JP2010256476A - Imaging optical system - Google Patents
Imaging optical system Download PDFInfo
- Publication number
- JP2010256476A JP2010256476A JP2009104107A JP2009104107A JP2010256476A JP 2010256476 A JP2010256476 A JP 2010256476A JP 2009104107 A JP2009104107 A JP 2009104107A JP 2009104107 A JP2009104107 A JP 2009104107A JP 2010256476 A JP2010256476 A JP 2010256476A
- Authority
- JP
- Japan
- Prior art keywords
- optical system
- optical element
- angle
- imaging optical
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Lenses (AREA)
- Diffracting Gratings Or Hologram Optical Elements (AREA)
Abstract
Description
本発明は、光学系に用いられる撮像光学系であり、複数波長に対応可能な回折光学素子に関するものである。 The present invention relates to an imaging optical system used in an optical system, and relates to a diffractive optical element that can handle a plurality of wavelengths.
従来、光学系の色収差を減じる方法として光学系の1部に回折作用を有する回折光学素子を設ける方法が知られている(非特許文献1)。 Conventionally, as a method of reducing chromatic aberration of an optical system, a method of providing a diffractive optical element having a diffractive action in a part of the optical system is known (Non-Patent Document 1).
また、回折光学素子の形状としてはベースの形状に光路差関数で定義される位相項を付加した形状となっている。まず、ベースの形状としてはレンズの表面の形状であり、球面形状や非球面形状、平面形状であったりする。また、回折レンズ構造による光路長の付加量は、光軸からの高さh、n次(偶数次)の光路差関数係数Cn、波長λを用いて、
φ(h)=(C1h2+C2h4+C3h6+...)×2π/λ
により定義される光路差関数φ(h)により表す。一例として曲率がRのレンズ表面に上記の光路差関数φ(h)にて格子形状を付加する場合、光軸方向の位置をX、hを中心から数えた輪帯番号、dを格子厚とした時
The shape of the diffractive optical element is a shape obtained by adding a phase term defined by an optical path difference function to the shape of the base. First, the shape of the base is the shape of the surface of the lens, and may be a spherical shape, an aspherical shape, or a planar shape. Further, the additional amount of the optical path length by the diffractive lens structure is obtained by using the height h from the optical axis, the optical path difference function coefficient Cn of the nth order (even order), and the wavelength λ.
φ (h) = (C1h 2 + C2h 4 + C3h 6 + ...) × 2π / λ
It is represented by an optical path difference function φ (h) defined by As an example, when a grating shape is added to the surface of a lens having a curvature R by the above optical path difference function φ (h), the position in the optical axis direction is X, h is an annular number counted from the center, and d is the grating thickness. When
で表される形状とすることで、回折作用を付加した回折レンズを作成することが可能である。即ち上記の式においては最初の2項はベース形状を示しており、第3項は光路差関数で位相項を付加した形状を示している。また、第2項については輪帯番号が変わる部分でxの位置が不連続となっており、これにより格子形状が生じる。 It is possible to create a diffractive lens to which a diffraction effect is added. That is, in the above formula, the first two terms represent the base shape, and the third term represents the shape with the phase term added by the optical path difference function. For the second term, the position of x is discontinuous at the part where the zone number changes, and this causes a lattice shape.
回折光学素子を光学系中に用いるときには使用波長域全域において設計次数の光線の回折効率が十分高いことが必要になる。 When a diffractive optical element is used in an optical system, it is necessary that the diffraction efficiency of the light beam of the designed order is sufficiently high over the entire wavelength range used.
回折効率が低いと、即ち設計次数以外の回折次数をもった光線が多く存在すると、これらの光線は、設計次数の光線とは別な所に結像するためフレア光となる。 When the diffraction efficiency is low, that is, when there are many light beams having diffraction orders other than the design order, these light beams form flare light because they are imaged at different locations from the light beams of the design order.
図19、図20は従来の回折光学素子の説明図である。図19において、192は回折格子の輪帯であり、格子と格子のピッチを変えることで光学的なパワーを与えることが出来る。また、図20は第1の回折格子205と第2の回折格子206を空気を挟んで配置しており、この構成を取る事により広い波長域に対して高い回折効率を得る事が可能となっている。 19 and 20 are explanatory views of a conventional diffractive optical element. In FIG. 19, reference numeral 192 denotes a ring zone of the diffraction grating, and optical power can be given by changing the pitch between the grating and the grating. Further, in FIG. 20, the first diffraction grating 205 and the second diffraction grating 206 are arranged with air interposed therebetween, and this configuration makes it possible to obtain high diffraction efficiency over a wide wavelength range. ing.
図18は積層型回折格子の説明図である211は第1の回折格子、212は第2の回折格子、213は空気層である。第1の回折格子と第2回折格子は分散の異なる材質からなり、本実施例の回折格子においては、、第1の回折格子211に紫外線硬化樹脂1(nd=1.635,νd=23.0)、第2の回折格子212に紫外線硬化樹脂2(nd=1.524,νd=50.8)を用い、第1の回折格子211の格子厚d1は7.8μm、第2の回折格子212の格子厚d2は10.7μm、2つの格子間の空気層の厚みd3は1.0μmである。又、格子ピッチは140μm、設計次数は1次である。この時回折効率は可視域全域でほぼ100%なる。図18に示したように第1の回折格子211の格子壁面215と第2の回折格子212の格子壁面216はほぼ入射光線215の第1の格子の樹脂内の光線方向に平行にした時に回折効率はベストとなる。この観点から、回折格子の壁面の角度を設定することで、有効画角内の光束に対して最適化した提案がなされている(特許文献1、2)。 FIG. 18 is an explanatory diagram of a laminated diffraction grating. 211 is a first diffraction grating, 212 is a second diffraction grating, and 213 is an air layer. The first diffraction grating and the second diffraction grating are made of materials having different dispersions. In the diffraction grating of this embodiment, the first diffraction grating 211 includes the ultraviolet curable resin 1 (nd = 1.635, νd = 23.0), the first An ultraviolet curable resin 2 (nd = 1.524, νd = 50.8) is used for the second diffraction grating 212, the grating thickness d 1 of the first diffraction grating 211 is 7.8 μm, the grating thickness d 2 of the second diffraction grating 212 is 10.7 μm, The thickness d3 of the air layer between the two lattices is 1.0 μm. The lattice pitch is 140 μm, and the design order is primary. At this time, the diffraction efficiency is almost 100% over the entire visible range. As shown in FIG. 18, the grating wall surface 215 of the first diffraction grating 211 and the grating wall surface 216 of the second diffraction grating 212 are diffracted when the incident light beam 215 is substantially parallel to the light beam direction in the resin of the first grating. Efficiency is best. From this point of view, proposals have been made to optimize the light flux within the effective angle of view by setting the angle of the wall surface of the diffraction grating (Patent Documents 1 and 2).
また、壁面の角度をより鈍角方向に傾けることで、反射フレアーを像面に到達させないようにするといった特許も提案されている(特許文献3)。 Further, a patent has been proposed in which the reflection flare is prevented from reaching the image plane by tilting the wall surface in an obtuse angle direction (Patent Document 3).
また、密着タイプの回折光学素子の格子壁面に遮光手段を設けるといった内容の特許も提案されている(特許文献4)。 Further, a patent has been proposed in which light shielding means is provided on the grating wall surface of the close contact type diffractive optical element (Patent Document 4).
また、回折光学素子を撮像光学系の前玉から遠ざけて、回折光学素子に画面外から入射する強い光が当たらないようにした構成が提案されている(特許文献5) Further, a configuration has been proposed in which the diffractive optical element is kept away from the front lens of the imaging optical system so that strong light incident from outside the screen does not strike the diffractive optical element (Patent Document 5).
しかしながらこの特許文献1や特許文献2の手法については有効画面内の光の回折効率を高め、有効画面内の光に対する格子壁面の抑制には有効であるが、画面外に太陽光があるような逆光シーンの実写においては問題があった。 However, the methods of Patent Document 1 and Patent Document 2 are effective in increasing the diffraction efficiency of light in the effective screen and suppressing the grating wall surface with respect to the light in the effective screen, but there is sunlight outside the screen. There was a problem in the live-action shooting of the backlight scene.
つまり、この素子を撮像光学系に使用する場合には光線入射角度が壁面の角度からずれた場合には、壁面により反射され像面に到達した場合にはフレアーとして画像に影響を及ぼす。 That is, when this element is used in an imaging optical system, if the incident angle of light deviates from the angle of the wall surface, the light beam is reflected by the wall surface and reaches the image surface as a flare.
この対策として、特許文献3の壁面の角度をより鈍角方向に傾けることで、反射フレアーを像面に到達させないようにするといった特許も提案されている。しかしながら、鈍角に傾けることで透過光の位置を変えることで不要光の影響を大きく減らすことは出来ないことが最近の検討で判明した。これは、不要光の発生の状況は幾何光学的な振る舞いでは無く、回折現象を起こすことで幾何光学的な光線の追跡では到達し得ない位置に光が到達することによる。 As a countermeasure, Patent Document 3 proposes a patent in which the reflection flare is prevented from reaching the image plane by inclining the angle of the wall surface in an obtuse angle direction. However, recent studies have revealed that the influence of unnecessary light cannot be greatly reduced by changing the position of transmitted light by tilting it at an obtuse angle. This is because the generation of unnecessary light is not geometric optical behavior, but is caused by the fact that light reaches a position that cannot be reached by geometric optical ray tracing by causing a diffraction phenomenon.
また、特許文献4のように密着タイプの回折光学素子の格子壁面に遮光手段を設けるといった方法については壁面に遮光部材を設けるためには、加工上の課題も多く、大幅なコスト上昇を招く可能性が強い。特に回折光学素子の全格子に遮光手段を設けるとなると、製造上のタクトが大幅に増加することが予想される。 Further, as for the method of providing the light shielding means on the grating wall surface of the close-contact type diffractive optical element as in Patent Document 4, since the light shielding member is provided on the wall surface, there are many problems in processing, which may cause a significant cost increase. Strong nature. In particular, if the light shielding means is provided in the entire grating of the diffractive optical element, it is expected that the manufacturing tact will be greatly increased.
撮像光学系中に回折光学素子を使用する場合には素子に対して、画像形成に使用される有効画角内の光束以外にも有効画角外からの光が入射する。回折光学素子を絞りより像側に使用しているような場合には大きな角度で入る光束は鏡筒により遮られるため問題となることは少ないが、光学系の絞りより前で回折光学素子を使用した場合には、有効画角外からの光が回折光学素子に入射し易くフレアの発生が問題となる。 When a diffractive optical element is used in the imaging optical system, light from outside the effective field angle is incident on the element in addition to the light beam within the effective field angle used for image formation. When a diffractive optical element is used on the image side from the stop, the light beam entering at a large angle is less likely to be a problem because it is blocked by the lens barrel, but the diffractive optical element is used before the stop of the optical system. In this case, light from outside the effective angle of view easily enters the diffractive optical element, and the occurrence of flare becomes a problem.
通常の光源が有効画角外にあっても光量が低いためフレアの発生は限定的であり大きな問題となることは少ない。これに対して日中の撮影における太陽光は照度が最大で10万lxに達するため、注意が必要である。特に逆光時の撮影においては、遮光用のフードを取り付けるといった対策を行うことが多いが、太陽光の撮像光学系への入射角度によっては、フレア発生を引き起こしてしまう。 Even when a normal light source is outside the effective angle of view, the amount of flare is limited because the amount of light is low, and it is not a big problem. On the other hand, since sunlight in daytime shooting reaches 100,000 lx at the maximum, attention is required. In particular, when taking a picture during backlighting, measures such as attaching a light shielding hood are often taken, but flare may be caused depending on the incident angle of sunlight to the imaging optical system.
特に、最大画角の外側の20度以下の比較的低い角度から入射する太陽光のような強い光は、回折光学素子に直接光が当たりやすく、回折光学素子を2次光源としたフレアが発生する。このフレア光が像面へ到達することで、画像のカブリやゴーストといった問題が発生する。 In particular, strong light such as sunlight entering from a relatively low angle of 20 degrees or less outside the maximum angle of view easily hits the diffractive optical element directly, resulting in flare using the diffractive optical element as a secondary light source. To do. When the flare light reaches the image plane, problems such as image fogging and ghosting occur.
また、特許文献5のように回折光学素子を前玉から後ろに下げると、倍率色等の収差補正上はベストな位置とは言い難く、回折光学素子の収差補正効果を最大限に生かした設計が出来なくなる。 In addition, when the diffractive optical element is lowered from the front lens as in Patent Document 5, it is difficult to say that it is the best position for correcting aberrations such as magnification color, and the design that maximizes the aberration correction effect of the diffractive optical element. Cannot be done.
本発明は画面外の太陽光のような強い光源が撮影光学系の回折光学素子に入射する場合に発生するフレアを防止し、回折光学素子の収差補正能力をフルに活用した上に良好な画像が得られる撮像光学系を提供する。 The present invention prevents flare that occurs when a strong light source such as sunlight outside the screen is incident on the diffractive optical element of the photographing optical system, and makes good use of the aberration correction capability of the diffractive optical element while fully utilizing it. Is provided.
本発明は上記の課題に対して、複数のレンズで構成された撮像光学系において、物体側より前群レンズ、絞り、後群レンズで構成され、第1の屈折率を有する光学材料と第2の屈折率を有する光学材料を密着させてその境界に回折格子を形成した密着タイプのブレーズ回折光学素子を前群レンズに配置し、最大画角にから更に外側に20度の角度が付いた方向から撮像光学系の前玉全域に向けて入射する平行光束が該回折光学素子に到達し、該撮像光学系に該角度を有して入射する光束において、該撮像光学系の光軸に交差する光線と光軸により形成される断面をメリディオナル断面としたとき、該回折光学素子に到達する光束のメリディオナル断面におけ幅において、光軸を横切って回折光学素子に入射する光束を全光束に対して90%以上となるように鏡筒または製品フードを構成したことを特徴とする。 In order to solve the above-described problems, the present invention provides an imaging optical system including a plurality of lenses, and includes an optical material having a first refractive index and a second optical material including a front group lens, a diaphragm, and a rear group lens from the object side. A blazed diffractive optical element of close contact type, in which a diffraction grating is formed at the boundary by adhering an optical material having a refractive index of 20 mm, is arranged in the front group lens, and the direction with an angle of 20 degrees further outward from the maximum field angle A parallel light beam incident on the entire front lens of the imaging optical system reaches the diffractive optical element and crosses the optical axis of the imaging optical system in the light beam incident on the imaging optical system with the angle. When the cross section formed by the light beam and the optical axis is a meridional cross section, the width of the meridional cross section of the light beam reaching the diffractive optical element is the width of the light beam incident on the diffractive optical element across the optical axis with respect to the total light flux. Over 90% Characterized in that to constitute a lens barrel or product hood as.
本発明によれば、撮像光学系に回折光学素子を使用した場合の色収差の補正効果を最も生かした状態で、有効画角の外側から入手する強い光の影響を抑制することが可能となり。強い光が画面外から入射した場合にもフレアやカブリの発生の少ない、良好な撮像画像を得られる撮像光学系の提供が可能である。 According to the present invention, it is possible to suppress the influence of strong light obtained from the outside of the effective angle of view while making the most of the effect of correcting chromatic aberration when a diffractive optical element is used in the imaging optical system. It is possible to provide an image pickup optical system that can obtain a good picked-up image with less flare and fog even when intense light is incident from the outside of the screen.
(実施例1)
図1は本発明の第1の実施例を400mmの望遠レンズに適用した場合の説明図である、図において、1は回折光学素子、2は絞り、3はCCD等の像面、4は最大画角の光束、5は撮像光学系の光軸、6は有効画角の外側からの太陽光等の平行光の一部、7は回折光学素子1に入射する画面外20度の平行光束、8はレンズフードを示している。
Example 1
FIG. 1 is an explanatory diagram when the first embodiment of the present invention is applied to a 400 mm telephoto lens. In the figure, 1 is a diffractive optical element, 2 is an aperture, 3 is an image plane such as a CCD, and 4 is a maximum. A light beam having an angle of view, 5 is an optical axis of the imaging optical system, 6 is a part of parallel light such as sunlight from outside the effective field angle, 7 is a parallel light beam that is incident on the diffractive optical element 1 and is 20 degrees outside the screen, Reference numeral 8 denotes a lens hood.
400mmの望遠レンズのように第1郡のレンズが正のパワーを有するレンズの場合には、回折光学素子はできるだけ物点側で使用した方が倍率色収差の補正に効果があり、出来るだけ物点側に素子を配置することが望ましい。本実施例においては、正の屈折力の第1群レンズ、負の屈折率の第2群レンズ、正の屈折率の第3群レンズにて構成されており、この系において最も倍率色収差の補正に効果があるのは第1レンズに使用することである。 If the first lens group has a positive power, such as a 400mm telephoto lens, the diffractive optical element should be used on the object point side as much as possible to correct the lateral chromatic aberration. It is desirable to place the element on the side. In this embodiment, the first lens unit has a positive refractive power, the second lens unit has a negative refractive index, and the third lens unit has a positive refractive index. It is effective for the first lens.
回折光学素子としては、正のパワーを有している位相を付加するように格子中央から外側かけて格子ピッチを狭くした回折格子とすることで光学系として色収差を改善している。 As the diffractive optical element, the chromatic aberration is improved as an optical system by using a diffraction grating having a grating pitch narrowed from the center of the grating to the outside so as to add a phase having a positive power.
本実施例においては回折光学素子を第1レンズと第2レンズの間に設けている。このため逆光シーンの撮影において、画面外20度付近の角度から入射する太陽光等の光束はレンズフードや光軸鏡筒で全ての光束を遮光することはできない。したがって、光束の一部の光は回折光学素子に入射する。画面外20度付近の光をレンズフードで全て遮光しようとすると非常に長いレンズフードが必要となる。この非常に長いレンズフードは撮像光学系の重量の増大や、操作性、収納性といった点で問題となり、現実的にはこのような長いレンズフードを製品に同梱することは考えにくい。 In this embodiment, a diffractive optical element is provided between the first lens and the second lens. For this reason, when shooting a backlight scene, light beams such as sunlight entering from an angle of about 20 degrees outside the screen cannot be blocked by the lens hood or the optical axis barrel. Therefore, a part of the light beam enters the diffractive optical element. If you want to block all the light around 20 degrees off the screen with a lens hood, a very long lens hood is required. This very long lens hood is problematic in terms of an increase in the weight of the imaging optical system, operability, and storage. In reality, it is unlikely that such a long lens hood is included in the product.
本実施例においては、20度付近の光において、密着タイプの回折光学素子に対して有害な光束を殆どカットできる構成となっている。具体的には図1における回折光学素子の上側に入射する光束の殆どをカットすることで、レンズフードを含んだ撮像光学系の重量をアップすることなく、フレアの発生を抑制した撮像光学系を提供する。 In this embodiment, a light beam that is harmful to the contact-type diffractive optical element can be almost cut with light of around 20 degrees. Specifically, an imaging optical system that suppresses the occurrence of flare without increasing the weight of the imaging optical system including the lens hood by cutting most of the light beam incident on the upper side of the diffractive optical element in FIG. provide.
図2は本発明の回折光学素子の説明図である。図において21は光軸、22は第1レンズ、23は第2レンズ、24は第1の低屈折率高分散の材料、25は高屈折率低分散の材料である。このように低屈折率高分散材料と高屈折率低分散材料を組み合わせるのは広い波長域で高い回折効率を得るためである。 FIG. 2 is an explanatory diagram of the diffractive optical element of the present invention. In the figure, 21 is an optical axis, 22 is a first lens, 23 is a second lens, 24 is a first low refractive index high dispersion material, and 25 is a high refractive index low dispersion material. The reason for combining the low refractive index high dispersion material and the high refractive index low dispersion material in this way is to obtain high diffraction efficiency in a wide wavelength range.
また、26は光軸より上側の回折格子の輪帯の格子壁面に入射する有効画面外の光線、27は光軸より下側の回折格子の輪帯の格子壁面に入射する有効画面外の光線を示している。光線26と光線27は平行光束の一部を示しているが、光線が上から入射して回折光学素子の上側に当たる場合と光線が上から入射して光軸21を超えて下側の回折光学素子に入射する光では光線が格子壁面に入射して反射する状況が異なっている。 In addition, 26 is a light beam outside the effective screen incident on the grating wall surface of the annular zone of the diffraction grating above the optical axis, and 27 is a light beam outside the effective screen incident on the grating wall surface of the annular zone of the diffraction grating below the optical axis. Is shown. Although the light beam 26 and the light beam 27 indicate a part of the parallel light flux, the light beam is incident from above and hits the upper side of the diffractive optical element. In the light incident on the element, the light beam is incident on the grating wall surface and reflected.
図3は本発明の回折格子の格子付近の説明図である。図において31は低屈折率高分散の第1の材料、32は高屈折率低分散の第2の材料、33は画像を形成する光線の有効画角内の最大角度と最小角度の平均角度を示した補助線、35は有効画角の外から回折格子壁面に入射する光線を示している。 FIG. 3 is an explanatory diagram of the vicinity of the diffraction grating of the present invention. In the figure, 31 is a first material having a low refractive index and high dispersion, 32 is a second material having a high refractive index and low dispersion, and 33 is an average angle between the maximum angle and the minimum angle within the effective field angle of a light beam forming an image. The auxiliary line 35 shown indicates light rays incident on the diffraction grating wall surface from outside the effective angle of view.
この時のフレア発生状況を素子への入射角度が10°の場合について、横軸に回折角度、縦軸に全光量を100%とした時の光量としたグラフを図5に示す。また、計算に使用した回折格子は1次の回折効率が最も高くなるように最適化した格子として計算している。グラフの横軸の角度は素子の面法線に対する角度であり図3に示したように角度の符号を取る。 FIG. 5 is a graph showing the state of flare generation at this time, where the incident angle to the element is 10 °, the horizontal axis represents the diffraction angle, and the vertical axis represents the amount of light when the total amount of light is 100%. In addition, the diffraction grating used in the calculation is calculated as an optimized grating so that the first-order diffraction efficiency is the highest. The angle of the horizontal axis of the graph is an angle with respect to the surface normal of the element, and takes the sign of the angle as shown in FIG.
回折光学素子の壁面はできるだけ有効画角内の光を壁面で蹴らないように回折光学素子の格子に入射する光束の平均角度だけ傾けるように構成する。平均角度の決定方法としては、図4に示すように回折光学素子に入射する光線角度を求めた上で決定する。図4は回折光学素子の形成されている面に対する入射角度を横軸に回折光学素子の中心を0とした時の光線入射高さ、縦軸に光線角度を示している。41は有効画角内の最大角度、42は有効画角内の最小角度、43は平均角度を示している。有効画角内の光線の平均角度に対して回折効率を最も高くするためには、この平均角度と一致させた方向に回折格子の壁面を傾けた方が良い。 The wall surface of the diffractive optical element is configured to be inclined by the average angle of the light beam incident on the grating of the diffractive optical element so that light within the effective angle of view is not kicked by the wall surface as much as possible. As a method of determining the average angle, as shown in FIG. 4, the angle of light incident on the diffractive optical element is obtained and determined. FIG. 4 shows the incident angle with respect to the surface on which the diffractive optical element is formed with the horizontal axis representing the incident angle when the center of the diffractive optical element is 0, and the vertical axis representing the ray angle. 41 indicates the maximum angle within the effective field angle, 42 indicates the minimum angle within the effective field angle, and 43 indicates the average angle. In order to maximize the diffraction efficiency with respect to the average angle of light rays within the effective angle of view, it is better to incline the wall surface of the diffraction grating in a direction corresponding to the average angle.
図3における格子壁面の方向は回折格子への入射光の有効画角内の最大角度と最小角度の平均値である補助線33の方向に平行にしている。この時、回折光学素子に入射した光線35は低屈折率材料を通過した後、高屈折率材料に入射し、図に示したように低い角度で回折格子に入射した時は格子壁面において全反射する。 The direction of the grating wall surface in FIG. 3 is parallel to the direction of the auxiliary line 33 that is the average value of the maximum angle and the minimum angle within the effective field angle of the incident light to the diffraction grating. At this time, the light beam 35 incident on the diffractive optical element passes through the low refractive index material and then enters the high refractive index material. When the light beam 35 enters the diffraction grating at a low angle as shown in FIG. To do.
図5において、10度付近に飽和しているピークを有しているが、これが1次の回折光の発生位置である。また、−10度付近に光量ピークがあるがこれが格子壁面の全反射光により発生しているフレアである。このピークを中心に回折によるフレアが発生していることが分かる。また、図5のグラフにおいて像面に光が到達する角度は0度±1度〜±2度付近のフレアであり、-10度付近の全反射ピークは像面に到達していない。また、全反射光からの回折光は0度付近まで裾を引いた形状となっている。したがって、図2において回折光学素子の上側に入射した光26はフレアを発生させ画像を劣化させる。 In FIG. 5, there is a saturated peak around 10 degrees, which is the position where the first-order diffracted light is generated. In addition, there is a light amount peak in the vicinity of −10 degrees, which is a flare generated by the total reflected light on the grating wall surface. It can be seen that flare due to diffraction occurs around this peak. In the graph of FIG. 5, the angle at which light reaches the image plane is a flare near 0 ° ± 1 ° to ± 2 °, and the total reflection peak near −10 ° does not reach the image plane. In addition, the diffracted light from the totally reflected light has a shape with a skirt extending to around 0 degrees. Accordingly, the light 26 incident on the upper side of the diffractive optical element in FIG. 2 generates flare and degrades the image.
図6は回折光学素子の下側に入射した光線が壁面に入射した時の状況を示した説明図である。図において61は低屈折率高分散の第1の材料、62は高屈折率低分散の第2の材料、63は画像を形成する光線の有効画角内の最大角度と最小角度の平均角度を示した補助線、65は有効画角の外から回折格子壁面に入射する光線を示している。図6に示したように低屈折率の第1の材料を通過した光線は高屈率の第2の材料との境界において、フレネル反射及び透過することで2つの光線に分離する。可視域の光に対して回折効率を高めた密着タイプの回折光学素子においては、第1の材料と第2の材料との屈折率差は0.1以下となるのが普通であり、従って殆どの光については透過光となる。例えば壁面の法線方向に対して80度で回折格子の壁面に入射した場合に約94%は透過光であり、6%が反射光である。実際にCCD面に到達するフレア光は反射光の方向に進むフレアであり、また、この反射光自体ではなく、この透過光の周辺に発生する回折光である。従って光軸を横切って素子の下側に入射した光によるフレアの発生は非常に少なく画像の劣化に対しては問題を発生させないレベルである。 FIG. 6 is an explanatory diagram showing a situation when a light beam incident on the lower side of the diffractive optical element enters the wall surface. In the figure, 61 is a first material having a low refractive index and high dispersion, 62 is a second material having a high refractive index and low dispersion, and 63 is an average angle between the maximum angle and the minimum angle within the effective field angle of light rays forming an image. The auxiliary line 65 shown indicates light rays incident on the diffraction grating wall surface from outside the effective angle of view. As shown in FIG. 6, the light beam that has passed through the first material having a low refractive index is separated into two light beams by Fresnel reflection and transmission at the boundary with the second material having a high refractive index. In a contact-type diffractive optical element with improved diffraction efficiency with respect to light in the visible range, the refractive index difference between the first material and the second material is usually 0.1 or less. This light is transmitted light. For example, when incident on the wall surface of the diffraction grating at 80 degrees with respect to the normal direction of the wall surface, about 94% is transmitted light and 6% is reflected light. The flare light that actually reaches the CCD surface is flare that travels in the direction of the reflected light, and is not the reflected light itself but the diffracted light generated around the transmitted light. Therefore, the occurrence of flare due to the light incident on the lower side of the element across the optical axis is very small and does not cause a problem with respect to image degradation.
図7はこの時の様子を素子への入射角度が10°の場合について、横軸に回折角度、縦軸に全光量を100%とした時の光量としたグラフにしたものである。また、計算に使用した回折格子は1次の回折効率が最も高くなるように最適化した格子として計算している。グラフの横軸の角度は素子の面法線に対する角度であり図6に示したように+側を取る。 FIG. 7 is a graph showing the state at this time with the diffraction angle on the horizontal axis and the light amount when the total light amount is 100% on the vertical axis when the incident angle to the element is 10 °. In addition, the diffraction grating used in the calculation is calculated as an optimized grating so that the first-order diffraction efficiency is the highest. The angle of the horizontal axis of the graph is an angle with respect to the surface normal of the element, and takes the + side as shown in FIG.
図7において、-10度付近に飽和しているピークを有しているが、これが1次の回折光の発生位置である。また、+10度付近に光量ピークがあるがこれが格子壁面のフレネル反射光により発生しているフレアである。このピークを中心に回折によるフレアが発生しているが、いずれにしてもフレアの量としては微弱な光である。また、図7のグラフにおいて像面に光が到達する角度は0度±1度〜±2度付近の光であり、フレアの量としては微弱で画像を劣化させるレベルではない。このフレア発生の特性は厳密な電磁場解析を行うことで判明したが、従来のスカラー計算においてはこのような現象を捉えることができない。また、エアーを2つの格子で挟んだタイプの図20のような回折光学素子においては、回折光学素子の上側に入射した光束も下側に入射した光束も共に不要回折光が発生し、本発明の構成である素子の上側に入射する光束を遮光しても不要回折光の発生を抑制することができない。 In FIG. 7, there is a saturated peak around −10 degrees, which is the position where the first-order diffracted light is generated. Further, there is a light amount peak near +10 degrees, which is a flare generated by Fresnel reflected light on the grating wall surface. Flares due to diffraction occur around this peak, but in any case, the amount of flare is weak light. In addition, in the graph of FIG. 7, the angle at which light reaches the image plane is light in the vicinity of 0 ° ± 1 ° to ± 2 °, and the amount of flare is weak and is not at a level that degrades the image. The characteristics of this flare generation have been clarified by performing a strict electromagnetic field analysis, but such a phenomenon cannot be grasped in the conventional scalar calculation. Further, in the diffractive optical element as shown in FIG. 20 in which air is sandwiched between two gratings, both the light beam incident on the upper side of the diffractive optical element and the light beam incident on the lower side generate unnecessary diffracted light. Generation of unnecessary diffracted light cannot be suppressed even if the light beam incident on the upper side of the element having the above structure is shielded.
図8は本発明の別のタイプの回折光学素子の説明図である。図において81は光軸、82は第1レンズ、83は第2レンズ、84は第1の高屈折率低分散の材料、25は低屈折率高分散の材料である。このように低屈折率高分散材料と高屈折率低分散材料を組み合わせるのは広い波長域で高い回折効率を得るためである。 FIG. 8 is an explanatory view of another type of diffractive optical element of the present invention. In the figure, 81 is an optical axis, 82 is a first lens, 83 is a second lens, 84 is a first high refractive index / low dispersion material, and 25 is a low refractive index / high dispersion material. The reason for combining the low refractive index high dispersion material and the high refractive index low dispersion material in this way is to obtain high diffraction efficiency in a wide wavelength range.
また、86は光軸より上側の回折格子の輪帯の格子壁面に入射する有効画面外の光線、87は光軸より下側の回折格子の輪帯の格子壁面に入射する有効画面外の光線を示している。光線86と光線87は平行光束の一部を示しているが、光線が上から入射して回折光学素子の上側に当たる場合と光線が上から入射して光軸81を超えて下側の回折光学素子に入射する光では光線が格子壁面に入射して反射する状況が異なっている。 In addition, 86 is a light beam outside the effective screen which is incident on the grating wall surface of the annular zone of the diffraction grating above the optical axis, and 87 is a light beam outside the effective screen which is incident on the grating wall surface of the annular zone of the diffraction grating below the optical axis. Is shown. Although the light ray 86 and the light ray 87 indicate a part of the parallel light flux, the case where the light ray enters from above and hits the upper side of the diffractive optical element, and the case where the light ray enters from above and passes the optical axis 81, the lower diffractive optics. In the light incident on the element, the light beam is incident on the grating wall surface and reflected.
図9は本発明の実施前の回折格子壁面の角度の説明図、図11は本発明の回折格子の壁面角度の説明図である。図において111、121は高屈折率低分散の第1の材料、112、122は低屈折率高分散の第2の材料、113、123は画像を形成する光線の有効画角内の最大角度と最小角度の平均角度を示した補助線、115、125は有効画角の外から回折格子壁面に入射する光線を示している。 FIG. 9 is an explanatory view of the angle of the diffraction grating wall surface before the implementation of the present invention, and FIG. 11 is an explanatory view of the wall surface angle of the diffraction grating of the present invention. In the figure, 111 and 121 are first materials having a high refractive index and low dispersion, 112 and 122 are second materials having a low refractive index and high dispersion, and 113 and 123 are maximum angles within the effective field angle of light rays forming an image. Auxiliary lines 115 and 125 indicating the average angle of the minimum angle indicate light rays incident on the diffraction grating wall surface from outside the effective angle of view.
図9において、有効画面外の光線95は高屈折率材料91を通過し、高屈折率材料91と低屈折率材料92の回折格子の壁面において全反射する。全反射のためこの時のフレアの光量は強い光となるが、角度的にCCD面には到達しない。 In FIG. 9, the light ray 95 outside the effective screen passes through the high refractive index material 91 and is totally reflected on the wall surfaces of the diffraction gratings of the high refractive index material 91 and the low refractive index material 92. Due to total reflection, the amount of flare at this time is strong, but it does not reach the CCD surface angularly.
この時の様子を素子への入射角度が10°の場合について、横軸に回折角度、縦軸に全光量を100%とした時の光量としたグラフを図13に示す。また、計算に使用した回折格子は1次の回折効率が最も高くなるように最適化した格子として計算している。グラフの横軸の角度は素子の面法線に対する角度であり図9に示したように+側を取る。 FIG. 13 shows a graph of the state at this time with the diffraction angle on the horizontal axis and the light amount when the total light amount is 100% on the vertical axis when the incident angle to the element is 10 °. In addition, the diffraction grating used in the calculation is calculated as an optimized grating so that the first-order diffraction efficiency is the highest. The angle of the horizontal axis of the graph is an angle with respect to the surface normal of the element, and takes the + side as shown in FIG.
図10において、−10度付近に飽和しているピークを有しているが、これが1次の回折光の発生位置である。また、+10度付近に光量ピークがあるがこれが格子壁面の全反射光により発生しているフレアである。このピークを中心に回折によるフレアが発生していることが分かる。また、図10のグラフにおいて像面に光が到達する角度は0度±1度〜±2度付近のフレアであり、+10度付近の全反射ピークは像面に到達していない。また、全反射光からの回折光は0度付近まで裾を引いた形状となっている。 In FIG. 10, there is a saturated peak around −10 degrees, which is the position where the first-order diffracted light is generated. In addition, there is a light amount peak near +10 degrees, which is a flare generated by the total reflected light on the grating wall surface. It can be seen that flare due to diffraction occurs around this peak. In the graph of FIG. 10, the angle at which light reaches the image plane is a flare near 0 ° ± 1 ° to ± 2 °, and the total reflection peak near + 10 ° does not reach the image plane. In addition, the diffracted light from the totally reflected light has a shape with a skirt extending to around 0 degrees.
図11は回折光学素子の下側に入射した光線が壁面に入射した時の状況を示した説明図である。図において111は高屈折率低分散の第1の材料、112は低屈折率高分散の第2の材料、113は画像を形成する光線の有効画角内の最大角度と最小角度の平均角度を示した補助線、115は有効画角の外から回折格子壁面に入射する光線を示している。図11に示したように高屈折率の第1の材料を通過した光線は低屈率の第2の材料との境界を通過後に再び高屈率の第1の材料との境界の回折格子壁面において、フレネル反射及び透過することで2つの光線に分離する。可視域の光に対して回折効率を高めた密着タイプの回折光学素子においては、第1の材料と第2の材料との屈折率差は0.1以下となるのが普通であり、従って殆どの光については透過光となる。例えば壁面の法線方向に対して80度で回折格子の壁面に入射した場合に約94%は透過光であり、6%が反射光である。実際にCCD面に到達するフレア光は反射光の方向に進むフレアであり、また、この反射光自体ではなく、この透過光の周辺に発生する回折光である。従って光軸を横切って素子の下側に入射した光によるフレアの発生は非常に少なく画像の劣化に対しては問題を発生させないレベルである。 FIG. 11 is an explanatory diagram showing a situation when a light beam incident on the lower side of the diffractive optical element enters the wall surface. In the figure, 111 is a first material having a high refractive index and low dispersion, 112 is a second material having a low refractive index and high dispersion, and 113 is an average angle between the maximum angle and the minimum angle within the effective field angle of a light beam forming an image. The auxiliary line 115 shown indicates light rays that enter the diffraction grating wall surface from outside the effective angle of view. As shown in FIG. 11, the light beam that has passed through the first material having a high refractive index passes through the boundary with the second material having a low refractive index, and then again reaches the diffraction grating wall surface at the boundary with the first material having a high refractive index. , The light beam is separated into two light beams by Fresnel reflection and transmission. In a contact-type diffractive optical element with improved diffraction efficiency with respect to light in the visible range, the refractive index difference between the first material and the second material is usually 0.1 or less. This light is transmitted light. For example, when incident on the wall surface of the diffraction grating at 80 degrees with respect to the normal direction of the wall surface, about 94% is transmitted light and 6% is reflected light. The flare light that actually reaches the CCD surface is flare that travels in the direction of the reflected light, and is not the reflected light itself but the diffracted light generated around the transmitted light. Therefore, the occurrence of flare due to the light incident on the lower side of the element across the optical axis is very small and does not cause a problem with respect to image degradation.
図12はこの時の様子を素子への入射角度が10°の場合について、横軸に回折角度、縦軸に全光量を100%とした時の光量としたグラフにしたものである。また、計算に使用した回折格子は1次の回折効率が最も高くなるように最適化した格子として計算している。グラフの横軸の角度は素子の面法線に対する角度であり図12に示したように−側を取る。 FIG. 12 is a graph showing the state at this time with the diffraction angle on the horizontal axis and the light quantity when the total light quantity is 100% on the vertical axis when the incident angle to the element is 10 °. In addition, the diffraction grating used in the calculation is calculated as an optimized grating so that the first-order diffraction efficiency is the highest. The angle of the horizontal axis of the graph is an angle with respect to the surface normal of the element, and takes the minus side as shown in FIG.
図12において、+10度付近に飽和しているピークを有しているが、これが1次の回折光の発生位置である。また、−10度付近に光量ピークがあるがこれが格子壁面のフレネル反射光により発生しているフレアである。このピークを中心に回折によるフレアが発生しているが、いずれにしてもフレアの量としては微弱な光である。また、図12のグラフにおいて像面に光が到達する角度は0度±1度〜±2度付近の光であり、フレアの量としては微弱で画像を劣化させるレベルではない。 In FIG. 12, there is a saturated peak near +10 degrees, which is the position where the first-order diffracted light is generated. Further, there is a light amount peak in the vicinity of −10 degrees, which is flare generated by Fresnel reflected light on the grating wall surface. Flares due to diffraction occur around this peak, but in any case, the amount of flare is weak light. In the graph of FIG. 12, the angle at which the light reaches the image plane is light in the vicinity of 0 ° ± 1 ° to ± 2 °, and the amount of flare is very weak and is not at a level that degrades the image.
以上説明したように、図8のタイプの回折光学素子においても、有効画角外に20度付近の光については、素子の下側に入射した光束についてはフレアの発生が抑制されている。従って、本発明の構成であるところの密着タイプの回折光学素子において、最大画角にから更に外側に20度の角度が付いた方向から撮像光学系の前玉全域に向けて入射する平行光束が該回折光学素子に到達し、該撮像光学系に該角度を有して入射する光束において、該撮像光学系の光軸に交差する光線と光軸により形成される断面をメリディオナル断面としたとき、該回折光学素子に到達する光束のメリディオナル断面におけ幅において、光軸を横切って回折光学素子入射する光束を全光束に対して90%以上となるように鏡筒または製品フードを構成することによりフレアを抑制することが可能である。 As described above, in the diffractive optical element of the type shown in FIG. 8 as well, for light near 20 degrees outside the effective field angle, the occurrence of flare is suppressed for the light beam incident on the lower side of the element. Therefore, in the close contact type diffractive optical element having the configuration of the present invention, the parallel light flux incident on the entire front lens of the imaging optical system from the direction having an angle of 20 degrees further outward from the maximum field angle is generated. When the light beam that reaches the diffractive optical element and is incident on the imaging optical system with the angle is a meridional cross section formed by a light beam intersecting the optical axis of the imaging optical system and the optical axis, By configuring the lens barrel or the product hood so that the light flux entering the diffractive optical element across the optical axis is 90% or more of the total light flux in the width in the meridional section of the light flux reaching the diffractive optical element. It is possible to suppress flare.
本発明は光学系の第1レンズと第2レンズの間に回折光学素子を作成したが、回折光学素子を像面側に配置することで、鏡筒により画面外の光を遮光することが可能となり、レンズフードを短くすることが出来る。一方、回折光学素子を像面側に下げることで、倍率色収差の改善効果が落ちてくる。従って、本発明の効果を得るためには、最も物体側のレンズの有効径をφf、回折光学素子の有効径をφdoとしたときに、
φdo/φf≧0.7
とすることが望ましい。本構成を取ることにより、倍率色補正効果が最大限に引き出せ、光学系の全長短縮や高性能かに対して著しい効果を得ることが出来る。
In the present invention, the diffractive optical element is created between the first lens and the second lens of the optical system. However, by placing the diffractive optical element on the image plane side, it is possible to block off-screen light by the lens barrel. Therefore, the lens hood can be shortened. On the other hand, lowering the diffractive optical element to the image plane side reduces the effect of improving lateral chromatic aberration. Therefore, in order to obtain the effect of the present invention, when the effective diameter of the lens closest to the object side is φf and the effective diameter of the diffractive optical element is φdo,
φdo / φf ≧ 0.7
Is desirable. By adopting this configuration, the magnification color correction effect can be maximized, and a remarkable effect can be obtained with respect to shortening the overall length of the optical system and high performance.
図13は本発明の第2の実施例の説明図である、図は回折格子を正面から見た説明図であり、図14は光軸を含んだ断面図である。図において131は回折格子の壁面を画像を形成する光線の有効画角内の最大角度と最小角度の平均角度に対して傾けた範囲、132は回折格子の壁面の角度を画像を形成する光線の有効画角内の最大角度と最小角度の平均角度とした範囲を示している。 FIG. 13 is an explanatory view of a second embodiment of the present invention. FIG. 13 is an explanatory view of the diffraction grating as viewed from the front. FIG. 14 is a sectional view including the optical axis. In the figure, 131 is a range in which the wall surface of the diffraction grating is tilted with respect to the average angle between the maximum angle and the minimum angle within the effective field angle of the light beam forming the image, and 132 is the angle of the light beam forming the image. The range of the average angle between the maximum angle and the minimum angle within the effective field angle is shown.
図15は本発明の第2の実施例を400mmの望遠レンズに適用した場合の説明図である、図において、151は回折光学素子、152は絞り、153はCCD等の像面、154は最大画角の光束、155は撮像光学系の光軸、156は有効画角の外側からの太陽光等の平行光の一部、157は回折光学素子151に入射する画面外20度の平行光束、158はレンズフードを示している。 FIG. 15 is an explanatory diagram when the second embodiment of the present invention is applied to a 400 mm telephoto lens. In the figure, 151 is a diffractive optical element, 152 is a stop, 153 is an image surface such as a CCD, and 154 is a maximum. 155 is an optical axis of the imaging optical system, 156 is a part of parallel light such as sunlight from outside the effective field angle, 157 is a parallel light beam of 20 degrees outside the screen incident on the diffractive optical element 151, Reference numeral 158 denotes a lens hood.
図15において、画面外20度から入射した平行光束は一部をレンズフードまたは鏡筒により遮光されるが、メリディオナル断面における回折光学素子に平行光束が当たっている領域の幅をW0、図15の光軸より下側すなわち画面外20度光束が光軸を横切って入射する領域の幅をW1とするとW1/W0<0.9となっている。このとき領域131の領域については既に説明したように不要回折光が発生し易く問題である。このため本発明においては、領域131に対してフレア対策を施す。 In FIG. 15, a part of the parallel light beam incident from 20 degrees outside the screen is shielded by the lens hood or the lens barrel, but the width of the region where the parallel light beam hits the diffractive optical element in the meridional section is W0, W1 / W0 <0.9, where W1 is the width of the region below the optical axis, that is, the region where the off-screen 20 degree light beam enters across the optical axis. At this time, the region 131 is a problem that unnecessary diffracted light is easily generated as described above. For this reason, in the present invention, a countermeasure against flare is applied to the region 131.
具体的なフレア対策としては、図16に示したように壁面に遮光部材を塗布することで不要なフレアの発生を抑制することが可能となる。図16において、従来の構成においては、この遮光部材を素子の全域に対して塗布を行ったが、大幅はコストアップを招くため実際に実施することは難しかった。本発明によれば輪帯のピッチの大きい光軸付近の一部を遮光することでコストアップを抑えることが可能である。一方、強いフレアが発生する領域を遮光することで大きなフレア抑制効果を得ることが可能である。これによりコストアップを最小限にした状態でフレア少ない回折光学素子の提供が可能である。 As a specific countermeasure against flare, the occurrence of unnecessary flare can be suppressed by applying a light shielding member to the wall surface as shown in FIG. In FIG. 16, in the conventional configuration, the light shielding member is applied to the entire area of the element. However, since the cost is significantly increased, it is difficult to actually implement the light shielding member. According to the present invention, it is possible to suppress an increase in cost by shielding part of the vicinity of the optical axis having a large ring zone pitch. On the other hand, it is possible to obtain a large flare suppression effect by shielding the area where strong flare occurs. As a result, it is possible to provide a diffractive optical element with less flare while minimizing the cost increase.
他のフレア対策としては、図17に示したように格子の壁面を画面内の光に対してベストの回折効率が得られる角度である平均角度から傾けことで、フレアを抑制することが可能である。一方、ベストの壁面角度から傾けることで回折効率の劣化が懸念されるが、回折格子の光軸付近の輪帯のピッチが広いため、壁面を傾けることによる回折効率の劣化は軽微であり許容範囲である。 As another flare countermeasure, flare can be suppressed by tilting the wall surface of the grating from an average angle that is the angle at which the best diffraction efficiency is obtained with respect to the light in the screen as shown in FIG. is there. On the other hand, there is a concern about tilting efficiency from tilting the wall surface of the vest, but since the ring pitch near the optical axis of the diffraction grating is wide, the degradation of diffraction efficiency due to tilting the wall surface is slight and acceptable. It is.
1 回折光学素子
2 絞り
3 CCD等の像面
4 最大画角の光束
5 撮像光学系の光軸
6 有効画角の外側からの太陽光等の平行光の一部
7 回折光学素子1に入射する画面外20度の平行光束
8 レンズフード
DESCRIPTION OF SYMBOLS 1 Diffractive optical element 2 Diaphragm 3 Image surface of CCD etc. 4 Light beam of maximum field angle 5 Optical axis of imaging optical system 6 Part of parallel light such as sunlight from outside effective field angle 7 Enters diffractive optical element 1 Parallel light beam 20 degrees outside the screen 8 Lens hood
Claims (10)
φdo/φf≧0.7
となる位置に回折光学素子を配置したことを特徴とする請求項1に記載の撮像光学系。 In the imaging optical system according to claim 1, when the effective beam diameter on the most object side of the front lens group is φf, and the effective beam diameter of the diffractive optical element is φdo,
φdo / φf ≧ 0.7
The imaging optical system according to claim 1, wherein a diffractive optical element is disposed at a position where
最大画角にから更に外側に20度の角度が付いた方向から入射する該光束において、光軸を横切らずに回折光学素子に到達する範囲に存在する回折格子に格子壁面の遮光手段等のフレア対策を施したことを特徴とする撮像光学系。 In an imaging optical system composed of a plurality of lenses, an optical material having a first refractive index and an optical material having a second refractive index, which are composed of a front group lens, a diaphragm, and a rear group lens from the object side, are brought into close contact with each other. A blazed diffractive optical element of close contact type with a diffraction grating formed at the boundary is placed on the front lens group, from the direction with an angle of 20 degrees outward from the maximum field angle toward the entire front lens of the imaging optical system. An incident parallel light beam reaches the diffractive optical element and a cross section formed by a light beam intersecting the optical axis of the imaging optical system and the optical axis is meridional in the light beam incident at an angle to the imaging optical system. When the cross section is taken, the lens barrel or the product is such that the light beam incident on the diffractive optical element across the optical axis is less than 90% of the total light flux in the width in the meridional cross section of the light beam reaching the diffractive optical element. Food Form, the area where the collimated light impinges on the upper side of the diffractive optical element,
In the luminous flux incident from the direction having an angle of 20 degrees outward from the maximum angle of view, a flare such as a light shielding means on the grating wall surface is not present in the diffraction grating existing in the range reaching the diffractive optical element without crossing the optical axis. An imaging optical system characterized by taking measures.
φdo/φf≧0.7
となる位置に回折光学素子を配置したことを特徴とする請求項5に記載の撮像光学系。 In the imaging optical system according to claim 5, when the effective beam diameter on the most object side of the front lens group is φf and the effective beam diameter of the diffractive optical element is φdo,
φdo / φf ≧ 0.7
The imaging optical system according to claim 5, wherein a diffractive optical element is disposed at a position where
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009104107A JP2010256476A (en) | 2009-04-22 | 2009-04-22 | Imaging optical system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009104107A JP2010256476A (en) | 2009-04-22 | 2009-04-22 | Imaging optical system |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010256476A true JP2010256476A (en) | 2010-11-11 |
Family
ID=43317487
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009104107A Pending JP2010256476A (en) | 2009-04-22 | 2009-04-22 | Imaging optical system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010256476A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114846381A (en) * | 2019-11-28 | 2022-08-02 | 佐藤拙 | Optical element, optical system, and optical device |
WO2023102795A1 (en) * | 2021-12-09 | 2023-06-15 | 瑞仪(广州)光电子器件有限公司 | Optical element, light source module, and display device |
-
2009
- 2009-04-22 JP JP2009104107A patent/JP2010256476A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114846381A (en) * | 2019-11-28 | 2022-08-02 | 佐藤拙 | Optical element, optical system, and optical device |
WO2023102795A1 (en) * | 2021-12-09 | 2023-06-15 | 瑞仪(广州)光电子器件有限公司 | Optical element, light source module, and display device |
US12098841B2 (en) | 2021-12-09 | 2024-09-24 | Radiant Opto-Electronics Corporation | Optical component, light source module and display device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102009431B1 (en) | Optical system | |
US8120852B2 (en) | Diffractive optical element, optical system, and optical apparatus | |
JP5137432B2 (en) | Adherent two-layer type diffractive optical element and optical system and optical apparatus using the same | |
JP4630393B2 (en) | Diffraction lens and imaging apparatus using the same | |
KR101252916B1 (en) | Imaging optical system and imaging device using same | |
JP5188107B2 (en) | Array type photo detector | |
JP5777353B2 (en) | Diffractive optical element, optical system, and optical instrument | |
JP2012103543A (en) | Diffraction optical element and imaging optical system | |
JP5258204B2 (en) | Diffractive optical element, optical system using the same, and optical instrument | |
JP4944275B2 (en) | Diffractive optical element | |
JP4815029B2 (en) | Diffraction lens and imaging apparatus using the same | |
JP4955133B2 (en) | Diffractive lens | |
JP2011022255A (en) | Diffraction optical element and optical system having the same | |
US20140247492A1 (en) | Diffraction optical element, optical system, and optical apparatus | |
JP2012252168A (en) | Diffraction optical element and imaging optical system using the same | |
JP2010256476A (en) | Imaging optical system | |
JP2002082214A (en) | Diffractive optical element and optical system using the same | |
WO2015059862A1 (en) | Diffraction grating lens, design method for optical system having same, image computation program, and production method for diffraction grating lens | |
JP2014145871A (en) | Imaging optical system using diffraction optical element | |
JPWO2012023275A1 (en) | Diffraction grating lens and imaging device using the same | |
JP2011170028A (en) | Diffractive optical element and imaging optical system having the same | |
JP2004252101A (en) | Super wide angle lens | |
JP7071085B2 (en) | Diffractive optical element, optical system, and image pickup device | |
JP6471031B2 (en) | Phase filter, imaging optical system, and imaging system | |
JP2015203790A (en) | Optical system and optical device having the same |