流のみを20mAに変えた以外、同様の充放電条件で充放電サイクル試験を行った。100サイクルにおける放電容量維持率を表2−2に示す。
Regarding the battery of Example 2 and the battery of Comparative Example 2, as the initial charge, after charging to 4.0 V at a charging current of 5 mA, the battery was discharged to 2.0 V at a constant current of 20 mA, and the discharge capacity was confirmed. The test was performed at 25 ° C and 10 ° C. The results are shown in Table 2-1. In the example, a significant increase in capacity was observed compared to the comparative example.
Next, a charge / discharge cycle test was performed under the same charge / discharge conditions except that only the charge current was changed to 20 mA. Table 2-2 shows the discharge capacity retention ratio in 100 cycles.
(実施例3)
作製手順[6]において、電解質濃度のみを0.7モル/Lに変えた電解液を用意し、作製手順[7]において前記電解質濃度0.7モル/Lの電解液5mlを注液し、次いで、作製手順[8]を行い、6時間静置した後、作製手順[9]において、前記電解質濃度を0.7モル/Lにかえて1.3モル/Lとした電解液5mlの注液を行って、作製手順[10]を行い、実施例3の電池を得た。
(Example 3)
In the production procedure [6], an electrolyte solution in which only the electrolyte concentration was changed to 0.7 mol / L was prepared, and in the production procedure [7], 5 ml of the electrolyte solution having an electrolyte concentration of 0.7 mol / L was injected, Next, after performing the preparation procedure [8] and allowing to stand for 6 hours, in the preparation procedure [9], the electrolyte concentration was changed from 0.7 mol / L to 1.3 mol / L. The battery was used, and the production procedure [10] was performed to obtain the battery of Example 3.
実施例3の電池について、初充電として、充電電流5mAで4.0Vまで充電を行った後、20mA定電流で2.0Vまで放電を行い、放電容量を確認した。試験は25℃および10℃で行った。表3−1に、実施例3の結果を、比較例1の結果と併せて示す。実施例は比較例に比べ、大幅な容量増加が認められた。
次に充電電流のみを20mAに変えた以外は同じ充放電条件で充放電サイクル試験を行った。100サイクルにおける放電容量維持率を表3−2に示す。
The battery of Example 3 was charged to 4.0 V at a charging current of 5 mA as an initial charge, and then discharged to 2.0 V at a constant current of 20 mA to confirm the discharge capacity. The test was performed at 25 ° C and 10 ° C. Table 3-1 shows the results of Example 3 together with the results of Comparative Example 1. In the example, a significant increase in capacity was observed compared to the comparative example.
Next, a charge / discharge cycle test was performed under the same charge / discharge conditions except that only the charge current was changed to 20 mA. Table 3-2 shows the discharge capacity retention ratio in 100 cycles.
(実施例4)
作製手順[6]において、ビニレンカーボネート(VC)を各1%、2%、6%、10%、16%添加したこと以外は同様にした電解液を5種類用意し、作製手順[7]において、これら電解液のそれぞれを5mlを注液し、作製手順[8]を行ったものを5個用意し、6時間静置した後、作製手順[9]において、それぞれについてビニレンカーボネートを添加していない電解液5mlの注液を行い、作製手順[10]を行い、電池を5個作製した。これらの電池について充電電流5mAの電流で4.0Vまで充電を行った後、20mA定電流で2.0Vまで放電を行い、放電容量を確認した。試験は25℃および10℃で行った。結果を表4−1に比較例1の結果と併せて示す。実施例は比較例に比べ、大幅な容量増加が認められた。VC16%の結果は10%の結果と同等であった。
次に充電電流のみを20mAに変えた以外、同様の充放電条件で充放電サイクル試験を行った。100サイクルにおける放電容量維持率を表4−2に示す。
Example 4
In preparation procedure [6], five types of electrolyte solutions were prepared in the same manner except that vinylene carbonate (VC) was added at 1%, 2%, 6%, 10%, and 16%, respectively. In preparation procedure [7] Then, 5 ml of each of these electrolytes was injected, and 5 pieces prepared according to the preparation procedure [8] were prepared and allowed to stand for 6 hours. Then, in the preparation procedure [9], vinylene carbonate was added to each of them. 5 ml of a non-electrolytic solution was injected, and the production procedure [10] was performed to produce five batteries. These batteries were charged to 4.0 V with a charging current of 5 mA, then discharged to 2.0 V with a 20 mA constant current, and the discharge capacity was confirmed. The test was performed at 25 ° C and 10 ° C. The results are shown in Table 4-1 together with the results of Comparative Example 1. In the example, a significant increase in capacity was observed compared to the comparative example. The result of VC 16% was equivalent to the result of 10%.
Next, a charge / discharge cycle test was performed under the same charge / discharge conditions except that only the charge current was changed to 20 mA. Table 4-2 shows the discharge capacity retention ratio in 100 cycles.
(実施例5)
作製手順[1]および[2]において用意した正極、負極、セパレータを、事前に作製手順[6]による電解液を満たした蓋付密閉容器に入れ、電解液中に浸漬した。浸漬後正極、負極、セパレータを取り出し、手早く作製手順[3]以降を行った。その際、作製手順[7]は省略し、作製手順[8]は必要に応じて実施し、作製手順[9]〔この場合、電解群が電解液にひたるまで注液〕、作製手順[10]を行うことにより、下記の電池A−1、電池A−2、電池A−3、電池B、電池C、電池Dを得た。なお、電池A−1、A−2、A−3、B、Cについては封口後6時間静置した後、試験に供した。また、作製手順において、電池A−1、A−2、A−3、B〜Dは次の要領で作製している。
・電池A−1、A−2、A−3:
実施例1と同様の電解液を用い、A−1は正極のみ、A−2は負極のみ、A−3は正極、負極、セパレータを電解液に浸漬した。作製手順[8]は行わなかった。
・電池B:
実施例2と同様の組成の電解液を用い、実施例2において最初に注液した組成の電解液を用いて、正極、負極、セパレータに浸漬を行った。作製手順[8]は行わなかった。
・電池C:
実施例3と同様の組成の電解液を用い、実施例3において最初に注液した組成の電解液を用いて、正極、負極、セパレータに浸漬を行った。作製手順[8]は行わなかった。
・電池D:
実施例4における、VC10%の電解液を浸漬を用いて、正極、負極、セパレータに浸漬を行った。作製手順[8]を経て、作製手順[9]では実施例4と同様の電解液を使用した。
(Example 5)
The positive electrode, the negative electrode, and the separator prepared in Preparation Procedures [1] and [2] were put in a sealed container with a lid filled with the electrolyte solution according to Preparation Procedure [6] in advance and immersed in the electrolyte solution. After immersion, the positive electrode, the negative electrode, and the separator were taken out, and the production procedure [3] and subsequent steps were performed quickly. At that time, the production procedure [7] is omitted, the production procedure [8] is performed as necessary, and the production procedure [9] [in this case, injection until the electrolytic group is immersed in the electrolytic solution], the production procedure [10 The following battery A-1, battery A-2, battery A-3, battery B, battery C, and battery D were obtained. In addition, about battery A-1, A-2, A-3, B, and C, after leaving still for 6 hours after sealing, it used for the test. In the production procedure, the batteries A-1, A-2, A-3, and B to D are produced in the following manner.
-Battery A-1, A-2, A-3:
The same electrolytic solution as in Example 1 was used. A-1 was only the positive electrode, A-2 was the negative electrode only, A-3 was the positive electrode, the negative electrode, and the separator immersed in the electrolytic solution. The production procedure [8] was not performed.
Battery B:
Using the electrolytic solution having the same composition as that of Example 2, the positive electrode, the negative electrode, and the separator were immersed using the electrolytic solution having the composition first injected in Example 2. The production procedure [8] was not performed.
-Battery C:
Using the electrolytic solution having the same composition as in Example 3, the positive electrode, the negative electrode, and the separator were immersed using the electrolytic solution having the composition first injected in Example 3. The production procedure [8] was not performed.
-Battery D:
The electrolyte solution of VC 10% in Example 4 was immersed in the positive electrode, the negative electrode, and the separator using immersion. Through the production procedure [8], the same electrolytic solution as in Example 4 was used in the production procedure [9].
これらの実施例5の電池について充電電流5mAの電流で4.0Vまで充電を行った後、20mAで2.0Vまで定電流で放電を行い、放電容量を確認した。試験は25℃および10℃で行った。結果を表5−1に比較例1の結果と併せて示す。実施例は比較例に比べ、大幅な容量増加が認められた。
次に充電電流のみを20mAに変えた以外、同様の充放電条件で充放電サイクル試験を行った。100サイクルにおける放電容量維持率を表5−2に示す。実施例は比較例に比べ、大幅なサイクル特性向上が確認できた。
The batteries of Example 5 were charged to 4.0 V at a charging current of 5 mA, and then discharged at a constant current of 20 mA to 2.0 V to confirm the discharge capacity. The test was performed at 25 ° C and 10 ° C. The results are shown in Table 5-1 together with the results of Comparative Example 1. In the example, a significant increase in capacity was observed compared to the comparative example.
Next, a charge / discharge cycle test was performed under the same charge / discharge conditions except that only the charge current was changed to 20 mA. Table 5-2 shows the discharge capacity retention ratio in 100 cycles. Compared with the comparative example, the example confirmed a significant improvement in cycle characteristics.
(実施例6)
作製手順[1]および[2]において用意した正極、負極、セパレータの中で、負極についてのみ事前に作製手順[6]による電解液を蓋付密閉容器に満たした中に浸漬し、ナトリウムを対極として、20mAの電流で0.3Vまで通電を行って、負極について、ナトリウムイオンの予備ドープを行った。なお、この通電では、電源のプラス極をナトリウム金属に、電源のマイナス極を負極に、それぞれ接続を行った。通電終了後、負極を取り出し、手早く手順[3]以降を行った。その際、作製手順[7]および[8]は省略し、作製手順[9]〔この場合、電極群が電解液にひたるまで注液〕、作製手順[10]を行うことにより、電池を作製した。これらの電池について充電電流5mAの電流で4.0Vまで充電を行った後20mAで2.0Vまで定電流で放電を行い、放電容量を確認した。試験は25℃および10℃で行った。結果を表6−1に比較例1の結果と併せて示す。実施例は比較例に比べ、大幅な容量増加が認められた。
次に充電電流のみを20mAに変えた以外、同様の充放電条件で充放電サイクル試験を行った。100サイクルにおける放電容量維持率を表6−2に示す。
(Example 6)
Of the positive electrode, negative electrode, and separator prepared in Preparation Procedures [1] and [2], only the negative electrode was immersed in advance in an electrolytic solution prepared in Preparation Procedure [6] in a sealed container with a lid, and sodium was used as the counter electrode. Then, energization was performed up to 0.3 V at a current of 20 mA, and the negative electrode was pre-doped with sodium ions. In this energization, the positive electrode of the power source was connected to sodium metal, and the negative electrode of the power source was connected to the negative electrode. After the energization was completed, the negative electrode was taken out and the procedure [3] and subsequent steps were performed quickly. At that time, the manufacturing procedures [7] and [8] are omitted, and the battery is manufactured by performing the manufacturing procedure [9] [in this case, injection until the electrode group is immersed in the electrolytic solution] and the manufacturing procedure [10]. did. These batteries were charged to 4.0 V with a charging current of 5 mA and then discharged at a constant current of 20 mA to 2.0 V to confirm the discharge capacity. The test was performed at 25 ° C and 10 ° C. The results are shown in Table 6-1 together with the results of Comparative Example 1. In the example, a significant increase in capacity was observed compared to the comparative example.
Next, a charge / discharge cycle test was performed under the same charge / discharge conditions except that only the charge current was changed to 20 mA. Table 6-2 shows the discharge capacity retention ratio in 100 cycles.
(実施例7)
作製手順[1]において用意した負極の集電体の一端に幅5mm、長さ20mm、厚さ200μmに切り出した金属ナトリウムを圧着した以外は、作製手順に従い電池を作製した。作製手順[7]において、電解液5mlを注液した後、作製手順[8]を行い、6時間静置した後、作製手順[9]において5mlの注液を行い、作製手順[10]を行うことにより、電池を作製した。この電池について、初充電として、充電電流5mAで4.0Vまで充電を行った後、20mAで2.0Vまで定電流で放電を行い、放電容量を確認した。試験は25℃および10℃で行った。結果を表7−1に比較例1の結果と併せて示す。実施例は比較例に比べ、大幅な容量増加が認められた。
次に充電電流のみを20mAに変えた以外、同様の充放電条件で充放電サイクル試験を行った。100サイクルにおける放電容量維持率を表7−2に示す。実施例は比較例に比べ、大幅なサイクル特性向上が確認できた。
(Example 7)
A battery was fabricated according to the fabrication procedure except that metal sodium cut into a width of 5 mm, a length of 20 mm, and a thickness of 200 μm was crimped to one end of the negative electrode current collector prepared in the fabrication procedure [1]. In preparation procedure [7], 5 ml of electrolyte solution was injected, then preparation procedure [8] was performed, and after standing for 6 hours, 5 ml injection was performed in preparation procedure [9], and preparation procedure [10] was performed. By doing so, a battery was produced. About this battery, as a first charge, after charging to 4.0 V at a charging current of 5 mA, discharging was performed at a constant current of up to 2.0 V at 20 mA, and the discharge capacity was confirmed. The test was performed at 25 ° C and 10 ° C. The results are shown in Table 7-1 together with the results of Comparative Example 1. In the example, a significant increase in capacity was observed compared to the comparative example.
Next, a charge / discharge cycle test was performed under the same charge / discharge conditions except that only the charge current was changed to 20 mA. Table 7-2 shows the discharge capacity retention ratio in 100 cycles. Compared with the comparative example, the example confirmed a significant improvement in cycle characteristics.
次に、負極の電極のみに上記と同じナトリウム金属の圧着を行った電極を用いた以外は、実施例2、3、4、5(実施例5については、A−1の電池)と同様の工程にて電池b、電池c、電池d、電池eのそれぞれを作製した。これらの電池について、上記と同様の試験を行った。結果を表7−3、7−4に、比較例1の結果と併せて示す。実施例は比較例に比べ、大幅な容量増加、大幅なサイクル特性向上が認められた。 Next, the same as Example 2, 3, 4, 5 (the battery of A-1 for Example 5) except that the electrode having the same sodium metal pressure bonding as that described above was used for the negative electrode only. Battery b, battery c, battery d, and battery e were produced in the process. These batteries were tested in the same manner as described above. The results are shown in Tables 7-3 and 7-4 together with the results of Comparative Example 1. In the example, a significant increase in capacity and a significant improvement in cycle characteristics were recognized as compared with the comparative example.
(実施例8)
実施例1、3、4、5(実施例5についてはA−3)において、作製手順[8]の後、5mAで5時間充電を行い、それ以外は同様にして、電池8−A、電池8−C、電池8−D、電池8−Eのそれぞれを得た。なお、電池8−Eについては、作製手順[7]において、電極群が電解液にひたるまで注液し、作製手順[8]を行っている。
また、実施例6における負極にかえて正極を事前に作製手順[6]による電解液を蓋付密閉容器に満たした中に浸漬し、ナトリウムを対極に、20mAの電流で1.5Vまで放電を行って、予備ドープを行った。なお、ここでは、電源のプラス極をナトリウム金属に、電源のマイナス極を正極に、それぞれ接続を行った。その後は、作製手順[4]、[5]を行い、浸漬に用いたものと同様の電解液を用い、作製手順[7]〔この場合、電極群が電解液にひたるまで注液〕、作製手順[8]を行った後、5mAで5時間充電をしてから作製手順[9]〔この場合、電極群が電解液にひたるまで注液〕、[10]を行い電池8−Fを得た。
また、実施例7において作製手順[8]の後、6時間静置することにかえて、5mAで5時間充電して、それ以外は同様にして電池8−Gを得た。
(Example 8)
In Examples 1, 3, 4, and 5 (A-3 for Example 5), after the production procedure [8], charging was performed at 5 mA for 5 hours, and otherwise, the battery 8-A and the battery were similarly manufactured. Each of 8-C, Battery 8-D, and Battery 8-E was obtained. In addition, about the battery 8-E, in preparation procedure [7], it injected until an electrode group hits electrolyte solution, and preparation procedure [8] is performed.
Further, instead of the negative electrode in Example 6, the positive electrode was previously immersed in a sealed container with a lid filled with the electrolytic solution according to the production procedure [6], and discharged to 1.5 V at a current of 20 mA using sodium as a counter electrode. And pre-doping was performed. Here, the positive electrode of the power source was connected to sodium metal, and the negative electrode of the power source was connected to the positive electrode. Thereafter, the production steps [4] and [5] are performed, and the same electrolytic solution as that used for the immersion is used, and the production procedure [7] [in this case, injection until the electrode group is immersed in the electrolytic solution] After performing the procedure [8], after charging for 5 hours at 5 mA, the production procedure [9] [in this case, injection until the electrode group is immersed in the electrolyte solution] and [10] are performed to obtain a battery 8-F. It was.
Further, in Example 7, after the production procedure [8], the battery 8-G was obtained in the same manner except that it was left to stand for 6 hours and charged at 5 mA for 5 hours.
これらの電池について、初充電として充電電流5mAで4.0Vまで充電を行った後、20mAで2.0Vまで定電流で放電を行い、放電容量を確認した。試験は25℃および10℃で行った。結果を表8−1に、比較例1の結果と併せて示す。実施例は比較例に比べ、大幅な容量増加が認められた。
次に充電電流のみを20mAに変えた以外、同様の充放電条件で充放電サイクル試験を行った。100サイクルにおける放電容量維持率を表8−2に示す。なお、比較例については封口後、6時間静置した後、試験に供した。
About these batteries, after charging to 4.0V by charge current 5mA as initial charge, it discharged by 20 mA, constant current to 2.0V, and confirmed discharge capacity. The test was performed at 25 ° C and 10 ° C. The results are shown in Table 8-1 together with the results of Comparative Example 1. In the example, a significant increase in capacity was observed compared to the comparative example.
Next, a charge / discharge cycle test was performed under the same charge / discharge conditions except that only the charge current was changed to 20 mA. The discharge capacity maintenance rate in 100 cycles is shown in Table 8-2. In addition, about the comparative example, after sealing, after leaving still for 6 hours, it used for the test.
(実施例9)
実施例1、2、3において、作製手順[8]の後、20℃、30℃、40℃、50℃、60℃、70℃、80℃でエージングを行い、それ以外は同様にして、電池を得た。電池は、前記実施例の番号順に、9−A、9−B、9−Cとした。これらの電池について、初充電として、充電電流5mAで4.0Vまで充電を行った後、20mAで2.0Vまで定電流で放電を行い、放電容量を確認した。試験は25℃で行った。結果を表9−1に示す。
また、実施例8の電池8−D、電池8−E、電池8−F、電池8−Gを作製する工程において、作製手順[8]の後に行う5mAで5時間充電するという操作を50℃中で行い、それ以外は同様にして、電池を得た。これらの電池を、前記実施例8における電池番号順に、それぞれ電池9−D、電池9−E、電池9−F、電池9−Gとした。これらの電池について、初充電として、充電電流5mAで4.0Vまで充電を行った後、20mAで2.0Vまで定電流で放電を行い、放電容量を確認した。試験は25℃および10℃で行った。結果を表9−2に、比較例1の結果と併せて示す。
次に充電電流のみを20mAに変えた以外、同様の充放電条件で充放電サイクル試験を行った。100サイクルにおける放電容量維持率を表9−3に、比較例1の結果と併せて示す。実施例のいずれにおいても、比較例に対し、大幅な性能向上が見られた。
Example 9
In Examples 1, 2, and 3, after the production procedure [8], aging was performed at 20 ° C., 30 ° C., 40 ° C., 50 ° C., 60 ° C., 70 ° C., and 80 ° C. Got. The batteries were 9-A, 9-B, and 9-C in the order of the numbers in the examples. For these batteries, as the first charge, after charging to 4.0 V at a charging current of 5 mA, discharging was performed at a constant current of up to 2.0 V at 20 mA to confirm the discharge capacity. The test was conducted at 25 ° C. The results are shown in Table 9-1.
Moreover, in the process of manufacturing the battery 8-D, the battery 8-E, the battery 8-F, and the battery 8-G of Example 8, the operation of charging at 5 mA for 5 hours after the manufacturing procedure [8] is performed at 50 ° C. A battery was obtained in the same manner as above. These batteries were designated as Battery 9-D, Battery 9-E, Battery 9-F, and Battery 9-G in order of the battery numbers in Example 8. For these batteries, as the first charge, after charging to 4.0 V at a charging current of 5 mA, discharging was performed at a constant current of up to 2.0 V at 20 mA to confirm the discharge capacity. The test was performed at 25 ° C and 10 ° C. The results are shown in Table 9-2 together with the results of Comparative Example 1.
Next, a charge / discharge cycle test was performed under the same charge / discharge conditions except that only the charge current was changed to 20 mA. The discharge capacity retention ratio in 100 cycles is shown in Table 9-3 together with the result of Comparative Example 1. In any of the examples, a significant performance improvement was seen over the comparative example.
(実施例10)
実施例8における電池8−A、電池8−C、電池8−D、電池8−E、電池8−F、電池8−Gの作製手順において、作製手順[8]後に5mAで5時間充電した後、引き続き10時間充電を行い、さらに20mAで2Vまで放電を行って、電池を得た。これらの電池については、前記電池番号順に、電池10−A、電池10−C、電池10−D、電池10−E、電池10−F、電池10−Gとした。
また、実施例9における電池9−D、電池9−E、電池9−F、電池9−Gの作製手順において、作製手順[8]の後50℃中で5mAで5時間充電を行い、引き続き50℃にて10時間充電を行い、さらに20mAで2.0Vまで放電を行い、それ以外は同様にして、電池を得た。これらの電池については、前記電池番号順に、電池10T−D、電池10T−E、電池10T−F、電池10T−Gとした。これらの電池について、初充電として、充電電流5mAで4.0Vまで充電を行った後、20mAで2.0Vまで定電流で放電を行い、放電容量を確認した。試験は25℃および10℃で行った。結果を表10−1に、比較例1の結果と併せて示す。
次に充電電流のみを20mAに変えた以外、同様の充放電条件で充放電サイクル試験を行った。100サイクルにおける放電容量維持率を表10−2に示す。実施例は比較例にくらべ、放電容量、サイクル特性ともに大幅な特性改善された。
(Example 10)
In the production procedure of the battery 8-A, the battery 8-C, the battery 8-D, the battery 8-E, the battery 8-F, and the battery 8-G in Example 8, the battery was charged at 5 mA for 5 hours after the production procedure [8]. Thereafter, the battery was continuously charged for 10 hours and further discharged at 20 mA to 2 V to obtain a battery. About these batteries, they were named Battery 10-A, Battery 10-C, Battery 10-D, Battery 10-E, Battery 10-F, and Battery 10-G in the order of the battery numbers.
Further, in the production procedure of the battery 9-D, the battery 9-E, the battery 9-F, and the battery 9-G in Example 9, after the production procedure [8], the battery was charged at 5 mA at 50 mA for 5 hours, and then A battery was obtained in the same manner except that the battery was charged at 50 ° C. for 10 hours and further discharged at 20 mA to 2.0 V. About these batteries, it was set as battery 10T-D, battery 10T-E, battery 10T-F, and battery 10T-G in the order of the battery numbers. For these batteries, as the first charge, after charging to 4.0 V at a charging current of 5 mA, discharging was performed at a constant current of up to 2.0 V at 20 mA to confirm the discharge capacity. The test was performed at 25 ° C and 10 ° C. The results are shown in Table 10-1 together with the results of Comparative Example 1.
Next, a charge / discharge cycle test was performed under the same charge / discharge conditions except that only the charge current was changed to 20 mA. Table 10-2 shows the discharge capacity retention ratio in 100 cycles. In the example, both the discharge capacity and the cycle characteristic were significantly improved as compared with the comparative example.
(実施例11)
実施例10における電池10−A、電池10−C、電池10−D、電池10−E、電池10−F、電池10−Gの作製手順において、作製手順[8]の仮留めの前に、以下の条件で、「減圧」、または「雰囲気ガス加圧」または「減圧のあと雰囲気ガス加圧」の操作を行い、それ以外は同様にして、電池を得た。これらの電池については、前記電池番号順に、電池11−A、電池11−C、電池11−D、電池11−E、電池11−F、電池11−Gとした。なお、雰囲気ガスとしては、アルゴンを用いた。
減圧条件:50kPa
加圧条件:300kPa
(Example 11)
In the manufacturing procedure of the battery 10-A, the battery 10-C, the battery 10-D, the battery 10-E, the battery 10-F, and the battery 10-G in Example 10, before the temporary fixing of the manufacturing procedure [8], Under the following conditions, “reduced pressure”, “atmospheric gas pressurization” or “atmospheric gas pressurization after depressurization” was performed, and the battery was obtained in the same manner except that. About these batteries, it was set as the battery 11-A, the battery 11-C, the battery 11-D, the battery 11-E, the battery 11-F, and the battery 11-G in the order of the battery numbers. Argon was used as the atmospheric gas.
Depressurization condition: 50 kPa
Pressure condition: 300kPa
また、上記の電池11−A、電池11−C、電池11−D、電池11−E、電池11−F、電池11−Gの作製手順において実施した雰囲気ガス加圧/減圧操作に加え、封口の前にさらに上記減圧条件で減圧を行い、それ以外は同様にして、電池11−A2、11−C2、11−D2、11−E2、11−F2、11−G2のそれぞれの電池を得た。 Further, in addition to the atmospheric gas pressurization / depressurization operation performed in the manufacturing procedure of the battery 11-A, the battery 11-C, the battery 11-D, the battery 11-E, the battery 11-F, and the battery 11-G, the sealing is performed. The pressure was further reduced under the above-described pressure reduction conditions before, and in the same manner, the batteries 11-A2, 11-C2, 11-D2, 11-E2, 11-F2, and 11-G2 were obtained. .
これらの電池について、初充電として、充電電流5mAで4.0Vまで充電を行った後、20mAで2.0Vまで定電流で放電を行い、放電容量を確認した。試験は25℃で行った。結果を表11−1、表11−2に比較例1の結果と併せて示す。 For these batteries, as the first charge, after charging to 4.0 V at a charging current of 5 mA, discharging was performed at a constant current of up to 2.0 V at 20 mA to confirm the discharge capacity. The test was conducted at 25 ° C. The results are shown in Table 11-1 and Table 11-2 together with the result of Comparative Example 1.
本発明によれば、高い放電容量、サイクル特性が大幅に向上できるナトリウム二次電池を、しかも安価に得ることができることから、携帯電話やノートパソコン等の小型電源だけでなく、自動車用途や電力貯蔵用途等の大型電源にも適用することができ、工業的に極めて有用である。 According to the present invention, it is possible to obtain a sodium secondary battery capable of greatly improving a high discharge capacity and cycle characteristics at a low cost. Therefore, not only a small power source such as a mobile phone or a laptop computer, but also an automobile application and power storage. It can be applied to large power sources for applications and the like, and is extremely useful industrially.
Claims (12)
電解液の注液を、2回以上に分割して行うことを特徴とするナトリウム二次電池の製造方法。 A battery case comprising a positive electrode capable of doping / de-doping sodium ions, a negative electrode capable of doping / de-doping sodium ions and a separator, or an electrode group obtained by laminating or winding, and an electrolyte solution A sodium secondary battery manufacturing method for sealing a battery case after being housed in
A method for producing a sodium secondary battery, wherein the injection of the electrolyte is divided into two or more times.
前記少なくとも一方の電極と、ナトリウム金属とを電気的に接続し、ナトリウム金属を対極として外部電圧を印加することにより、前記電極にナトリウムイオンのドープを行い、
電極群を組み立て、電池ケースに収容した後に、2回目以降の注液を行う請求項6記載のナトリウム二次電池の製造方法。 Perform the initial injection by immersing at least one electrode in the electrolyte before assembling the electrode group,
By electrically connecting the at least one electrode and sodium metal and applying an external voltage with sodium metal as a counter electrode, the electrode is doped with sodium ions,
The method for manufacturing a sodium secondary battery according to claim 6, wherein the second and subsequent injections are performed after the electrode group is assembled and accommodated in the battery case.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009125869A JP2010272492A (en) | 2009-05-25 | 2009-05-25 | Sodium secondary battery manufacturing method and sodium secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009125869A JP2010272492A (en) | 2009-05-25 | 2009-05-25 | Sodium secondary battery manufacturing method and sodium secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010272492A true JP2010272492A (en) | 2010-12-02 |
Family
ID=43420341
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009125869A Pending JP2010272492A (en) | 2009-05-25 | 2009-05-25 | Sodium secondary battery manufacturing method and sodium secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010272492A (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013047657A1 (en) | 2011-09-29 | 2013-04-04 | 日本曹達株式会社 | Method for producing electrode covered with sodium metal |
JP2013171798A (en) * | 2012-02-22 | 2013-09-02 | National Institute Of Advanced Industrial & Technology | Negative electrode material for sodium secondary battery, method for producing the same, negative electrode for sodium secondary battery, sodium secondary battery, and electrical equipment including the same |
JP2015076121A (en) * | 2013-10-04 | 2015-04-20 | トヨタ自動車株式会社 | Nonaqueous electrolyte secondary battery and manufacturing method therefor |
WO2015087580A1 (en) * | 2013-12-11 | 2015-06-18 | 日本電気株式会社 | Production method for secondary battery |
US9085691B2 (en) | 2012-04-10 | 2015-07-21 | Samsung Sdi Co., Ltd. | Binder composition, electrode for rechargeable battery employing the same and manufacturing method thereof |
JP2017063069A (en) * | 2015-09-24 | 2017-03-30 | アイシン精機株式会社 | Method for manufacturing power storage device |
WO2017171433A1 (en) * | 2016-03-31 | 2017-10-05 | 주식회사 엘지화학 | Method for producing secondary battery |
JP2018056548A (en) * | 2016-09-23 | 2018-04-05 | アイシン精機株式会社 | Processing device for manufacturing of power storage device and method of manufacturing power storage device |
WO2019187131A1 (en) * | 2018-03-30 | 2019-10-03 | 株式会社 東芝 | Electrode group, battery, and battery pack |
JPWO2020208965A1 (en) * | 2019-04-10 | 2020-10-15 | ||
US11367905B2 (en) | 2016-03-31 | 2022-06-21 | Lg Energy Solution, Ltd. | Method of preparing secondary battery |
CN115020637A (en) * | 2022-07-05 | 2022-09-06 | 湖州超钠新能源科技有限公司 | Sodium supplement pole piece, sodium ion battery and preparation method thereof |
JP2022544630A (en) * | 2019-09-30 | 2022-10-19 | デュポン テイジン フィルムス ユーエス リミテッド パートナーシップ | Copolyester film for use as a separator in lithium ion wet cell batteries |
-
2009
- 2009-05-25 JP JP2009125869A patent/JP2010272492A/en active Pending
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9647258B2 (en) | 2011-09-29 | 2017-05-09 | Nippon Soda Co., Ltd. | Method for producing electrode covered with sodium metal |
KR20140052053A (en) | 2011-09-29 | 2014-05-02 | 닛뽕소다 가부시키가이샤 | Method for producing electrode covered with sodium metal |
WO2013047657A1 (en) | 2011-09-29 | 2013-04-04 | 日本曹達株式会社 | Method for producing electrode covered with sodium metal |
JP2013171798A (en) * | 2012-02-22 | 2013-09-02 | National Institute Of Advanced Industrial & Technology | Negative electrode material for sodium secondary battery, method for producing the same, negative electrode for sodium secondary battery, sodium secondary battery, and electrical equipment including the same |
US9085691B2 (en) | 2012-04-10 | 2015-07-21 | Samsung Sdi Co., Ltd. | Binder composition, electrode for rechargeable battery employing the same and manufacturing method thereof |
JP2015076121A (en) * | 2013-10-04 | 2015-04-20 | トヨタ自動車株式会社 | Nonaqueous electrolyte secondary battery and manufacturing method therefor |
JPWO2015087580A1 (en) * | 2013-12-11 | 2017-03-16 | 日本電気株式会社 | Manufacturing method of secondary battery |
US9859589B2 (en) | 2013-12-11 | 2018-01-02 | Nec Corporation | Method for producing secondary battery |
WO2015087580A1 (en) * | 2013-12-11 | 2015-06-18 | 日本電気株式会社 | Production method for secondary battery |
JP2017063069A (en) * | 2015-09-24 | 2017-03-30 | アイシン精機株式会社 | Method for manufacturing power storage device |
US11367905B2 (en) | 2016-03-31 | 2022-06-21 | Lg Energy Solution, Ltd. | Method of preparing secondary battery |
WO2017171433A1 (en) * | 2016-03-31 | 2017-10-05 | 주식회사 엘지화학 | Method for producing secondary battery |
JP2018056548A (en) * | 2016-09-23 | 2018-04-05 | アイシン精機株式会社 | Processing device for manufacturing of power storage device and method of manufacturing power storage device |
WO2019187131A1 (en) * | 2018-03-30 | 2019-10-03 | 株式会社 東芝 | Electrode group, battery, and battery pack |
CN111837261A (en) * | 2018-03-30 | 2020-10-27 | 株式会社东芝 | Electrode group, battery and battery pack |
US11831005B2 (en) | 2018-03-30 | 2023-11-28 | Kabushiki Kaisha Toshiba | Electrode group, battery, and battery pack |
CN113678283A (en) * | 2019-04-10 | 2021-11-19 | 武藏能源解决方案有限公司 | Method for manufacturing electrode and method for manufacturing power storage device |
KR20210150489A (en) * | 2019-04-10 | 2021-12-10 | 무사시 에너지 솔루션즈 가부시키가이샤 | Electrode manufacturing method and power storage device manufacturing method |
JPWO2020208965A1 (en) * | 2019-04-10 | 2020-10-15 | ||
JP7372315B2 (en) | 2019-04-10 | 2023-10-31 | 武蔵エナジーソリューションズ株式会社 | Electrode manufacturing method and electricity storage device manufacturing method |
CN113678283B (en) * | 2019-04-10 | 2024-03-01 | 武藏能源解决方案有限公司 | Electrode manufacturing method and power storage device manufacturing method |
KR102714704B1 (en) * | 2019-04-10 | 2024-10-11 | 무사시 에너지 솔루션즈 가부시키가이샤 | Method for manufacturing electrode and method for manufacturing capacitor device |
JP2022544630A (en) * | 2019-09-30 | 2022-10-19 | デュポン テイジン フィルムス ユーエス リミテッド パートナーシップ | Copolyester film for use as a separator in lithium ion wet cell batteries |
CN115020637A (en) * | 2022-07-05 | 2022-09-06 | 湖州超钠新能源科技有限公司 | Sodium supplement pole piece, sodium ion battery and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5550988B2 (en) | Sodium secondary battery manufacturing method and sodium secondary battery | |
JP2010272492A (en) | Sodium secondary battery manufacturing method and sodium secondary battery | |
US9899665B2 (en) | Sodium secondary battery comprising carbonaceous material | |
US11075428B2 (en) | Separator including porous bonding layer and electrochemical battery including the separator | |
CN107452925B (en) | Porous heat-resistant layer composition, separator and electrochemical cell using the same | |
JP5293020B2 (en) | Electrode mixture for non-aqueous electrolyte secondary battery, electrode and non-aqueous electrolyte secondary battery | |
CN105981113B (en) | Electric insulation layer and cell apparatus | |
Liu et al. | A Core@ sheath nanofibrous separator for lithium ion batteries obtained by coaxial electrospinning | |
JP2013062241A (en) | Sodium secondary battery | |
KR101830334B1 (en) | Anode active material, method of fabricating the same and rechargeable battery using the same | |
WO2010030019A1 (en) | Non-aqueous electrolyte secondary cell | |
KR20110139224A (en) | Sodium ion battery | |
JP4940367B1 (en) | Separator for nonaqueous electrolyte electricity storage device, nonaqueous electrolyte electricity storage device, and production method thereof | |
JP2012069894A (en) | Sodium-ion-type power storage device | |
JP2016127028A (en) | Composition for heat resistant porous layer formation, separation film including heat resistant porous layer, electrochemical battery arranged by use of separation film, and method for manufacturing separation film | |
JP2014096290A (en) | Sodium secondary battery | |
JP2010067435A (en) | Nonaqueous electrolyte secondary battery | |
JP2016139604A (en) | Composition for forming heat resistant porous layer, separation membrane including heat resistant porous layer, electrochemical cell using separation membrane, and method for producing separation membrane | |
CN112310465B (en) | Method for manufacturing sulfide impregnated solid state battery | |
JP2012169160A (en) | Electrode for sodium secondary battery and sodium secondary battery | |
WO2014157125A1 (en) | Sodium secondary battery | |
JP2010092834A (en) | Electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery | |
WO2011037250A1 (en) | Sodium-ion-type power storage device | |
JP5924645B2 (en) | Negative electrode material for sodium secondary battery, electrode for sodium secondary battery, and sodium secondary battery | |
JP2010067437A (en) | Electrode active material, electrode, and nonaqueous electrolyte secondary battery |