JP2010251784A - Manufacturing method of hydrophobic porous sog film - Google Patents
Manufacturing method of hydrophobic porous sog film Download PDFInfo
- Publication number
- JP2010251784A JP2010251784A JP2010137418A JP2010137418A JP2010251784A JP 2010251784 A JP2010251784 A JP 2010251784A JP 2010137418 A JP2010137418 A JP 2010137418A JP 2010137418 A JP2010137418 A JP 2010137418A JP 2010251784 A JP2010251784 A JP 2010251784A
- Authority
- JP
- Japan
- Prior art keywords
- heat treatment
- temperature
- sog film
- oxygen
- hydrophobic porous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Formation Of Insulating Films (AREA)
Abstract
Description
本発明は疎水性多孔質SOG膜(SiO2膜)の作製方法に関し、特に疎水性多孔質SOG膜の機械的特性を向上せしめるための熱処理方法に関するものである。 The present invention relates to a method for producing a hydrophobic porous SOG film (SiO 2 film), and more particularly to a heat treatment method for improving the mechanical properties of the hydrophobic porous SOG film.
近年、LSIの分野において銅配線と共に、低誘電率を特徴とする層間絶縁膜の導入が盛んに研究開発されている。この層間絶縁膜として低誘電率を持つ酸化物膜を多孔質にすることが提案されているが、多孔質にすることで機械的強度の低下や空孔内への空気中の水分の吸着などの問題が引き起こされている。この問題に対して、本出願人は、多孔質SOG膜の疎水化方法を提案した(例えば、特許文献1参照。)。この他に、平成13年12月20日付け出願の特願2001−388144号でも同様の疎水化方法を提案している。 In recent years, in the field of LSI, introduction of an interlayer insulating film characterized by a low dielectric constant has been actively researched and developed together with copper wiring. It has been proposed to make the oxide film having a low dielectric constant porous as this interlayer insulating film, but by making it porous, the mechanical strength is reduced and moisture in the air is adsorbed into the pores, etc. The problem is being caused. In response to this problem, the present applicant has proposed a method for hydrophobizing a porous SOG film (see, for example, Patent Document 1). In addition, Japanese Patent Application No. 2001-388144 filed on December 20, 2001 proposes a similar hydrophobizing method.
上記先願中で提案した多孔質SOG膜の疎水化方法では、多孔質SOG膜へ疎水性機能を持たせるために疎水基を導入しているが、その際に、得られる疎水性多孔質シリカ材料は疎水基の導入による機械的特性の低下を招くという問題がある。
本発明の課題は、上記のような従来の疎水化SOG膜の持つ機械的特性の問題を解決するもので、疎水性多孔質SOG膜の持つ疎水性機能を損なうことなく、かつ比誘電率への影響が小さく、機械的特性の向上を可能とする多孔質SOG膜の作製方法を提供することにある。
In the method for hydrophobizing a porous SOG film proposed in the above-mentioned prior application, a hydrophobic group is introduced to impart a hydrophobic function to the porous SOG film. There is a problem that the material causes deterioration of mechanical properties due to introduction of hydrophobic groups.
An object of the present invention is to solve the above-described problems of mechanical properties of the conventional hydrophobic SOG film, and to reduce the dielectric constant without impairing the hydrophobic function of the hydrophobic porous SOG film. It is an object of the present invention to provide a method for producing a porous SOG film that can improve the mechanical characteristics.
本発明は、疎水基を有するシリコン含有化合物を含むSOG前駆体溶液に界面活性剤を添加して得られた塗布液を基板上に塗布し、前記塗布液が塗布された基板を加熱炉内で前記界面活性剤の熱分解温度以上1000℃以下の所定温度に加熱して熱処理を行う疎水性多孔質SOG膜(SiO 2 膜)の作製方法であって、前記基板を加熱するのに先立ち前記加熱炉内に酸素を含有しない雰囲気を形成し、この雰囲気にて前記基板を加熱して前記所定温度にて所定時間保持した後、前記加熱炉内に酸素含有ガスを導入することを特徴とする。 The present invention applies a coating solution obtained by adding a surfactant to an SOG precursor solution containing a silicon-containing compound having a hydrophobic group on a substrate, and the substrate coated with the coating solution is heated in a heating furnace. A method for producing a hydrophobic porous SOG film (SiO 2 film) in which a heat treatment is performed by heating to a predetermined temperature not lower than a thermal decomposition temperature of the surfactant and not higher than 1000 ° C. , wherein the heating is performed prior to heating the substrate. An atmosphere not containing oxygen is formed in the furnace, the substrate is heated in this atmosphere and held at the predetermined temperature for a predetermined time, and then an oxygen-containing gas is introduced into the heating furnace .
上記熱処理が行われる時の酸素分圧を5E+3Pa以上、好ましくは1E+4Pa以上とすることが好ましい。酸素分圧が5E+3Pa未満であると、SOG前駆体の縮重合の促進が不十分であるため、作製されるSOG膜の機械的特性が改善されない。 Oxygen partial pressure 5E + 3 Pa or more when the heat treatment is performed, it preferably to 1E + 4 Pa or more. When the oxygen partial pressure is less than 5E + 3 Pa, since the condensation polymerization of the SOG precursor is insufficiently promoted, the mechanical properties of the produced SOG film are not improved.
上記酸素を含有しない雰囲気を形成する前に、上記塗布液が塗布された基板を60℃(塗布液に含まれる有機溶媒の蒸発温度)以上前記界面活性剤の熱分解温度未満の温度に加熱してもよい。60℃未満では疎水性SOG膜中に含まれている有機溶媒が蒸発せず残留してしまう。この場合、熱処理が2段階で行われる。即ち、60℃以上界面活性剤の熱分解温度未満の温度に基板が加熱され(第1段階の熱処理)、その後、加熱炉内に酸素を含有しない雰囲気が形成される。この雰囲気にて基板を加熱して所定温度にて所定時間保持した後、加熱炉内に酸素含有ガスを導入して熱処理が行われる(第2段階の熱処理)。Before forming the oxygen-free atmosphere, the substrate coated with the coating solution is heated to a temperature of 60 ° C. (evaporation temperature of the organic solvent contained in the coating solution) or higher and lower than the thermal decomposition temperature of the surfactant. May be. Below 60 ° C., the organic solvent contained in the hydrophobic SOG film remains without being evaporated. In this case, the heat treatment is performed in two stages. That is, the substrate is heated to a temperature of 60 ° C. or higher and lower than the thermal decomposition temperature of the surfactant (first stage heat treatment), and then an atmosphere containing no oxygen is formed in the heating furnace. After heating the substrate in this atmosphere and holding it at a predetermined temperature for a predetermined time, a heat treatment is performed by introducing an oxygen-containing gas into the heating furnace (second stage heat treatment).
上記界面活性剤の熱分解温度は300℃である。即ち、上記所定温度は、300℃〜1000℃、より好ましくは300〜500℃の範囲内で設定される。300℃未満であると、疎水性SOG膜中に含まれている界面活性剤が熱分解し難く、所望の多孔質体が得られない。また、1000℃を超えると、得られたSOG膜の疎水性が損なわれる恐れがある。 The thermal decomposition temperature of the surfactant is 300 ° C. That is, the predetermined temperature is set within a range of 300 ° C to 1000 ° C, more preferably 300 to 500 ° C. When the temperature is lower than 300 ° C., the surfactant contained in the hydrophobic SOG film is hardly thermally decomposed, and a desired porous body cannot be obtained. Moreover, when it exceeds 1000 degreeC, there exists a possibility that the hydrophobicity of the obtained SOG film | membrane may be impaired.
本発明によれば、酸素を含有しない雰囲気にて基板を加熱して所定温度にて所定時間保持した後に酸素含有ガスを加熱炉内に導入し、疎水性多孔質SOG膜を作製するための熱処理を行っているので、SOG前駆体の縮重合が酸素含有ガスによって促進され、疎水性多孔質SOG膜本来の電気的特性にはほとんど影響を与えずに、その機械的特性の向上を実現することができる。 According to the present invention, a substrate is heated in an atmosphere not containing oxygen and held at a predetermined temperature for a predetermined time, and then an oxygen-containing gas is introduced into a heating furnace to produce a hydrophobic porous SOG film. since heat treatment, polycondensation of SOG precursor is accelerated by the oxygen-containing gas, without causing the ho Tondo affect the hydrophobic porous SOG film inherent electrical properties, improved mechanical properties Can be realized.
本発明においては、所定の酸素分圧を有する酸素含有ガスを焼成炉内に導入し、疎水性多孔質SOG膜を作製するための熱処理を行うときに、SOG前駆体の縮重合を導入した酸素含有ガスを用いて促進することにより、疎水性多孔質SOG膜の機械的特性を向上させるものである。
本発明の疎水性機能を持った多孔質SOG膜としては、例えば、上記先願中に記載したように、SOG膜前駆体中に予め疎水基を有する化合物を含有せしめることにより、SOG膜の形成と同時に疎水性機能が発現するもの、又は多孔質SOG膜形成時若しくはその形成直後の多孔質膜の熱処理時に疎水基を有する化合物へ暴露せしめることにより疎水性機能を持たせたもの等を挙げることができる。
In the present invention, when oxygen-containing gas having a predetermined oxygen partial pressure is introduced into a firing furnace and heat treatment for producing a hydrophobic porous SOG film is performed, oxygen that has undergone condensation polymerization of the SOG precursor is introduced. By promoting with the contained gas, the mechanical properties of the hydrophobic porous SOG film are improved.
As the porous SOG film having a hydrophobic function of the present invention, for example, as described in the above-mentioned prior application, the SOG film precursor is preliminarily incorporated with a compound having a hydrophobic group, thereby forming the SOG film. At the same time, those that exhibit a hydrophobic function, or those that have a hydrophobic function by exposing them to a compound having a hydrophobic group during the formation of a porous SOG film or during the heat treatment of the porous film immediately after the formation Can do.
疎水性多孔質SOG膜は、例えば、以下の方法により作製できる。
例えば、特開2001−351911号公報に記載された方法に準じて、加熱処理条件を以下述べるように変えて作製できる。まず、疎水基を有するシリコン含有化合物と、テトラエトキシシラン(TEOS)やテトラメトキシシラン(TMOS)等のような加水分解可能なシリコンアルコキシドである有機オキシシランと、水と、溶媒とを混合して溶液を調製し、所定の温度(例えば、約55℃)で反応させて均一な前駆体溶液を得る。この前駆体溶液を酸加水分解又はアルカリ加水分解して得られる溶液に界面活性剤を添加した塗布液を半導体基板上に通常のスピンコート法等の塗布方法により塗布する。次いで、公知の赤外線加熱炉等を用いて特定の条件下で加熱処理し、塗布液中の溶媒や水、酸又はアルカリ触媒、界面活性剤等を蒸発させながら、また、反応系にその他の有機物質が含まれている場合にはその物質を取り除くことにより、多孔の形成と同時に疎水性機能を備えた疎水性多孔質SOG膜を作製することができる。
The hydrophobic porous SOG film can be produced, for example, by the following method.
For example, according to the method described in JP 2001-351911, the heat treatment conditions can be changed as described below. First, a solution in which a silicon-containing compound having a hydrophobic group, an organic oxysilane that is a hydrolyzable silicon alkoxide such as tetraethoxysilane (TEOS) or tetramethoxysilane (TMOS), water, and a solvent are mixed. And react at a predetermined temperature (for example, about 55 ° C.) to obtain a uniform precursor solution. A coating solution obtained by adding a surfactant to a solution obtained by acid hydrolysis or alkali hydrolysis of this precursor solution is applied on a semiconductor substrate by a coating method such as a normal spin coating method. Next, heat treatment is performed under specific conditions using a known infrared heating furnace or the like, while evaporating the solvent, water, acid or alkali catalyst, surfactant, etc. in the coating solution, and in the reaction system other organics When a substance is contained, the hydrophobic porous SOG film having a hydrophobic function simultaneously with the formation of the pore can be produced by removing the substance.
上記疎水基を有する化合物は、例えば、へキサメチルジシラン、ジメチルジエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、トリエトキシシラン若しくはジメチルジメトキシシラン等や、ヘキサメチルジシロキサン等や、ヘキサメチルジシラザン等のようなメチル基等の炭素数1〜6の低級アルキル基を少なくとも一つ又は水素原子を有するシラン化合物、シロキサン化合物、ジシラン化合物或いはシラザン化合物であることが好ましい。 Examples of the compound having a hydrophobic group include hexamethyldisilane, dimethyldiethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, triethoxysilane, or dimethyldimethoxysilane, hexamethyldisiloxane, and the like. A silane compound, siloxane compound, disilane compound or silazane compound having at least one lower alkyl group having 1 to 6 carbon atoms such as a methyl group such as silazane or a hydrogen atom is preferred.
溶媒としては、例えば、メチルアルコール、エチルアルコール、イソプロピルアルコール等のアルコール系溶媒であって、界面活性剤の熱分解温度、好ましくは300℃以下で蒸発するものであれば、特に制限されることなく用いられ得る。
加水分解のために用いられる薬剤は、例えば、硝酸や塩酸などの無機酸、ギ酸などの有機酸、アンモニアなどのアルカリを挙げることができる。
The solvent is not particularly limited as long as it is an alcohol solvent such as methyl alcohol, ethyl alcohol, isopropyl alcohol, and the like, and can be evaporated at a thermal decomposition temperature of the surfactant, preferably 300 ° C. or lower. Can be used.
Examples of the chemical used for hydrolysis include inorganic acids such as nitric acid and hydrochloric acid, organic acids such as formic acid, and alkalis such as ammonia.
界面活性剤としては、例えば、ラウリルトリメチルアンモニウムクロライド、n−ヘキサデシルトリメチルアンモニウムクロライド、アルキルトリメチルアンモニウムブロマイド、セチルトリメチルアンモニウムクロライド、セチルトリメチルアンモニウムブロマイド、ステアリルトリメチルアンモニウムクロライド、アルキルジメチルエチルアンモニウムクロライド、アルキルジメチルエチルアンモニウムブロマイド、セチルジメチルエチルアンモニウムブロマイド、オクタデシルジメチルエチルアンモニウムブロマイド、またはメチルドデシルベンジルトリメチルアンモニウムクロライド等のハロゲン化アルキルトリメチルアンモニウム系陽イオン性界面活性剤を挙げることができる。その他に、ジメチルデシルベンジルアンモニウムクロライド、ジエチルドデシルベンジルアンモニウムクロライド、トリメチルドデシルアンモニウムブロマイド、アリルジブチルドデシルアンモニウムブロマイド、ジエチルアセトニルドデシルアンモニウムクロライド等を用いることができる。 Examples of the surfactant include lauryl trimethyl ammonium chloride, n-hexadecyl trimethyl ammonium chloride, alkyl trimethyl ammonium bromide, cetyl trimethyl ammonium chloride, cetyl trimethyl ammonium bromide, stearyl trimethyl ammonium chloride, alkyl dimethyl ethyl ammonium chloride, alkyl dimethyl ethyl. Mention may be made of halogenated alkyltrimethylammonium cationic surfactants such as ammonium bromide, cetyldimethylethylammonium bromide, octadecyldimethylethylammonium bromide, or methyldodecylbenzyltrimethylammonium chloride. In addition, dimethyldecylbenzylammonium chloride, diethyldodecylbenzylammonium chloride, trimethyldodecylammonium bromide, allyldibutyldodecylammonium bromide, diethylacetonyldodecylammonium chloride, and the like can be used.
上記疎水性多孔質SOG膜を作製する際の加熱処理条件は、膜の機械的特性を向上させるために、好ましくは以下の通りである。
上記塗布液を用いて半導体基板上にスピンコートした後、公知の赤外線加熱炉を用いて、基板に対して1段階熱処理又は2段階以上の熱処理を行う。
The heat treatment conditions for producing the hydrophobic porous SOG film are preferably as follows in order to improve the mechanical properties of the film.
After spin-coating on the semiconductor substrate using the coating solution, the substrate is subjected to one-step heat treatment or two-step heat treatment using a known infrared heating furnace.
2段階熱処理の場合は、第1段階熱処理では、通常、溶媒として使用している上記有機溶媒の蒸発温度(例えば、メチルアルコールであれば65℃)以上から鋳型として使用している上記界面活性剤の熱分解温度より下の温度、好ましくは60℃から300℃より下の温度で熱処理を行い、鋳型物質が分解しないで存在する状態下で有機溶媒を蒸発させて硬化させる。第2段階熱処理では、所定の酸素分圧を有する酸素含有ガスの存在下で、得られるSOG膜の膜特性を損なわない範囲で、すなわち、通常、界面活性剤の熱分解温度以上から配線として使用する銅や銀等の金属の融点以下の温度(例えば、銅であれば1087℃以下)、好ましくは300℃〜1000℃、さらに好ましくは300〜500℃で熱処理を行い、疎水性多孔質SOG膜を作製する。1000℃を超えると得られたSOG膜の疎水性が損なわれることがあり、また、300℃未満であると界面活性剤の分解が困難であって、多孔質SOG膜が得られない。 In the case of the two-stage heat treatment, the surfactant used as a mold from the temperature of the organic solvent used as the solvent is usually higher than the evaporation temperature (for example, 65 ° C. for methyl alcohol) in the first-stage heat treatment. Heat treatment is performed at a temperature lower than the thermal decomposition temperature, preferably 60 ° C. to 300 ° C., and the organic solvent is evaporated and cured in a state where the template material is present without being decomposed. In the second stage heat treatment, in the presence of an oxygen-containing gas having a predetermined oxygen partial pressure, as long as the characteristics of the obtained SOG film are not impaired, that is, usually used as wiring from the thermal decomposition temperature of the surfactant or higher. A hydrophobic porous SOG film that is heat-treated at a temperature not higher than the melting point of a metal such as copper or silver (eg, 1087 ° C. or lower for copper), preferably 300 ° C. to 1000 ° C., more preferably 300 to 500 ° C. Is made. If it exceeds 1000 ° C., the hydrophobicity of the obtained SOG film may be impaired, and if it is less than 300 ° C., it is difficult to decompose the surfactant, and a porous SOG film cannot be obtained.
上記第2段階を実行する際に、多孔質SOG膜の空孔を形成するための鋳型として使用する界面活性剤が熱分解を起こす温度以上から1000℃までの所定の熱処理温度への昇温及びその保持時間の間は、酸素を含まない雰囲気中で行うことが望ましい。この昇温における昇温時間及び保持時間は、得られるSOG膜の膜特性を損なわない範囲で適宜選択すれば良い。 When performing the second step, the temperature of the surfactant used as a template for forming the pores of the porous SOG film is raised to a predetermined heat treatment temperature from above the temperature at which thermal decomposition occurs to 1000 ° C. It is desirable to perform in the atmosphere which does not contain oxygen during the holding time. What is necessary is just to select suitably the temperature rising time and holding time in this temperature rising in the range which does not impair the film | membrane characteristic of the SOG film | membrane obtained.
また、1段階熱処理の場合は、室温から例えば直接400℃までの所定の温度へ昇温して5分以上の間この温度を保持した後、好ましくは酸素分圧1E+4Pa以上の酸素含有ガスを炉内に導入して、所定の温度で熱処理することにより、所望の機械的特性を有する疎水性多孔質SOG膜を作製することができる。この場合、所定の温度への昇温及びその保持時間の間は、酸素を含まない雰囲気中で行い、この昇温における昇温時間及び保持時間は、得られるSOG膜の膜特性を損なわない範囲で適宜選択すれば良い。
上記酸素含有ガスとしては、例えば、水分を含まない純空気、窒素やアルゴン等の不活性ガスに酸素分圧が上記の値以上になるように酸素を混合した混合ガス等を用いることができる。
In the case of one-step heat treatment, after raising the temperature from room temperature to a predetermined temperature, for example, directly to 400 ° C. and maintaining this temperature for 5 minutes or more, an oxygen-containing gas having an oxygen partial pressure of 1E + 4 Pa or more is preferably supplied to the furnace. A hydrophobic porous SOG film having desired mechanical properties can be produced by introducing it into the substrate and heat-treating it at a predetermined temperature. In this case, the temperature rise to a predetermined temperature and the holding time thereof are performed in an oxygen-free atmosphere, and the temperature raising time and the holding time in this temperature rise are within a range that does not impair the film characteristics of the obtained SOG film. The selection may be made as appropriate.
As the oxygen-containing gas, for example, pure air not containing moisture, a mixed gas in which oxygen is mixed with an inert gas such as nitrogen or argon so that the oxygen partial pressure is equal to or higher than the above value can be used.
以下、本発明の実施例を説明する。
(実施例1)
多孔質SOG(SiO2)のSi半導体基板上への成膜を、以下の通り行った。
テトラエトキシシラン(TEOS)1モル、H2O11モル、へキサメチルジシロキサン(HMDSO)0.15モル、ヘキサデシルトリメチルアンモニウムクロライド(C16TAC)0.25モルを酸性(pH:1−3)の溶剤中に添加・混合し、この混合物を55℃で反応させて均一なSOG前駆体塗布液を得た。
Examples of the present invention will be described below.
Example 1
Film formation of porous SOG (SiO 2) on the Si semiconductor substrate was performed as follows.
Tetraethoxysilane (TEOS) 1 mol, H2O11 mol, hexamethyldisiloxane (HMDSO) 0.15 mol, hexadecyltrimethylammonium chloride (C16TAC) 0.25 mol in an acidic (pH: 1-3) solvent. The mixture was added and mixed, and this mixture was reacted at 55 ° C. to obtain a uniform SOG precursor coating solution.
この塗布液を用いて半導体基板上に1500回転/分の条件でスピンコートした後、公知の赤外線加熱炉を用いて、基板を2段階熱処理した。1段目として空気中100℃で熱処理を行い、次いで3Pa以下の雰囲気中で400℃まで昇温し、15分間400℃を保持した後、酸素分圧が1E+4Paになるまで純空気を炉内に導入し、400℃のまま30分間の2段目の熱処理を行った。
上記熱処理で得られた多孔質SOG膜について、水銀プローブ法で電気的特性を、エリプロメトリーを用いて膜厚を測定し、比誘電率を算出した。また、ナノインデンテーション法により、機械的強度を測定した。結果を第1表に示す。
After spin coating on the semiconductor substrate under the condition of 1500 rpm with this coating solution, the substrate was heat-treated in two stages using a known infrared heating furnace. Heat treatment is performed at 100 ° C. in the air as the first stage, and then the temperature is raised to 400 ° C. in an atmosphere of 3 Pa or less. After maintaining the temperature at 400 ° C. for 15 minutes, pure air is introduced into the furnace until the oxygen partial pressure becomes 1E + 4 Pa. Then, the second heat treatment was performed for 30 minutes at 400 ° C.
With respect to the porous SOG film obtained by the above heat treatment, the electrical characteristics were measured by the mercury probe method, the film thickness was measured using ellipsometry, and the relative dielectric constant was calculated. Further, the mechanical strength was measured by a nanoindentation method. The results are shown in Table 1.
また、温度・昇温時間及び保持時間を上記と同一にし、酸素含有ガスを導入しない従来の熱処理を行い、得られたSOG膜の測定結果も合わせて第1表に示す。
表1から明らかなように、酸素含有ガスを導入せずに従来の熱処理を行った多孔質SOG膜と、酸素含有ガスを導入して得られた多孔質SOG膜とを比較すると、後者は、前者よりも機械的強度が約2.5〜3.5倍に向上し、かつ比誘電率の上昇は6%程度に収まっていることが分かる。図1に酸素含有ガスを導入して得られた多孔質SOG膜を湿度40%、23℃の室内に放置したときの比誘電率の経時変化を示す。図1に示されたように、本熱処理による疎水性への影響は見られず、14日後の比誘電率の変化は△k〜0.3%であった。
Table 1 also shows the measurement results of the SOG film obtained by performing the conventional heat treatment without introducing the oxygen-containing gas with the same temperature / temperature raising time and holding time.
As is clear from Table 1, when comparing a porous SOG film obtained by performing a conventional heat treatment without introducing an oxygen-containing gas and a porous SOG film obtained by introducing an oxygen-containing gas, the latter is It can be seen that the mechanical strength is improved by about 2.5 to 3.5 times that of the former, and the increase in relative permittivity is about 6%. FIG. 1 shows a change over time in relative permittivity when a porous SOG film obtained by introducing an oxygen-containing gas is left in a room with a humidity of 40% and 23 ° C. FIG. As shown in FIG. 1, no influence on the hydrophobicity was observed by this heat treatment, and the change in the dielectric constant after 14 days was Δk to 0.3%.
(実施例2)
実施例1で用いた塗布液を基板上にスピンコートした後、基板を1段目250℃で60分間熱処理を行い、3Pa以下に減圧した雰囲気中で450℃に昇温した。その温度に20分間保持した後、5E+3Paの酸素分圧になるように純空気を炉内に導入し、その後30分間熱処理を行った。得られたSOG膜について、実施例1と同様な評価を行い、その結果を表1に併記する。
本実施例で得られた多孔質SOG膜においても、得られた比誘電率は、酸素含有ガスを導入せずに従来の熱処理を行った多孔質SOG膜と比較して、4%程度の上昇に過ぎず、また、機械的強度は2〜3倍になった。
(Example 2)
After the coating solution used in Example 1 was spin-coated on the substrate, the substrate was heat-treated at the first stage of 250 ° C. for 60 minutes, and heated to 450 ° C. in an atmosphere reduced to 3 Pa or less. After maintaining at that temperature for 20 minutes, pure air was introduced into the furnace so that the oxygen partial pressure was 5E + 3 Pa, and then heat treatment was performed for 30 minutes. The obtained SOG film was evaluated in the same manner as in Example 1, and the results are also shown in Table 1.
Also in the porous SOG film obtained in this example, the obtained relative dielectric constant increased by about 4% compared with the porous SOG film that was subjected to the conventional heat treatment without introducing the oxygen-containing gas. In addition, the mechanical strength was increased 2 to 3 times.
(実施例3)
実施例1で用いた塗布液を基板上にスピンコートした後、基板を3Pa以下の圧力下で400℃まで昇温し、次いで2E+4Paの酸素分圧になるように純空気を導入して30分間熱処理を行った。得られたSOG膜について、実施例1と同様な評価を行い、その結果を表1に併記する。
本実施例で得られた多孔質SOG膜の比誘電率は、酸素含有ガスを導入せずに従来の熱処理を行った多孔質SOG膜と比較して、2%程度の上昇に過ぎず、また、機械的強度はl.5〜2倍になった。
(Example 3)
After spin-coating the coating solution used in Example 1 on the substrate, the substrate was heated to 400 ° C. under a pressure of 3 Pa or less, and then pure air was introduced so as to obtain an oxygen partial pressure of 2E + 4 Pa for 30 minutes. Heat treatment was performed. The obtained SOG film was evaluated in the same manner as in Example 1, and the results are also shown in Table 1.
The relative dielectric constant of the porous SOG film obtained in this example is only about 2% higher than that of the porous SOG film that has been subjected to the conventional heat treatment without introducing the oxygen-containing gas. The mechanical strength is l. 5 to 2 times.
(表1)
(Table 1)
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010137418A JP2010251784A (en) | 2010-06-16 | 2010-06-16 | Manufacturing method of hydrophobic porous sog film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010137418A JP2010251784A (en) | 2010-06-16 | 2010-06-16 | Manufacturing method of hydrophobic porous sog film |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003062879A Division JP2004273786A (en) | 2003-03-10 | 2003-03-10 | Manufacturing method of hydrophobic porous sog film |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010251784A true JP2010251784A (en) | 2010-11-04 |
Family
ID=43313688
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010137418A Pending JP2010251784A (en) | 2010-06-16 | 2010-06-16 | Manufacturing method of hydrophobic porous sog film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010251784A (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06181204A (en) * | 1992-12-14 | 1994-06-28 | Toray Dow Corning Silicone Co Ltd | Method of forming silicon oxide film |
JPH1098037A (en) * | 1996-09-19 | 1998-04-14 | Sony Corp | Formation of sog material film and sog material film-forming device |
WO2000012640A1 (en) * | 1998-09-01 | 2000-03-09 | Catalysts & Chemicals Industries Co., Ltd. | Coating fluid for forming low-permittivity silica-based coating film and substrate with low-permittivity coating film |
JP2001206710A (en) * | 2000-01-20 | 2001-07-31 | Jsr Corp | Forming method of silica base film |
JP2002075983A (en) * | 2000-04-11 | 2002-03-15 | Applied Materials Inc | Method of forming mesoporous oxide films and dual damascene structure |
JP2002289608A (en) * | 2001-03-28 | 2002-10-04 | Dainippon Screen Mfg Co Ltd | Heat treatment method and heat treatment device |
JP2003017485A (en) * | 2001-06-29 | 2003-01-17 | Rohm Co Ltd | Semiconductor device and method for manufacturing the same |
-
2010
- 2010-06-16 JP JP2010137418A patent/JP2010251784A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06181204A (en) * | 1992-12-14 | 1994-06-28 | Toray Dow Corning Silicone Co Ltd | Method of forming silicon oxide film |
JPH1098037A (en) * | 1996-09-19 | 1998-04-14 | Sony Corp | Formation of sog material film and sog material film-forming device |
WO2000012640A1 (en) * | 1998-09-01 | 2000-03-09 | Catalysts & Chemicals Industries Co., Ltd. | Coating fluid for forming low-permittivity silica-based coating film and substrate with low-permittivity coating film |
JP2001206710A (en) * | 2000-01-20 | 2001-07-31 | Jsr Corp | Forming method of silica base film |
JP2002075983A (en) * | 2000-04-11 | 2002-03-15 | Applied Materials Inc | Method of forming mesoporous oxide films and dual damascene structure |
JP2002289608A (en) * | 2001-03-28 | 2002-10-04 | Dainippon Screen Mfg Co Ltd | Heat treatment method and heat treatment device |
JP2003017485A (en) * | 2001-06-29 | 2003-01-17 | Rohm Co Ltd | Semiconductor device and method for manufacturing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5405031B2 (en) | Solution for immersion used in the production of siliceous film and method for producing siliceous film using the same | |
KR101748527B1 (en) | Method for preparing silica aerogel-containing blanket and silica aerogel-containing blanket prepared by using the same | |
JP6617297B2 (en) | Airgel and member using the same | |
JP2004500695A (en) | Nano-sized porous dielectric film with low dielectric constant and low water content, modified by electron beam exposure | |
JPH04227980A (en) | Method for converting silica precursor into silica at low temperature | |
JP4021131B2 (en) | Coating liquid for forming low dielectric constant silica-based coating and substrate with low dielectric constant silica-based coating | |
WO2007083654A1 (en) | Process for producing siliceous film and substrate with siliceous film produced thereby | |
EP1855313A1 (en) | Process for producing modified porous silica film, modified porous silica film obtained by the process, and semiconductor device employing the modified porous silica film | |
JP4142643B2 (en) | Organosilicate polymer and insulating film containing the same | |
US20090032901A1 (en) | Method of curing hydrogen silsesquioxane and densification in nano-scale trenches | |
JP3998979B2 (en) | Method for forming low dielectric constant silica-based film and semiconductor substrate with low dielectric constant film | |
WO2008026387A1 (en) | Method of forming amorphous silica coating of low dielectric constant and amorphous silica coating of low dielectric constant obtained thereby | |
JP2007134420A (en) | Embedding method inside structure by hydrophobic porous silica material | |
JP2000340651A (en) | Manufacture of film having low dielectric constant | |
JP2010251784A (en) | Manufacturing method of hydrophobic porous sog film | |
TW569341B (en) | Method and apparatus for processing organosiloxane film | |
Nam et al. | Characterization of spin-coated silicate and phosphosilicate thin films prepared by the sol-gel method | |
JP2004273786A (en) | Manufacturing method of hydrophobic porous sog film | |
JP3954842B2 (en) | Method for producing hydrophobic porous material | |
JP3635443B2 (en) | Method for forming SiO2 film | |
JP4257141B2 (en) | Composition for forming porous film, method for producing porous film, porous film, interlayer insulating film, and semiconductor device | |
WO2010001793A1 (en) | Electronic device having glass base containing sodium and method for manufacturing the same | |
JP2007158066A (en) | Insulation film, manufacturing method thereof, and multilayer wiring structure using same | |
JP2004285266A (en) | Composition for porous insulating film, its manufacturing method, porous insulating film and its manufacturing method | |
JP4982012B2 (en) | Method for producing hydrophobic porous SOG film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Effective date: 20121206 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Effective date: 20121211 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A02 | Decision of refusal |
Effective date: 20130730 Free format text: JAPANESE INTERMEDIATE CODE: A02 |