JP2010126094A - 車両用動力伝達装置の制御装置 - Google Patents
車両用動力伝達装置の制御装置 Download PDFInfo
- Publication number
- JP2010126094A JP2010126094A JP2008305261A JP2008305261A JP2010126094A JP 2010126094 A JP2010126094 A JP 2010126094A JP 2008305261 A JP2008305261 A JP 2008305261A JP 2008305261 A JP2008305261 A JP 2008305261A JP 2010126094 A JP2010126094 A JP 2010126094A
- Authority
- JP
- Japan
- Prior art keywords
- engine
- rotational speed
- speed
- power transmission
- rotation speed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
Landscapes
- Hybrid Electric Vehicles (AREA)
- Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
- Control Of Transmission Device (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
【課題】電気的に差動状態が制御される電気式差動部と、動力伝達経路の一部を構成する変速部とを備える車両用動力伝達装置、変速部の変速に際して変速ショックを好適に抑制することができる車両用動力伝達装置の制御装置を提供する。
【解決手段】目標回転速度設定手段88は、目標回転速度NE *を、自動変速部20の変速中のエンジン回転速度NEに基づいて設定するものである。このようにすれば、例えばエンジン8の実際の回転速度NEとエンジン目標回転速度NE *との乖離量αが変動しないように、実際のエンジン回転速度NEに合わせてエンジン目標回転速度NE *を設定することで、第1電動機M1によるエンジン回転速度制御に際して第1電動機M1のトルク変動が抑制されるに伴い、変速時の変速ショックを抑制することができる。
【選択図】図6
【解決手段】目標回転速度設定手段88は、目標回転速度NE *を、自動変速部20の変速中のエンジン回転速度NEに基づいて設定するものである。このようにすれば、例えばエンジン8の実際の回転速度NEとエンジン目標回転速度NE *との乖離量αが変動しないように、実際のエンジン回転速度NEに合わせてエンジン目標回転速度NE *を設定することで、第1電動機M1によるエンジン回転速度制御に際して第1電動機M1のトルク変動が抑制されるに伴い、変速時の変速ショックを抑制することができる。
【選択図】図6
Description
本発明は、電気的に差動機構の差動状態が制御される電気式差動部と、その電気式差動部と駆動輪との間の動力伝達経路の一部を構成する変速部とを備えるハイブリッド型式の車両用動力伝達装置の制御装置に係り、特に、変速部の変速制御に関するものである。
駆動源として機能するエンジンと、電動機の運転状態を制御することにより差動機構のエンジンに動力伝達可能に連結された入力軸の回転速度と出力軸の回転速度との差動状態が制御される電気式差動部と、その出力軸と駆動輪との間の動力伝達経路を構成する変速部とを、備える車両用動力伝達装置の制御装置がよく知られている。例えば、特許文献1の車両用駆動装置の制御装置がその一例である。特許文献1では、電気式差動部と変速部の変速が同時に実行される所謂同時変速時において、エンジン回転速度が変速部の変速後のエンジン目標回転速度に向けて変化するように、第1電動機を制御する技術が開示されている。具体的には、実際のエンジン回転速度とエンジン目標回転速度との剥離量に応じて、第1電動機の反力トルクをフィードバック制御することにより、エンジン回転速度を制御する技術が開示されている。
ところで、変速部においてイナーシャ相が開始されると、電気式差動部の出力軸の回転速度が急激に変化するため、各回転要素のイナーシャトルクの影響で実際のエンジン回転速度とエンジン目標回転速度との乖離量(ずれ量)が増加することがあった。その乖離量(ずれ量)を補正するため、第1電動機のフィードバック制御によるトルク変動が大きくなるに従い、変速部へ入力される入力トルクが変動し、変速ショックが発生する可能性があった。
また、アクセルオン踏み込み時の過渡的な状態(特に、高地走行時など)などにおいて、エンジントルク誤差が非常に大きくなることがあるため、第1電動機の反力トルクとずれが生じ、結果として上記乖離量(ずれ量)が大きくなることがある。このときも同様に、上記乖離量(ずれ量)を補正するため、フィードバック制御による第1電動機のトルク変動が大きくなり、変速ショックが発生する可能性があった。なお、上記2つの課題は未公知であったため、上記課題を解決する方法は何ら見出されていなかった。
本発明は、以上の事情を背景として為されたものであり、その目的とするところは、電気的に差動機構の差動状態が制御される電気式差動部と、その電気式差動部と駆動輪との間の動力伝達経路の一部を構成する変速部とを備えるハイブリッド型式の車両用動力伝達装置の制御装置において、変速部の変速に際して変速ショックを好適に抑制することができる車両用動力伝達装置の制御装置を提供することにある。
上記目的を達成するための、請求項1にかかる発明の要旨とするところは、(a)エンジンと、電動機の運転状態を制御することにより差動機構の前記エンジンに動力伝達可能に連結された入力軸の回転速度と出力軸の回転速度との差動状態を制御する電気式差動部と、前記出力軸から駆動輪への動力伝達経路の一部を構成する変速部とを有する車両用動力伝達装置の制御装置であって、(b)前記変速部の変速時に前記エンジンの回転速度をエンジン目標回転速度に向けて制御するエンジン回転速度制御手段と、(c)前記エンジン目標回転速度を、前記変速部の変速中のエンジン回転速度に基づいて設定する目標回転速度設定手段とを、(d)含むことを特徴とする。
また、請求項2にかかる発明の要旨とするところは、請求項1の車両用動力伝達装置の制御装置において、前記目標回転速度設定手段は、前記エンジン目標回転速度を前記変速中のエンジン回転速度から所定の乖離量だけ離した回転速度に設定することを特徴とする。
また、請求項3にかかる発明の要旨とするところは、請求項2の車両用動力伝達装置の制御装置において、前記乖離量は、イナーシャ相開始後では、前記変速部のイナーシャ相開始時点でのエンジントルクと実際のエンジントルクとの差に応じて設定されることを特徴とする。
また、請求項4にかかる発明の要旨とするところは、請求項2または3の車両用動力伝達装置の制御装置において、前記乖離量は、イナーシャ相開始前において零に設定されることを特徴とする。
また、請求項5にかかる発明の要旨とするところは、請求項1または2の車両用動力伝達装置の制御装置において、前記目標回転速度設定手段は、前記変速部のイナーシャ相開始前の前記エンジン目標回転速度を、変速出力時のエンジン回転速度に設定することを特徴とする。
また、請求項6にかかる発明の要旨とするところは、請求項1乃至5のいずれか1つの車両用動力伝達装置の制御装置において、前記エンジン目標回転速度の設定に際して、前記エンジンの最適燃費線、電動機回転速度、エンジン回転速度、前記差動機構の回転要素の回転速度を考慮した制限値が設定されていることを特徴とする。
また、請求項7にかかる発明の要旨とするところは、請求項1乃至6のいずれか1つの車両用動力伝達装置の制御装置において、前記エンジン目標回転速度の設定は、エンジン運転中に実施されることを特徴とする。
また、請求項8にかかる発明の要旨とするところは、請求項1乃至6のいずれか1つの車両用動力伝達装置の制御装置において、前記エンジン目標回転速度の設定は、前記エンジンの負荷運転中に実施されることを特徴とする。
また、請求項9にかかる発明の要旨とするところは、請求項1乃至6のいずれか1つの車両用動力伝達装置の制御装置において、前記エンジン目標回転速度の設定は、前記エンジンの回転速度制御中に実施されることを特徴とする。
請求項1にかかる発明の車両用動力伝達装置の制御装置によれば、目標回転速度設定手段は、エンジン目標回転速度を、前記変速部の変速中のエンジン回転速度に基づいて設定するものである。このようにすれば、例えばエンジンの実際の回転速度とエンジン目標回転速度との乖離量が変動しないように、実際のエンジンの回転速度に合わせてエンジン目標回転速度を設定することで、前記電動機によるエンジン回転速度制御に際して電動機のトルク変動が抑制されるに伴い、変速時の変速ショックを抑制することができる。すなわち、変速部のイナーシャ相中における電気式差動部の出力軸の回転速度変化や変速過渡期に生じるエンジントルク誤差等に影響されることがないので、電動機のトルク変動が抑制されて変速時の変速ショックを抑制することができる。
また、請求項2にかかる発明の車両用動力伝達装置の制御装置によれば、前記目標回転速度設定手段は、前記エンジン目標回転速度を変速中のエンジン回転速度から所定の乖離量だけ離した回転速度に設定するため、イナーシャ相中における電気式差動部の出力軸の回転速度変化による実際のエンジン回転速度と目標回転速度との乖離量を抑制することができるに伴い、電動機によるエンジン回転速度制御時のトルク変動を抑制することができる。したがって、変速部の入力軸へ入力される入力トルクのトルク変動が抑制され、変速時の変速ショックが抑制される。
また、請求項3にかかる発明の車両用動力伝達装置の制御装置によれば、前記乖離量は、イナーシャ相開始後では、前記変速部のイナーシャ相開始時点でのエンジントルクと実際のエンジントルクとの差に応じて設定されるものである。このようにすれば、例えば低エンジントルク状態において乖離量が大きく設定されると、エンジンパワーが回転速度上昇に使われてしまうので、変速部へ伝達される入力トルクが低下し、運転者に引き込み感を与える可能性があったが、エンジントルクに応じて乖離量を設定することで、変速部への入力トルク低下を抑制することができ、運転者に与える引き込み感を抑制することができる。
また、請求項4にかかる発明の車両用動力伝達装置の制御装置によれば、前記乖離量は、イナーシャ相開始前において零に設定されるため、イナーシャ相開始前における電動機の回転速度変化が抑制され、電動機の回転速度変化に伴うイナーシャトルクによるトルク変動を抑制することができる。
また、請求項5にかかる発明の車両用動力伝達装置の制御装置によれば、前記目標回転速度設定手段は、前記変速部のイナーシャ相前の前記エンジン目標回転速度を、変速出力時のエンジン回転速度に設定するため、イナーシャ相開始前における電動機の回転速度変化が抑制され、電動機の回転速度変化に伴うイナーシャトルクによるトルク変動を抑制することができる。
また、請求項6にかかる発明の車両用動力伝達装置の制御装置によれば、前記エンジン目標回転速度の設定に際して、前記エンジンの最適燃費線、電動機回転速度、エンジン回転速度、前記差動機構の回転要素の回転速度を考慮した制限値が設定されているため、エンジンの運転状態が最適燃費線から大きく外れることによる燃費低下、電動機の高回転化による耐久性低下、エンジンの高回転化による耐久性低下、および差動機構の回転要素の高回転化による耐久性低下が防止される。
また、請求項7にかかる発明の車両用動力伝達装置の制御装置によれば、エンジン目標回転速度の設定は、エンジン運転中に実施されるため、エンジン運転中における電動機によるエンジン回転速度制御が実施可能となる。
また、請求項8にかかる発明の車両用動力伝達装置の制御装置によれば、前記エンジン目標回転速度の設定は、前記エンジンの負荷運転中に実施されるため、エンジン負荷運転中における電動機によるエンジン回転速度制御が実施可能となる。
また、請求項9にかかる発明の車両用動力伝達装置の制御装置によれば、前記エンジン目標回転速度の設定は、前記エンジンの回転速度制御中に実施されるため、電動機のトルク変動を抑制することができる。
ここで好適には、前記差動機構は、前記エンジンに連結された第1要素と第1電動機に連結された第2要素と出力軸に連結された第3要素との3つの回転要素を有する遊星歯車装置であり、前記第1要素はその遊星歯車装置のキャリヤであり、前記第2要素はその遊星歯車装置のサンギヤであり、前記第3要素はその遊星歯車装置のリングギヤである。このようにすれば、前記差動機構の軸心方向寸法が小さくなる。また、差動機構が1つの遊星歯車装置によって簡単に構成される。
また、好適には、前記遊星歯車装置はシングルピニオン型の遊星歯車装置である。このようにすれば、前記差動機構の軸心方向寸法が小さくなる。また、差動機構が1つのシングルピニオン型遊星歯車装置によって簡単に構成される。
また、好適には、前記変速部の変速比(ギヤ比)と前記電気式差動部の変速比とに基づいて前記車両用動力伝達装置の総合変速比が形成されるものである。このようにすれば、変速部の変速比を利用することで駆動力が幅広く得られるようになる。
また、好適には、前記変速部は有段式の自動変速機である。このようにすれば、例えば電気的な無段変速機として機能させられる電気式差動部と有段式自動変速機とで無段変速機が構成され、滑らかに駆動トルクを変化させることが可能であるとともに、電気式差動部の変速比を一定となるように制御した状態においては電気式差動部と有段式自動変速機とで有段変速機と同等の状態が構成され、車両用動力伝達装置の総合変速比が段階的に変化させられて速やかに駆動トルクを得ることもできる。
以下、本発明の実施例を図面を参照しつつ詳細に説明する。なお、以下の実施例において図は適宜簡略化或いは変形されており、各部の寸法比および形状等は必ずしも正確に描かれていない。
図1は、本発明が適用されるハイブリッド車両の動力伝達装置の一部を構成する変速機構10(本発明の車両用動力伝達装置に対応)を説明する骨子図である。図1において、変速機構10は車体に取り付けられる非回転部材としてのトランスミッションケース12(以下、ケース12という)内において共通の軸心上に配設された入力回転部材としての入力軸14と、この入力軸14に直接に或いは図示しない脈動吸収ダンパー(振動減衰装置)などを介して間接に連結された無段変速部としての差動部11(本発明の電気式差動部に対応)と、その差動部11と駆動輪34(図6参照)との間の動力伝達経路で伝達部材(伝動軸)18を介して直列に連結されている動力伝達部としての自動変速部20と、この自動変速部20に連結されている出力回転部材としての出力軸22とを直列に備えている。この変速機構10は、例えば車両において縦置きされるFR(フロントエンジン・リヤドライブ)型車両に好適に用いられるものであり、入力軸14に直接に或いは図示しない脈動吸収ダンパーを介して直接的に連結された走行用の駆動力源として例えばガソリンエンジンやディーゼルエンジン等の内燃機関であるエンジン8と一対の駆動輪34との間に設けられて、エンジン8からの動力を動力伝達経路の一部を構成する差動歯車装置(終減速機)32(図6参照)および一対の車軸等を順次介して一対の駆動輪34へ伝達する。
このように、本実施例の変速機構10においてはエンジン8と差動部11とは直結されている。この直結にはトルクコンバータやフルードカップリング等の流体式伝動装置を介することなく連結されているということであり、例えば上記脈動吸収ダンパーなどを介する連結はこの直結に含まれる。なお、変速機構10はその軸心に対して対称的に構成されているため、図1の骨子図においてはその下側が省略されている。以下の各実施例についても同様である。
差動部11は、入力軸14に入力されたエンジン8の出力を機械的に分配する機械的機構であってエンジン8の出力を第1電動機M1および伝達部材18に分配する差動機構としての動力分配機構16と、その動力分配機構16に動力伝達可能に連結された第1電動機M1と、伝達部材18と一体的に回転するように作動的に連結されている第2電動機M2とを備えている。本実施例の第1電動機M1および第2電動機M2は発電機能をも有する所謂モータジェネレータであるが、動力分配機構16の差動状態を制御するための差動用電動機として機能する第1電動機M1は、反力を発生させるためのジェネレータ(発電)機能を少なくとも備える。そして、駆動輪34に動力伝達可能に連結された第2電動機M2は、走行用の駆動力源として駆動力を出力する走行用電動機として機能するためモータ(電動機)機能を少なくとも備える。
動力分配機構16は、エンジン8と駆動輪34との間に連結された差動機構であって、例えば「0.418」程度の所定のギヤ比ρ0を有するシングルピニオン型の差動部遊星歯車装置24を主体として構成されている。この差動部遊星歯車装置24は、差動部サンギヤS0、差動部遊星歯車P0、その差動部遊星歯車P0を自転および公転可能に支持する差動部キャリヤCA0、差動部遊星歯車P0を介して差動部サンギヤS0と噛み合う差動部リングギヤR0を回転要素(要素)として備えている。差動部サンギヤS0の歯数をZS0、差動部リングギヤR0の歯数をZR0とすると、上記ギヤ比ρ0はZS0/ZR0である。
この動力分配機構16においては、差動部キャリヤCA0は入力軸14すなわちエンジン8に連結され、差動部サンギヤS0は第1電動機M1に連結され、差動部リングギヤR0は伝達部材18に連結されている。このように構成された動力分配機構16は、差動部遊星歯車装置24の3要素である差動部サンギヤS0、差動部キャリヤCA0、差動部リングギヤR0がそれぞれ相互に相対回転可能とされて差動作用が作動可能なすなわち差動作用が働く差動状態とされることから、エンジン8の出力が第1電動機M1と伝達部材18とに分配させられるとともに、分配されたエンジン8の出力の一部で第1電動機M1から発生させられた電気エネルギで蓄電されたり第2電動機M2が回転駆動されるので、差動部11(動力分配機構16)は電気的な差動装置として機能させられて例えば差動部11は所謂無段変速状態(電気的CVT状態)とされて、エンジン8の所定回転に拘わらず伝達部材18の回転が連続的に変化させられる。すなわち、差動部11はその変速比γ0(入力軸14の回転速度NIN/伝達部材18の回転速度N18)が最小値γ0min から最大値γ0max まで連続的に変化させられる電気的な無段変速機として機能する。このように、動力分配機構16に動力伝達可能に連結された第1電動機M1および第2電動機M2の少なくとも一方の運転状態が制御されることにより、動力分配機構16の差動状態、すなわち入力軸14の回転速度と伝達部材18の回転速度の差動状態が制御される。
自動変速部20(本発明の変速部に対応)は、差動部11から駆動輪34への動力伝達経路の一部を構成しており、シングルピニオン型の第1遊星歯車装置26、シングルピニオン型の第2遊星歯車装置28、およびシングルピニオン型の第3遊星歯車装置30を備え、有段式の自動変速機として機能する遊星歯車式の多段変速機である。第1遊星歯車装置26は、第1サンギヤS1、第1遊星歯車P1、その第1遊星歯車P1を自転および公転可能に支持する第1キャリヤCA1、第1遊星歯車P1を介して第1サンギヤS1と噛み合う第1リングギヤR1を備えており、例えば「0.562」程度の所定のギヤ比ρ1を有している。第2遊星歯車装置28は、第2サンギヤS2、第2遊星歯車P2、その第2遊星歯車P2を自転および公転可能に支持する第2キャリヤCA2、第2遊星歯車P2を介して第2サンギヤS2と噛み合う第2リングギヤR2を備えており、例えば「0.425」程度の所定のギヤ比ρ2を有している。第3遊星歯車装置30は、第3サンギヤS3、第3遊星歯車P3、その第3遊星歯車P3を自転および公転可能に支持する第3キャリヤCA3、第3遊星歯車P3を介して第3サンギヤS3と噛み合う第3リングギヤR3を備えており、例えば「0.421」程度の所定のギヤ比ρ3を有している。第1サンギヤS1の歯数をZS1、第1リングギヤR1の歯数をZR1、第2サンギヤS2の歯数をZS2、第2リングギヤR2の歯数をZR2、第3サンギヤS3の歯数をZS3、第3リングギヤR3の歯数をZR3とすると、上記ギヤ比ρ1はZS1/ZR1、上記ギヤ比ρ2はZS2/ZR2、上記ギヤ比ρ3はZS3/ZR3である。
自動変速部20では、第1サンギヤS1と第2サンギヤS2とが一体的に連結されて第2クラッチC2を介して伝達部材18に選択的に連結されるとともに第1ブレーキB1を介してケース12に選択的に連結され、第1キャリヤCA1は第2ブレーキB2を介してケース12に選択的に連結され、第3リングギヤR3は第3ブレーキB3を介してケース12に選択的に連結され、第1リングギヤR1と第2キャリヤCA2と第3キャリヤCA3とが一体的に連結されて出力軸22に連結され、第2リングギヤR2と第3サンギヤS3とが一体的に連結されて第1クラッチC1を介して伝達部材18に選択的に連結されている。
このように、自動変速部20内と差動部11(伝達部材18)とは自動変速部20の変速段を成立させるために用いられる第1クラッチC1または第2クラッチC2を介して選択的に連結されている。言い換えれば、第1クラッチC1および第2クラッチC2は、伝達部材18と自動変速部20との間の動力伝達経路すなわち差動部11(伝達部材18)から駆動輪34への動力伝達経路を、その動力伝達経路の動力伝達を可能とする動力伝達可能状態と、その動力伝達経路の動力伝達を遮断する動力伝達遮断状態とに選択的に切り換える係合装置として機能している。つまり、第1クラッチC1および第2クラッチC2の少なくとも一方が係合されることで上記動力伝達経路が動力伝達可能状態とされ、一方、第1クラッチC1および第2クラッチC2が解放されることで上記動力伝達経路が動力伝達遮断状態とされる。
また、この自動変速部20は、解放側係合装置の解放と係合側係合装置の係合とによりクラッチツウクラッチ変速が実行されて各ギヤ段(変速段)が選択的に成立させられることにより、略等比的に変化する変速比γ(=伝達部材18の回転速度N18/出力軸22の回転速度NOUT)が各ギヤ段毎に得られる。例えば、図2の係合作動表に示されるように、第1クラッチC1および第3ブレーキB3の係合により変速比γ1が最大値例えば「3.357」程度である第1速ギヤ段が成立させられる。また、第1クラッチC1および第2ブレーキB2の係合により変速比γ2が第1速ギヤ段よりも小さい値例えば「2.180」程度である第2速ギヤ段が成立させられる。また、第1クラッチC1および第1ブレーキB1の係合により変速比γ3が第2速ギヤ段よりも小さい値例えば「1.424」程度である第3速ギヤ段が成立させられる。また、第1クラッチC1および第2クラッチC2の係合により変速比γ4が第3速ギヤ段よりも小さい値例えば「1.000」程度である第4速ギヤ段が成立させられる。また、第2クラッチC2および第3ブレーキB3の係合により変速比γRが第1速ギヤ段と第2速ギヤ段との間の値例えば「3.209」程度である後進ギヤ段(後進変速段)が成立させられる。また、第1クラッチC1、第2クラッチC2、第1ブレーキB1、第2ブレーキB2、および第3ブレーキB3の解放によりニュートラル「N」状態とされる。
前記第1クラッチC1、第2クラッチC2、第1ブレーキB1、第2ブレーキB2、および第3ブレーキB3(以下、特に区別しない場合はクラッチC、ブレーキBと表す)は、従来の車両用自動変速機においてよく用いられている係合要素としての油圧式摩擦係合装置であって、互いに重ねられた複数枚の摩擦板が油圧アクチュエータにより押圧される湿式多板型や、回転するドラムの外周面に巻き付けられた1本または2本のバンドの一端が油圧アクチュエータによって引き締められるバンドブレーキなどにより構成され、それが介挿されている両側の部材を選択的に連結するためのものである。
以上のように構成された変速機構10において、無段変速機として機能する差動部11と自動変速部20とで全体として無段変速機が構成される。また、差動部11の変速比を一定となるように制御することにより、差動部11と自動変速部20とで有段変速機と同等の状態を構成することが可能とされる。
具体的には、差動部11が無段変速機として機能し、且つ差動部11に直列の自動変速部20が有段変速機として機能することにより、自動変速部20の少なくとも1つの変速段Mに対して自動変速部20に入力される回転速度すなわち伝達部材18の回転速度N18(以下、「伝達部材回転速度N18」と表す)が無段的に変化させられてその変速段Mにおいて無段的な変速比幅が得られる。したがって、変速機構10の総合変速比γT(=入力軸14の回転速度NIN/出力軸22の回転速度NOUT)が無段階に得られ、変速機構10において無段変速機が構成される。この変速機構10の総合変速比γTは、差動部11の変速比γ0と自動変速部20の変速比γとに基づいて形成される変速機構10全体としてのトータル変速比γTである。
例えば、図2の係合作動表に示される自動変速部20の第1速ギヤ段乃至第4速ギヤ段や後進ギヤ段の各ギヤ段に対し伝達部材回転速度N18が無段的に変化させられて各ギヤ段は無段的な変速比幅が得られる。したがって、その各ギヤ段の間が無段的に連続変化可能な変速比となって、変速機構10全体としてのトータル変速比γTが無段階に得られる。
また、差動部11の変速比が一定となるように制御され、且つクラッチCおよびブレーキBが選択的に係合作動させられて第1速ギヤ段乃至第4速ギヤ段のいずれか或いは後進ギヤ段(後進変速段)が選択的に成立させられることにより、略等比的に変化する変速機構10のトータル変速比γTが各ギヤ段毎に得られる。したがって、変速機構10において有段変速機と同等の状態が構成される。
例えば、差動部11の変速比γ0が「1」に固定されるように制御されると、図2の係合作動表に示されるように自動変速部20の第1速ギヤ段乃至第4速ギヤ段や後進ギヤ段の各ギヤ段に対応する変速機構10のトータル変速比γTが各ギヤ段毎に得られる。また、自動変速部20の第4速ギヤ段において差動部11の変速比γ0が「1」より小さい値例えば0.7程度に固定されるように制御されると、第4速ギヤ段よりも小さい値例えば「0.7」程度であるトータル変速比γTが得られる。
図3は、差動部11と自動変速部20とから構成される変速機構10において、ギヤ段毎に連結状態が異なる各回転要素の回転速度の相対関係を直線上で表すことができる共線図を示している。この図3の共線図は、各遊星歯車装置24、26、28、30のギヤ比ρの関係を示す横軸と、相対的回転速度を示す縦軸とから成る二次元座標であり、横線X1が回転速度零を示し、横線X2が回転速度「1.0」すなわち入力軸14に連結されたエンジン8の回転速度NEを示し、横線XGが伝達部材18の回転速度を示している。
また、差動部11を構成する動力分配機構16の3つの要素に対応する3本の縦線Y1、Y2、Y3は、左側から順に第2回転要素(第2要素)RE2に対応する差動部サンギヤS0、第1回転要素(第1要素)RE1に対応する差動部キャリヤCA0、第3回転要素(第3要素)RE3に対応する差動部リングギヤR0の相対回転速度を示すものであり、それらの間隔は差動部遊星歯車装置24のギヤ比ρ0に応じて定められている。さらに、自動変速部20の5本の縦線Y4、Y5、Y6、Y7、Y8は、左から順に、第4回転要素(第4要素)RE4に対応し且つ相互に連結された第1サンギヤS1および第2サンギヤS2を、第5回転要素(第5要素)RE5に対応する第1キャリヤCA1を、第6回転要素(第6要素)RE6に対応する第3リングギヤR3を、第7回転要素(第7要素)RE7に対応し且つ相互に連結された第1リングギヤR1、第2キャリヤCA2、第3キャリヤCA3を、第8回転要素(第8要素)RE8に対応し且つ相互に連結された第2リングギヤR2、第3サンギヤS3をそれぞれ表し、それらの間隔は第1、第2、第3遊星歯車装置26、28、30のギヤ比ρ1、ρ2、ρ3に応じてそれぞれ定められている。共線図の縦軸間の関係においてサンギヤとキャリヤとの間が「1」に対応する間隔とされるとキャリヤとリングギヤとの間が遊星歯車装置のギヤ比ρに対応する間隔とされる。すなわち、差動部11では縦線Y1とY2との縦線間が「1」に対応する間隔に設定され、縦線Y2とY3との間隔はギヤ比ρ0に対応する間隔に設定される。また、自動変速部20では各第1、第2、第3遊星歯車装置26、28、30毎にそのサンギヤとキャリヤとの間が「1」に対応する間隔に設定され、キャリヤとリングギヤとの間がρに対応する間隔に設定される。
上記図3の共線図を用いて表現すれば、本実施例の変速機構10は、動力分配機構16(差動部11)において、差動部遊星歯車装置24の第1回転要素RE1(差動部キャリヤCA0)が入力軸14すなわちエンジン8に連結され、第2回転要素RE2が第1電動機M1に連結され、第3回転要素(差動部リングギヤR0)RE3が伝達部材18および第2電動機M2に連結されて、入力軸14の回転を伝達部材18を介して自動変速部20へ伝達する(入力させる)ように構成されている。このとき、Y2とX2の交点を通る斜めの直線L0により差動部サンギヤS0の回転速度と差動部リングギヤR0の回転速度との関係が示される。
例えば、差動部11においては、第1回転要素RE1乃至第3回転要素RE3が相互に相対回転可能とされる差動状態とされており、直線L0と縦線Y3との交点で示される差動部リングギヤR0の回転速度が車速Vに拘束されて略一定である場合には、エンジン回転速度NEを制御することによって直線L0と縦線Y2との交点で示される差動部キャリヤCA0の回転速度が上昇或いは下降させられると、直線L0と縦線Y1との交点で示される差動部サンギヤS0の回転速度すなわち第1電動機M1の回転速度が上昇或いは下降させられる。
また、差動部11の変速比γ0が「1」に固定されるように第1電動機M1の回転速度を制御することによって差動部サンギヤS0の回転がエンジン回転速度NEと同じ回転とされると、直線L0は横線X2と一致させられ、エンジン回転速度NEと同じ回転で差動部リングギヤR0の回転速度すなわち伝達部材18が回転させられる。或いは、差動部11の変速比γ0が「1」より小さい値例えば0.7程度に固定されるように第1電動機M1の回転速度を制御することによって差動部サンギヤS0の回転が零とされると、エンジン回転速度NEよりも増速された回転で伝達部材回転速度N18が回転させられる。
また、自動変速部20において第4回転要素RE4は第2クラッチC2を介して伝達部材18に選択的に連結されるとともに第1ブレーキB1を介してケース12に選択的に連結され、第5回転要素RE5は第2ブレーキB2を介してケース12に選択的に連結され、第6回転要素RE6は第3ブレーキB3を介してケース12に選択的に連結され、第7回転要素RE7は出力軸22に連結され、第8回転要素RE8は第1クラッチC1を介して伝達部材18に選択的に連結されている。
自動変速部20では、差動部11において出力回転部材である伝達部材18(第3回転要素RE3)の回転が第1クラッチC1が係合されることで第8回転要素RE8に入力されると、図3に示すように、第1クラッチC1と第3ブレーキB3とが係合させられることにより、第8回転要素RE8の回転速度を示す縦線Y8と横線XGとの交点と第6回転要素RE6の回転速度を示す縦線Y6と横線X1との交点とを通る斜めの直線L1と、出力軸22と連結された第7回転要素RE7の回転速度を示す縦線Y7との交点で第1速(1st)の出力軸22の回転速度が示される。同様に、第1クラッチC1と第2ブレーキB2とが係合させられることにより決まる斜めの直線L2と出力軸22と連結された第7回転要素RE7の回転速度を示す縦線Y7との交点で第2速(2nd)の出力軸22の回転速度が示され、第1クラッチC1と第1ブレーキB1とが係合させられることにより決まる斜めの直線L3と出力軸22と連結された第7回転要素RE7の回転速度を示す縦線Y7との交点で第3速(3rd)の出力軸22の回転速度が示され、第1クラッチC1と第2クラッチC2とが係合させられることにより決まる水平な直線L4と出力軸22と連結された第7回転要素RE7の回転速度を示す縦線Y7との交点で第4速(4th)の出力軸22の回転速度が示される。
図4は、本実施例の変速機構10を制御するための電子制御装置80に入力される信号及びその電子制御装置80から出力される信号を例示している。この電子制御装置80は、CPU、ROM、RAM、及び入出力インターフェースなどから成る所謂マイクロコンピュータを含んで構成されており、RAMの一時記憶機能を利用しつつROMに予め記憶されたプログラムに従って信号処理を行うことによりエンジン8、第1、第2電動機M1、M2に関するハイブリッド駆動制御、自動変速部20の変速制御等の駆動制御を実行するものである。
電子制御装置80には、図4に示すような各センサやスイッチなどから、エンジン水温TEMPWを表す信号、シフトレバー52(図5参照)のシフトポジションPSHや「M」ポジションにおける操作回数等を表す信号、エンジン8の回転速度であるエンジン回転速度NEを表す信号、ギヤ比列設定値を表す信号、Mモード(手動変速走行モード)を指令する信号、エアコンの作動を表す信号、出力軸22の回転速度(以下、出力軸回転速度)NOUTに対応する車速Vを表す信号、自動変速部20の作動油温TOILを表す信号、サイドブレーキ操作を表す信号、フットブレーキ操作を表す信号、触媒温度を表す信号、運転者の出力要求量に対応するアクセルペダルの操作量であるアクセル開度Accを表す信号、カム角を表す信号、スノーモード設定を表す信号、車両の前後加速度Gを表す信号、オートクルーズ走行を表す信号、車両の重量(車重)を表す信号、各車輪の車輪速を表す信号、第1電動機M1の回転速度NM1(以下、「第1電動機回転速度NM1」という)を表す信号、第2電動機M2の回転速度NM2(以下、「第2電動機回転速度NM2」という)を表す信号、蓄電装置56(図6参照)の充電容量(充電状態)SOCおよび温度TBATを表す信号などが、それぞれ供給される。
また、上記電子制御装置80からは、エンジン出力を制御するエンジン出力制御装置58(図6参照)への制御信号例えばエンジン8の吸気管60に備えられた電子スロットル弁62のスロットル弁開度θTHを操作するスロットルアクチュエータ64への駆動信号や燃料噴射装置66による吸気管60或いはエンジン8の筒内への燃料供給量を制御する燃料供給量信号や点火装置68によるエンジン8の点火時期を指令する点火信号、過給圧を調整するための過給圧調整信号、電動エアコンを作動させるための電動エアコン駆動信号、電動機M1およびM2の作動を指令する指令信号、シフトインジケータを作動させるためのシフトポジション(操作位置)表示信号、ギヤ比を表示させるためのギヤ比表示信号、スノーモードであることを表示させるためのスノーモード表示信号、制動時の車輪のスリップを防止するABSアクチュエータを作動させるためのABS作動信号、Mモードが選択されていることを表示させるMモード表示信号、差動部11や自動変速部20の油圧式摩擦係合装置の油圧アクチュエータを制御するために油圧制御回路70(図6参照)に含まれる電磁弁(リニアソレノイドバルブ)を作動させるバルブ指令信号、この油圧制御回路70に設けられたレギュレータバルブ(調圧弁)によりライン油圧PLを調圧するための信号、そのライン油圧PLが調圧されるための元圧の油圧源である電動油圧ポンプを作動させるための駆動指令信号、電動ヒータを駆動するための信号、クルーズコントロール制御用コンピュータへの信号等が、それぞれ出力される。
図5は複数種類のシフトポジションPSHを人為的操作により切り換える切換装置としてのシフト操作装置50の一例を示す図である。このシフト操作装置50は、例えば運転席の横に配設され、複数種類のシフトポジションPSHを選択するために操作されるシフトレバー52を備えている。
そのシフトレバー52は、変速機構10内つまり自動変速部20内の動力伝達経路が遮断されたニュートラル状態すなわち中立状態とし且つ自動変速部20の出力軸22をロックするための駐車ポジション「P(パーキング)」、後進走行のための後進走行ポジション「R(リバース)」、変速機構10内の動力伝達経路が遮断された中立状態とするための中立ポジション「N(ニュートラル)」、自動変速モードを成立させて差動部11の無段的な変速比幅と自動変速部20の第1速ギヤ段乃至第4速ギヤ段の範囲で自動変速制御される各ギヤ段とで得られる変速機構10の変速可能なトータル変速比γTの変化範囲内で自動変速制御を実行させる前進自動変速走行ポジション「D(ドライブ)」、または手動変速走行モード(手動モード)を成立させて自動変速部20における高速側の変速段を制限する所謂変速レンジを設定するための前進手動変速走行ポジション「M(マニュアル)」へ手動操作されるように設けられている。
上記シフトレバー52の各シフトポジションPSHへの手動操作に連動して図2の係合作動表に示す後進ギヤ段「R」、ニュートラル「N」、前進ギヤ段「D」における各変速段等が成立するように、例えば油圧制御回路70が電気的に切り換えられる。
上記「P」乃至「M」ポジションに示す各シフトポジションPSHにおいて、「P」ポジションおよび「N」ポジションは、車両を走行させないときに選択される非走行ポジションであって、例えば図2の係合作動表に示されるように第1クラッチC1および第2クラッチC2のいずれもが解放されるような自動変速部20内の動力伝達経路が遮断された車両を駆動不能とする第1クラッチC1および第2クラッチC2による動力伝達経路の動力伝達遮断状態へ切換えを選択するための非駆動ポジションである。また、「R」ポジション、「D」ポジションおよび「M」ポジションは、車両を走行させるときに選択される走行ポジションであって、例えば図2の係合作動表に示されるように第1クラッチC1および第2クラッチC2の少なくとも一方が係合されるような自動変速部20内の動力伝達経路が連結された車両を駆動可能とする第1クラッチC1および/または第2クラッチC2による動力伝達経路の動力伝達可能状態への切換えを選択するための駆動ポジションでもある。
具体的には、シフトレバー52が「P」ポジション或いは「N」ポジションから「R」ポジションへ手動操作されることで、第2クラッチC2が係合されて自動変速部20内の動力伝達経路が動力伝達遮断状態から動力伝達可能状態とされ、シフトレバー52が「N」ポジションから「D」ポジションへ手動操作されることで、少なくとも第1クラッチC1が係合されて自動変速部20内の動力伝達経路が動力伝達遮断状態から動力伝達可能状態とされる。また、シフトレバー52が「R」ポジションから「P」ポジション或いは「N」ポジションへ手動操作されることで、第2クラッチC2が解放されて自動変速部20内の動力伝達経路が動力伝達可能状態から動力伝達遮断状態とされ、シフトレバー52が「D」ポジションから「N」ポジションへ手動操作されることで、第1クラッチC1および第2クラッチC2が解放されて自動変速部20内の動力伝達経路が動力伝達可能状態から動力伝達遮断状態とされる。
図6は、電子制御装置80による制御機能の要部を説明する機能ブロック線図である。図6において、有段変速制御手段82は、図7に示すような車速Vと自動変速部20の出力トルクTOUTとを変数として予め記憶されたアップシフト線(実線)およびダウンシフト線(一点鎖線)を有する関係(変速線図、変速マップ)から実際の車速Vおよび自動変速部20の要求出力トルクTOUTで示される車両状態に基づいて、自動変速部20の変速を実行すべきか否かを判断しすなわち自動変速部20の変速すべき変速段を判断し、その判断した変速段が得られるように自動変速部20の自動変速制御を実行する。なお、アクセル開度Accと自動変速部20の要求出力トルクTOUT(図7の縦軸)とはアクセル開度Accが大きくなるほどそれに応じて上記要求出力トルクTOUTも大きくなる対応関係にあることから、図7の変速線図の縦軸はアクセル開度Accであっても差し支えない。
このとき、有段変速制御手段82は、例えば図2に示す係合表に従って変速段が達成されるように、自動変速部20の変速に関与する油圧式摩擦係合装置を係合および/または解放させる指令(変速出力指令、油圧指令)を、すなわち自動変速部20の変速に関与する解放側係合装置を解放すると共に係合側係合装置を係合することによりクラッチツウクラッチ変速を実行させる指令を油圧制御回路70へ出力する。油圧制御回路70は、その指令に従って、例えば解放側係合装置を解放すると共に係合側係合装置を係合して自動変速部20の変速が実行されるように、油圧制御回路70内のリニアソレノイドバルブを作動させてその変速に関与する油圧式摩擦係合装置の油圧アクチュエータを作動させる。
ハイブリッド制御手段84は、エンジン8を効率のよい作動域で作動させる一方で、エンジン8と第2電動機M2との駆動力の配分や第1電動機M1の発電による反力を最適になるように変化させて差動部11の電気的な無段変速機としての変速比γ0を制御する。例えば、そのときの走行車速Vにおいて、運転者の出力要求量としてのアクセル開度Accや車速Vから車両の目標(要求)出力を算出し、その車両の目標出力と充電要求値から必要なトータル目標出力を算出し、そのトータル目標出力が得られるように伝達損失、補機負荷、第2電動機M2のアシストトルク等を考慮して目標エンジン出力を算出し、その目標エンジン出力が得られるエンジン回転速度NEとエンジントルクTEとなるようにエンジン8を制御するとともに第1電動機M1の発電量を制御する。
例えば、ハイブリッド制御手段84は、その制御を動力性能や燃費向上などのために自動変速部20の変速段を考慮して実行する。このようなハイブリッド制御では、エンジン8を効率のよい作動域で作動させるために定まるエンジン回転速度NEと車速Vおよび自動変速部20の変速段で定まる伝達部材18の回転速度とを整合させるために、差動部11が電気的な無段変速機として機能させられる。すなわち、ハイブリッド制御手段84は、エンジン回転速度NEとエンジン8の出力トルク(エンジントルク)TEとで構成される二次元座標内において無段変速走行の時に運転性と燃費性とを両立するように予め実験的に求められた図8の破線に示すようなエンジン8の動作曲線の一種である最適燃費率曲線(最適燃費線、燃費マップ、関係)を予め記憶しており、その最適燃費率曲線(最適燃費線)にエンジン8の動作点(以下、「エンジン動作点」と表す)が沿わされつつエンジン8が作動させられるように、例えば目標出力(トータル目標出力、要求駆動力)を充足するために必要なエンジン出力を発生するためのエンジントルクTEとエンジン回転速度NEとなるように、変速機構10のトータル変速比γTの目標値を定め、その目標値が得られるように自動変速部20の変速段を考慮して差動部11の変速比γ0を制御し、トータル変速比γTをその変速可能な変化範囲内で制御する。ここで、上記エンジン動作点とは、エンジン回転速度NE及びエンジントルクTEなどで例示されるエンジン8の動作状態を示す状態量を座標軸とした二次元座標においてエンジン8の動作状態を示す動作点である。
このとき、ハイブリッド制御手段84は、第1電動機M1により発電された電気エネルギをインバータ54を通して蓄電装置56や第2電動機M2へ供給するので、エンジン8の動力の主要部は機械的に伝達部材18へ伝達されるが、エンジン8の動力の一部は第1電動機M1の発電のために消費されてそこで電気エネルギに変換され、インバータ54を通してその電気エネルギが第2電動機M2へ供給され、その第2電動機M2が駆動されて第2電動機M2から伝達部材18へ伝達される。この電気エネルギの発生から第2電動機M2で消費されるまでに関連する機器により、エンジン8の動力の一部を電気エネルギに変換し、その電気エネルギを機械的エネルギに変換するまでの電気パスが構成される。
また、ハイブリッド制御手段84は、車両の停止中又は走行中に拘わらず、差動部11の電気的CVT機能によって第1電動機回転速度NM1および/または第2電動機回転速度NM2を制御してエンジン回転速度NEを略一定に維持したり任意の回転速度に回転制御する。言い換えれば、ハイブリッド制御手段84は、エンジン回転速度NEを略一定に維持したり任意の回転速度に制御しつつ第1電動機回転速度NM1および/または第2電動機回転速度NM2を任意の回転速度に回転制御することができる。
例えば、図3の共線図からもわかるようにハイブリッド制御手段84は車両走行中にエンジン回転速度NEを引き上げる場合には、車速V(駆動輪34)に拘束される第2電動機回転速度NM2を略一定に維持しつつ第1電動機回転速度NM1の引き上げを実行する。また、ハイブリッド制御手段84は自動変速部20の変速中にエンジン回転速度NEを略一定に維持する場合には、エンジン回転速度NEを略一定に維持しつつ自動変速部20の変速に伴う第2電動機回転速度NM2の変化とは反対方向に第1電動機回転速度NM1を変化させる。
また、ハイブリッド制御手段84は、スロットル制御のためにスロットルアクチュエータ64により電子スロットル弁62を開閉制御させる他、燃料噴射制御のために燃料噴射装置66による燃料噴射量や噴射時期を制御させ、点火時期制御のためにイグナイタ等の点火装置68による点火時期を制御させる指令を単独で或いは組み合わせてエンジン出力制御装置58に出力して、必要なエンジン出力を発生するようにエンジン8の出力制御を実行するエンジン出力制御手段を機能的に備えている。
例えば、ハイブリッド制御手段84は、基本的には図示しない予め記憶された関係からアクセル開度Accに基づいてスロットルアクチュエータ64を駆動し、アクセル開度Accが増加するほどスロットル弁開度θTHを増加させるようにスロットル制御を実行する。また、このエンジン出力制御装置58は、ハイブリッド制御手段84による指令に従って、スロットル制御のためにスロットルアクチュエータ64により電子スロットル弁62を開閉制御する他、燃料噴射制御のために燃料噴射装置66による燃料噴射を制御し、点火時期制御のためにイグナイタ等の点火装置68による点火時期を制御するなどしてエンジントルク制御を実行する。
また、ハイブリッド制御手段84は、エンジン8の停止又はアイドル状態に拘わらず、差動部11の電気的CVT機能(差動作用)によって、第2電動機M2を走行用の駆動力源とするモータ走行をさせることができる。例えば、ハイブリッド制御手段84は、一般的にエンジン効率が高トルク域に比較して悪いとされる比較的低出力トルクTOUT域すなわち低エンジントルクTE域、或いは車速Vの比較的低車速域すなわち低負荷域において、モータ走行を実行する。また、ハイブリッド制御手段84は、このモータ走行時には、停止しているエンジン8の引き摺りを抑制して燃費を向上させるために、第1電動機回転速度NM1を負の回転速度で制御して例えば第1電動機M1を無負荷状態とすることにより空転させて、差動部11の電気的CVT機能(差動作用)により必要に応じてエンジン回転速度NEを零乃至略零に維持する。
また、ハイブリッド制御手段84は、エンジン8を走行用の駆動力源とするエンジン走行を行うエンジン走行領域であっても、上述した電気パスによる第1電動機M1からの電気エネルギおよび/または蓄電装置56からの電気エネルギを第2電動機M2へ供給し、その第2電動機M2を駆動して駆動輪34にトルクを付与することにより、エンジン8の動力を補助するための所謂トルクアシストが可能である。よって、本実施例のエンジン走行にはエンジン8を走行用の駆動力源とする場合と、エンジン8及び第2電動機M2の両方を走行用の駆動力源とする場合とがある。そして、本実施例のモータ走行とはエンジン8を停止して第2電動機M2を走行用の駆動力源とする走行である。
また、ハイブリッド制御手段84は、第1電動機M1を無負荷状態として自由回転すなわち空転させることにより、差動部11がトルクの伝達を不能な状態すなわち差動部11内の動力伝達経路が遮断された状態と同等の状態であって、且つ差動部11からの出力が発生されない状態とすることが可能である。すなわち、ハイブリッド制御手段84は、第1電動機M1を無負荷状態とすることにより差動部11をその動力伝達経路が電気的に遮断される中立状態(ニュートラル状態)とすることが可能である。
また、ハイブリッド制御手段84は、アクセルオフの惰性走行時(コースト走行時)やフットブレーキによる制動時などには、燃費を向上させるために車両の運動エネルギすなわち駆動輪34からエンジン8側へ伝達される逆駆動力により第2電動機M2を回転駆動させて発電機として作動させ、その電気エネルギすなわち第2電動機発電電流をインバータ54を介して蓄電装置56へ充電する回生制御手段としての機能を有する。この回生制御は、蓄電装置56の充電残量SOCやブレーキペダル操作量に応じた制動力を得るための油圧ブレーキによる制動力の制動力配分等に基づいて決定された回生量となるように制御される。
ハイブリッド制御手段84は、自動変速部20の変速に際して、エンジン回転速度NEを予め設定されるエンジン目標回転速度NE *(以下、目標回転速度NE *と記載する)に向けて制御するエンジン回転速度制御手段86を有している。具体的には、エンジン回転速度制御手段86は、目標回転速度NE *が設定されるとエンジン回転速度NEが上記目標回転速度NE *となるように、第1電動機M1(本発明の電動機に対応)によるフィードバック制御を実施する。
ここで、従来、目標回転速度NE *は、アクセル開度Accや車速V等に基づいて目標エンジン出力が算出され、その目標エンジン出力が得られるように設定されていた。上記のように設定される場合、自動変速部20のイナーシャ相が開始されると、自動変速部20の入力軸としても機能する伝達部材18の急激な回転速度変化に伴う回転要素のイナーシャトルクの影響により、実際のエンジン回転速度NE(以下、区別し易いように実エンジン回転速度NEと記載)と目標回転速度NE *との差異である乖離量α(乖離回転速度)が増加することがあった。そして、上記乖離量αに基づいてフィードバック制御が実施されると、第1電動機M1のトルク変動が大きくなり、自動変速部20にそのトルク変動が伝達されるため、変速ショックが発生することがあった。
また、アクセルペダル踏み込み時の過渡的な状態(特に、高地走行時など)などにおいて、エンジントルクTEと予測されるエンジントルクTE *との差異であるエンジントルク誤差が大きくなることがある。このとき、エンジントルクTEに基づいて設定される第1電動機M1の反力トルクと差異が生じるため、結果として、エンジン回転速度NEの乖離量αが大きくなる。したがって、上記乖離量αに基づいて、フィードバック制御による第1電動機M1のトルク変動が大きくなり、変速ショックが発生することがあった。
これに対して、本実施例では、目標回転速度NE *を変速中の実エンジン回転速度NEに基づいて設定することで乖離量αを抑制し、フィードバック制御による第1電動機M1のトルク変動を抑制することで変速ショックを抑制する。以下、上記制御について説明する。
目標回転速度設定手段88は、自動変速部20の変速中における実エンジン回転速度NEに基づいて目標回転速度NE *を設定する。ここで、目標回転速度設定手段88は、エンジン運転判定手段90および変速判定手段92に基づいて実施されるか否かが判定される。
エンジン運転判定手段90は、エンジン8が運転中、特に負荷運転中であるか否かを判定するものである。エンジン回転速度制御手段86および目標回転速度設定手段88は、エンジン運転中に実施されるため、エンジン回転速度制御手段90は、上記制御手段が実施可能か否かを判定するものである。なお、エンジン8の運転状態は、例えばエンジン出力制御装置58に出力される燃料供給量信号や点火信号等のエンジン作動状態を示す各種指令信号等に基づいて判定される。
変速判定手段92は、自動変速部20が変速中であるか否かを判定する。エンジン回転速度制御手段86および目標回転速度設定手段88は、自動変速部20の変速中に実施されるため、変速判定手段92は、上記制御が実施可能か否かを判定するものである。なお、自動変速部20の変速は、例えば有段変速制御手段82から出力される変速出力信号等に基づいて判定される。
そして、エンジン運転判定手段90および変速判定手段92が肯定されると、目標回転速度設定手段88が実施され、目標回転速度NE *が設定される。ここで、目標回転速度設定手段88は、目標回転速度NE *の設定に関し、自動変速部20のイナーシャ相前後で、異なる制御を実行する。そこで、イナーシャ相判定手段94は、自動変速部20の変速過渡期においてイナーシャ相が開始されたか否かを判定し、その判定結果を目標回転速度設定手段88へ出力する。そして、目標回転速度設定手段88は、イナーシャ相が開始されたか否かに基づいて、目標回転速度NE *の設定態様を切り換える。なお、イナーシャ相の判定は、例えば自動変速部20の入力軸として機能する伝達部材18に連結された第2電動機M2の回転速度変化が生じたか否か等に基づいて判定される。
まず、イナーシャ相開始前の目標回転速度設定手段88の制御について説明する。イナーシャ相開始前において、目標回転速度設定手段88は、第1電動機M1の回転速度変化量が大きくならないように、目標回転速度NE *を設定する。具体的には、イナーシャ相開始前にあっては、目標回転速度設定手段88は、目標回転速度NE *を、自動変速部20の変速出力時(変速開始時)のエンジン回転速度NEに設定する。言い換えれば、変速出力時からイナーシャ相開始時まで実エンジン回転速度NEが変化しないように、目標回転速度NE *が設定される。したがって、上記のように目標回転速度NE *が設定されると、エンジン回転速度制御手段86は、変速出力時のエンジン回転速度NEを目標に第1電動機M1によるフィードバック制御を実施することとなり、エンジン回転速度NEが変速出力時から一定に保持されることとなる。
ここで、自動変速部20のイナーシャ相開始前においては、自動変速部20の入力軸としても機能する伝達部材18の回転速度N18(第2電動機回転速度NM2)が変化しないため、第1電動機M1によるエンジン回転速度NEのフィードバック制御に際して、第1電動機M1の回転速度NM1が略一定に保持される。したがって、第1電動機M1の回転速度変化に基づくイナーシャトルクが、自動変速部20へ伝達されるのが抑制されて変速ショックが抑制される。
或いは、目標回転速度設定手段88は、イナーシャ相開始前において、実エンジン回転速度NEと目標回転速度NE *との乖離量αを零に設定する。したがって、実エンジン回転速度NEと目標回転速度NE *とが常に等しい値とされるため、第1電動機M1によるフィードバック制御に際して、第1電動機M1の回転速度変化は略零となる。これより、第1電動機M1の回転速度変化によるイナーシャトルクが自動変速部20へ伝達されるのが抑制されるため、変速ショックが抑制される。
次に、イナーシャ相開始後の目標回転速度設定手段88について説明する。イナーシャ相が開始されると、自動変速部20の変速進行に伴って、伝達部材18の回転速度N18が変化する。したがって、伝達部材18に連結された第2電動機M2の回転速度NM2が変化する。このとき、目標回転速度設定手段88は、実エンジン回転速度NEから算出した目標回転速度NE *を設定する。具体的には、目標回転速度設定手段88は、目標回転速度NE *を実エンジン回転速度NEから所定の乖離量αだけ離した回転速度(目標回転速度NE *=実エンジン回転速度NE+乖離量α)に設定する。
上記乖離量αの設定は、例えば自動変速部20の変速速度に応じたエンジン回転速度NEの変化速度(変化勾配)を予め設定し、上記変化速度を達成するために必要な第1電動機M1の制御トルク(反力トルク)が、第1電動機M1のイナーシャやエンジン8のイナーシャ等に基づいて算出される。そして、上記制御トルクに応じた乖離量αが、フィードバック制御の制御式、例えば比例項や積分項を有する制御式を用いた場合に生じるオフセットに対応して設定される。
ここで、エンジントルクTEが低い状態において、エンジン回転速度度NEを上昇させる場合、エンジントルクTEがエンジン回転速度上昇に使われるので、自動変速部20へ伝達される入力トルクが小さくなり、イナーシャ相での運転者に与えるトルクの引き込み感が大きくなる可能性がある。これに対して、本実施例では、さらにイナーシャ相開始時でのエンジントルクTEIと現在のエンジントルクTEとの差に応じて乖離量αを設定する。図9は、イナーシャ開始時と現在のエンジントルクとの変化量ΔTE(=TE−TEI)と、その変化量ΔTEに応じて設定される乖離量α(rpm/8.192ms)との関係を示すものである。図に示すように、イナーシャ相開始時からの変化量ΔTEが大きくなるに伴い、乖離量αが大きくなるように設定されている。したがって、エンジントルクTEが低い状態においては乖離量αが小さいことから、エンジン回転速度上昇に使われるエンジントルクTEが小さくなるので、自動変速部20への入力トルク低下が抑制される。
また、目標回転速度NE *の設定に際して、例えばエンジン8の予め設定されている最適燃費曲線(最適燃費線)、電動機M1、M2の回転速度、エンジン8の回転速度NE、差動部11の差動部遊星歯車P0等の回転要素の回転速度を考慮した制限値が設定されている。具体的には、エンジン8の動作点が最適燃費曲線から大きく外れることによる燃費性低下、並びに、エンジン8、電動機M1、M2、および差動部11の回転要素の高回転化を、防止する制限値が予め設定されている。
なお、実エンジン回転速度NEは、エンジン回転速度検出手段96によって逐次検出される。エンジン回転速度検出手段96は、例えば図示しないエンジン回転速度センサから検出されるエンジン回転速度信号に基づいてエンジン回転速度NEを検出する。また、エンジントルクTEは、エンジントルク検出手段98によって逐次検出される。エンジントルク検出手段98は、例えばアクセルペダル踏み込みからの無駄時間や応答性に基づく予め設定されたエンジントルクマップや適合条件等に基づいてエンジントルクTEを予測する。或いは、図示しないエアフローメータから検出される吸入空気量等に基づいてエンジントルクTEを予測する。或いは、図示しないトルクセンサ等から直接的に検出しても構わない。
図10は、電子制御装置80の制御作動の要部すなわち自動変速部20の変速に際して目標回転速度NE *を好適に設定することにより変速ショックを抑制する制御作動を説明するためのフローチャートであり、例えば数msec乃至数十msec程度の極めて短いサイクルタイムで繰り返し実行されるものである。
まず、エンジン運転判定手段90に対応するステップSA1(以下、ステップを省略する)において、エンジン8が運転中であるか否かが判定される。SA1が否定されると、SA6において、例えばモータ走行時の制御など、その他の制御が実施される。SA1が肯定されると、変速判定手段92に対応するSA2において、自動変速部20が変速中であるか否かが判定される。SA2が否定されると、SA6において、通常走行制御など他の制御が実施される。SA2が肯定されると、イナーシャ相判定手段94に対応するSA3において、自動変速部20のイナーシャ相開始前か否かが判定される。SA3が肯定されると、目標回転速度設定手段88に対応するSA4において、イナーシャ相開始前の目標回転速度NE *が設定される。なお、イナーシャ相開始前の目標回転速度NE *は、例えば自動変速部20の変速出力時のエンジン回転速度に設定される。したがって、エンジン回転速度NEは略一定に保持されることとなる。このとき、第2電動機M2の回転速度も変化しないことから、第1電動機M1のフィードバック制御の際に第1電動機M1の回転速度も略変化しないため、第1電動機M1の回転速度変化に伴うイナーシャトルクが自動変速部20へ伝達されることが抑制される。一方、SA3が否定されると、目標回転速度設定手段88に対応するSA5において、イナーシャ相中の目標回転速度NE *が設定される。イナーシャ相中においては、エンジン回転速度NEに基づいて目標回転速度NE *との差である乖離量αが変動しないように設定することで、目標回転速度NE *が好適に設定される。したがって、第1電動機M1のトルク変動が抑制されるので、自動変速部20へ入力されるトルク変動が抑制される。
図11は、自動変速部20の変速時における、第1電動機M1によるエンジン回転速度のフィードバック制御の作動を示すタイムチャートであり、図10のフローチャートに対応するものである。なお、本タイムチャートにおいては、第2速ギヤ段から第1速ギヤ段へのダウンシフトが実施された場合を一例に説明する。
t0時点においてアクセルペダルが踏み込まれることにより、t1時点において第2速ギヤ段から第1速ギヤ段へのダウン変速が開始される。ここで、イナーシャ相開始前(t1時点〜t2時点)では、エンジン8の目標回転速度NE *は変速出力時(変速開始時)の回転速度すなわちt1時点でのエンジン回転速度NEに設定される。したがって、第1電動機M1によるフィードバック制御によって、エンジン回転速度NEがt1時点でのエンジン回転速度に一定に維持される。ここで、イナーシャ相開始前においては、第2電動機回転速度NM2は変化しないことから、フィードバック制御時の第1電動機M1の回転速度NM1も同様に一定に保持される。なお、t1時点〜t2時点における制御は、図10のフローチャートにおいてステップSA4に対応している。ここで、実エンジン回転速度NEと目標回転速度NE *との乖離量αを零と設定した場合であっても同様の結果が得られる。すなわち、乖離量αが零に設定されることは、実エンジン回転速度NEと目標回転速度NE *とが同値となるので、実エンジン回転速度NEが一定に保持される。
そして、t2時点においてイナーシャ相が開始されると、それに伴って第2電動機M2の回転速度NM2が上昇させられる。このとき、目標回転速度NE *は、太実線に示すように、細実線で示す実エンジン回転速度NEに乖離量αだけ離した回転速度(目標回転速度NE *=NE+α)に設定される。なお、乖離量αは、予め要求されるエンジン8の回転変化速度(回転変化勾配)から決定される第1電動機M1の制御トルク(反力トルク)が算出され、その制御トルクが得られるように、フィードバック制御の制御式に基づいて算出される。ここで、図11においては、図9に示すエンジントルクTEの変化量ΔTEと乖離量αとの関係に基づいて目標回転速度NE *が設定されている。したがって、アクセル踏み込みに伴ってエンジントルクTEが上昇することから、図11に示すように、t3時点に近づくにつれて乖離量αが大きく設定されている。上記のように設定されることで、自動変速部20へ入力される入力トルク低下が抑制される。そして、設定された目標回転速度NE *に向かってエンジン回転速度NEを制御する第1電動機M1によるフィードバック制御が実施される。
ここで、エンジン回転速度NEの回転変化速度から算出される第1電動機M1の制御トルク(反力トルク)に基づいて、乖離量α(および目標回転速度NE *)が設定されるので、第1電動機M1の反力トルクを略一定に保って安定化させることができる。これより、第1電動機M1のトルク変動が小さくなることから、自動変速部20へ入力されるトルク変動が抑制される。また、第1電動機M1の回転速度変動も小さくなることから、イナーシャトルクの影響も小さくなる。
そして、t3時点において、第2電動機回転速度NM2が同期回転速度付近となると、第1電動機M1のトルクを増加させることで、差動部11から出力される直達トルクが増加することとなる。なお、図11に示す第1電動機の制御トルク(反力トルク)は、図において下方側に変化するに従って反力トルクが増加するものとする。
なお、図11において、破線は従来の制御量を示している。エンジン8の目標回転速度NE *が破線に示すように設定されると、第1電動機M1の回転速度NM1は、イナーシャ相前では上昇し、イナーシャ相後では低下させられる。したがって、第1電動機M1の回転速度変動によるイナーシャトルクの影響が大きくなり、イナーシャトルクに基づく変速ショックが発生し易くなる。また、第1電動機M1のトルク変動も大きくなり、変速ショックが発生し易くなる。
ところで、上記第1電動機M1のトルクを安定化させる方法は上記制御の他、例えば第1電動機M1によるフィードバック制御を停止させる、或いは、第1電動機M1のトルクを一定にするなど考えられるが、フィードバック制御再開後の第1電動機M1のトルク変動やフィードバック制御停止時のエンジン高回転化等の問題が発生する。これに対して、本実施例では、フィードバック制御を継続させたままの状態で第1電動機M1のトルク変動が抑制されることとなる。また、エンジン回転速度NEは、目標回転速度NE *に沿って推移させられるので、エンジン8の高回転化も同様に抑制される。
上述のように、本実施例によれば、目標回転速度設定手段88は、目標回転速度NE *を、自動変速部20の変速中のエンジン回転速度NEに基づいて設定するものである。このようにすれば、例えばエンジン8の実際の回転速度NEとエンジン目標回転速度NE *との乖離量αが変動しないように、実際のエンジン回転速度NEに合わせてエンジン目標回転速度NE *を設定することで、第1電動機M1によるエンジン回転速度制御に際して第1電動機M1のトルク変動が抑制されるに伴い、変速時の変速ショックを抑制することができる。すなわち、自動変速部のイナーシャ相中における自動変速部20の入力軸回転速度変化や変速過渡期に生じるエンジントルク誤差等に影響されることがないので、第1電動機M1のトルク変動が抑制されて変速時の変速ショックを抑制することができる。
また、本実施例によれば、目標回転速度設定手段88は、目標回転速度NE *を変速中のエンジン回転速度NEから所定の乖離量αだけ離した回転速度に設定するため、イナーシャ相中における自動変速部20の入力軸の回転速度変化による実際のエンジン回転速度NEと目標回転速度NE *との乖離量αを抑制することができるに伴い、第1電動機M1によるエンジン回転速度制御時のトルク変動を抑制することができる。したがって、自動変速部20へ伝達される入力トルクのトルク変動が抑制され、変速時の変速ショックが抑制される。
また、本実施例によれば、乖離量αは、イナーシャ相開始後では、自動変速部20のイナーシャ相開始時点でのエンジントルクTEIと実際のエンジントルクTEとの差ΔTEに応じて設定されるものである。このようにすれば、例えば低エンジントルク状態において乖離量αが大きく設定されると、エンジンパワーが回転速度上昇に使われてしまうので、自動変速部20へ伝達される入力トルクが低下し、運転者に引き込み感を与える可能性があったが、エンジントルクTEに応じて乖離量αを設定することで、自動変速部20への入力トルク低下を抑制することができ、運転者に与える引き込み感を抑制することができる。
また、本実施例によれば、乖離量αは、イナーシャ相開始前において零に設定されるため、イナーシャ相開始前における第1電動機M1の回転速度変化が抑制され、第1電動機M1の回転速度変化に伴うイナーシャトルクによるトルク変動を抑制することができる。
また、本実施例によれば、目標回転速度設定手段88は、自動変速部20のイナーシャ相前の目標回転速度NE *を、変速出力時のエンジン回転速度NEに設定するため、イナーシャ相開始前における第1電動機M1の回転速度変化が抑制され、第1電動機M1の回転速度変化に伴うイナーシャトルクによるトルク変動を抑制することができる。
また、本実施例によれば、目標回転速度NE *の設定に際して、エンジン8の最適燃費線、電動機回転速度、エンジン回転速度NE、差動部11の回転要素の回転速度を考慮した制限値が設定されているため、エンジン8の運転状態が最適燃費線から大きく外れることによる燃費低下、電動機(M1、M2)の高回転化による耐久性低下、エンジン8の高回転化による耐久性低下、および差動部11の回転要素の高回転化による耐久性低下が防止される。
また、本実施例によれば、目標回転速度NE *の設定は、エンジン運転中に実施されるため、エンジン運転中における第1電動機M1によるエンジン回転速度制御が実施可能となる。
また、本実施例によれば、目標回転速度NE *の設定は、エンジン8の負荷運転中に実施されるため、エンジン負荷運転中における第1電動機M1電動機によるエンジン回転速度制御が実施可能となる。
また、本実施例によれば、目標回転速度NE *の設定は、エンジン8の回転速度制御中に実施されるため、第1電動機M1のトルク変動を抑制することができる。
以上、本発明の実施例を図面に基づいて詳細に説明したが、本発明はその他の態様においても適用される。
例えば、前述の実施例において、目標回転速度設定手段88は、自動変速部20のダウンシフトに限定されずアップシフトにおいても適用することができる。
また、前述の実施例において、乖離量αはエンジントルクTEに応じて変化するように設定されているが、一定値に制御されるものであっても構わない。
また、前述の実施例では、第2電動機M2は、伝達部材18に直接連結されているが、第2電動機M2の連結位置はそれに限定されず、エンジン8又は伝達部材18から駆動輪34までの間の動力伝達経路に直接的或いは変速機、遊星歯車装置、係合装置等を介して間接的に連結されていてもよい。
また、前述の実施例では、第1電動機M1の運転状態が制御されることにより、差動部11はその変速比γ0が最小値γ0minから最大値γ0maxまで連続的に変化させられる電気的な無段変速機として機能するものであったが、たとえば差動部11の変速比γ0を連続的ではなく差動作用を利用して敢えて段階的に変化させるものであっても本発明は適用することができる。
また、前述の実施例において、差動部11は、動力分配機構16に設けられて差動作用を制限することにより少なくとも前進2段の有段変速機としても作動させられる差動制限装置を備えたものであってもよい。
また、前述の実施例の動力分配機構16では、差動部キャリヤCA0がエンジン8に連結され、差動部サンギヤS0が第1電動機M1に連結され、差動部リングギヤR0が伝達部材18に連結されていたが、それらの連結関係は、必ずしもそれに限定されるものではなく、エンジン8、第1電動機M1、伝達部材18は、差動部遊星歯車装置24の3要素CA0、S0、R0のうちのいずれと連結されていても差し支えない。
また、前述の実施例では、エンジン8は入力軸14と直結されていたが、たとえばギヤ、ベルト等を介して作動的に連結されておればよく、共通の軸心上に配置される必要もない。
また、前述の実施例では、第1電動機M1および第2電動機M2は、入力軸14に同心に配置されて第1電動機M1は差動部サンギヤS0に連結され第2電動機M2は伝達部材18に連結されていたが、必ずしもそのように配置される必要はなく、たとえばギヤ、ベルト、減速機等を介して作動的に第1電動機M1は差動部サンギヤS0に連結され、第2電動機M2は伝達部材18に連結されていてもよい。
また、前述の実施例では、第1クラッチC1や第2クラッチC2などの油圧式摩擦係合装置は、パウダー(磁紛)クラッチ、電磁クラッチ、噛合型のドグクラッチなどの磁紛式、電磁式、機械式係合装置から構成されていてもよい。たとえば電磁クラッチであるような場合には、油圧制御回路70は油路を切り換える弁装置ではなく電磁クラッチへの電気的な指令信号回路を切り換えるスイッチング装置や電磁切換装置等により構成される。
また、前述の実施例では、自動変速部20は伝達部材18を介して差動部11と直列に連結されていたが、入力軸14と平行にカウンタ軸が設けられてそのカウンタ軸上に同心に自動変速部20が配列されていてもよい。この場合には、差動部11と自動変速部20とは、たとえば伝達部材18としてカウンタギヤ対、スプロケットおよびチェーンで構成される1組の伝達部材などを介して動力伝達可能に連結される。
また、前述の実施例の差動機構として動力分配機構16は、たとえばエンジンによって回転駆動されるピニオンと、そのピニオンに噛み合う一対のかさ歯車が第1電動機M1および伝達部材18(第2電動機M2)に作動的に連結された差動歯車装置であってもよい。
また、前述の実施例ではエンジン8と差動部11とが直接連結されているが、必ずしも直接連結される必要はなく、エンジン8と差動部11との間にクラッチを介して連結されていてもよい。
また、前述の実施例では、差動部11と自動変速部20とが直列接続されたような構成となっているが、特にこのような構成に限定されず、変速機構10全体として電気式差動を行う機能と、変速機構10全体として電気式差動による変速とは異なる原理で変速を行う機能と、を備えた構成であれば本発明は適用可能であり、機械的に独立している必要はない。また、これらの配設位置や配設順序も特に限定されない。要するに、自動変速部20は、エンジン8から駆動輪34への動力伝達経路の一部を構成するように設けられておればよい。
また、前述の実施例の動力分配機構16は、1組の遊星歯車装置(差動部遊星歯車装置24)から構成されていたが2以上の遊星歯車装置から構成されて、非差動状態(定変速状態)では3段以上の変速機として機能するものであってもよい。また、差動部遊星歯車装置24はシングルピニオン型に限られたものではなくダブルピニオン型の遊星歯車装置であってもよい。また、このような2以上の遊星歯車装置から構成された場合においても、これらの遊星歯車装置の各回転要素にエンジン8、第1および第2電動機M1、M2、伝達部材18、構成によっては出力軸22が動力伝達可能に連結され、さらに遊星歯車装置の各回転要素に接続されたクラッチCおよびブレーキBの制御により有段変速と無段変速とが切り換えられるような構成であっも構わない。
また、前述の実施例のシフト操作装置50は、複数種類のシフトポジションPSHを選択するために操作されるシフトレバー52を備えていたが、そのシフトレバー52に替えて、たとえば押しボタン式のスイッチやスライド式スイッチ等の複数種類のシフトポジションPSHを選択可能なスイッチ、或いは手動操作に因らず運転者の音声に反応して複数種類のシフトポジションPSHを切り換えられる装置や足の操作により複数種類のシフトポジションPSHが切り換えられる装置等であってもよい。また、シフトレバー52が「M」ポジションに操作されることにより、変速レンジが設定されるものであったが、ギヤ段が設定されることすなわち各変速レンジの最高速ギヤ段がギヤ段として設定されてもよい。この場合、自動変速部20ではギヤ段が切り換えられて変速が実行される。たとえば、シフトレバー52が「M」ポジションにおけるアップシフト位置「+」またはダウンシフト位置「−」へ手動操作されると、自動変速部20では第1速ギヤ段乃至第4速ギヤ段のいずれかがシフトレバー52の操作に応じて設定される。
また、前述の実施例の変速機構10において第1電動機M1と第2回転要素RE2とは直結されており、第2電動機M2と第3回転要素RE3とは直結されているが、第1電動機M1が第2回転要素RE2にクラッチ等の係合要素を介して連結され、第2電動機M2が第3回転要素RE3にクラッチ等の係合要素を介して連結されていてもよい。
また、前述の実施例において、第2電動機M2はエンジン8から駆動輪34までの動力伝達経路の一部を構成する伝達部材18に連結されているが、第2電動機M2がその動力伝達経路に連結されていることに加え、クラッチ等の係合要素を介して動力分配機構16にも連結可能とされており、第1電動機M1の代わりに第2電動機M2によって動力分配機構16の差動状態を制御可能とする変速機構10の構成であってもよい。
また、前述の実施例において自動変速部20は有段の自動変速機として機能する変速部であるが、上記自動変速部20の連結関係や達成可能な変速段等は特に限定されない。また、無段のCVTであってもよい。
なお、上述したのはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。
8:エンジン
10:変速機構(車両用動力伝達装置)
11:差動部(電気式差動部)
14:入力軸
16:動力分配機構(差動機構)
18:伝達部材(差動機構の出力軸、変速部の入力軸)
20:自動変速部(変速部)
34:駆動輪
86:エンジン回転速度制御手段
88:目標回転速度設定手段
α:乖離量
M1:第1電動機(電動機)
TE :エンジントルク
NE :エンジン回転速度(実エンジン回転速度)
NE *:目標回転速度
10:変速機構(車両用動力伝達装置)
11:差動部(電気式差動部)
14:入力軸
16:動力分配機構(差動機構)
18:伝達部材(差動機構の出力軸、変速部の入力軸)
20:自動変速部(変速部)
34:駆動輪
86:エンジン回転速度制御手段
88:目標回転速度設定手段
α:乖離量
M1:第1電動機(電動機)
TE :エンジントルク
NE :エンジン回転速度(実エンジン回転速度)
NE *:目標回転速度
Claims (9)
- エンジンと、電動機の運転状態を制御することにより差動機構の前記エンジンに動力伝達可能に連結された入力軸の回転速度と出力軸の回転速度との差動状態を制御する電気式差動部と、前記出力軸から駆動輪への動力伝達経路の一部を構成する変速部とを有する車両用動力伝達装置の制御装置であって、
前記変速部の変速時に前記エンジンの回転速度をエンジン目標回転速度に向けて制御するエンジン回転速度制御手段と、
前記エンジン目標回転速度を、前記変速部の変速中のエンジン回転速度に基づいて設定する目標回転速度設定手段とを、
含むことを特徴とする車両用動力伝達装置の制御装置。 - 前記目標回転速度設定手段は、前記エンジン目標回転速度を前記変速中のエンジン回転速度から所定の乖離量だけ離した回転速度に設定することを特徴とする請求項1の車両用動力伝達装置の制御装置。
- 前記乖離量は、イナーシャ相開始後では、前記変速部のイナーシャ相開始時点でのエンジントルクと実際のエンジントルクとの差に応じて設定されることを特徴とする請求項2の車両用動力伝達装置の制御装置。
- 前記乖離量は、イナーシャ相開始前において零に設定されることを特徴とする請求項2または3の車両用動力伝達装置の制御装置。
- 前記目標回転速度設定手段は、前記変速部のイナーシャ相開始前の前記エンジン目標回転速度を、変速出力時のエンジン回転速度に設定することを特徴とする請求項1または2の車両用動力伝達装置の制御装置。
- 前記エンジン目標回転速度の設定に際して、前記エンジンの最適燃費線、電動機回転速度、エンジン回転速度、前記差動機構の回転要素の回転速度を考慮した制限値が設定されていることを特徴とする請求項1乃至5のいずれか1つの車両用動力伝達装置の制御装置。
- 前記エンジン目標回転速度の設定は、エンジン運転中に実施されることを特徴とする請求項1乃至6のいずれか1つの車両用動力伝達装置の制御装置。
- 前記エンジン目標回転速度の設定は、前記エンジンの負荷運転中に実施されることを特徴とする請求項1乃至6のいずれか1つの車両用動力伝達装置の制御装置。
- 前記エンジン目標回転速度の設定は、前記エンジンの回転速度制御中に実施されることを特徴とする請求項1乃至6のいずれか1つの車両用動力伝達装置の制御装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008305261A JP2010126094A (ja) | 2008-11-28 | 2008-11-28 | 車両用動力伝達装置の制御装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008305261A JP2010126094A (ja) | 2008-11-28 | 2008-11-28 | 車両用動力伝達装置の制御装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010126094A true JP2010126094A (ja) | 2010-06-10 |
Family
ID=42326756
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008305261A Pending JP2010126094A (ja) | 2008-11-28 | 2008-11-28 | 車両用動力伝達装置の制御装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010126094A (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012236484A (ja) * | 2011-05-11 | 2012-12-06 | Toyota Motor Corp | ハイブリッド車 |
JP2018095217A (ja) * | 2016-12-16 | 2018-06-21 | トヨタ自動車株式会社 | 車両の制御装置 |
US10672207B2 (en) | 2017-01-20 | 2020-06-02 | Polaris Industries Inc. | Diagnostic systems and methods of a continuously variable transmission |
-
2008
- 2008-11-28 JP JP2008305261A patent/JP2010126094A/ja active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012236484A (ja) * | 2011-05-11 | 2012-12-06 | Toyota Motor Corp | ハイブリッド車 |
JP2018095217A (ja) * | 2016-12-16 | 2018-06-21 | トヨタ自動車株式会社 | 車両の制御装置 |
US10672207B2 (en) | 2017-01-20 | 2020-06-02 | Polaris Industries Inc. | Diagnostic systems and methods of a continuously variable transmission |
US11430272B2 (en) | 2017-01-20 | 2022-08-30 | Polaris Industries Inc. | Diagnostic systems and methods of a continuously variable transmission |
US12118835B2 (en) | 2017-01-20 | 2024-10-15 | Polaris Industries Inc. | Diagnostic systems and methods of a continuously variable transmission |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5144805B2 (ja) | 車両用駆動装置の制御装置 | |
JP4605256B2 (ja) | 車両用動力伝達装置の制御装置 | |
JP4983453B2 (ja) | 車両用駆動装置の制御装置 | |
JP2008207690A (ja) | 車両用駆動装置の制御装置 | |
JP4858310B2 (ja) | 車両用動力伝達装置の制御装置 | |
JP4930261B2 (ja) | 車両用動力伝達装置の制御装置 | |
JP2008290582A (ja) | 車両用動力伝達装置の制御装置 | |
JP2009012730A (ja) | ハイブリッド車両用動力伝達装置のエンジン始動装置 | |
JP2008290555A (ja) | 車両用駆動装置の制御装置 | |
JP2009280176A (ja) | 車両用動力伝達装置の制御装置 | |
JP2008296610A (ja) | 車両用動力伝達装置の制御装置 | |
JP2008302802A (ja) | 車両用動力伝達装置の制御装置 | |
JP2010125936A (ja) | 車両用動力伝達装置の制御装置 | |
JP5018452B2 (ja) | 車両用動力伝達装置の制御装置 | |
JP2010143491A (ja) | 車両用動力伝達装置の制御装置 | |
JP5321023B2 (ja) | 車両用動力伝達装置の制御装置 | |
JP2009166643A (ja) | 車両用動力伝達装置の制御装置 | |
JP4561760B2 (ja) | 車両用駆動装置の制御装置 | |
JP2010076544A (ja) | 車両用動力伝達装置の制御装置 | |
JP2009280177A (ja) | 車両用動力伝達装置の制御装置 | |
JP4853410B2 (ja) | ハイブリッド車両用動力伝達装置の制御装置 | |
JP2010126094A (ja) | 車両用動力伝達装置の制御装置 | |
JP2010115980A (ja) | 車両用動力伝達装置の制御装置 | |
JP2009137332A (ja) | 車両用動力伝達装置の制御装置 | |
JP2009166741A (ja) | 車両用動力伝達装置の変速制御装置 |