Nothing Special   »   [go: up one dir, main page]

JP2010269985A - Sulfonic acid-modified aqueous anionic silica sol and method for producing the same - Google Patents

Sulfonic acid-modified aqueous anionic silica sol and method for producing the same Download PDF

Info

Publication number
JP2010269985A
JP2010269985A JP2009124384A JP2009124384A JP2010269985A JP 2010269985 A JP2010269985 A JP 2010269985A JP 2009124384 A JP2009124384 A JP 2009124384A JP 2009124384 A JP2009124384 A JP 2009124384A JP 2010269985 A JP2010269985 A JP 2010269985A
Authority
JP
Japan
Prior art keywords
sulfonic acid
silica sol
group
modified aqueous
aqueous anionic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009124384A
Other languages
Japanese (ja)
Inventor
Yasuto Amauchi
康人 天内
Yosuke Hino
洋輔 日野
Takao Yanagisawa
孝郎 柳澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuso Chemical Co Ltd
Original Assignee
Fuso Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuso Chemical Co Ltd filed Critical Fuso Chemical Co Ltd
Priority to JP2009124384A priority Critical patent/JP2010269985A/en
Priority to PCT/JP2010/058440 priority patent/WO2010134542A1/en
Priority to TW099116227A priority patent/TW201100327A/en
Publication of JP2010269985A publication Critical patent/JP2010269985A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/146After-treatment of sols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1436Composite particles, e.g. coated particles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02024Mirror polishing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide sulfonic acid-modified aqueous anionic silica sol having high stability under an acidic condition, low content of metallic impurities and excellent filterability, and a method for producing the same. <P>SOLUTION: The method for producing the sulfonic acid-modified anionic silica sol includes: adding a silane coupling agent having a functional group chemically convertible to a sulfonic acid group into colloidal silica; and then, converting the functional group to the sulfonic acid group. The sulfonic acid-modified aqueous anionic silica sol is obtained by using the method and has ≤-15 mV zeta potential in an acidic environment of ≥pH 2. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、スルホン酸修飾水性アニオンシリカゾル及びその製造方法に関する。   The present invention relates to a sulfonic acid-modified aqueous anionic silica sol and a method for producing the same.

具体的には、水性媒体を用いたコロイダルシリカ(シリカゾル)の表面をスルホン酸修飾することによりアニオン性を付与したスルホン酸修飾水性アニオンシリカゾル及びその製造方法に関する。   Specifically, the present invention relates to a sulfonic acid-modified aqueous anionic silica sol provided with anionicity by sulfonic acid modification of the surface of colloidal silica (silica sol) using an aqueous medium and a method for producing the same.

水性媒体を用いたコロイダルシリカ(シリカゾル)は、紙、繊維、鉄鋼等の分野で物性改良剤として用いられたり、半導体ウェハの研磨剤として使用されたりしている。シリカゾルは、酸性条件下ではシリカ粒子どうしが凝集してしまい安定性に劣るといった問題が存在しており、幅広いpH領域で安定性に優れたシリカゾルが求められている。   Colloidal silica (silica sol) using an aqueous medium is used as a physical property improving agent in the fields of paper, fiber, steel, and the like, and is used as an abrasive for semiconductor wafers. Silica sol has a problem that silica particles are aggregated under an acidic condition and inferior in stability, and a silica sol having excellent stability in a wide pH range is required.

特許文献1には、酸性条件下において安定性の高い変性コロイダルシリカが記載されている。具体的には、加水分解可能なケイ素化合物を加水分解・縮合して得られたコロイダルシリカを変性剤で変性させて得られる変性コロイダルシリカが記載されており、特に、変性剤としてカチオン性基を有するシランカップリング剤が用いられている(特許文献1の請求項1、[0018]段落等)。   Patent Document 1 describes a modified colloidal silica that is highly stable under acidic conditions. Specifically, modified colloidal silica obtained by modifying colloidal silica obtained by hydrolyzing and condensing a hydrolyzable silicon compound with a modifying agent is described, and in particular, a cationic group is used as the modifying agent. A silane coupling agent is used (claim 1, paragraph [0018], etc. of Patent Document 1).

特許文献2には、上記とは逆に、シリカ表面にアニオン性を付与した高安定性の変性コロイダルシリカが記載されている。具体的には、コロイダルシリカとアルミン酸ナトリウム等のアルミン酸塩を反応させることによりシリカ表面にアニオン性を付与した、アニオンシリカゾルが記載されている(特許文献2の請求の範囲第1項、発明の効果等)。   Patent Document 2 describes a highly stable modified colloidal silica in which anionicity is imparted to the silica surface, contrary to the above. Specifically, an anionic silica sol in which anionicity is imparted to the silica surface by reacting colloidal silica with an aluminate such as sodium aluminate has been described (claim 1, claim 2, invention of Patent Document 2). Effect).

これらの従来品の変性コロイダルシリカを特に酸性条件下で半導体ウェハの研磨剤等の用途に用いる場合には、より改善の余地がある。   There is room for further improvement when these conventional modified colloidal silicas are used for applications such as abrasives for semiconductor wafers, particularly under acidic conditions.

つまり、特許文献1のカチオン性シリカゾルは、酸性領域でプラスのゼータ電位を有し高安定である。しかしながら、カチオン性ゾルの場合、液性が中性からアルカリ性に変化する途中でゼータ電位がゼロになる等電点を通過することになり、酸性からアルカリ性の広い領域において高い安定性を有するわけではない。また、特許文献2では、アルミン酸塩を反応させているため、アニオン性シリカゾルはケイ素以外にアルミニウム元素を含むことになり、一部の用途、特に不純物金属元素を嫌う化学機械研磨(CMP)用途に適さない。更に、研磨剤等として用いる場合には研磨装置に研磨液を供給する前に粗粒を除去するために濾過する必要がある上、研磨液を循環して繰り返し用いる設計上、研磨液の濾過性が高いことが要求される。つまり、濾過に際して変性コロイダルシリカが凝集したりゲル化したりするのを防止する必要がある。また、変性コロイダルシリカに金属不純物が含まれる場合には、半導体ウェハにスクラッチ傷等が生じる可能性があるため、金属不純物の含有量はできる限り低いことが要求される。この点、従来品の変性コロイダルシリカは上記要求を十分に満たしきれておらず、更に改良の余地がある。   That is, the cationic silica sol of Patent Document 1 has a positive zeta potential in the acidic region and is highly stable. However, in the case of a cationic sol, it passes through the isoelectric point where the zeta potential becomes zero while the liquidity changes from neutral to alkaline, and it does not have high stability in a wide range from acidic to alkaline. Absent. Further, in Patent Document 2, since an aluminate is reacted, the anionic silica sol contains an aluminum element in addition to silicon, and in some applications, particularly chemical mechanical polishing (CMP) applications that dislike impurity metal elements. Not suitable for. In addition, when used as an abrasive, etc., it is necessary to filter the coarse liquid before supplying the polishing liquid to the polishing apparatus, and the polishing liquid is filterable due to the design of circulating and repeatedly using the polishing liquid. Is required to be high. That is, it is necessary to prevent the modified colloidal silica from aggregating or gelling during filtration. Further, when metal impurities are contained in the modified colloidal silica, scratches or the like may occur in the semiconductor wafer, so that the metal impurity content is required to be as low as possible. In this respect, the conventional modified colloidal silica does not sufficiently satisfy the above requirements, and there is room for further improvement.

特開2005−162533号公報JP 2005-162533 A WO2008/111383号パンフレットWO2008 / 111383 pamphlet

本発明は、酸性条件下での安定性が高く、金属不純物の含有量が低く、しかも濾過性が良好であるスルホン酸修飾水性アニオンシリカゾル及びその製造方法を提供することを目的とする。   An object of the present invention is to provide a sulfonic acid-modified aqueous anionic silica sol having high stability under acidic conditions, low metal impurity content, and good filterability, and a method for producing the same.

本発明者は上記目的を達成すべく鋭意研究を重ねた結果、コロイダルシリカ(シリカゾル)中のシリカ表面を特定の官能基を有するシランカップリング剤で処理した後、当該官能基をスルホン酸基に変換する製造方法によれば上記目的を達成できることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventor treated the silica surface in colloidal silica (silica sol) with a silane coupling agent having a specific functional group, and then converted the functional group into a sulfonic acid group. The present inventors have found that the object can be achieved by the production method to be converted, and have completed the present invention.

即ち、本発明は下記のスルホン酸修飾水性アニオンシリカゾルに関する。
1.pH2以上の酸性においてゼータ電位が−15mV以下であるスルホン酸修飾水性アニオンシリカゾル。
2.1)ナトリウム及びカリウムから選ばれるアルカリ金属、2)カルシウム及びマグネシウムから選ばれるアルカリ土類金属並びに3)アルミニウム、鉄、チタン、ニッケル、クロム、銅、亜鉛、鉛、銀、マンガン及びコバルトから選ばれる重金属及び軽金属の含有量がそれぞれ1重量ppm以下である、上記項1に記載のスルホン酸修飾水性アニオンシリカゾル。
3.酸性条件下、調製後2週間以上、凝集又はゲル化が防止されている、上記項1又は2に記載のスルホン酸修飾水性アニオンシリカゾル。
4.コロイダルシリカに、化学的にスルホン酸基に変換できる官能基を有するシランカップリング剤を添加した後、前記官能基をスルホン酸基に変換するスルホン酸修飾水性アニオンシリカゾルの製造方法。
5.前記化学的にスルホン酸基に変換できる官能基はメルカプト基である、上記項4に記載の製造方法。
6.前記コロイダルシリカは、加水分解可能なケイ素化合物を加水分解・縮合して得られる、上記項4又は5に記載の製造方法。

以下、本発明のスルホン酸修飾水性アニオンシリカゾル及びその製造方法について詳細に説明する。
That is, the present invention relates to the following sulfonic acid-modified aqueous anionic silica sol.
1. A sulfonic acid-modified aqueous anionic silica sol having a zeta potential of -15 mV or less at an acidity of pH 2 or higher.
2.1) Alkali metal selected from sodium and potassium, 2) Alkaline earth metal selected from calcium and magnesium, and 3) From aluminum, iron, titanium, nickel, chromium, copper, zinc, lead, silver, manganese and cobalt Item 2. The sulfonic acid-modified aqueous anionic silica sol according to Item 1, wherein the selected heavy metal and light metal contents are each 1 ppm by weight or less.
3. Item 3. The sulfonic acid-modified aqueous anionic silica sol according to Item 1 or 2, wherein aggregation or gelation is prevented for 2 weeks or more after preparation under acidic conditions.
4). A method for producing a sulfonic acid-modified aqueous anionic silica sol, wherein a silane coupling agent having a functional group that can be chemically converted into a sulfonic acid group is added to colloidal silica, and then the functional group is converted into a sulfonic acid group.
5). Item 5. The production method according to Item 4, wherein the functional group that can be chemically converted to a sulfonic acid group is a mercapto group.
6). The said colloidal silica is a manufacturing method of the said claim | item 4 or 5 obtained by hydrolyzing and condensing the hydrolysable silicon compound.

Hereinafter, the sulfonic acid-modified aqueous anionic silica sol of the present invention and the production method thereof will be described in detail.

本発明のスルホン酸修飾水性アニオンシリカゾルは、コロイダルシリカに、化学的にスルホン酸基に変換できる官能基を有するシランカップリング剤を添加した後、前記官能基をスルホン酸基に変換する製造方法(以下、「本発明の製造方法」)によって得られる。   The sulfonic acid-modified aqueous anionic silica sol of the present invention is a method for producing a colloidal silica by adding a silane coupling agent having a functional group that can be chemically converted to a sulfonic acid group, and then converting the functional group to a sulfonic acid group ( Hereinafter, the “production method of the present invention”) is obtained.

原料のコロイダルシリカは表面にシラノール基を有するものであれば限定されないが、半導体中に拡散性のある金属不純物や塩素等の腐食性イオンを含まないことを考慮すると、加水分解可能なケイ素化合物(例えば、アルコキシシラン又はこの誘導体)を原料とし、加水分解・縮合により得られるコロイダルシリカが好ましい。このケイ素化合物は、1種又は2種以上を混合して使用できる。   The colloidal silica of the raw material is not limited as long as it has a silanol group on the surface, but considering that the semiconductor does not contain diffusible metal impurities or corrosive ions such as chlorine, a hydrolyzable silicon compound ( For example, colloidal silica obtained by hydrolysis / condensation using alkoxysilane or a derivative thereof as a raw material is preferable. These silicon compounds can be used alone or in combination of two or more.

本発明では、下記一般式1で示されるアルコキシシラン又はこの誘導体が好ましい。   In the present invention, an alkoxysilane represented by the following general formula 1 or a derivative thereof is preferable.

Si(OR) (1)
〔式中、Rはアルキル基であり、好ましくは炭素数1〜8の低級アルキル基であり、より好ましくは炭素数1〜4の低級アルキル基である。〕
上記Rとしては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ペンチル基、ヘキシル基等を例示することができ、Rがメチル基であるテトラメトキシシラン、Rがエチル基であるテトラエトキシシラン、Rがイソプロピル基であるテトライソプロポキシシランが好ましい。また、アルコキシシランの誘導体としては、アルコキシシランを部分的に加水分解して得られる低縮合物を例示することもできる。本発明では、加水分解速度を制御し易い点、シングルnmの微小シリカ粒子が得られ易い点、未反応物の残留が少ない点でテトラメトキシシランを用いることが好ましい。
Si (OR) 4 (1)
[In formula, R is an alkyl group, Preferably it is a C1-C8 lower alkyl group, More preferably, it is a C1-C4 lower alkyl group. ]
Examples of R include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a pentyl group, a hexyl group, and the like. Tetramethoxysilane in which R is a methyl group and tetra in which R is an ethyl group Ethoxysilane and tetraisopropoxysilane in which R is an isopropyl group are preferred. Moreover, as a derivative | guide_body of alkoxysilane, the low condensate obtained by partially hydrolyzing alkoxysilane can also be illustrated. In the present invention, it is preferable to use tetramethoxysilane because it is easy to control the hydrolysis rate, easy to obtain single-nm fine silica particles, and few unreacted substances remain.

上記ケイ素化合物は、反応溶媒中で加水分解・縮合されてコロイダルシリカとなる。反応溶媒としては、水または水を含む有機溶媒が使用される。   The silicon compound is hydrolyzed and condensed in a reaction solvent to form colloidal silica. As the reaction solvent, water or an organic solvent containing water is used.

有機溶媒としては、メタノール、エタノール、イソプロパノール、n−ブタノール、t−ブタノール、ペンタノール、エチレングリコール、プロピレングリコール、1,4−ブタンジオール等のアルコール類、アセトン、メチルエチルケトン等のケトン類等の親水性有機溶媒が挙げられる。これらの有機溶媒の中でも、特にメタノール、エタノール、イソプロパノール等のアルコール類を使用することが好ましく、反応溶媒の後処理などの観点から、原料のケイ素化合物のアルキル基(R)と同じアルキル基を有するアルコール類を使用することがより好ましい。これらの有機溶媒は、1種又は2種以上で使用できる。   Examples of organic solvents include hydrophilicity such as methanol, ethanol, isopropanol, n-butanol, t-butanol, pentanol, alcohols such as ethylene glycol, propylene glycol, and 1,4-butanediol, and ketones such as acetone and methyl ethyl ketone. An organic solvent is mentioned. Among these organic solvents, it is particularly preferable to use alcohols such as methanol, ethanol, and isopropanol, and from the viewpoint of post-treatment of the reaction solvent, etc., it has the same alkyl group as the alkyl group (R) of the raw silicon compound. More preferably, alcohols are used. These organic solvents can be used alone or in combination of two or more.

有機溶媒の使用量は特に限定されないが、ケイ素化合物1モル当り、5〜50モル程度が好ましい。5モル未満の場合、ケイ素化合物との相溶性が失われる場合がある。50モルを超える場合、製造効率が低下する場合がある。   Although the usage-amount of an organic solvent is not specifically limited, About 5-50 mol is preferable per 1 mol of silicon compounds. When the amount is less than 5 mol, the compatibility with the silicon compound may be lost. If it exceeds 50 moles, the production efficiency may decrease.

有機溶媒に添加される水の量は特に限定されず、ケイ素化合物の加水分解に要する量が存在すればよく、ケイ素化合物1モル当り2〜15モル程度が好ましい。なお、有機溶媒に混合される水の量は、形成されるコロイダルシリカの粒径に大きく影響する。水の添加量が相対的に増加すれば、コロイダルシリカの粒径を相対的に大きくすることができる。水の添加量を相対的に低下すれば、コロイダルシリカの粒径を相対的に小さくすることができる。よって、水と有機溶媒の混合比率を変化させることによって、製造されるコロイダルシリカの粒径を任意に調整することができる。   The amount of water added to the organic solvent is not particularly limited as long as the amount required for hydrolysis of the silicon compound is present, and is preferably about 2 to 15 mol per mol of the silicon compound. Note that the amount of water mixed in the organic solvent greatly affects the particle size of the colloidal silica formed. If the amount of water added is relatively increased, the particle size of the colloidal silica can be relatively increased. If the amount of water added is relatively reduced, the particle size of the colloidal silica can be made relatively small. Therefore, the particle diameter of the colloidal silica produced can be arbitrarily adjusted by changing the mixing ratio of water and the organic solvent.

反応溶媒には、塩基性触媒を添加して反応溶媒をアルカリ性に調整することが好ましい。これにより反応溶媒は好ましくはpH8〜11、より好ましくはpH8.5〜10.5に調整され、速やかにコロイダルシリカを形成することができる。塩基性触媒としては、不純物を考慮すれば有機アミン、アンモニアが好ましく、特にエチレンジアミン、ジエチレントリアミン、トリエチレンテトラアミン、アンモニア、尿素、エタノールアミン、テトラメチル水酸化アンモニウム等が好ましいものとして挙げられる。   It is preferable to adjust the reaction solvent to be alkaline by adding a basic catalyst to the reaction solvent. Thereby, the reaction solvent is preferably adjusted to pH 8 to 11, more preferably pH 8.5 to 10.5, and colloidal silica can be formed quickly. As the basic catalyst, organic amines and ammonia are preferable in consideration of impurities, and ethylenediamine, diethylenetriamine, triethylenetetraamine, ammonia, urea, ethanolamine, tetramethylammonium hydroxide and the like are particularly preferable.

反応溶媒中でケイ素化合物を加水分解・縮合するには、原料化合物を有機溶媒に添加して0〜100℃、好ましくは0〜50℃の温度条件で攪拌すればよい。水を含む有機溶媒中でケイ素化合物を攪拌しながら加水分解・縮合することにより、球状で粒径のそろったコロイダルシリカを得ることができる。   In order to hydrolyze and condense the silicon compound in the reaction solvent, the raw material compound may be added to the organic solvent and stirred at a temperature of 0 to 100 ° C., preferably 0 to 50 ° C. Colloidal silica having a spherical shape and a uniform particle size can be obtained by hydrolyzing and condensing a silicon compound in an organic solvent containing water while stirring.

本発明では、コロイダルシリカに、化学的にスルホン酸基に変換できる官能基を有するシランカップリング剤を添加した後、前記官能基をスルホン酸基に変換することにより、コロイダルシリカをスルホン酸修飾する。これは、スルホン酸基は酸性度が高く加水分解を招くため、スルホン酸基を有するシランカップリング剤は得られ難いことに基づく。   In the present invention, a colloidal silica is modified with sulfonic acid by adding a silane coupling agent having a functional group that can be chemically converted to a sulfonic acid group, and then converting the functional group into a sulfonic acid group. . This is based on the fact that a silane coupling agent having a sulfonic acid group is difficult to obtain because the sulfonic acid group has high acidity and causes hydrolysis.

化学的にスルホン酸基に変換できる官能基を有するシランカップリング剤としては、例えば、1)加水分解によりスルホン酸基に変換できるスルホン酸エステル基を有するシランカップリング剤、2)酸化によりスルホン酸基に変換できるメルカプト基及び/又はスルフィド基を有するカップリング剤が挙げられる。なお、コロイダルシリカ表面のスルホン酸修飾は溶液中で行われるため、修飾効率を高めるためには、後者のメルカプト基及び/又はスルフィド基を有するカップリング剤を用いることが好ましい。   Examples of the silane coupling agent having a functional group that can be chemically converted to a sulfonic acid group include 1) a silane coupling agent having a sulfonic acid ester group that can be converted to a sulfonic acid group by hydrolysis, and 2) a sulfonic acid by oxidation. Examples include a coupling agent having a mercapto group and / or a sulfide group that can be converted into a group. In addition, since the sulfonic acid modification on the surface of colloidal silica is performed in a solution, it is preferable to use the latter coupling agent having a mercapto group and / or a sulfide group in order to increase the modification efficiency.

メルカプト基を有するシランカップリング剤としては、例えば、3−メルカプトプロピルトリメトキシシラン、2−メルカプトプロピルトリエトキシシラン、2−メルカプトエチルトリメトキシシラン、2−メルカプトエチルトリエトキシシラン等が挙げられる。   Examples of the silane coupling agent having a mercapto group include 3-mercaptopropyltrimethoxysilane, 2-mercaptopropyltriethoxysilane, 2-mercaptoethyltrimethoxysilane, 2-mercaptoethyltriethoxysilane, and the like.

スルフィド基を有するカップリング剤としては、例えば、ビス(3−トリエトキシシリルプロピル)ジスルフィドが挙げられる。   Examples of the coupling agent having a sulfide group include bis (3-triethoxysilylpropyl) disulfide.

コロイダルシリカにカップリング剤を添加する際、カップリング剤の溶解性を考えるとコロイダルシリカに親水性有機溶媒を含むことが好ましい。この点、アルコキシシランを塩基性触媒によりアルコール−水溶媒中で加水分解・縮合するストーバー法によってコロイダルシリカを得た場合にはアルコールが反応液中に含まれるので更に親水性有機溶媒を添加する必要はない。このとき、コロイダルシリカ中の水に対して親水性有機溶媒は50質量%以上がより好ましいため、必要に応じて反応液を濃縮することにより調整する。   When adding a coupling agent to colloidal silica, considering the solubility of the coupling agent, it is preferable that the colloidal silica contains a hydrophilic organic solvent. In this regard, when colloidal silica is obtained by a Stover method in which alkoxysilane is hydrolyzed and condensed in an alcohol-water solvent with a basic catalyst, alcohol is contained in the reaction solution, so it is necessary to add a hydrophilic organic solvent. There is no. At this time, since the hydrophilic organic solvent is more preferably 50% by mass or more with respect to the water in the colloidal silica, it is adjusted by concentrating the reaction solution as necessary.

他方、水分散のコロイダルシリカにシランカップリング剤を添加する場合は、シランカップリング剤が溶解する程度に親水性溶媒を加える。親水性有機溶媒としては、例えば、イソプロピルアルコール、エタノール及びメタノール等のアルコールが挙げられる、この中でも、ケイ素化合物の加水分解により生成するアルコールと同種のアルコールを用いることが好ましい。これは、ケイ素化合物の加水分解により生成するアルコールと同種のアルコールを用いることにより、溶媒の回収、再利用を容易化できるからである。   On the other hand, when adding a silane coupling agent to water-dispersed colloidal silica, a hydrophilic solvent is added to such an extent that the silane coupling agent is dissolved. Examples of the hydrophilic organic solvent include alcohols such as isopropyl alcohol, ethanol and methanol. Among these, it is preferable to use the same alcohol as the alcohol generated by hydrolysis of the silicon compound. This is because the recovery and reuse of the solvent can be facilitated by using an alcohol of the same type as that generated by hydrolysis of the silicon compound.

上記カップリング剤の添加量は、シリカに対して0.1〜10質量%程度である。添加量が少ないと、酸性におけるゼータ電位が十分安定しない場合がある。添加量が多ければ、経時的に変性シリカゾルがゲル化する可能性がある。   The addition amount of the coupling agent is about 0.1 to 10% by mass with respect to silica. If the amount added is small, the zeta potential in acidity may not be sufficiently stable. If the amount added is large, the modified silica sol may gelate over time.

カップリング剤を添加する際の温度は限定されないが、常温(約20℃)から沸点が好ましい。反応時間も限定されないが、10分〜10時間が好ましく、30分〜2時間がより好ましい。添加時のpHも限定されないが、7以上11以下が好ましい。11以上の強アルカリでは、シランカップリング剤がシリカ表面と反応せず、シランカップリング剤どうしが自己縮合するおそれがあり好ましくない。   Although the temperature at the time of adding a coupling agent is not limited, The boiling point is preferable from normal temperature (about 20 degreeC). Although the reaction time is not limited, it is preferably 10 minutes to 10 hours, more preferably 30 minutes to 2 hours. Although the pH at the time of addition is not limited, it is preferably 7 or more and 11 or less. A strong alkali of 11 or more is not preferable because the silane coupling agent does not react with the silica surface and the silane coupling agents may self-condense.

修飾したメルカプト基及びスルフィド基を酸化する方法としては、酸化剤を用いることができる。例えば、硝酸、過酸化水素、酸素、オゾン、有機過酸(過カルボン酸)、臭素、次亜塩素酸塩、過マンガン酸カリウム、クロム酸等が挙げられる。これらの酸化剤の中でも過酸化水素及び有機過酸(過酢酸、過安息香酸類)が比較的取り扱いが容易で酸化収率も良好である点で好ましい。なお、反応で副生する物質を考慮すれば、過酸化水素を用いることが最も好ましい。   As a method for oxidizing the modified mercapto group and sulfide group, an oxidizing agent can be used. Examples thereof include nitric acid, hydrogen peroxide, oxygen, ozone, organic peracid (percarboxylic acid), bromine, hypochlorite, potassium permanganate, and chromic acid. Among these oxidizing agents, hydrogen peroxide and organic peracids (peracetic acid and perbenzoic acids) are preferable because they are relatively easy to handle and the oxidation yield is good. In view of a substance by-produced in the reaction, it is most preferable to use hydrogen peroxide.

酸化剤の添加量は、シランカップリング剤の3倍モルから100倍モルが好ましい。特に添加量の上限はないが、50倍モル程度がより好ましい。なお、コロイダルシリカ及びシランカップリング剤については、スルホン酸基に酸化(変換)される官能基以外は酸化反応において安定な構造を有するので、副生成物がない。   The addition amount of the oxidizing agent is preferably 3 to 100 times mol of the silane coupling agent. There is no particular upper limit for the amount added, but about 50 times mole is more preferred. Note that colloidal silica and silane coupling agents have no by-products because they have a stable structure in the oxidation reaction except for functional groups that are oxidized (converted) to sulfonic acid groups.

上記の方法に従って得られたスルホン酸修飾水性アニオンシリカゾルは水以外の溶媒を含んでいるため、当該シリカゾルの長期保存安定性を高めるために、必要に応じて、反応溶媒を主とする分散媒を水で置換することができる。なお、この水置換は、カップリング剤を添加後、酸化剤を添加する前に行ってもよい。   Since the sulfonic acid-modified aqueous anionic silica sol obtained according to the above method contains a solvent other than water, in order to improve the long-term storage stability of the silica sol, a dispersion medium mainly containing a reaction solvent is used as necessary. Can be replaced with water. In addition, you may perform this water substitution before adding an oxidizing agent after adding a coupling agent.

反応溶媒を主とする分散媒を水で置換する方法は特に限定されず、例えば、当該シリカゾルを加熱しながら水を一定量ずつ滴下する方法が挙げられる。また、当該シリカゾルを沈殿・分離、遠心分離等により反応溶媒を主とする分散媒と分離した後に、水に再分散させる方法も挙げられる。   A method for replacing the dispersion medium mainly containing the reaction solvent with water is not particularly limited, and examples thereof include a method in which water is added dropwise in a certain amount while heating the silica sol. In addition, there may be mentioned a method in which the silica sol is separated from a dispersion medium mainly composed of a reaction solvent by precipitation / separation, centrifugation, or the like and then redispersed in water.

本発明の製造方法により得られるスルホン酸修飾水性アニオンシリカゾルは、ゾル中のシリカ表面がスルホン酸基によって変性されているので、酸性の分散媒であっても、当該シリカゾルの凝集やゲル化が抑制されており、長期間安定分散可能である。例えば、酸性条件下、調製後2週間以上、凝集又はゲル化が防止されている。また、スルホン酸基によって変性されているため、理由は不詳であるが、表面が修飾されていない(シラノール基のみ)コロイダルシリカと比べてシリカゾルの透明度が高い。   In the sulfonic acid-modified aqueous anionic silica sol obtained by the production method of the present invention, since the silica surface in the sol is modified with a sulfonic acid group, aggregation and gelation of the silica sol are suppressed even in an acidic dispersion medium. It can be stably dispersed for a long time. For example, aggregation or gelation is prevented under acidic conditions for 2 weeks or more after preparation. Moreover, since it is modified by a sulfonic acid group, the reason is unknown, but the transparency of silica sol is higher than that of colloidal silica whose surface is not modified (only silanol group).

しかも、本発明の製造方法により得られる当該シリカゾルは、1)ナトリウム及びカリウムから選ばれるアルカリ金属、2)カルシウム及びマグネシウムから選ばれるアルカリ土類金属並びに3)アルミニウム、鉄、チタン、ニッケル、クロム、銅、亜鉛、鉛、銀、マンガン及びコバルトから選ばれる重金属及び軽金属の含有量がそれぞれ1重量ppm以下と少なく、さらに腐食性を有する塩素、臭素等のハロゲン元素を含まず高純度である。   Moreover, the silica sol obtained by the production method of the present invention includes 1) an alkali metal selected from sodium and potassium, 2) an alkaline earth metal selected from calcium and magnesium, and 3) aluminum, iron, titanium, nickel, chromium, The contents of heavy metals and light metals selected from copper, zinc, lead, silver, manganese and cobalt are as low as 1 ppm by weight or less, respectively, and they have high purity without containing halogen elements such as corrosive chlorine and bromine.

また、当該シリカゾルに含まれる変性シリカの粒子径は1000nm以下、好ましくは5〜500nm、より好ましくは10〜300nmである。   The particle size of the modified silica contained in the silica sol is 1000 nm or less, preferably 5 to 500 nm, more preferably 10 to 300 nm.

本発明の当該シリカゾルは、幅広いpH領域において長期間の分散安定性に優れる。シリカゾルの安定性は、シリカゾルのゼータ電位を測定することで評価することができる。ゼータ電位とは、互いに接している固体と液体とが相対運動を行なったときの両者の界面に生じる電位差のことであり、ゼータ電位の絶対値が増加すれば、粒子間の反発が強く粒子の安定性は高くなり、ゼータ電位の絶対値がゼロに近づくほど、粒子は凝集し易くなる。
特に本発明のシリカゾルは酸性領域において高い安定性を有する。変性剤としてアニオン性基を有するカップリング剤を用いるため、分散媒がpH2以上の酸性のときのゼータ電位は負電位(−15mV以下)であり、分散媒が酸性であっても高い分散安定性を有する。このようにゼータ電位の絶対値が大きいため高い分散安定性を有し、これに伴いシリカゾルの動粘度も小さい。
The silica sol of the present invention is excellent in long-term dispersion stability in a wide pH range. The stability of the silica sol can be evaluated by measuring the zeta potential of the silica sol. The zeta potential is the potential difference that occurs at the interface between the solid and the liquid that are in contact with each other when they move relative to each other. If the absolute value of the zeta potential increases, the repulsion between particles is strong. Stability increases and the closer the absolute value of the zeta potential is to zero, the easier the particles will aggregate.
In particular, the silica sol of the present invention has high stability in the acidic region. Since a coupling agent having an anionic group is used as the modifier, the zeta potential when the dispersion medium is acidic at pH 2 or higher is a negative potential (−15 mV or less), and high dispersion stability even when the dispersion medium is acidic. Have Thus, since the absolute value of the zeta potential is large, it has high dispersion stability, and accordingly, the kinematic viscosity of the silica sol is small.

本発明のシリカゾルは、高濃度化が可能である。特開2005−060219「シリカゾル及びその製造方法」、WO2008/015943「シリカゾル及びその製造方法」に開示されたように、アルカリを添加してコロイダルシリカの安定性の高いpHで維持すること、又は、少量の有機酸の塩を添加することによって高濃度化が試みられているが、これらの従来品ではシリカ濃度40wt%程度が限界であった。これに対し、スルホン酸基により修飾した本発明のアニオンシリカゾルは、酸性からアルカリ性の広い範囲で50質量%以上の高濃度化が可能である。   The silica sol of the present invention can be increased in concentration. As disclosed in JP-A-2005-060219 “Silica sol and method for producing the same”, WO2008 / 015943 “Silica sol and method for producing the same”, an alkali is added to maintain the colloidal silica at a highly stable pH, or Although attempts have been made to increase the concentration by adding a small amount of a salt of an organic acid, the silica concentration of about 40 wt% was the limit in these conventional products. On the other hand, the anionic silica sol of the present invention modified with a sulfonic acid group can achieve a high concentration of 50% by mass or more in a wide range from acidic to alkaline.

本発明のシリカゾルは、研磨剤、紙のコーティング剤などの様々な用途に使用することができ、広いpH範囲で長期間安定分散可能であり、しかもナトリウムや鉄、ニッケル、アルミニウム等の金属不純物量が1重量ppm以下と高純度である。半導体製品の不良の大半は汚染によるものであり、しかも鉄、ニッケル、クロム、銅、亜鉛などの重金属及びナトリウム、カルシウムなどのアルカリ金属による汚染は主に液体に接触することにより付着して汚染される。金属汚染があれば、酸化膜の絶縁破壊につながるおそれがあるため、金属不純物を接触させないことが重要である。従って、金属不純物量が低く抑えられている本発明のスルホン酸修飾水性アニオンシリカゾルは、特に半導体ウェハのCMP研磨用の研磨剤として好適に用いることができる。   The silica sol of the present invention can be used for various applications such as abrasives and paper coating agents, and can be stably dispersed for a long time in a wide pH range, and the amount of metal impurities such as sodium, iron, nickel, and aluminum. Has a high purity of 1 ppm by weight or less. The majority of defects in semiconductor products are caused by contamination, and contamination by heavy metals such as iron, nickel, chromium, copper, and zinc, and alkali metals such as sodium and calcium are attached and contaminated mainly by contact with liquids. The If there is metal contamination, it may lead to dielectric breakdown of the oxide film, so it is important not to make metal impurities contact. Therefore, the sulfonic acid-modified aqueous anionic silica sol of the present invention in which the amount of metal impurities is kept low can be suitably used as a polishing agent for CMP polishing of semiconductor wafers.

本発明のシリカゾルは、濾過性が良好である。分散剤やシラノール基のアニオン化又はカチオン化でシリカゾルの動粘度を低下させることができるが、濾過性とは直結しない。これに対し、スルホン酸修飾を行うことにより、確実に濾過性が優れたシリカゾルとなる。とりわけ本発明のシリカゾルをCMP研磨剤(研磨液)として用いる場合には、研磨装置に研磨液を供給する前に濾過を行う必要があると同時に、循環して繰り返し用いる設計上、シリカゾルの濾過性が高いことは優位性がある。   The silica sol of the present invention has good filterability. Although the kinematic viscosity of the silica sol can be reduced by anionization or cationization of a dispersant or silanol group, it does not directly affect filterability. On the other hand, by performing sulfonic acid modification, a silica sol with excellent filterability is surely obtained. In particular, when the silica sol of the present invention is used as a CMP abrasive (polishing liquid), it is necessary to perform filtration before supplying the polishing liquid to the polishing apparatus. High is advantageous.

CMPでシリカゾルを研磨剤として用いる場合に、リサイクルスラリー中には最初の研磨中に生じた研磨パッドの研磨屑や研磨パッドの状態を安定化する場合のドレッシング屑など大小の異物が混入しており、このまま利用するとウェハにスクラッチ傷を生じ、ウェハ自体が使い物にならなくなる。   When using silica sol as a polishing agent in CMP, the recycled slurry contains large or small foreign matter such as polishing debris generated during the initial polishing and dressing debris to stabilize the state of the polishing pad. If it is used as it is, the scratches are generated on the wafer, and the wafer itself becomes unusable.

また、スラリーをリサイクルしないシステムにおいても、比較的大きな粒子によるマイクロスクラッチの問題があり、これを回避するためにCMP装置の直前においてフィルターレーションすることは重要なプロセスであると考えられている。   Further, even in a system that does not recycle the slurry, there is a problem of microscratching due to relatively large particles, and in order to avoid this, filtering immediately before the CMP apparatus is considered to be an important process.

シリカゾルの製造プロセスにおいても、目的物のシリカ粒子だけでなく粒子が凝集した凝集物が生成するので、製品化の最後のプロセスにおいて濾過が必要になる。   In the silica sol production process, not only the target silica particles but also agglomerates in which the particles are agglomerated are produced, so that filtration is necessary in the final process of commercialization.

CMPに限らず、粗粒を問題とするシリカゾルの用途にとって濾過工程は工業上重要なプロセスであり、シリカゾル自体の濾過性を改善することには、濾過に用いるフィルター自身の寿命も延ばすことができる点からも有益な物性の改善であるといえる。   The filtration process is an industrially important process not only for CMP but also for silica sol applications where coarse particles are a problem. To improve the filterability of silica sol itself, the life of the filter itself used for filtration can be extended. It can be said that this is a beneficial improvement in physical properties.

本発明のスルホン酸修飾水性アニオンシリカゾルは、pH2以上の酸性においてゼータ電位が−15mV以下である。そして、分散媒が酸性であっても高い分散安定性を有する。このようにゼータ電位の絶対値が大きいため高い分散安定性を有し、これに伴いシリカゾルの動粘度も小さい。また、高濃度化が可能である上、濾過性が良好である。特に加水分解可能なケイ素化合物を加水分解・縮合することにより原料コロイダルシリカを得る場合には金属不純物の含有量を有意に低減できるため、本発明のシリカゾルは半導体ウェハのCMP研磨剤としても好適に用いることができる。   The sulfonic acid-modified aqueous anionic silica sol of the present invention has a zeta potential of -15 mV or less when the pH is 2 or higher. And even if a dispersion medium is acidic, it has high dispersion stability. Thus, since the absolute value of the zeta potential is large, it has high dispersion stability, and accordingly, the kinematic viscosity of the silica sol is small. Further, the concentration can be increased and the filterability is good. In particular, when the raw material colloidal silica is obtained by hydrolyzing and condensing a hydrolyzable silicon compound, the content of metal impurities can be significantly reduced. Therefore, the silica sol of the present invention is also suitable as a CMP polishing agent for semiconductor wafers. Can be used.

以下に実施例及び比較例を示して本発明を具体的に説明する。但し、本発明は実施例に限定されない。   The present invention will be specifically described below with reference to examples and comparative examples. However, the present invention is not limited to the examples.

実施例1
純水787.9g、26%アンモニア水(塩基性触媒)786.0g、メタノール12924gの混合液に、テトラメトキシシラン1522.2g、メタノール413.0gの混合液を、液温を35℃に保ちつつ55分かけて滴下し、水とメタノールを分散媒とするシリカゾルを得た。
Example 1
A mixture of 787.9 g of pure water, 786.0 g of 26% aqueous ammonia (basic catalyst) and 12924 g of methanol, and a mixture of 1522.2 g of tetramethoxysilane and 413.0 g of methanol, while maintaining the liquid temperature at 35 ° C. It was added dropwise over 55 minutes to obtain a silica sol using water and methanol as a dispersion medium.

このシリカゾルを常圧下で5000mlまで加熱濃縮した。この濃縮液にシランカップリング剤として3−メルカプトプロピルトリメトキシシラン6.0gを加え、沸点で還流して熱熟成を行った。その後、容量を一定に保つために純水を追加しながらメタノール及びアンモニアを水置換し、pHが8以下になった時点で一旦シリカゾルの液温を室温に下げた。次に35%過酸化水素水を53.5g添加して再び加熱し、8時間反応を続け、室温まで冷却後、スルホン酸修飾水性アニオンシリカゾルを得た。   This silica sol was heated and concentrated to 5000 ml under normal pressure. To this concentrated liquid, 6.0 g of 3-mercaptopropyltrimethoxysilane was added as a silane coupling agent, and the mixture was refluxed at the boiling point and thermally aged. Thereafter, methanol and ammonia were replaced with water while adding pure water to keep the volume constant, and when the pH reached 8 or less, the temperature of the silica sol was once lowered to room temperature. Next, 53.5 g of 35% hydrogen peroxide was added and heated again, and the reaction was continued for 8 hours. After cooling to room temperature, a sulfonic acid-modified aqueous anionic silica sol was obtained.

実施例2
純水2212.7g、26%アンモニア水(塩基性触媒)567.3g、メタノール12391gの混合液に、テトラメトキシシラン1522.2g、メタノール413.0gの混合液を、液温を20℃に保ちつつ25分かけて滴下し、水とメタノールを分散媒とするシリカゾルを得た。
Example 2
While maintaining a liquid temperature of 20 ° C., a mixture of pure water 2212.7 g, 26% ammonia water (basic catalyst) 567.3 g, and methanol 12391 g is mixed with tetramethoxysilane 1522.2 g and methanol 413.0 g. The solution was added dropwise over 25 minutes to obtain a silica sol using water and methanol as a dispersion medium.

このシリカゾルを常圧下で2500mlまで加熱濃縮した。この濃縮液にシランカップリング剤として3−メルカプトプロピルトリメトキシシラン6.0gを加え、沸点で還流して熱熟成を行った。その後、容量を一定に保つために純水を追加しながらメタノール及びアンモニアを水置換し、pHが8以下になった時点で一旦シリカゾルの液温を室温に下げた。次に35%過酸化水素水を28g添加して再び加熱し、8時間反応を続け、室温まで冷却後、スルホン酸修飾水性アニオンシリカゾルを得た。   This silica sol was heated and concentrated to 2500 ml under normal pressure. To this concentrated liquid, 6.0 g of 3-mercaptopropyltrimethoxysilane was added as a silane coupling agent, and the mixture was refluxed at the boiling point and thermally aged. Thereafter, methanol and ammonia were replaced with water while adding pure water to keep the volume constant, and when the pH reached 8 or less, the temperature of the silica sol was once lowered to room temperature. Next, 28 g of 35% hydrogen peroxide was added and heated again, and the reaction was continued for 8 hours. After cooling to room temperature, a sulfonic acid-modified aqueous anionic silica sol was obtained.

比較例1
純水2212.7g、26%アンモニア水(塩基性触媒)567.3g、メタノール12391gの混合液に、テトラメトキシシラン1522.2g、メタノール413.0gの混合液を、液温を20℃に保ちつつ25分かけて滴下し、水とメタノールを分散媒とするシリカゾルを得た。
Comparative Example 1
While maintaining a liquid temperature of 20 ° C., a mixture of pure water 2212.7 g, 26% ammonia water (basic catalyst) 567.3 g, and methanol 12391 g is mixed with tetramethoxysilane 1522.2 g and methanol 413.0 g. The solution was added dropwise over 25 minutes to obtain a silica sol using water and methanol as a dispersion medium.

このシリカゾルを常圧下で2500mlまで加熱濃縮した。この濃縮液の容量を一定に保つために純水を追加しながらメタノール及びアンモニアを水置換し、pHを8以下にすることによりコロイダルシリカを得た。   This silica sol was heated and concentrated to 2500 ml under normal pressure. In order to keep the volume of the concentrated solution constant, methanol and ammonia were replaced with water while adding pure water, and colloidal silica was obtained by adjusting the pH to 8 or less.

比較例2
比較例1で得たコロイダルシリカ1800gに、攪拌下で液温25℃に保ちながら、Al含有量18.8%の市販のアルミン酸ナトリウム水溶液2.65gを10gの純水で希釈した水溶液を添加した。次に沸点で2時間還流してアルカリ性アルミ改質コロイダルシリカを得た。
Comparative Example 2
To 1800 g of the colloidal silica obtained in Comparative Example 1, 2.65 g of a commercially available sodium aluminate aqueous solution having an Al 2 O 3 content of 18.8% was diluted with 10 g of pure water while maintaining the liquid temperature at 25 ° C. with stirring. An aqueous solution was added. Next, it was refluxed at the boiling point for 2 hours to obtain alkaline aluminum modified colloidal silica.

室温下、得られたアルカリ性アルミ改質コロイダルシリカに陽イオン交換樹脂(アンバーライトIR−124H)30gを投入し、pHが3.5以下になるまで攪拌を行った。その後、陽イオン交換樹脂を除去して、酸性アルミ改質コロイダルシリカを得た。   At room temperature, 30 g of a cation exchange resin (Amberlite IR-124H) was added to the obtained alkaline aluminum-modified colloidal silica and stirred until the pH was 3.5 or less. Thereafter, the cation exchange resin was removed to obtain acidic aluminum modified colloidal silica.

各実施例で得られたスルホン酸修飾水性アニオンシリカゾル及び各比較例で得られたコロイダルシリカの物性を下記表1に示す。   The physical properties of the sulfonic acid-modified aqueous anionic silica sol obtained in each Example and the colloidal silica obtained in each Comparative Example are shown in Table 1 below.

金属不純物量は原子吸光測定装置を用いて測定した。また、ゼータ電位は測定装置ELS-Z(大塚電子社製)を用いて動的光散乱ドップラー法により測定した。   The amount of metal impurities was measured using an atomic absorption measuring device. The zeta potential was measured by a dynamic light scattering Doppler method using a measuring device ELS-Z (manufactured by Otsuka Electronics Co., Ltd.).

Figure 2010269985
Figure 2010269985

試験例1(経時変化観察)
実施例1、2で得たスルホン酸修飾水性アニオンシリカゾル及び比較例1で得たコロイダルシリカのpHを3と4.5に2種類調整し、43℃と60℃の恒温槽に保存し、1週間後と2週間後の経時変化を調べた。
Test Example 1 (Observation over time)
The pH of the sulfonic acid-modified aqueous anionic silica sol obtained in Examples 1 and 2 and the colloidal silica obtained in Comparative Example 1 were adjusted to 3 and 4.5, and stored in a constant temperature bath at 43 ° C and 60 ° C. The time course after 2 weeks and after 2 weeks was examined.

動粘度はキヤノンフェンスケ粘度計により測定した。   The kinematic viscosity was measured with a Canon Fenske viscometer.

一次粒子径は比表面積から換算することにより算出した。二次粒子径(ELS値)はドデシル硫酸ナトリウム水溶液またはクエン酸水溶液希釈法により測定した。   The primary particle diameter was calculated by converting from the specific surface area. The secondary particle size (ELS value) was measured by a sodium dodecyl sulfate aqueous solution or citric acid aqueous solution dilution method.

実施例1についての測定結果を下記表2に示す。実施例2についての測定結果を下記表3に示す。比較例1についての測定結果を下記表4に示す。なお、表中、「会合比」は、二次粒子径を一次粒子径で割った数値である。   The measurement results for Example 1 are shown in Table 2 below. The measurement results for Example 2 are shown in Table 3 below. The measurement results for Comparative Example 1 are shown in Table 4 below. In the table, “association ratio” is a numerical value obtained by dividing the secondary particle diameter by the primary particle diameter.

Figure 2010269985
Figure 2010269985

Figure 2010269985
Figure 2010269985

Figure 2010269985
Figure 2010269985

試験例2(透過量(濾過性)評価)
実施例2で得たスルホン酸修飾水性アニオンシリカゾル及び比較例1で得たコロイダルシリカの透過量(濾過性)を調べた。具体的には、アドバンテック東洋社の開孔3μmのメンブランフィルター(型番:A300A047A)を用いて、−0.07MPaの減圧度の条件で吸引濾過を行い、10分間に濾紙を透過する上記シリカゾル又はコロイダルシリカの透過量を測定することによって濾過性を評価した。
Test Example 2 (permeation (filterability) evaluation)
The permeation amount (filterability) of the sulfonic acid-modified aqueous anionic silica sol obtained in Example 2 and the colloidal silica obtained in Comparative Example 1 was examined. Specifically, the above silica sol or colloidal that performs suction filtration using a membrane filter (model number: A300A047A) with an aperture of 3 μm made by Advantech Toyo Co., Ltd. under a reduced pressure of −0.07 MPa and permeates the filter paper for 10 minutes. Filterability was evaluated by measuring the amount of silica permeation.

測定データのばらつきを考慮しそれぞれ6回測定し、測定した透過量の最大値と最小値を除き、4回の測定データの平均値により評価した。10分間に濾紙を透過するコロイダルシリカの透過量の結果を上記表1に併せて示す。表1の結果からは、実施例2で得たスルホン酸修飾水性アニオンシリカゾルの方が、比較例1のコロイダルシリカよりも約2.7倍も透過量(濾過性)が大きいことが分かる。   Taking into account the variation in the measurement data, each measurement was performed six times, and the average value of the four measurement data was evaluated excluding the maximum and minimum values of the measured transmission amount. Table 1 also shows the results of the amount of colloidal silica permeating through the filter paper for 10 minutes. From the results in Table 1, it can be seen that the sulfonic acid-modified aqueous anionic silica sol obtained in Example 2 has a permeation amount (filterability) about 2.7 times greater than that of the colloidal silica of Comparative Example 1.

Claims (6)

pH2以上の酸性においてゼータ電位が−15mV以下であるスルホン酸修飾水性アニオンシリカゾル。   A sulfonic acid-modified aqueous anionic silica sol having a zeta potential of -15 mV or less at an acidity of pH 2 or higher. 1)ナトリウム及びカリウムから選ばれるアルカリ金属、2)カルシウム及びマグネシウムから選ばれるアルカリ土類金属並びに3)アルミニウム、鉄、チタン、ニッケル、クロム、銅、亜鉛、鉛、銀、マンガン及びコバルトから選ばれる重金属及び軽金属の含有量がそれぞれ1重量ppm以下である、請求項1に記載のスルホン酸修飾水性アニオンシリカゾル。
1) Alkali metal selected from sodium and potassium, 2) Alkaline earth metal selected from calcium and magnesium, and 3) Aluminum, iron, titanium, nickel, chromium, copper, zinc, lead, silver, manganese and cobalt The sulfonic acid-modified aqueous anionic silica sol according to claim 1, wherein the contents of heavy metal and light metal are each 1 ppm by weight or less.
酸性条件下、調製後2週間以上、凝集又はゲル化が防止されている、請求項1又は2に記載のスルホン酸修飾水性アニオンシリカゾル。   The sulfonic acid-modified aqueous anionic silica sol according to claim 1 or 2, wherein aggregation or gelation is prevented for 2 weeks or more after preparation under acidic conditions. コロイダルシリカに、化学的にスルホン酸基に変換できる官能基を有するシランカップリング剤を添加した後、前記官能基をスルホン酸基に変換するスルホン酸修飾水性アニオンシリカゾルの製造方法。   A method for producing a sulfonic acid-modified aqueous anionic silica sol, wherein a silane coupling agent having a functional group that can be chemically converted into a sulfonic acid group is added to colloidal silica, and then the functional group is converted into a sulfonic acid group. 前記化学的にスルホン酸基に変換できる官能基はメルカプト基である、請求項4に記載の製造方法。   The production method according to claim 4, wherein the functional group that can be chemically converted to a sulfonic acid group is a mercapto group. 前記コロイダルシリカは、加水分解可能なケイ素化合物を加水分解・縮合して得られる、請求項4又は5に記載の製造方法。   The said colloidal silica is a manufacturing method of Claim 4 or 5 obtained by hydrolyzing and condensing the hydrolysable silicon compound.
JP2009124384A 2009-05-22 2009-05-22 Sulfonic acid-modified aqueous anionic silica sol and method for producing the same Pending JP2010269985A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009124384A JP2010269985A (en) 2009-05-22 2009-05-22 Sulfonic acid-modified aqueous anionic silica sol and method for producing the same
PCT/JP2010/058440 WO2010134542A1 (en) 2009-05-22 2010-05-19 Sulfonic acid-modified aqueous anionic silica sol and method for producing same
TW099116227A TW201100327A (en) 2009-05-22 2010-05-21 Sulfonic acid-modified aqueous anionic silicasol and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009124384A JP2010269985A (en) 2009-05-22 2009-05-22 Sulfonic acid-modified aqueous anionic silica sol and method for producing the same

Publications (1)

Publication Number Publication Date
JP2010269985A true JP2010269985A (en) 2010-12-02

Family

ID=43126219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009124384A Pending JP2010269985A (en) 2009-05-22 2009-05-22 Sulfonic acid-modified aqueous anionic silica sol and method for producing the same

Country Status (3)

Country Link
JP (1) JP2010269985A (en)
TW (1) TW201100327A (en)
WO (1) WO2010134542A1 (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011093153A1 (en) 2010-02-01 2011-08-04 Jsr株式会社 Aqueous dispersion for chemical mechanical polishing, and chemical mechanical polishing method using same
WO2011142130A1 (en) 2010-05-14 2011-11-17 株式会社Kri Modified metal oxide sol
WO2012026329A1 (en) * 2010-08-23 2012-03-01 株式会社 フジミインコーポレーテッド Polishing composition and polishing method using same
JP2013021292A (en) * 2011-06-14 2013-01-31 Fujimi Inc Polishing composition
JP2013021291A (en) * 2011-06-14 2013-01-31 Fujimi Inc Polishing composition
JP2013041992A (en) * 2011-08-16 2013-02-28 Jsr Corp Aqueous dispersion for chemical mechanical polishing and chemical mechanical polishing method using the same
JP2013043893A (en) * 2011-08-22 2013-03-04 Jsr Corp Aqueous dispersion for chemical and mechanical polishing and chemical and mechanical polishing method using the same
JP2013103154A (en) * 2011-11-11 2013-05-30 Osaka Gas Co Ltd Porous substance, siloxane removing agent, and filter using the same
JP2013103889A (en) * 2011-11-11 2013-05-30 Kri Inc Method for manufacturing modified metal oxide sol
JP2013103153A (en) * 2011-11-11 2013-05-30 Osaka Gas Co Ltd Porous substance, siloxane removing agent, and filter using the same
WO2013099866A1 (en) 2011-12-28 2013-07-04 株式会社 フジミインコーポレーテッド Polishing composition
KR20140039260A (en) * 2011-06-14 2014-04-01 가부시키가이샤 후지미인코퍼레이티드 Polishing composition
WO2016117560A1 (en) * 2015-01-19 2016-07-28 株式会社フジミインコーポレーテッド Modified colloidal silica, method of producing same, and polishing agent using same
WO2016117559A1 (en) * 2015-01-19 2016-07-28 株式会社フジミインコーポレーテッド Polishing composition
JP2017122600A (en) * 2016-01-05 2017-07-13 富士電機株式会社 Microchip and manufacturing method of microchip
JP2017529410A (en) * 2014-06-30 2017-10-05 クーパー タイヤ アンド ラバー カンパニーCooper Tire & Rubber Company Modified filler for rubber compounding and masterbatch derived therefrom
JPWO2017057155A1 (en) * 2015-09-30 2017-10-19 株式会社フジミインコーポレーテッド Polishing composition
WO2018061656A1 (en) * 2016-09-30 2018-04-05 株式会社フジミインコーポレーテッド Method for producing cationically modified silica, cationically modified silica dispersion, method for producing polishing composition using cationically modified silica, and polishing composition using cationically modified silica
JP2018095509A (en) * 2016-12-13 2018-06-21 Jsr株式会社 Method for producing silica particle, silica particle, and chemical mechanical polishing composition
JP2018104288A (en) * 2013-06-10 2018-07-05 日産化学工業株式会社 Silica sol
WO2019136197A1 (en) * 2018-01-08 2019-07-11 Cabot Microelectronics Corporation Tungsten buff polishing compositions with improved topography
US10507563B2 (en) 2015-04-22 2019-12-17 Jsr Corporation Treatment composition for chemical mechanical polishing, chemical mechanical polishing method, and cleaning method
JP2020075830A (en) * 2018-11-07 2020-05-21 三菱ケミカル株式会社 Method for producing silica sol and method for suppressing intermediate products in silica sol
CN112094509A (en) * 2020-09-24 2020-12-18 蚌埠学院 Organic silicon modified high-stability acidic silica sol and preparation method thereof
US11034861B2 (en) 2017-10-05 2021-06-15 Fujifilm Electronic Materials U.S.A., Inc. Polishing compositions containing charged abrasive
WO2021117428A1 (en) * 2019-12-12 2021-06-17 Jsr株式会社 Composition for chemical mechanical polishing and method for polishing
US11167995B2 (en) 2016-03-30 2021-11-09 Fujimi Incorporated Method for producing cationically modified silica and cationically modified silica dispersion
JP7129576B1 (en) * 2021-12-23 2022-09-01 扶桑化学工業株式会社 Colloidal silica and method for producing the same
EP4253319A1 (en) 2022-03-29 2023-10-04 Fujimi Incorporated Sulfonic acid-modified colloidal silica
KR20240130728A (en) 2021-12-23 2024-08-29 후소카가쿠코교 가부시키가이샤 Colloidal silica and its production method

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014184708A2 (en) 2013-05-15 2014-11-20 Basf Se Use of a chemical-mechanical polishing (cmp) composition for polishing a substrate or layer containing at least one iii-v material
WO2014184702A2 (en) 2013-05-15 2014-11-20 Basf Se Chemical-mechanical polishing compositions comprising one or more polymers selected from the group consisting of n-vinyl-homopolymers and n-vinyl copolymers
US20160009955A1 (en) 2013-05-15 2016-01-14 Basf Se Chemical-mechanical polishing compositions comprising n,n,n',n'-tetrakis-(2-hydroxypropyl)-ethylenediamine or methanesulfonic acid
SG11201509209VA (en) 2013-05-15 2015-12-30 Basf Se Chemical-mechanical polishing compositions comprising polyethylene imine
US11186748B2 (en) 2017-09-28 2021-11-30 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Aqueous anionic functional silica slurry and amine carboxylic acid compositions for selective nitride removal in polishing and methods of using them
JP7129247B2 (en) * 2018-07-02 2022-09-01 キヤノン株式会社 Coating composition, manufacturing method thereof, optical member, and imaging device
JP6756422B1 (en) 2019-02-21 2020-09-16 三菱ケミカル株式会社 Silica particles and their manufacturing method, silica sol, polishing composition, polishing method, semiconductor wafer manufacturing method and semiconductor device manufacturing method
US10787592B1 (en) * 2019-05-16 2020-09-29 Rohm And Haas Electronic Materials Cmp Holdings, I Chemical mechanical polishing compositions and methods having enhanced defect inhibition and selectively polishing silicon nitride over silicon dioxide in an acid environment
CN112429741B (en) * 2020-11-25 2023-04-28 上海新安纳电子科技有限公司 Sulfonic modified silica sol and preparation method and application thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3584485B2 (en) * 1993-03-03 2004-11-04 日産化学工業株式会社 Method for producing silica sol
DE102004020112A1 (en) * 2003-07-04 2005-01-20 Bayer Chemicals Ag Paper production with modified silica sols as microparticles
JP2006002094A (en) * 2004-06-18 2006-01-05 Brother Ind Ltd Ink set for ink-jet recording and method for producing the same
JP2006257308A (en) * 2005-03-17 2006-09-28 Fuji Photo Film Co Ltd Hollow silica particle dispersion

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011093153A1 (en) * 2010-02-01 2013-05-30 Jsr株式会社 Chemical mechanical polishing aqueous dispersion and chemical mechanical polishing method using the same
JP5915843B2 (en) * 2010-02-01 2016-05-11 Jsr株式会社 Process for producing aqueous dispersion for chemical mechanical polishing
WO2011093153A1 (en) 2010-02-01 2011-08-04 Jsr株式会社 Aqueous dispersion for chemical mechanical polishing, and chemical mechanical polishing method using same
US9017476B2 (en) 2010-05-14 2015-04-28 Kri, Inc. Modified metal oxide sol
JPWO2011142130A1 (en) * 2010-05-14 2013-07-22 株式会社Kri Modified metal oxide sol
JP5750436B2 (en) * 2010-05-14 2015-07-22 株式会社Kri Modified metal oxide sol
WO2011142130A1 (en) 2010-05-14 2011-11-17 株式会社Kri Modified metal oxide sol
WO2012026329A1 (en) * 2010-08-23 2012-03-01 株式会社 フジミインコーポレーテッド Polishing composition and polishing method using same
US10508222B2 (en) 2010-08-23 2019-12-17 Fujimi Incorporated Polishing composition and polishing method using same
JP2013021291A (en) * 2011-06-14 2013-01-31 Fujimi Inc Polishing composition
KR102000304B1 (en) * 2011-06-14 2019-07-15 가부시키가이샤 후지미인코퍼레이티드 Polishing composition
US9640407B2 (en) 2011-06-14 2017-05-02 Fujimi Incorporated Polishing composition
JP2013021292A (en) * 2011-06-14 2013-01-31 Fujimi Inc Polishing composition
KR20140039260A (en) * 2011-06-14 2014-04-01 가부시키가이샤 후지미인코퍼레이티드 Polishing composition
JP2013041992A (en) * 2011-08-16 2013-02-28 Jsr Corp Aqueous dispersion for chemical mechanical polishing and chemical mechanical polishing method using the same
JP2013043893A (en) * 2011-08-22 2013-03-04 Jsr Corp Aqueous dispersion for chemical and mechanical polishing and chemical and mechanical polishing method using the same
JP2013103153A (en) * 2011-11-11 2013-05-30 Osaka Gas Co Ltd Porous substance, siloxane removing agent, and filter using the same
JP2013103889A (en) * 2011-11-11 2013-05-30 Kri Inc Method for manufacturing modified metal oxide sol
JP2013103154A (en) * 2011-11-11 2013-05-30 Osaka Gas Co Ltd Porous substance, siloxane removing agent, and filter using the same
CN104025265A (en) * 2011-12-28 2014-09-03 福吉米株式会社 Polishing composition
JP2013138053A (en) * 2011-12-28 2013-07-11 Fujimi Inc Polishing composition
WO2013099866A1 (en) 2011-12-28 2013-07-04 株式会社 フジミインコーポレーテッド Polishing composition
JP2018104288A (en) * 2013-06-10 2018-07-05 日産化学工業株式会社 Silica sol
JP2017529410A (en) * 2014-06-30 2017-10-05 クーパー タイヤ アンド ラバー カンパニーCooper Tire & Rubber Company Modified filler for rubber compounding and masterbatch derived therefrom
JPWO2016117560A1 (en) * 2015-01-19 2017-10-26 株式会社フジミインコーポレーテッド Modified colloidal silica, method for producing the same, and abrasive using the same
TWI745286B (en) * 2015-01-19 2021-11-11 日商福吉米股份有限公司 Modified colloidal silicon and its manufacturing method and abrasive using it
CN107207945A (en) * 2015-01-19 2017-09-26 福吉米株式会社 Composition for polishing
KR20170106331A (en) * 2015-01-19 2017-09-20 가부시키가이샤 후지미인코퍼레이티드 Modified colloidal silica, method of producing same, and polishing agent using same
KR102508676B1 (en) * 2015-01-19 2023-03-13 가부시키가이샤 후지미인코퍼레이티드 Modified colloidal silica, method of producing same, and polishing agent using same
JPWO2016117559A1 (en) * 2015-01-19 2017-10-26 株式会社フジミインコーポレーテッド Polishing composition
KR20170105515A (en) * 2015-01-19 2017-09-19 가부시키가이샤 후지미인코퍼레이티드 Polishing composition
US20170362465A1 (en) * 2015-01-19 2017-12-21 Fujimi Incorporated Modified colloidal silica and method for producing the same, and polishing agent using the same
US11530335B2 (en) 2015-01-19 2022-12-20 Fujimi Incorporated Modified colloidal silica and method for producing the same, and polishing agent using the same
US11499070B2 (en) 2015-01-19 2022-11-15 Fujimi Incorporated Modified colloidal silica and method for producing the same, and polishing agent using the same
TWI745706B (en) * 2015-01-19 2021-11-11 日商福吉米股份有限公司 Modified colloidal silicon and its manufacturing method and abrasive using it
KR102604533B1 (en) * 2015-01-19 2023-11-22 가부시키가이샤 후지미인코퍼레이티드 Polishing composition
WO2016117559A1 (en) * 2015-01-19 2016-07-28 株式会社フジミインコーポレーテッド Polishing composition
WO2016117560A1 (en) * 2015-01-19 2016-07-28 株式会社フジミインコーポレーテッド Modified colloidal silica, method of producing same, and polishing agent using same
CN107207268A (en) * 2015-01-19 2017-09-26 福吉米株式会社 Modified colloidal sifica and its manufacture method and use its grinding agent
US10570322B2 (en) 2015-01-19 2020-02-25 Fujimi Incorporated Polishing composition
US10507563B2 (en) 2015-04-22 2019-12-17 Jsr Corporation Treatment composition for chemical mechanical polishing, chemical mechanical polishing method, and cleaning method
JPWO2017057155A1 (en) * 2015-09-30 2017-10-19 株式会社フジミインコーポレーテッド Polishing composition
JP2017122600A (en) * 2016-01-05 2017-07-13 富士電機株式会社 Microchip and manufacturing method of microchip
US11167995B2 (en) 2016-03-30 2021-11-09 Fujimi Incorporated Method for producing cationically modified silica and cationically modified silica dispersion
US10941318B2 (en) 2016-09-30 2021-03-09 Fujimi Incorporated Method for producing cationically modified silica, cationically modified silica dispersion, method for producing polishing composition using cationically modified silica, and polishing composition using cationically modified silica
WO2018061656A1 (en) * 2016-09-30 2018-04-05 株式会社フジミインコーポレーテッド Method for producing cationically modified silica, cationically modified silica dispersion, method for producing polishing composition using cationically modified silica, and polishing composition using cationically modified silica
JP2018095509A (en) * 2016-12-13 2018-06-21 Jsr株式会社 Method for producing silica particle, silica particle, and chemical mechanical polishing composition
US11034861B2 (en) 2017-10-05 2021-06-15 Fujifilm Electronic Materials U.S.A., Inc. Polishing compositions containing charged abrasive
US11674056B2 (en) 2017-10-05 2023-06-13 Fujifilm Electronic Materials U.S.A., Inc. Polishing compositions containing charged abrasive
JP2022106995A (en) * 2017-10-05 2022-07-20 フジフイルム エレクトロニック マテリアルズ ユー.エス.エー., インコーポレイテッド Polishing composition containing charged abrasive
WO2019136197A1 (en) * 2018-01-08 2019-07-11 Cabot Microelectronics Corporation Tungsten buff polishing compositions with improved topography
JP7565671B2 (en) 2018-11-07 2024-10-11 三菱ケミカル株式会社 Method for producing silica sol and method for suppressing intermediate products in silica sol
JP2020075830A (en) * 2018-11-07 2020-05-21 三菱ケミカル株式会社 Method for producing silica sol and method for suppressing intermediate products in silica sol
WO2021117428A1 (en) * 2019-12-12 2021-06-17 Jsr株式会社 Composition for chemical mechanical polishing and method for polishing
CN112094509A (en) * 2020-09-24 2020-12-18 蚌埠学院 Organic silicon modified high-stability acidic silica sol and preparation method thereof
WO2023119550A1 (en) * 2021-12-23 2023-06-29 扶桑化学工業株式会社 Colloidal silica and production method therefor
KR20240130728A (en) 2021-12-23 2024-08-29 후소카가쿠코교 가부시키가이샤 Colloidal silica and its production method
DE112021008471T5 (en) 2021-12-23 2024-09-05 Fuso Chemical Co., Ltd. Colloidal silicon dioxide and manufacturing process therefor
JP7129576B1 (en) * 2021-12-23 2022-09-01 扶桑化学工業株式会社 Colloidal silica and method for producing the same
EP4253319A1 (en) 2022-03-29 2023-10-04 Fujimi Incorporated Sulfonic acid-modified colloidal silica

Also Published As

Publication number Publication date
WO2010134542A1 (en) 2010-11-25
TW201100327A (en) 2011-01-01

Similar Documents

Publication Publication Date Title
JP2010269985A (en) Sulfonic acid-modified aqueous anionic silica sol and method for producing the same
JP4577755B2 (en) Process for producing modified colloidal silica
US20190309191A1 (en) Modified colloidal silica and method for producing the same, and polishing agent using the same
JP4566645B2 (en) Silica sol and method for producing the same
JP5080061B2 (en) Method for producing neutral colloidal silica
JP4011566B2 (en) Silica sol and method for producing the same
JP5950060B1 (en) Organic solvent dispersion of zirconium oxide particles and method for producing the same
JP5221517B2 (en) Aluminum modified colloidal silica and method for producing the same
KR102633383B1 (en) Method for producing silica sol
US20220177318A1 (en) Colloidal silica and production method therefor
JP6028958B1 (en) Method for producing organic solvent dispersion of titanium oxide particles
JP2016008157A (en) Method for producing colloidal silica containing core-shell type silica particles
WO2006011252A1 (en) Silica sol and process for producing the same
JP2018108924A (en) Silica particle dispersion and production method thereof
JP4458396B2 (en) Method for producing high-purity hydrophilic organic solvent-dispersed silica sol, high-purity hydrophilic organic solvent-dispersed silica sol obtained by the method, method for producing high-purity organic solvent-dispersed silica sol, and high-purity organic solvent-dispersed silica sol obtained by the method
KR20230140383A (en) Sulfonic acid-modified colloidal silica
JP3950691B2 (en) Colloidal dispersion of cerium compound containing cerium III, process for its production and use thereof
JP5905767B2 (en) Dispersion stabilization method of neutral colloidal silica dispersion and neutral colloidal silica dispersion excellent in dispersion stability
JP4654713B2 (en) Modified stannic oxide-zirconium oxide composite sol and method for producing the same
US20220144649A1 (en) Colloidal silica and method for producing same
JP3738401B2 (en) Alkaline alumina hydrate sol and process for producing the same
JP2006176392A (en) Process for producing modified stannic oxide sol and stannic oxide/zirconium oxide composite sol
JP5377134B2 (en) Method for producing colloidal silica
JP4819322B2 (en) Metal oxide fine particle dispersion and method for producing the same
WO2024122583A1 (en) Silica particle, production method for silica particle, silica sol, polishing composition, polishing method, manufacturing method for semiconductor wafer, and manufacturing method for semiconductor device