Nothing Special   »   [go: up one dir, main page]

JP2010120805A - Photocatalytic body dispersion - Google Patents

Photocatalytic body dispersion Download PDF

Info

Publication number
JP2010120805A
JP2010120805A JP2008295396A JP2008295396A JP2010120805A JP 2010120805 A JP2010120805 A JP 2010120805A JP 2008295396 A JP2008295396 A JP 2008295396A JP 2008295396 A JP2008295396 A JP 2008295396A JP 2010120805 A JP2010120805 A JP 2010120805A
Authority
JP
Japan
Prior art keywords
oxide particles
photocatalytic
photocatalyst
titanium oxide
tungsten oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008295396A
Other languages
Japanese (ja)
Other versions
JP2010120805A5 (en
Inventor
Yoshiaki Sakatani
能彰 酒谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2008295396A priority Critical patent/JP2010120805A/en
Publication of JP2010120805A publication Critical patent/JP2010120805A/en
Publication of JP2010120805A5 publication Critical patent/JP2010120805A5/ja
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photocatalytic body dispersion wherein the aggregation of photocatalyst titanium oxide particles and photocatalyst tungsten oxide particles dispersed in a dispersing medium is suppressed to hardly cause solid-liquid separation, and the excellent photocatalytic activity is developed. <P>SOLUTION: The photocatalytic body dispersion is formed by dispersing the photocatalyst titanium oxide particles and the photocatalyst tungsten oxide particle in the dispersing medium. The surface of the photocatalyst titanium oxide particle and the photocatalyst tungsten oxide particle are charged to have the same polarity. A zirconium compound charged to have the same polarity as that of the photocatalyst titanium oxide particle and the photocatalyst tungsten oxide particle is further contained. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、光触媒体として光触媒酸化チタン粒子と光触媒酸化タングステン粒子とを含む光触媒体分散液に関する。   The present invention relates to a photocatalyst dispersion liquid containing photocatalytic titanium oxide particles and photocatalytic tungsten oxide particles as a photocatalyst.

半導体にバンドギャップ以上のエネルギーを持つ光を照射すると、価電子帯の電子が伝導帯に励起され、価電子帯に正孔が、伝導帯に電子が、それぞれ生成する。かかる正孔および電子は、それぞれ強い酸化力と還元力を有することから、半導体に接触した分子種に酸化還元作用を及ぼす。この酸化還元作用は光触媒作用と呼ばれており、かかる光触媒作用を示し得る半導体は、光触媒体と呼ばれている。このような光触媒体としては、光触媒酸化チタン粒子や光触媒酸化タングステン粒子などの粒子状のものが知られている。   When a semiconductor is irradiated with light having energy greater than or equal to the band gap, electrons in the valence band are excited to the conduction band, and holes are generated in the valence band and electrons are generated in the conduction band. Since these holes and electrons have strong oxidizing power and reducing power, respectively, they exert a redox action on the molecular species in contact with the semiconductor. This redox action is called a photocatalytic action, and a semiconductor that can exhibit such a photocatalytic action is called a photocatalyst. As such a photocatalyst, particulates such as photocatalytic titanium oxide particles and photocatalytic tungsten oxide particles are known.

光触媒酸化チタン粒子や光触媒酸化タングステン粒子は、通常、分散媒中に分散させ、光触媒体分散液として光触媒体層の形成に利用されており、例えば、光触媒酸化チタン粒子および光触媒酸化タングステン粒子を分散媒中に分散させた光触媒体分散液が開示されている(特許文献1)。かかる光触媒体分散液を基材の表面に塗布することにより、基材表面に、光触媒酸化チタン粒子および光触媒酸化タングステン粒子を含み、光触媒作用を示す光触媒体層を容易に形成することができる。   Photocatalytic titanium oxide particles and photocatalytic tungsten oxide particles are usually dispersed in a dispersion medium and used as a photocatalyst dispersion to form a photocatalyst layer. For example, photocatalytic titanium oxide particles and photocatalytic tungsten oxide particles are dispersed in a dispersion medium. A photocatalyst dispersion liquid dispersed therein is disclosed (Patent Document 1). By applying such a photocatalyst dispersion to the surface of the substrate, a photocatalyst layer that includes photocatalytic titanium oxide particles and photocatalytic tungsten oxide particles on the surface of the substrate and that exhibits a photocatalytic action can be easily formed.

特開2005−231935号公報JP-A-2005-231935

しかしながら、光触媒酸化チタン粒子および光触媒酸化タングステン粒子を分散媒中に分散させた従来の光触媒体分散液は、粒子が互いに凝集して固液分離し易いという問題があり、しかも、従来の光触媒体分散液を用いて形成された光触媒体層では、揮発性有機化合物を分解するに際し、充分に満足しうるだけの光触媒活性が得られなかった。   However, the conventional photocatalyst dispersion liquid in which the photocatalytic titanium oxide particles and the photocatalytic tungsten oxide particles are dispersed in the dispersion medium has a problem that the particles are aggregated and easily separated into solid and liquid, and the conventional photocatalyst dispersion In the photocatalyst layer formed using the liquid, sufficient photocatalytic activity could not be obtained when the volatile organic compound was decomposed.

そこで、本発明の課題は、分散媒中に分散された光触媒酸化チタン粒子と光触媒酸化タングステン粒子との凝集が抑制されて固液分離を起こしにくく、優れた光触媒活性を発現しうる光触媒体分散液を提供することにある。   Accordingly, an object of the present invention is to provide a photocatalyst dispersion liquid in which aggregation of the photocatalytic titanium oxide particles and the photocatalytic tungsten oxide particles dispersed in the dispersion medium is suppressed and solid-liquid separation is difficult to occur, and excellent photocatalytic activity can be expressed. Is to provide.

本発明者らは、上記課題を解決するべく鋭意研究を重ねた。その結果、光触媒酸化チタン粒子と光触媒酸化タングステン粒子とが分散媒中で凝集し易いのは、一般に、光触媒酸化チタン粒子の表面はプラスに、光触媒酸化タングステン粒子の表面はマイナスにそれぞれ帯電しているからであり、光触媒酸化チタン粒子および光触媒酸化タングステン粒子の表面を互いに同じ極性、すなわち共にプラスに帯電させるか、共にマイナスに帯電させることにより、凝集が抑制されて固液分離を起こしにくい光触媒体分散液となること、さらに、この光触媒体分散液中の光触媒酸化チタン粒子および光触媒酸化タングステン粒子と同じ極性に帯電するジルコニウム化合物を含有させると、形成される塗膜の光触媒活性が格段に向上することを見出し、本発明を完成した。   The present inventors have intensively studied to solve the above problems. As a result, the photocatalytic titanium oxide particles and the photocatalytic tungsten oxide particles are likely to aggregate in the dispersion medium. Generally, the surface of the photocatalytic titanium oxide particles is positively charged and the surface of the photocatalytic tungsten oxide particles is negatively charged. The photocatalyst dispersion is less likely to cause solid-liquid separation by suppressing the aggregation by charging the surfaces of the photocatalytic titanium oxide particles and the photocatalytic tungsten oxide particles with the same polarity, that is, both positively or negatively charged. Furthermore, when a zirconium compound charged to the same polarity as the photocatalytic titanium oxide particles and the photocatalytic tungsten oxide particles in the photocatalyst dispersion liquid is contained, the photocatalytic activity of the formed coating film is remarkably improved. The present invention has been completed.

すなわち、本発明の光触媒体分散液は、光触媒酸化チタン粒子および光触媒酸化タングステン粒子が分散媒中に分散されてなり、光触媒酸化チタン粒子および光触媒酸化タングステン粒子は表面が互いに同じ極性に帯電しており、さらに、この光触媒酸化チタン粒子および光触媒酸化タングステン粒子と同じ極性に帯電するジルコニウム化合物を含むことを特徴とする。
本発明の光触媒機能製品の製造方法は、基材の表面に前記本発明の光触媒体分散液を塗布し、分散媒を揮発させることを特徴とする。
本発明の揮発性有機化合物の分解方法は、基材の表面に前記本発明の光触媒体分散液を塗布し、分散媒を揮発させて光触媒体層を形成し、この光触媒体層と気相中に含まれる揮発性有機化合物とを光照射下で接触させることを特徴とする。
That is, the photocatalyst dispersion liquid of the present invention comprises photocatalytic titanium oxide particles and photocatalytic tungsten oxide particles dispersed in a dispersion medium, and the surfaces of the photocatalytic titanium oxide particles and the photocatalytic tungsten oxide particles are charged to the same polarity. Furthermore, the photocatalytic titanium oxide particles and the photocatalytic tungsten oxide particles are characterized by containing a zirconium compound that is charged to the same polarity.
The method for producing a photocatalytic functional product of the present invention is characterized in that the photocatalyst dispersion liquid of the present invention is applied to the surface of a substrate, and the dispersion medium is volatilized.
In the method for decomposing a volatile organic compound of the present invention, the photocatalyst dispersion liquid of the present invention is applied to the surface of a substrate, the dispersion medium is volatilized to form a photocatalyst layer, and the photocatalyst layer and the gas phase are vaporized. The volatile organic compound contained in is contacted under light irradiation.

本発明によれば、分散媒中に分散された光触媒酸化チタン粒子と光触媒酸化タングステン粒子との凝集が抑制されて固液分離を起こしにくく、しかも、優れた光触媒活性を発現しうる光触媒体分散液を提供することができる。すなわち、本発明の光触媒体分散液は、分散媒中に分散された光触媒酸化チタン粒子および光触媒酸化タングステン粒子の表面が互いに同じ極性に帯電しており、さらに光触媒活性向上のために含有させるジルコニウム化合物もこれら光触媒酸化チタン粒子および光触媒酸化タングステン粒子と同じ極性に帯電するものであるので、互いに凝集することがなく、このため固液分離することがない。このような本発明の光触媒体分散液は、粒子を互いに凝集させることなく基材に塗布することができるものであり、しかもジルコニウム化合物をも含有するため、これを用いて形成される塗膜は、高い光触媒活性を示す。   According to the present invention, a photocatalyst dispersion liquid in which aggregation of the photocatalytic titanium oxide particles and the photocatalytic tungsten oxide particles dispersed in the dispersion medium is suppressed and solid-liquid separation is difficult to occur, and excellent photocatalytic activity can be expressed. Can be provided. That is, the photocatalyst dispersion liquid according to the present invention has a zirconium compound in which the surfaces of the photocatalytic titanium oxide particles and the photocatalytic tungsten oxide particles dispersed in the dispersion medium are charged to the same polarity, and are further contained to improve the photocatalytic activity Since these photocatalytic titanium oxide particles and photocatalytic tungsten oxide particles are charged to the same polarity, they do not agglomerate with each other and therefore do not undergo solid-liquid separation. Such a photocatalyst dispersion liquid of the present invention can be applied to a substrate without agglomerating particles with each other, and also contains a zirconium compound, so that the coating film formed using this is a Show high photocatalytic activity.

(光触媒体分散液)
本発明の光触媒体分散液は、光触媒酸化チタン粒子(以下、単に「酸化チタン粒子」と称することもある)および光触媒酸化タングステン粒子(以下、単に「酸化タングステン粒子」と称することもある)が分散媒中に分散されたものである。
本発明の光触媒体分散液を構成する酸化チタン粒子は、光触媒作用を示す粒子状の酸化チタンであれば、特に制限はされないが、例えば、メタチタン酸粒子、結晶型がアナターゼ型、ブルッカイト型、ルチル型などである二酸化チタン〔TiO2〕粒子等が挙げられる。なお、酸化チタン粒子は、単独で用いてもよいし、2種以上を併用してもよい。
(Photocatalyst dispersion)
In the photocatalyst dispersion liquid of the present invention, photocatalytic titanium oxide particles (hereinafter also simply referred to as “titanium oxide particles”) and photocatalytic tungsten oxide particles (hereinafter also simply referred to as “tungsten oxide particles”) are dispersed. It is dispersed in the medium.
The titanium oxide particles constituting the photocatalyst dispersion liquid of the present invention are not particularly limited as long as they are particulate titanium oxide exhibiting a photocatalytic action. For example, metatitanic acid particles, crystal type is anatase type, brookite type, rutile Examples thereof include titanium dioxide [TiO 2 ] particles such as molds. In addition, a titanium oxide particle may be used independently and may use 2 or more types together.

メタチタン酸粒子は、例えば、(1−i)硫酸チタニルの水溶液を加熱して加水分解する方法により得ることができる。
二酸化チタン粒子は、例えば、(1−ii)硫酸チタニルまたは塩化チタンの水溶液を加熱することなく、これに塩基を加えることにより沈殿物を得、得られた沈殿物を焼成する方法、(1−iii)チタンアルコキシドに水、酸の水溶液または塩基の水溶液を加えて沈殿物を得、得られた沈殿物を焼成する方法、(1−iv)メタチタン酸を焼成する方法、などによって得ることができる。これらの方法で得られる二酸化チタン粒子は、焼成する際の焼成温度や焼成時間を調整することにより、アナターゼ型、ブルッカイト型またはルチル型など、所望の結晶型にすることができる。
Metatitanic acid particles can be obtained, for example, by a method of hydrolyzing an aqueous solution of (1-i) titanyl sulfate by heating.
The titanium dioxide particles can be obtained by, for example, (1-ii) a method in which a precipitate is obtained by adding a base to this without heating an aqueous solution of titanyl sulfate or titanium chloride, and the obtained precipitate is calcined. iii) It can be obtained by adding a water, an aqueous solution of an acid or an aqueous base solution to titanium alkoxide to obtain a precipitate, and firing the obtained precipitate, (1-iv) a method of firing metatitanic acid, and the like. . The titanium dioxide particles obtained by these methods can be made into a desired crystal type such as anatase type, brookite type or rutile type by adjusting the baking temperature and baking time when baking.

酸化チタン粒子の粒子径は、特に制限されないが、光触媒作用の観点からは、平均分散粒子径で、通常20〜150nm、好ましくは40〜100nmである。
酸化チタン粒子のBET比表面積は、特に制限されないが、光触媒作用の観点からは、通常100〜500m2/g、好ましくは300〜400m2/gである。
The particle size of the titanium oxide particles is not particularly limited, but from the viewpoint of photocatalysis, the average dispersed particle size is usually 20 to 150 nm, preferably 40 to 100 nm.
BET specific surface area of the titanium oxide particles is not particularly limited, from the viewpoint of photocatalytic activity, usually 100 to 500 m 2 / g, preferably from 300~400m 2 / g.

本発明の光触媒体分散液を構成する酸化タングステン粒子は、光触媒作用を示す粒子状の酸化タングステンであれば、特に制限はされないが、例えば、三酸化タングステン〔WO3〕粒子等が挙げられる。なお、酸化タングステン粒子は、単独で用いてもよいし、2種以上を併用してもよい。
三酸化タングステン粒子は、例えば、(2−i)タングステン酸塩の水溶液に酸を加えることにより、沈殿物としてタングステン酸を得、得られたタングステン酸を焼成する方法、(2−ii)メタタングステン酸アンモニウム、パラタングステン酸アンモニウムを加熱することにより熱分解する方法、などによって得ることができる。
The tungsten oxide particles constituting the photocatalyst dispersion liquid of the present invention are not particularly limited as long as they are particulate tungsten oxide exhibiting a photocatalytic action, and examples thereof include tungsten trioxide [WO 3 ] particles. The tungsten oxide particles may be used alone or in combination of two or more.
The tungsten trioxide particles are obtained by, for example, (2-i) a method of adding tungstic acid as a precipitate by adding an acid to an aqueous solution of tungstate, and firing the obtained tungstic acid, (2-ii) metatungsten It can be obtained by a method of thermally decomposing by heating ammonium acid or ammonium paratungstate.

酸化タングステン粒子の粒子径は、特に制限されないが、光触媒作用の観点からは、平均分散粒子径で、通常50〜200nm、好ましくは80〜130nmである。
酸化タングステン粒子のBET比表面積は、特に制限されないが、光触媒作用の観点からは、通常5〜100m2/g、好ましくは20〜50m2/gである。
The particle diameter of the tungsten oxide particles is not particularly limited, but from the viewpoint of photocatalysis, the average dispersed particle diameter is usually 50 to 200 nm, preferably 80 to 130 nm.
BET specific surface area of the tungsten oxide particles is not particularly limited, from the viewpoint of photocatalytic activity, typically 5 to 100 m 2 / g, preferably from 20 to 50 m 2 / g.

本発明の光触媒体分散液において、前記酸化チタン粒子と前記酸化タングステン粒子との比率(酸化チタン粒子:酸化タングステン粒子)は、質量比で、通常4:1〜1:8、好ましくは2:3〜3:2である。   In the photocatalyst dispersion liquid of the present invention, the ratio of the titanium oxide particles to the tungsten oxide particles (titanium oxide particles: tungsten oxide particles) is usually 4: 1 to 1: 8, preferably 2: 3 in mass ratio. ~ 3: 2.

本発明の光触媒体分散液においては、光触媒酸化チタン粒子および光触媒酸化タングステン粒子は表面が互いに同じ極性に帯電しており、具体的には、粒子表面が共にプラスに帯電しているか、または粒子表面が共にマイナスに帯電している。これにより、分散液中の酸化チタン粒子と酸化タングステン粒子との凝集が抑制され、固液分離を起こしにくくなる。   In the photocatalyst dispersion liquid of the present invention, the surfaces of the photocatalytic titanium oxide particles and the photocatalytic tungsten oxide particles are charged with the same polarity, specifically, the particle surfaces are both charged positively or the particle surface Are both negatively charged. Thereby, aggregation of the titanium oxide particles and the tungsten oxide particles in the dispersion is suppressed, and solid-liquid separation is hardly caused.

一般に、上述した(1−i)の方法により得たメタチタン酸粒子や、(1−ii)〜(1−iv)の方法により得た二酸化チタン粒子は、その表面がプラスに帯電している。これに対して、上述した(2−i)や(2−ii)の方法により得た三酸化タングステン粒子は、その表面がマイナスに帯電している。このため、表面がプラスに帯電している上述の酸化チタン粒子と、表面がマイナスに帯電している上述の酸化タングステン粒子とを用いる場合は、例えば、酸化チタン粒子の表面をマイナスに帯電させてから、酸化タングステン粒子と混合するようにすればよい。   In general, the surfaces of the metatitanic acid particles obtained by the method (1-i) and the titanium dioxide particles obtained by the methods (1-ii) to (1-iv) are positively charged. On the other hand, the surface of the tungsten trioxide particles obtained by the methods (2-i) and (2-ii) described above is negatively charged. Therefore, when using the above-mentioned titanium oxide particles whose surface is positively charged and the above-mentioned tungsten oxide particles whose surface is negatively charged, for example, the surface of the titanium oxide particles is negatively charged. Therefore, it is sufficient to mix with tungsten oxide particles.

表面がプラスに帯電した酸化チタン粒子の表面をマイナスに帯電させるには、該酸化チタン粒子を、あらかじめ、その表面をマイナスに帯電させうる表面処理剤を後述する分散媒に溶解させた溶液中に分散させればよい。これにより、溶液中に溶解した表面処理剤が酸化チタン粒子の表面に吸着し、粒子表面をマイナスに帯電させることができる。   In order to negatively charge the surface of the titanium oxide particles whose surface is positively charged, the titanium oxide particles are previously dissolved in a solution in which a surface treatment agent capable of negatively charging the surface is dissolved in a dispersion medium described later. What is necessary is just to disperse. Thereby, the surface treating agent dissolved in the solution is adsorbed on the surface of the titanium oxide particles, and the particle surface can be negatively charged.

粒子表面をマイナスに帯電させうる表面処理剤としては、例えば、ジカルボン酸、トリカルボン酸などのような多価カルボン酸、リン酸などが挙げられる。具体的には、ジカルボン酸としては例えば蓚酸などが、トリカルボン酸としては例えばクエン酸などが挙げられる。また、前記多価カルボン酸やリン酸としては、遊離酸を用いてもよいし、塩を用いてもよい。塩としては、例えばアンモニウム塩などが挙げられる。かかる表面処理剤としては、特に、蓚酸、蓚酸アンモニウムなどが好ましい。
前記表面処理剤の使用量は、TiO2換算の光触媒酸化チタン粒子に対して、表面を充分に帯電させる点で、通常0.001モル倍以上、好ましくは0.02モル倍以上であり、経済性の点で、通常0.5モル倍以下、好ましくは0.3モル倍以下である。
Examples of the surface treatment agent that can negatively charge the particle surface include polyvalent carboxylic acids such as dicarboxylic acid and tricarboxylic acid, and phosphoric acid. Specifically, examples of the dicarboxylic acid include oxalic acid, and examples of the tricarboxylic acid include citric acid. Moreover, as said polyvalent carboxylic acid and phosphoric acid, a free acid may be used and a salt may be used. Examples of the salt include ammonium salt. As such a surface treatment agent, oxalic acid, ammonium oxalate and the like are particularly preferable.
The amount of the surface treatment agent used is usually 0.001 mol times or more, preferably 0.02 mol times or more, in terms of sufficiently charging the surface with respect to the TiO 2 converted photocatalytic titanium oxide particles. In view of properties, it is usually 0.5 mol times or less, preferably 0.3 mol times or less.

酸化チタン粒子および酸化タングステン粒子の表面の帯電は、それぞれ、溶媒中に分散させたときのゼータ電位を測定することにより判定できる。ゼータ電位の測定に用いられる溶媒としては、例えば、塩酸を加えて水素イオン濃度をpH3.0とした塩化ナトリウム水溶液(塩化ナトリウム濃度0.01モル/L)が用いられる。この溶媒の使用量は、酸化チタン粒子または酸化タングステン粒子に対して、通常10000質量倍〜1000000質量倍である。   The surface charge of titanium oxide particles and tungsten oxide particles can be determined by measuring the zeta potential when dispersed in a solvent. As a solvent used for measuring the zeta potential, for example, a sodium chloride aqueous solution (sodium chloride concentration 0.01 mol / L) in which hydrochloric acid is added to adjust the hydrogen ion concentration to pH 3.0 is used. The amount of the solvent used is usually 10,000 to 1,000,000 times the mass of the titanium oxide particles or tungsten oxide particles.

本発明の光触媒体分散液においては、さらに、前記光触媒酸化チタン粒子および光触媒酸化タングステン粒子と同じ極性に帯電するジルコニウム化合物を含む。このように、ジルコニウム化合物を含有させることにより、本発明の光触媒体分散液を塗布して形成される塗膜の光触媒活性をより向上させることができ、しかも、該ジルコニウム化合物は前記酸化チタン粒子および前記酸化タングステン粒子と同じ極性に帯電するものであるので、ジルコニウム化合物の添加によって粒子の凝集ひいては分散液の固液分離を招くおそれもない。
なお、ジルコニウム化合物の帯電(極性)は、例えば、ゼータ電位を測定することにより判定できる。ゼータ電位の測定に際しては、ジルコニウム化合物の形態に応じた手法を適宜採用すればよく、例えば粒子状であれば溶媒中に分散させて測定すればよい。
The photocatalyst dispersion liquid of the present invention further contains a zirconium compound that is charged to the same polarity as the photocatalytic titanium oxide particles and the photocatalytic tungsten oxide particles. Thus, by containing the zirconium compound, the photocatalytic activity of the coating film formed by applying the photocatalyst dispersion liquid of the present invention can be further improved, and the zirconium compound contains the titanium oxide particles and Since the particles are charged with the same polarity as the tungsten oxide particles, there is no possibility that the addition of the zirconium compound causes aggregation of the particles and thus solid-liquid separation of the dispersion.
Note that the charge (polarity) of the zirconium compound can be determined, for example, by measuring the zeta potential. In measuring the zeta potential, a technique corresponding to the form of the zirconium compound may be appropriately employed. For example, in the case of a particulate form, it may be measured by dispersing in a solvent.

ジルコニウム化合物としては、具体的には、例えば、酸化ジルコニウム、水酸化ジルコニウム、オキシ硝酸ジルコニウム、オキシ塩化ジルコニウム、水和酸化ジルコニウム、オキシ水酸化ジルコニウム、水和硝酸ジルコニウム、水和オキシ塩化ジルコニウム、蓚酸ジルコニウム、酢酸ジルコニウム、ジルコニウムテトライソプロポキシド、ジルコニウムテトラブトキシド、ジルコニウムジブトキシドアセチルアセトナート、ジルコニウムジブトキシドラクテート、ジルコニウムブトキシドの加水分解生成物、ジルコニウムイソプロポキシドの加水分解生成物などが挙げられ、これらの中でも、蓚酸ジルコニウムが好ましい。蓚酸ジルコニウムは、通常、マイナスに帯電するものであり、マイナスに帯電する酸化チタン粒子および酸化タングステン粒子とともに使用することができる。
なお、ジルコニウム化合物は、前記光触媒酸化チタン粒子および前記光触媒酸化タングステン粒子と同じ極性に帯電するものであれば、1種のみであってもよいし、2種以上であってもよい。
Specific examples of the zirconium compound include zirconium oxide, zirconium hydroxide, zirconium oxynitrate, zirconium oxychloride, hydrated zirconium oxide, zirconium oxyhydroxide, hydrated zirconium nitrate, hydrated zirconium oxychloride, and zirconium oxalate. , Zirconium acetate, zirconium tetraisopropoxide, zirconium tetrabutoxide, zirconium dibutoxide acetylacetonate, zirconium dibutoxide lactate, hydrolysis product of zirconium butoxide, hydrolysis product of zirconium isopropoxide, etc. Of these, zirconium oxalate is preferable. Zirconium oxalate is normally negatively charged and can be used with negatively charged titanium oxide particles and tungsten oxide particles.
The zirconium compound may be one kind or two kinds or more as long as it is charged with the same polarity as the photocatalytic titanium oxide particles and the photocatalytic tungsten oxide particles.

ジルコニウム化合物として好適な蓚酸ジルコニウムは、1モルのZrに対して1.2〜5.0モルの蓚酸を反応させてなるものであることが好ましく、より好ましくは、1モルのZrに対して1.4〜2.0モルの蓚酸を反応させてなるものであるのがよい。ジルコニウムに対する蓚酸のモル比(蓚酸/Zr(モル比))の値が1.2より小さいと、蓚酸ジルコニウムの合成反応が困難となるおそれがあり、一方、5.0より大きいと、反応生成物に過剰量の蓚酸が含まれることになるので、蓚酸ジルコニウムの酸性度が過度に高くなって、取り扱ううえで不具合が生じるおそれがある。   Zirconium oxalate suitable as a zirconium compound is preferably obtained by reacting 1.2 to 5.0 moles of oxalic acid to 1 mole of Zr, more preferably 1 mole to 1 mole of Zr. It is preferable to react 4 to 2.0 moles of oxalic acid. If the molar ratio of oxalic acid to zirconium (oxalic acid / Zr (molar ratio)) is less than 1.2, the synthesis reaction of zirconium oxalate may be difficult. On the other hand, if it exceeds 5.0, the reaction product Since an excessive amount of oxalic acid is contained in the zirconia, the acidity of zirconium oxalate becomes excessively high, which may cause problems in handling.

本発明の光触媒体分散液において、ジルコニウム化合物の含有量は、酸化物(ZrO2)換算で、光触媒酸化チタン粒子と光触媒酸化タングステン粒子の合計量に対して、通常、0.02〜0.3質量倍、好ましくは0.08〜0.15質量倍である。ジルコニウム化合物の含有量が前記範囲よりも少ないと、光触媒活性の向上効果が充分に得られない傾向があり、一方、前記範囲よりも多いと、酸化チタン粒子や酸化タングステン粒子の表面が多量のジルコニウム化合物で覆われることになり、酸化チタン粒子や酸化タングステン粒子が吸収する光の量が少なくなるため、光触媒活性が低下するおそれがある。 In the photocatalyst dispersion liquid of the present invention, the content of the zirconium compound is usually 0.02 to 0.3 with respect to the total amount of photocatalytic titanium oxide particles and photocatalytic tungsten oxide particles in terms of oxide (ZrO 2 ). It is mass times, Preferably it is 0.08-0.15 mass times. When the content of the zirconium compound is less than the above range, the photocatalytic activity improvement effect tends not to be obtained sufficiently. Since it will be covered with a compound and the amount of light absorbed by the titanium oxide particles and the tungsten oxide particles will decrease, the photocatalytic activity may be reduced.

本発明の光触媒体分散液に用いられる分散媒は、ジルコニウム化合物を溶解もしくは分散させうるものであれば、特に制限はなく、通常、水を主成分とする水性媒体、具体的には、水を50質量%以上の割合で含むものが用いられ、水を単独で用いてもよいし、水と水溶性有機溶媒との混合溶媒であってもよい。水溶性有機溶媒としては、例えば、メタノール、エタノール、プロパノール、ブタノールなどの水溶性アルコール溶媒のほか、アセトン、メチルエチルケトンなどが挙げられる。   The dispersion medium used in the photocatalyst dispersion liquid of the present invention is not particularly limited as long as it can dissolve or disperse the zirconium compound, and is usually an aqueous medium mainly containing water, specifically, water. What contains 50 mass% or more is used, water may be used independently and the mixed solvent of water and a water-soluble organic solvent may be sufficient. Examples of the water-soluble organic solvent include water-soluble alcohol solvents such as methanol, ethanol, propanol and butanol, as well as acetone and methyl ethyl ketone.

本発明の光触媒体分散液においては、分散媒の含有量は、酸化チタン粒子、酸化タングステン粒子およびジルコニウム化合物の合計量に対して、通常5〜200質量倍、好ましくは10〜100質量倍である。分散媒が5質量倍未満であると、酸化チタン粒子、酸化タングステン粒子およびジルコニウム化合物が沈降し易くなり、一方、200質量倍を超えると、容積効率の点で不利となるので、いずれも好ましくない。   In the photocatalyst dispersion liquid of the present invention, the content of the dispersion medium is usually 5 to 200 times by mass, preferably 10 to 100 times by mass, with respect to the total amount of titanium oxide particles, tungsten oxide particles and zirconium compound. . If the dispersion medium is less than 5 times by mass, the titanium oxide particles, tungsten oxide particles and zirconium compound are likely to settle, whereas if it exceeds 200 times by mass, it is disadvantageous in terms of volumetric efficiency, which is not preferable. .

本発明の光触媒体分散液は、電子吸引性物質またはその前駆体をも含有していてもよい。電子吸引性物質とは、光触媒体(すなわち、酸化チタン粒子および酸化タングステン粒子)の表面に担持されて電子吸引性を発揮しうる化合物であり、電子吸引性物質の前駆体とは、光触媒体の表面で電子吸引性物質に遷移しうる化合物(例えば、光照射により電子吸引性物質に還元されうる化合物)である。電子吸引性物質が光触媒体の表面に担持されて存在すると、光の照射により伝導帯に励起された電子と価電子帯に生成した正孔との再結合が抑制され、光触媒作用をより高めることができる。   The photocatalyst dispersion liquid of the present invention may also contain an electron withdrawing substance or a precursor thereof. An electron-withdrawing substance is a compound that can be carried on the surface of a photocatalyst (that is, titanium oxide particles and tungsten oxide particles) and can exhibit electron-withdrawing properties. A compound that can transition to an electron-withdrawing substance on the surface (for example, a compound that can be reduced to an electron-withdrawing substance by light irradiation). When an electron-withdrawing substance is supported on the surface of the photocatalyst, recombination of electrons excited in the conduction band by light irradiation and holes generated in the valence band is suppressed, and the photocatalytic action is further enhanced. Can do.

前記電子吸引性物質またはその前駆体は、Cu、Pt、Au、Pd、Ag、Fe、Nb、Ru、Ir、RhおよびCoからなる群より選ばれる少なくとも1種の金属原子を含有してなるものであることが好ましい。より好ましくは、Cu、Pt、AuおよびPdのうちの1種以上の金属原子を含有してなるものである。例えば、前記電子吸引性物質としては、前記金属原子からなる金属、もしくは、これらの金属の酸化物や水酸化物等が挙げられ、電子吸引性物質の前駆体としては、前記金属原子からなる金属の硝酸塩、硫酸塩、ハロゲン化物、有機酸塩、炭酸塩、りん酸塩等が挙げられる。   The electron-withdrawing substance or a precursor thereof contains at least one metal atom selected from the group consisting of Cu, Pt, Au, Pd, Ag, Fe, Nb, Ru, Ir, Rh and Co. It is preferable that More preferably, it contains one or more metal atoms of Cu, Pt, Au and Pd. For example, the electron-withdrawing substance may be a metal made of the metal atom, or an oxide or hydroxide of these metals, and the precursor of the electron-withdrawing substance may be a metal made of the metal atom. Nitrates, sulfates, halides, organic acid salts, carbonates, phosphates, and the like.

電子吸引性物質の好ましい具体例としては、Cu、Pt、Au、Pd等の金属が挙げられる。また、電子吸引性物質の前駆体の好ましい具体例としては、Cuを含む前駆体として、硝酸銅〔Cu(NO3)2〕、硫酸銅〔Cu(SO4)2〕、塩化銅〔CuCl2、CuCl〕、臭化銅〔CuBr2、CuBr〕、沃化銅〔CuI〕、沃素酸銅〔CuI26〕、塩化アンモニウム銅〔Cu(NH4)2Cl4〕、オキシ塩化銅〔Cu2Cl(OH)3〕、酢酸銅〔CH3COOCu、(CH3COO)2Cu〕、蟻酸銅〔(HCOO)2Cu〕、炭酸銅〔CuCO3〕、蓚酸銅〔CuC24〕、クエン酸銅〔Cu2647〕、リン酸銅〔CuPO4〕等が;Ptを含む前駆体として、塩化白金〔PtCl2、PtCl4〕、臭化白金〔PtBr2、PtBr4〕、沃化白金〔PtI2、PtI4〕、塩化白金カリウム〔K2(PtCl4)〕、ヘキサクロロ白金酸〔H2PtCl6〕、亜硫酸白金〔H3Pt(SO3)2OH〕、酸化白金〔PtO2〕、塩化テトラアンミン白金〔Pt(NH3)4Cl2〕、炭酸水素テトラアンミン白金〔C21446Pt〕、テトラアンミン白金リン酸水素〔Pt(NH3)4HPO4〕、水酸化テトラアンミン白金〔Pt(NH3)4(OH)2〕、硝酸テトラアンミン白金〔Pt(NO3)2(NH3)4〕、テトラアンミン白金テトラクロロ白金〔(Pt(NH3)4)(PtCl4)〕等が;Auを含む前駆体として、塩化金〔AuCl〕、臭化金〔AuBr〕、沃化金〔AuI〕、水酸化金〔Au(OH)2〕、テトラクロロ金酸〔HAuCl4〕、テトラクロロ金酸カリウム〔KAuCl4〕、テトラブロモ金酸カリウム〔KAuBr4〕、酸化金〔Au23〕等が;Pdを含む前駆体として、例えば、酢酸パラジウム〔(CH3COO)2Pd〕、塩化パラジウム〔PdCl2〕、臭化パラジウム〔PdBr2〕、沃化パラジウム〔PdI2〕、水酸化パラジウム〔Pd(OH)2〕、硝酸パラジウム〔Pd(NO3)2〕、酸化パラジウム〔PdO〕、硫酸パラジウム〔PdSO4〕、テトラクロロパラジウム酸カリウム〔K2(PdCl4)〕、テトラブロモパラジウム酸カリウム〔K2(PdBr4)〕等が;それぞれ挙げられる。なお、電子吸引性物質またはその前駆体は、それぞれ単独で用いてもよいし、2種以上を併用してもよい。また、1種以上の電子吸引性物質と1種以上の前駆体とを併用してもよいことは勿論である。 Preferable specific examples of the electron withdrawing substance include metals such as Cu, Pt, Au, and Pd. Moreover, as a preferable specific example of the precursor of an electron attractive substance, as a precursor containing Cu, copper nitrate [Cu (NO 3 ) 2 ], copper sulfate [Cu (SO 4 ) 2 ], copper chloride [CuCl 2 ] , CuCl], copper bromide [CuBr 2 , CuBr], copper iodide [CuI], copper iodate [CuI 2 O 6 ], ammonium chloride [Cu (NH 4 ) 2 Cl 4 ], copper oxychloride [Cu 2 Cl (OH) 3 ], copper acetate [CH 3 COOCu, (CH 3 COO) 2 Cu], copper formate [(HCOO) 2 Cu], copper carbonate [CuCO 3 ], copper oxalate [CuC 2 O 4 ], Copper citrate [Cu 2 C 6 H 4 O 7 ], copper phosphate [CuPO 4 ], etc .; as precursors containing Pt, platinum chloride [PtCl 2 , PtCl 4 ], platinum bromide [PtBr 2 , PtBr 4] ], iodide platinum [PtI 2, PtI 4], potassium platinum chloride [K 2 (PtCl 4)], Kisakuroro chloroplatinic acid [H 2 PtCl 6], platinum sulfite [H 3 Pt (SO 3) 2 OH ], platinum oxide [PtO 2], tetraammine platinum chloride [Pt (NH 3) 4 Cl 2], bicarbonate tetraammineplatinum [ C 2 H 14 N 4 O 6 Pt], tetraammineplatinum hydrogen phosphate [Pt (NH 3 ) 4 HPO 4 ], tetraammineplatinum platinum [Pt (NH 3 ) 4 (OH) 2 ], tetraammineplatinum nitrate [Pt ( NO 3 ) 2 (NH 3 ) 4 ], tetraammineplatinum tetrachloroplatinum [(Pt (NH 3 ) 4 ) (PtCl 4 )] and the like; as a precursor containing Au, gold chloride [AuCl], gold bromide [ AuBr], gold iodide [AuI], gold hydroxide [Au (OH) 2 ], tetrachloroauric acid [HAuCl 4 ], potassium tetrachloroaurate [KAuCl 4 ], potassium tetrabromoaurate [KAuBr 4 ], oxidation gold [Au 2 O 3 Etc. is; as a precursor containing Pd, for example, palladium acetate [(CH 3 COO) 2 Pd], palladium chloride [PdCl 2], palladium bromide [PdBr 2], iodide palladium [PdI 2], palladium hydroxide [Pd (OH) 2 ], palladium nitrate [Pd (NO 3 ) 2 ], palladium oxide [PdO], palladium sulfate [PdSO 4 ], potassium tetrachloropalladate [K 2 (PdCl 4 )], tetrabromopalladium acid Potassium [K 2 (PdBr 4 )] and the like; In addition, an electron withdrawing substance or its precursor may each be used independently, and may use 2 or more types together. Needless to say, one or more electron-withdrawing substances and one or more precursors may be used in combination.

前記電子吸引性物質またはその前駆体を含有させる場合、その含有量は、金属原子換算で、酸化チタン粒子および酸化タングステン粒子の合計量100質量部に対して、通常0.005〜0.6質量部、好ましくは0.01〜0.4質量部である。電子吸引性物質またはその前駆体が0.005質量部未満であると、電子吸引性物質による光触媒活性の向上効果が充分に得られないおそれがあり、一方、0.6質量部を超えると、却って光触媒作用が低下するおそれがある。   When the electron-withdrawing substance or a precursor thereof is contained, the content is usually 0.005 to 0.6 mass in terms of metal atoms with respect to 100 mass parts of the total amount of titanium oxide particles and tungsten oxide particles. Parts, preferably 0.01 to 0.4 parts by mass. If the electron-withdrawing substance or its precursor is less than 0.005 parts by mass, the effect of improving the photocatalytic activity by the electron-withdrawing substance may not be sufficiently obtained, while if it exceeds 0.6 parts by mass, On the contrary, the photocatalytic action may be reduced.

本発明の光触媒体分散液は、酸化チタン粒子および酸化タングステン粒子の表面の帯電やジルコニウム化合物の帯電を変更しない範囲で、従来公知の各種添加剤を含んでいてもよい。なお、添加剤は、それぞれ単独で用いてもよいし、2種以上を併用してもよい。   The photocatalyst dispersion liquid of the present invention may contain various conventionally known additives as long as the charging of the surface of the titanium oxide particles and the tungsten oxide particles and the charging of the zirconium compound are not changed. In addition, an additive may each be used independently and may use 2 or more types together.

前記添加剤としては、例えば、光触媒作用を向上させる目的で添加されるものが挙げられる。このような光触媒作用向上効果を目的とした添加剤としては、具体的には、非晶質シリカ、シリカゾル、水ガラス、オルガノポリシロキサンなどの珪素化合物;非晶質アルミナ、アルミナゾル、水酸化アルミニウムなどのアルミニウム化合物;ゼオライト、カオリナイトのようなアルミノ珪酸塩;酸化マグネシウム、酸化カルシウム、酸化ストロンチウム、酸化バリウム、水酸化マグネシウム、水酸化カルシウム、水酸化ストロンチウム、水酸化バリウムなどのアルカリ土類金属酸化物またはアルカリ土類金属水酸化物;リン酸カルシウム、モレキュラーシーブ、活性炭、有機ポリシロキサン化合物の重縮合物、リン酸塩、フッ素系ポリマー、シリコン系ポリマー、アクリル樹脂、ポリエステル樹脂、メラミン樹脂、ウレタン樹脂、アルキド樹脂;等が挙げられる。   Examples of the additive include those added for the purpose of improving the photocatalytic action. Specific examples of such additives for improving the photocatalytic effect include silicon compounds such as amorphous silica, silica sol, water glass, and organopolysiloxane; amorphous alumina, alumina sol, aluminum hydroxide, and the like. Aluminosilicates such as zeolite and kaolinite; alkaline earth metal oxides such as magnesium oxide, calcium oxide, strontium oxide, barium oxide, magnesium hydroxide, calcium hydroxide, strontium hydroxide, barium hydroxide Or alkaline earth metal hydroxide; calcium phosphate, molecular sieve, activated carbon, polycondensate of organic polysiloxane compound, phosphate, fluorine polymer, silicon polymer, acrylic resin, polyester resin, melamine resin, urethane resin, alkyd Fats; and the like.

また、前記添加剤としては、光触媒体分散液を基材表面に塗布した際に光触媒体(酸化チタン粒子および酸化タングステン粒子)をより強固に基材の表面に保持させるためのバインダー等を用いることもできる(例えば、特開平8−67835号公報、特開平9−25437号公報、特開平10−183061号公報、特開平10−183062号公報、特開平10−168349号公報、特開平10−225658号公報、特開平11−1620号公報、特開平11−1661号公報、特開2004−059686号公報、特開2004−107381号公報、特開2004−256590号公報、特開2004−359902号公報、特開2005−113028号公報、特開2005−230661号公報、特開2007−161824号公報など参照)。   Further, as the additive, a binder or the like for holding the photocatalyst (titanium oxide particles and tungsten oxide particles) more firmly on the surface of the substrate when the photocatalyst dispersion liquid is applied to the surface of the substrate is used. (For example, JP-A-8-67835, JP-A-9-25437, JP-A-10-183061, JP-A-10-183062, JP-A-10-168349, JP-A-10-225658). Publication No. 11-1620, No. 11-1661, No. 2004-059686, No. 2004-107381, No. 2004-256590, No. 2004-359902. JP, 2005-113028, JP, 2005-230661, JP, 2007-16182. No. see, for publication).

本発明の光触媒体分散液は、その水素イオン濃度が、通常pH0.5〜pH8.0、好ましくはpH1.0〜pH7.0である。水素イオン濃度がpH0.5未満であると、酸性が強すぎて取扱いが面倒であり、一方、pH8.0を超えると、酸化タングステン粒子が溶解するおそれがあるので、いずれも好ましくない。光触媒体分散液の水素イオン濃度は、通常、酸を加えることにより調整すればよい。水素イオン濃度の調整に用いることのできる酸としては、例えば、硝酸、塩酸、硫酸、リン酸、ギ酸、酢酸、蓚酸等が挙げられる。   The hydrogen ion concentration of the photocatalyst dispersion liquid of the present invention is usually pH 0.5 to pH 8.0, preferably pH 1.0 to pH 7.0. When the hydrogen ion concentration is less than pH 0.5, the acidity is too strong and the handling is troublesome. On the other hand, when the pH exceeds 8.0, the tungsten oxide particles may be dissolved. The hydrogen ion concentration of the photocatalyst dispersion liquid may be usually adjusted by adding an acid. Examples of the acid that can be used for adjusting the hydrogen ion concentration include nitric acid, hydrochloric acid, sulfuric acid, phosphoric acid, formic acid, acetic acid, oxalic acid, and the like.

本発明の光触媒体分散液の製造方法は、上述した各含有成分(表面が互いに同じ極性に帯電した酸化チタン粒子、酸化タングステン粒子およびジルコニウム化合物と分散媒等)を混合し、分散させうる方法であればよく、各含有成分の混合順序などに特に制限はない。   The production method of the photocatalyst dispersion liquid of the present invention is a method in which each of the above-mentioned components (titanium oxide particles, tungsten oxide particles, zirconium compounds and dispersion medium, etc. whose surfaces are charged to the same polarity) can be mixed and dispersed. There is no particular limitation on the mixing order of the respective components.

酸化チタン粒子と酸化タングステン粒子とは、それぞれ、そのまま(粒子の状態で)混合してもよいが、通常は、両方または一方を、あらかじめ分散媒(分散媒に表面処理剤等を溶解させた溶液であってもよい)中に分散させて、酸化チタン粒子分散液または酸化タングステン粒子分散液としたのちに混合する。酸化チタン粒子分散液や酸化タングステン粒子分散液には、例えば媒体撹拌式分散機を用いるなど通常の方法により分散処理を施すことが好ましい。
なお、酸化チタン粒子および酸化タングステン粒子の少なくとも一方を分散液とする場合、各分散液に用いる分散媒の種類や使用量は、最終的に得られる光触媒体分散液における分散媒の組成等を考慮して適宜設定すればよい。
Titanium oxide particles and tungsten oxide particles may be mixed as they are (in the form of particles), but usually both or one of them is a dispersion medium (a solution obtained by dissolving a surface treatment agent or the like in a dispersion medium). Or a titanium oxide particle dispersion or a tungsten oxide particle dispersion, and then mixed. The titanium oxide particle dispersion or tungsten oxide particle dispersion is preferably subjected to a dispersion treatment by a usual method such as using a medium stirring type disperser.
When at least one of titanium oxide particles and tungsten oxide particles is used as a dispersion, the type and amount of the dispersion medium used in each dispersion take into account the composition of the dispersion medium in the finally obtained photocatalyst dispersion. And set as appropriate.

前記ジルコニウム化合物は、どの段階で添加してもよく、例えば、酸化チタン粒子分散液および酸化タングステン粒子分散液のいずれか一方もしくは両方に添加してもよいし、酸化チタン粒子(または酸化チタン粒子分散液)と酸化タングステン粒子(または酸化タングステン粒子分散液)とを混合したのちに、得られた分散液に添加するようにしてもよい。また、ジルコニウム化合物を添加する際には、どのような形態で添加してもよく、例えば、あらかじめ適当な溶媒に溶解もしくは分散させた状態で添加することができる。   The zirconium compound may be added at any stage. For example, the zirconium compound may be added to one or both of a titanium oxide particle dispersion and a tungsten oxide particle dispersion, or titanium oxide particles (or titanium oxide particle dispersions). Liquid) and tungsten oxide particles (or tungsten oxide particle dispersion) may be mixed and then added to the obtained dispersion. Moreover, when adding a zirconium compound, you may add in what kind of form, For example, it can add in the state melt | dissolved or disperse | distributed to the suitable solvent previously.

例えば、表面がプラスに帯電している酸化チタン粒子を、適当な分散媒に前記表面処理剤を溶解させた溶液中に分散させることにより粒子表面をマイナスに帯電させた後、必要に応じて分散処理を施し、これを、表面がマイナスに帯電している酸化タングステン粒子を適当な分散媒中に分散させた分散液と混合し、さらに、マイナスに帯電するジルコニウム化合物を溶解もしくは分散させた液を混合することにより、本発明の光触媒体分散液を得ることができる。   For example, titanium oxide particles whose surface is positively charged are dispersed in a solution in which the surface treatment agent is dissolved in an appropriate dispersion medium to charge the particle surface negatively, and then dispersed as necessary. This is mixed with a dispersion in which tungsten oxide particles whose surface is negatively charged are dispersed in a suitable dispersion medium, and a solution in which a negatively charged zirconium compound is dissolved or dispersed is mixed. By mixing, the photocatalyst dispersion liquid of the present invention can be obtained.

本発明の光触媒体分散液に前記電子吸引性物質またはその前駆体を含有させる場合には、電子吸引性物質またはその前駆体の添加は、どの段階で行なってもよく、例えば、酸化チタン粒子分散液に対して行ってもよいし、酸化タングステン粒子分散液に対して行ってもよいし、酸化チタン粒子(または酸化チタン粒子分散液)と酸化タングステン粒子(または酸化タングステン粒子分散液)とを混合した後の分散液に対して行ってもよいし、ジルコニウム化合物を溶解もしくは分散させた液に対して行ってもよいが、好ましくは、電子吸引性物質またはその前駆体は酸化チタン粒子と酸化タングステン粒子とを含む分散液に対して添加し、その後、ジルコニウム化合物を溶解もしくは分散させた液を添加するのがよい。   When the photocatalyst dispersion liquid of the present invention contains the electron-withdrawing substance or its precursor, the addition of the electron-withdrawing substance or its precursor may be performed at any stage, for example, titanium oxide particle dispersion It may be performed on the liquid, may be performed on the tungsten oxide particle dispersion, or the titanium oxide particles (or titanium oxide particle dispersion) and the tungsten oxide particles (or tungsten oxide particle dispersion) are mixed. However, the electron-withdrawing substance or its precursor is preferably composed of titanium oxide particles and tungsten oxide. It is preferable to add to a dispersion containing particles, and then add a solution in which a zirconium compound is dissolved or dispersed.

前記電子吸引性物質の前駆体を添加した場合には、その添加後に光照射を行ってもよい。光照射を行うことにより、光励起によって生成した電子によって前駆体が還元されて電子吸引性物質となり、光触媒体粒子(酸化チタン粒子および酸化タングステン粒子)の表面に担持される。なお、前記前駆体を添加した場合に、たとえ光照射を行なわなくても、得られた光触媒体分散液により形成された光触媒体層に光が照射された時点で電子吸引性物質へ変換されることになるので、その光触媒能が損なわれることはない。
前記光照射で照射する光としては、特に制限はなく、可視光線でもよいし、紫外線でもよい。また、前記光照射は、前記前駆体の添加後であれば、どの段階で行なってもよい。
When a precursor of the electron withdrawing substance is added, light irradiation may be performed after the addition. By performing light irradiation, the precursor is reduced by electrons generated by photoexcitation to become an electron-withdrawing substance, and is supported on the surface of the photocatalyst particles (titanium oxide particles and tungsten oxide particles). When the precursor is added, the photocatalyst layer formed from the obtained photocatalyst dispersion liquid is converted into an electron-withdrawing substance when light is irradiated to the photocatalyst layer formed by the obtained photocatalyst dispersion liquid. As a result, the photocatalytic ability is not impaired.
There is no restriction | limiting in particular as light irradiated by the said light irradiation, A visible ray may be sufficient and an ultraviolet-ray may be sufficient. The light irradiation may be performed at any stage as long as the precursor is added.

本発明の光触媒体分散液に上述した各種添加剤を含有させる場合には、各種添加剤の添加はどの段階で行なってもよいが、例えば、酸化チタン粒子(酸化チタン粒子分散液)と酸化タングステン粒子(酸化タングステン粒子分散液)とジルコニウム化合物(ジルコニウム化合物を溶解もしくは分散させた液)とを混合した後に行なうことが好ましい。   When the above-mentioned various additives are contained in the photocatalyst dispersion liquid of the present invention, the various additives may be added at any stage. For example, titanium oxide particles (titanium oxide particle dispersion liquid) and tungsten oxide are added. It is preferable to carry out after mixing the particles (tungsten oxide particle dispersion) and the zirconium compound (liquid in which the zirconium compound is dissolved or dispersed).

(光触媒機能製品の製造方法)
本発明の光触媒機能製品の製造方法は、上述した本発明の光触媒体分散液を基材の表面に塗布し、分散媒を揮発させるものである。この方法により、光触媒酸化チタン粒子、光触媒酸化タングステン粒子およびジルコニウム化合物を含み光触媒作用を示す光触媒体層を、表面に備えた光触媒機能製品を製造できる。ここで、前記光触媒体分散液が電子吸引性物質またはその前駆体を含む場合には、光触媒体層を構成する光触媒酸化チタン粒子および光触媒酸化タングステン粒子の表面に電子吸引性物質またはその前駆体が担持される。担持された電子吸引性物質の前駆体は、担持されたのち、例えば光が照射されることなどによって電子吸引性物質に遷移する。
(Production method of photocatalytic functional products)
In the method for producing a photocatalytic functional product of the present invention, the above-described photocatalyst dispersion liquid of the present invention is applied to the surface of a substrate to volatilize the dispersion medium. By this method, a photocatalytic functional product having a photocatalyst layer containing photocatalytic titanium oxide particles, photocatalytic tungsten oxide particles, and a zirconium compound and having a photocatalytic action on the surface can be produced. Here, when the photocatalyst dispersion liquid contains an electron-withdrawing substance or a precursor thereof, the electron-withdrawing substance or a precursor thereof is formed on the surface of the photocatalytic titanium oxide particles and the photocatalytic tungsten oxide particles constituting the photocatalyst layer. Supported. The precursor of the supported electron-withdrawing substance is transferred to the electron-withdrawing substance, for example, when irradiated with light.

基材(製品)の表面に光触媒体層を形成するにあたり、光触媒体分散液の塗布は、従来公知の方法を適宜採用して行えばよい。光触媒体層の膜厚は、特に制限されるものではなく、通常、その用途等に応じて、数百nm〜数mmまで適宜設定すればよい。また、塗布後に分散媒を揮発させる方法についても、特に制限はなく、従来公知の方法を適宜採用することができる。   In forming the photocatalyst layer on the surface of the substrate (product), the photocatalyst dispersion liquid may be applied by appropriately employing a conventionally known method. The film thickness of the photocatalyst body layer is not particularly limited, and usually may be appropriately set from several hundred nm to several mm according to the application. Moreover, there is no restriction | limiting in particular also about the method of volatilizing a dispersion medium after application | coating, A conventionally well-known method can be employ | adopted suitably.

光触媒体層は、基材(製品)の内表面または外表面であれば、どの部分に形成されていてもよいが、例えば、光(可視光線)が照射される面であって、かつ悪臭物質が発生する箇所と連続または断続して空間的につながる面に形成されていることが好ましい。なお、基材(製品)の材質は、形成される光触媒体層を実用に耐えうる強度で保持できる限り、特に制限されるものではなく、例えば、プラスチック、金属、セラミックス、木材、コンクリート、紙など、あらゆる材料からなる製品を対象にすることができる。   The photocatalyst layer may be formed on any part as long as it is an inner surface or an outer surface of the base material (product). For example, the photocatalyst layer is a surface irradiated with light (visible light), and a malodorous substance. It is preferably formed on a surface that is continuously or intermittently connected to a place where the occurrence occurs. The material of the base material (product) is not particularly limited as long as the formed photocatalyst layer can be held at a strength that can be practically used. For example, plastic, metal, ceramics, wood, concrete, paper, etc. , Products made of any material can be targeted.

本発明にかかる光触媒機能製品の具体例としては、例えば、天井材、タイル、ガラス、壁紙、壁材、床等の建築資材、自動車内装材(自動車用インストルメントパネル、自動車用シート、自動車用天井材)、衣類やカーテン等の繊維製品などが挙げられる。   Specific examples of the photocatalytic functional product according to the present invention include, for example, building materials such as ceiling materials, tiles, glass, wallpaper, wall materials, floors, automobile interior materials (automobile instrument panels, automobile seats, automobile ceilings). Material), textile products such as clothing and curtains.

(揮発性有機化合物の分解方法)
本発明の揮発性有機化合物の分解方法は、基材の表面に上述した本発明の光触媒体分散液を塗布し、分散媒を揮発させて光触媒体層を形成し、この光触媒体層と気相中に含まれる揮発性有機化合物とを光照射下で接触させるものである。ここで、形成する光触媒体層は、上述した本発明の光触媒機能製品の製造方法によって形成される光触媒体層と同様であり、蛍光灯やナトリウムランプのような可視光源からの光照射により高い触媒作用を示す。したがって、この光触媒体層と気相中に含まれる揮発性有機化合物とを光照射下で接触させることにより、揮発性有機化合物を分解することができる。具体的には、照明のある屋内住環境に前記光触媒体層を形成するか、もしくは前記光触媒機能製品を照明のある屋内住環境に設置すれば、屋内照明による光照射により、揮発性有機化合物を分解することができる。
(Method for decomposing volatile organic compounds)
In the method for decomposing a volatile organic compound of the present invention, the above-described photocatalyst dispersion liquid of the present invention is applied to the surface of a substrate, and the dispersion medium is volatilized to form a photocatalyst layer. A volatile organic compound contained therein is brought into contact under light irradiation. Here, the photocatalyst layer to be formed is the same as the photocatalyst layer formed by the above-described method for producing a photocatalytic functional product of the present invention, and a high catalyst by light irradiation from a visible light source such as a fluorescent lamp or a sodium lamp. Shows the effect. Therefore, a volatile organic compound can be decomposed | disassembled by making this photocatalyst body layer and the volatile organic compound contained in a gaseous phase contact under light irradiation. Specifically, if the photocatalyst layer is formed in an indoor living environment with illumination, or the photocatalytic functional product is installed in an indoor living environment with illumination, a volatile organic compound is formed by light irradiation by indoor lighting. Can be disassembled.

本発明によって分解することのできる揮発性有機化合物としては、例えば、メタノール、エタノール、2−プロパノールなどのアルコール類;ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ベンズアルデヒドなどのアルデヒド類;ギ酸、酢酸、プロピオン酸などのカルボン酸類;ベンゼン、トルエン、キシレン、メチルベンゼン、トリメチルベンゼン、エチルベンゼン、スチレン、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン、クレゾール、アニリンなどの芳香族化合物;ジクロロエタン、トリクロロエタン、クロロホルムなどの有機塩素化合物;などが挙げられる。さらには、本発明によれば、黄色ブドウ球菌や大腸菌等の病原菌を死滅させることも可能である。   Examples of volatile organic compounds that can be decomposed according to the present invention include alcohols such as methanol, ethanol, and 2-propanol; aldehydes such as formaldehyde, acetaldehyde, propionaldehyde, and benzaldehyde; formic acid, acetic acid, propionic acid, and the like. Carboxylic acids; aromatic compounds such as benzene, toluene, xylene, methylbenzene, trimethylbenzene, ethylbenzene, styrene, chlorobenzene, dichlorobenzene, trichlorobenzene, cresol, aniline; organochlorine compounds such as dichloroethane, trichloroethane, chloroform, etc. It is done. Furthermore, according to the present invention, pathogenic bacteria such as Staphylococcus aureus and Escherichia coli can be killed.

以下、実施例によって本発明をより詳細に説明するが、本発明は、かかる実施例によって限定されるものではない。
なお、実施例および比較例における各物性の測定およびその光触媒活性の評価については、以下の方法で行った。
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited by this Example.
In addition, about the measurement of each physical property in an Example and a comparative example, and the evaluation of the photocatalytic activity, it performed with the following method.

<結晶型>
X線回折装置(リガク社製「RINT2000/PC」)を用いてX線回折スペクトルを測定し、そのスペクトルから結晶型を決定した。
<Crystal type>
An X-ray diffraction spectrum was measured using an X-ray diffractometer (“RINT2000 / PC” manufactured by Rigaku Corporation), and a crystal type was determined from the spectrum.

<BET比表面積>
比表面積測定装置(湯浅アイオニクス社製「モノソーブ」)を用いて窒素吸着法により測定した。
<BET specific surface area>
It measured by the nitrogen adsorption method using the specific surface area measuring apparatus ("Monosorb" by Yuasa Ionics Co., Ltd.).

<平均分散粒子径>
サブミクロン粒度分布測定装置(コールター社製「N4Plus」)を用いて試料の粒度分布を測定し、この装置に付属のソフトにより自動的に単分散モード解析して得られた結果を、平均分散粒子径(nm)とした。
<Average dispersed particle size>
Measure the particle size distribution of the sample using a submicron particle size distribution analyzer (Coulter's “N4Plus”), and use the software attached to this device to automatically analyze the monodisperse mode. The diameter (nm) was used.

<酸化チタン粒子および酸化タングステン粒子のゼータ電位>
レーザーゼータ電位計(大塚電子(株)製「ELS−6000」)を用い、塩酸を加えて水素イオン濃度をpH3.0に調整した塩化ナトリウム水溶液(塩化ナトリウム濃度0.01モル/L)中に光触媒酸化チタン粒子または光触媒酸化タングステン粒子を分散させて、ゼータ電位を測定した。光触媒酸化チタン粒子または光触媒酸化タングステン粒子のそれぞれの使用量に対する塩化ナトリウム水溶液の使用量は、250000質量倍とした。このゼータ電位がプラスであれば、粒子の表面はプラスに帯電しており、マイナスであれば、粒子の表面はマイナスに帯電している。
<Zeta potential of titanium oxide particles and tungsten oxide particles>
Using a laser zeta electrometer ("ELS-6000" manufactured by Otsuka Electronics Co., Ltd.), in a sodium chloride aqueous solution (sodium chloride concentration 0.01 mol / L) in which hydrochloric acid was added to adjust the hydrogen ion concentration to pH 3.0. The zeta potential was measured by dispersing photocatalytic titanium oxide particles or photocatalytic tungsten oxide particles. The amount of sodium chloride aqueous solution used relative to the amount of photocatalytic titanium oxide particles or photocatalytic tungsten oxide particles used was 250,000 times the mass. If the zeta potential is positive, the particle surface is positively charged. If the zeta potential is negative, the particle surface is negatively charged.

<蓚酸ジルコニウムのゼータ電位>
ゼータ電位測定装置(大塚電子(株)製「ELSZ−2」)を用い、ゾル状の蓚酸ジルコニウムのゼータ電位を測定した。このゼータ電位がプラスであれば、蓚酸ジルコニウムはプラスに帯電しており、マイナスであれば、蓚酸ジルコニウムはマイナスに帯電している。
<Zeta potential of zirconium oxalate>
Using a zeta potential measuring device (“ELSZ-2” manufactured by Otsuka Electronics Co., Ltd.), the zeta potential of sol-like zirconium oxalate was measured. If the zeta potential is positive, zirconium oxalate is positively charged; if it is negative, zirconium oxalate is negatively charged.

<光触媒活性の評価>
光触媒活性は、蛍光灯の光の照射下でのアセトアルデヒドの分解反応における一次反応速度定数を測定することにより評価した。
まず、光触媒活性測定用の試料を作製した。すなわち、ガラス製シャーレ(外径70mm、内径66mm、高さ14mm、容量約48mL)に、得られた光触媒体分散液を、底面の単位面積あたりの固形分換算の滴下量が1g/m2となるように滴下し、シャーレの底面全体に均一となるように展開した。次いで、このシャーレを110℃の乾燥機内で大気中1時間保持することにより乾燥させて、ガラス製シャーレの底面に光触媒体層を形成した。この光触媒体層に、紫外線強度が2mW/cm2となるようにブラックライトからの紫外線を16時間照射して、これを光触媒活性測定用サンプルとした。
<Evaluation of photocatalytic activity>
The photocatalytic activity was evaluated by measuring a first-order reaction rate constant in the decomposition reaction of acetaldehyde under irradiation of light from a fluorescent lamp.
First, a sample for measuring photocatalytic activity was prepared. That is, in a glass petri dish (outer diameter: 70 mm, inner diameter: 66 mm, height: 14 mm, capacity: about 48 mL), the obtained photocatalyst dispersion liquid has a dripping amount in terms of solid content per unit area of the bottom surface of 1 g / m 2 . It dripped so that it might become, and it developed so that it might become uniform to the whole bottom face of a petri dish. Next, this petri dish was dried by holding it in the air at 110 ° C. for 1 hour in the atmosphere to form a photocatalyst layer on the bottom of the glass petri dish. This photocatalyst layer was irradiated with ultraviolet light from black light for 16 hours so that the ultraviolet intensity was 2 mW / cm 2, and this was used as a sample for photocatalytic activity measurement.

次に、この光触媒活性測定用サンプルをガスバッグ(内容積1L)に入れて密閉し、次いで、このガスバッグ内を真空にした後、酸素と窒素との体積比が1:4である混合ガス600mLを封入し、さらにその中に、ガスバッグ内のアセトアルデヒド濃度が50ppm(体積比)となるように濃度1%(体積比)でアセトアルデヒドを含む窒素ガスを封入して、暗所で室温下、1時間保持した。その後、市販の白色蛍光灯を光源とし、測定サンプル近傍での照度が1000ルクス(ミノルタ社製照度計「T−10」で測定)となるようにガスバッグの外から蛍光灯の光を照射し、アセトアルデヒドの分解反応を行った。このとき、測定サンプル近傍の紫外光の強度は6.5μW/cm2(トプコン社製紫外線強度計「UVR−2」に、同社製受光部「UD−36」を取り付けて測定)であった。蛍光灯の光照射を開始してから1.5時間毎にガスバッグ内のガスをサンプリングし、アセトアルデヒドの濃度をガスクロマトグラフ(島津製作所社製「GC−14A」)にて測定した。そして、照射時間に対するアセトアルデヒドの残存濃度から一次反応速度定数を算出し、これをアセトアルデヒド分解能として評価した。この一次反応速度定数が大きいほど、アセトアルデヒドの分解能(すなわち光触媒活性)は高い。 Next, this sample for photocatalytic activity measurement is sealed in a gas bag (internal volume 1 L), and then the inside of the gas bag is evacuated, and then a mixed gas in which the volume ratio of oxygen to nitrogen is 1: 4. Enclose 600 mL, and further enclose nitrogen gas containing acetaldehyde at a concentration of 1% (volume ratio) so that the concentration of acetaldehyde in the gas bag is 50 ppm (volume ratio). Hold for 1 hour. Then, using a commercially available white fluorescent lamp as the light source, irradiate the fluorescent lamp light from the outside of the gas bag so that the illuminance near the measurement sample is 1000 lux (measured with the illuminometer “T-10” manufactured by Minolta). Then, acetaldehyde was decomposed. At this time, the intensity of the ultraviolet light in the vicinity of the measurement sample was 6.5 μW / cm 2 (measured by attaching the light receiving unit “UD-36” manufactured by the company to the UV intensity meter “UVR-2” manufactured by Topcon Corporation). The gas in the gas bag was sampled every 1.5 hours after the light irradiation of the fluorescent lamp was started, and the concentration of acetaldehyde was measured with a gas chromatograph (“GC-14A” manufactured by Shimadzu Corporation). Then, a first-order reaction rate constant was calculated from the residual concentration of acetaldehyde with respect to the irradiation time, and this was evaluated as acetaldehyde resolution. The larger the first-order rate constant, the higher the resolution (ie photocatalytic activity) of acetaldehyde.

(製造例1−光触媒酸化チタン粒子分散液の調製)
光触媒酸化チタン粒子として、硫酸チタニルの水溶液を加水分解し、濾取して得られたメタチタン酸の固形物(ケーキ)(TiO2換算でチタン成分を45質量%含有)を用いた。このメタチタン酸の固形物(ケーキ)2.2kgを、蓚酸二水和物(和光純薬工業製)158gを水1.88kgに溶解させることにより調製した蓚酸水溶液中に加え、混合して混合物を得た。この混合物における蓚酸の含有量は、メタチタン酸1モルに対して0.1モルである。
(Production Example 1-Preparation of photocatalytic titanium oxide particle dispersion)
As the photocatalytic titanium oxide particles, a solid solution (cake) of metatitanic acid (containing 45 mass% of titanium component in terms of TiO 2 ) obtained by hydrolyzing an aqueous solution of titanyl sulfate and collecting by filtration was used. This metatitanic acid solid (cake) (2.2 kg) was added to an aqueous oxalic acid solution prepared by dissolving 158 g of oxalic acid dihydrate (manufactured by Wako Pure Chemical Industries, Ltd.) in 1.88 kg of water. Obtained. The content of succinic acid in this mixture is 0.1 mol with respect to 1 mol of metatitanic acid.

上記で得られた混合物を、媒体攪拌式分散機(コトブキ技研社製「ウルトラアペックスミル UAM−1 1009」)を用いて下記の条件で分散処理して、光触媒酸化チタン粒子分散液を得た。この光触媒酸化チタン粒子分散液100質量部中に含まれる光触媒酸化チタン粒子は23質量部である(固形分濃度は23質量%)。
分散媒体:直径0.05mmのジルコニア製ビーズ1.85kg
攪拌速度:周速12.6m/秒
流速:0.25L/分
水の添加:処理開始17分後に水5kgを追加添加
処理時間:合計約90分
The mixture obtained above was subjected to a dispersion treatment under the following conditions using a medium stirring type disperser (“Ultra Apex Mill UAM-1 1009” manufactured by Kotobuki Giken Co., Ltd.) to obtain a photocatalytic titanium oxide particle dispersion. The photocatalytic titanium oxide particles contained in 100 parts by mass of the photocatalytic titanium oxide particle dispersion are 23 parts by mass (solid content concentration is 23% by mass).
Dispersion medium: 1.85 kg of zirconia beads having a diameter of 0.05 mm
Stirring speed: peripheral speed 12.6 m / sec Flow rate: 0.25 L / min Water addition: 5 kg of water added after 17 minutes of treatment Treatment time: about 90 minutes in total

得られた光触媒酸化チタン粒子分散液における光触媒酸化チタン粒子の平均分散粒子径は55nmであり、分散液中の光触媒酸化チタン粒子のゼータ電位は−10.5mVであった。また、得られた分散液の水素イオン濃度はpH1.5であった。この光触媒酸化チタン粒子分散液の一部を真空乾燥して固形分を得たところ、該固形分のBET比表面積は301m2/gであった。なお、分散処理の前の混合物中の固形分と、分散処理の後の分散液中の固形分とについて、X線回折スペクトルをそれぞれ測定して比較したところ、どちらも結晶型はアナターゼ型であり、分散処理による結晶型の変化は見られなかった。 The average dispersed particle size of the photocatalytic titanium oxide particles in the obtained photocatalytic titanium oxide particle dispersion was 55 nm, and the zeta potential of the photocatalytic titanium oxide particles in the dispersion was −10.5 mV. Further, the hydrogen ion concentration of the obtained dispersion was pH 1.5. When a part of this photocatalytic titanium oxide particle dispersion was vacuum dried to obtain a solid content, the BET specific surface area of the solid content was 301 m 2 / g. The solid content in the mixture before the dispersion treatment and the solid content in the dispersion after the dispersion treatment were measured and compared with each other. As a result, both crystal forms were anatase. The crystal form was not changed by the dispersion treatment.

(製造例2−光触媒酸化タングステン粒子分散液の調製)
光触媒酸化タングステン粒子である酸化タングステン粉末(高純度化学社製;純度99.99%)1kgをイオン交換水4kg中に加え、混合して混合物を得た。
上記で得られた混合物を、媒体攪拌式分散機(コトブキ技研社製「ウルトラアペックスミル UAM−1 1009」)を用いて下記の条件で分散処理して、光触媒酸化タングステン粒子分散液を得た。
分散媒体:直径0.05mmのジルコニア製ビーズ1.85kg
攪拌速度:周速12.6m/秒
流速:0.25L/分
処理時間:合計約50分
(Production Example 2-Preparation of photocatalytic tungsten oxide particle dispersion)
1 kg of tungsten oxide powder (manufactured by Koyo Chemical Co., Ltd .; purity 99.99%) as photocatalytic tungsten oxide particles was added to 4 kg of ion-exchanged water and mixed to obtain a mixture.
The mixture obtained above was subjected to a dispersion treatment under the following conditions using a medium stirring type disperser (“Ultra Apex Mill UAM-1 1009” manufactured by Kotobuki Giken Co., Ltd.) to obtain a photocatalytic tungsten oxide particle dispersion.
Dispersion medium: 1.85 kg of zirconia beads having a diameter of 0.05 mm
Stirring speed: peripheral speed 12.6 m / sec Flow rate: 0.25 L / min Processing time: about 50 minutes in total

得られた光触媒酸化タングステン粒子分散液における光触媒酸化タングステン粒子の平均分散粒子径は96nmであり、分散液中の光触媒酸化タングステン粒子のゼータ電位は−25.5mVであった。また、得られた分散液の水素イオン濃度はpH2.2であった。この光触媒酸化タングステン粒子分散液の一部を真空乾燥して固形分を得たところ、該固形分のBET比表面積は37m2/gであった。なお、分散処理の前の混合物中の固形分と、分散処理の後の分散液中の固形分とについて、X線回折スペクトルをそれぞれ測定して比較したところ、どちらも結晶型はWO3であり、分散処理による結晶型の変化は見られなかった。 The average dispersed particle size of the photocatalytic tungsten oxide particles in the obtained photocatalytic tungsten oxide particle dispersion was 96 nm, and the zeta potential of the photocatalytic tungsten oxide particles in the dispersion was −25.5 mV. Further, the hydrogen ion concentration of the obtained dispersion was pH 2.2. When a part of this photocatalytic tungsten oxide particle dispersion was vacuum dried to obtain a solid content, the BET specific surface area of the solid content was 37 m 2 / g. Incidentally, the solid content in the mixture before the dispersing treatment, for the solids in the dispersion liquid after the dispersing treatment were compared by measuring the X-ray diffraction spectrum, respectively, both the crystal structures is an WO 3 The crystal form was not changed by the dispersion treatment.

(製造例3−蓚酸ジルコニウム(a)の調製)
水酸化ジルコニウム100g(ZrO2換算で31g)を純水100g中に添加し、充分に撹拌して分散液とした。次に、この分散液に、1回目の蓚酸添加として蓚酸二水和物31.7g(蓚酸/Zr(モル比)=1.0に相当)を添加し、90℃で15分間加熱した。次いで、2回目の蓚酸添加として蓚酸二水和物15.8g(蓚酸/Zr(モル比)=0.5に相当)を添加し、90℃で15分間加熱して、ゾル状の蓚酸ジルコニウム(a)を得た。この蓚酸ジルコニウム中の蓚酸/Zr(モル比)は1.5であった。また、この蓚酸ジルコニウムのゼータ電位は−61mVであった。
(Production Example 3-Preparation of zirconium oxalate (a))
Zirconium hydroxide 100 g (31 g in terms of ZrO 2 ) was added to 100 g of pure water and stirred sufficiently to obtain a dispersion. Next, 31.7 g of oxalic acid dihydrate (corresponding to oxalic acid / Zr (molar ratio) = 1.0) was added to the dispersion as a first addition of oxalic acid, and the mixture was heated at 90 ° C. for 15 minutes. Then, as the second addition of oxalic acid, 15.8 g of oxalic acid dihydrate (corresponding to oxalic acid / Zr (molar ratio) = 0.5) was added and heated at 90 ° C. for 15 minutes to form sol zirconium oxalate ( a) was obtained. The oxalic acid / Zr (molar ratio) in this zirconium oxalate was 1.5. The zeta potential of this zirconium oxalate was −61 mV.

(製造例4−蓚酸ジルコニウム(b)の調製)
製造例1で得られたゾル状の蓚酸ジルコニウム(a)100g(ZrO2換算で約12g)に純水500gを加えた後、限外ろ過膜(分画分子量:6000)を用いて限外ろ過を行う操作を4回繰り返すことにより500gの分散媒を除去して、100gのゾル状の蓚酸ジルコニウム(b)を得た。この蓚酸ジルコニウム中の蓚酸/Zr(モル比)は、限外ろ過によって除去した分散媒の蓚酸濃度から計算したところ、1.3であった。また、この蓚酸ジルコニウムのゼータ電位は−48mVであった。
(Production Example 4-Preparation of zirconium oxalate (b))
After adding 500 g of pure water to 100 g of the sol-like zirconium oxalate (a) obtained in Production Example 1 (about 12 g in terms of ZrO 2 ), ultrafiltration is performed using an ultrafiltration membrane (fraction molecular weight: 6000). By repeating this operation 4 times, 500 g of the dispersion medium was removed, and 100 g of sol-shaped zirconium oxalate (b) was obtained. The oxalic acid / Zr (molar ratio) in the zirconium oxalate was 1.3 when calculated from the oxalic acid concentration of the dispersion medium removed by ultrafiltration. The zeta potential of this zirconium oxalate was -48 mV.

(実施例1)
製造例1で得た光触媒酸化チタン粒子分散液と、製造例2で得た光触媒酸化タングステン粒子分散液とを、光触媒酸化チタン粒子と光触媒酸化タングステン粒子との比率が1:1(質量比)となるように混合し、得られた混合液100質量部に対してヘキサクロロ白金酸(H2PtCl6)の水溶液(白金原子換算での含有量0.4質量%)を加えた。このとき、ヘキサクロロ白金酸の使用量は、白金原子換算で、光触媒酸化チタン粒子および光触媒酸化タングステン粒子の合計量100質量部に対して0.1質量部とした。次いで、さらに製造例3で得た蓚酸ジルコニウム(a)を、ZrO2換算で、光触媒酸化チタン粒子および光触媒酸化タングステン粒子の合計量に対して0.05質量倍となるように混合して、光触媒体分散液を得た。この光触媒体分散液100質量部中、光触媒酸化チタン粒子と光触媒酸化タングステン粒子との合計量は4.76質量部であり、蓚酸ジルコニウムの量は、ZrO2換算で0.24質量部であった。
得られた光触媒体分散液を20℃で6時間保管したところ、保管中に固液分離は見られなかった。また、得られた光触媒体分散液を用いて形成した光触媒体層の光触媒活性を評価したところ、一次反応速度定数は0.490h-1であった。
Example 1
The photocatalytic titanium oxide particle dispersion liquid obtained in Production Example 1 and the photocatalytic tungsten oxide particle dispersion liquid obtained in Production Example 2 have a 1: 1 ratio (mass ratio) of photocatalytic titanium oxide particles and photocatalytic tungsten oxide particles. Then, an aqueous solution of hexachloroplatinic acid (H 2 PtCl 6 ) (content in terms of platinum atom: 0.4% by mass) was added to 100 parts by mass of the obtained mixture. At this time, the usage-amount of hexachloroplatinic acid was 0.1 mass part with respect to 100 mass parts of total amounts of a photocatalyst titanium oxide particle and a photocatalyst tungsten oxide particle in conversion of a platinum atom. Next, the zirconium oxalate (a) obtained in Production Example 3 was further mixed by 0.05 mass times with respect to the total amount of the photocatalytic titanium oxide particles and the photocatalytic tungsten oxide particles in terms of ZrO 2 to obtain a photocatalyst. A body dispersion was obtained. In 100 parts by mass of this photocatalyst dispersion, the total amount of the photocatalytic titanium oxide particles and the photocatalytic tungsten oxide particles was 4.76 parts by mass, and the amount of zirconium oxalate was 0.24 parts by mass in terms of ZrO 2 . .
When the obtained photocatalyst dispersion liquid was stored at 20 ° C. for 6 hours, no solid-liquid separation was observed during storage. Moreover, when the photocatalytic activity of the photocatalyst layer formed using the obtained photocatalyst dispersion liquid was evaluated, the first-order rate constant was 0.490 h −1 .

(実施例2)
実施例1において、蓚酸ジルコニウム(a)の使用量を、ZrO2換算で、光触媒酸化チタン粒子および光触媒酸化タングステン粒子の合計量に対して0.1質量倍に変更したこと以外は、実施例1と同様にして、光触媒体分散液を得た。この光触媒体分散液100質量部中、光触媒酸化チタン粒子と光触媒酸化タングステン粒子との合計量は4.55質量部であり、蓚酸ジルコニウムの量は、ZrO2換算で0.45質量部であった。
得られた光触媒体分散液を20℃で6時間保管したところ、保管中に固液分離は見られなかった。また、得られた光触媒体分散液を用いて形成した光触媒体層の光触媒活性を評価したところ、一次反応速度定数は0.606h-1であった。
(Example 2)
Example 1 except that the amount of zirconium oxalate (a) used in Example 1 was changed to 0.1 mass times the total amount of photocatalytic titanium oxide particles and photocatalytic tungsten oxide particles in terms of ZrO 2. In the same manner as above, a photocatalyst dispersion liquid was obtained. In 100 parts by mass of this photocatalyst dispersion, the total amount of photocatalytic titanium oxide particles and photocatalytic tungsten oxide particles was 4.55 parts by mass, and the amount of zirconium oxalate was 0.45 parts by mass in terms of ZrO 2 . .
When the obtained photocatalyst dispersion liquid was stored at 20 ° C. for 6 hours, no solid-liquid separation was observed during storage. Further, when the photocatalytic activity of the photocatalyst layer formed using the obtained photocatalyst dispersion liquid was evaluated, the first-order rate constant was 0.606 h −1 .

(実施例3)
実施例1において、蓚酸ジルコニウム(a)の使用量を、ZrO2換算で、光触媒酸化チタン粒子および光触媒酸化タングステン粒子の合計量に対して0.2質量倍に変更したこと以外は、実施例1と同様にして、光触媒体分散液を得た。この光触媒体分散液100質量部中、光触媒酸化チタン粒子と光触媒酸化タングステン粒子との合計量は4.16質量部であり、蓚酸ジルコニウムの量は、ZrO2換算で0.84質量部であった。
得られた光触媒体分散液を20℃で6時間保管したところ、保管中に固液分離は見られなかった。また、得られた光触媒体分散液を用いて形成した光触媒体層の光触媒活性を評価したところ、一次反応速度定数は0.508h-1であった。
(Example 3)
Example 1 except that the amount of zirconium oxalate (a) used in Example 1 was changed to 0.2 mass times the total amount of photocatalytic titanium oxide particles and photocatalytic tungsten oxide particles in terms of ZrO 2. In the same manner as above, a photocatalyst dispersion liquid was obtained. In 100 parts by mass of this photocatalyst dispersion, the total amount of photocatalytic titanium oxide particles and photocatalytic tungsten oxide particles was 4.16 parts by mass, and the amount of zirconium oxalate was 0.84 parts by mass in terms of ZrO 2 . .
When the obtained photocatalyst dispersion liquid was stored at 20 ° C. for 6 hours, no solid-liquid separation was observed during storage. When the photocatalytic activity of the photocatalyst layer formed using the photocatalyst dispersion liquid was evaluated, the first-order rate constant was 0.508 h −1 .

(実施例4)
実施例1において、蓚酸ジルコニウム(a)に代えて製造例4で得た蓚酸ジルコニウム(b)を、ZrO2換算で、光触媒酸化チタン粒子および光触媒酸化タングステン粒子の合計量に対して0.05質量倍となるように用いたこと以外は、実施例1と同様にして、光触媒体分散液を得た。この光触媒体分散液100質量部中、光触媒酸化チタン粒子と光触媒酸化タングステン粒子との合計量は4.76質量部であり、蓚酸ジルコニウムの量は、ZrO2換算で0.24質量部であった。
得られた光触媒体分散液を20℃で6時間保管したところ、保管中に固液分離は見られなかった。また、得られた光触媒体分散液を用いて形成した光触媒体層の光触媒活性を評価したところ、一次反応速度定数は0.346h-1であった。
Example 4
In Example 1, in place of zirconium oxalate (a), zirconium oxalate (b) obtained in Production Example 4 was converted to ZrO 2 in an amount of 0.05 mass with respect to the total amount of photocatalytic titanium oxide particles and photocatalytic tungsten oxide particles. A photocatalyst dispersion liquid was obtained in the same manner as in Example 1 except that it was used so as to be doubled. In 100 parts by mass of this photocatalyst dispersion, the total amount of the photocatalytic titanium oxide particles and the photocatalytic tungsten oxide particles was 4.76 parts by mass, and the amount of zirconium oxalate was 0.24 parts by mass in terms of ZrO 2 . .
When the obtained photocatalyst dispersion liquid was stored at 20 ° C. for 6 hours, no solid-liquid separation was observed during storage. Moreover, when the photocatalytic activity of the photocatalyst layer formed using the obtained photocatalyst dispersion liquid was evaluated, the first-order rate constant was 0.346 h −1 .

(実施例5)
実施例1において、蓚酸ジルコニウム(a)に代えて製造例4で得た蓚酸ジルコニウム(b)を、ZrO2換算で、光触媒酸化チタン粒子および光触媒酸化タングステン粒子の合計量に対して0.1質量倍となるように用いたこと以外は、実施例1と同様にして、光触媒体分散液を得た。この光触媒体分散液100質量部中、光触媒酸化チタン粒子と光触媒酸化タングステン粒子との合計量は4.55質量部であり、蓚酸ジルコニウムの量は、ZrO2換算で0.45質量部であった。
得られた光触媒体分散液を20℃で6時間保管したところ、保管中に固液分離は見られなかった。また、得られた光触媒体分散液を用いて形成した光触媒体層の光触媒活性を評価したところ、一次反応速度定数は0.337h-1であった。
(Example 5)
In Example 1, instead of zirconium oxalate (a), zirconium oxalate (b) obtained in Production Example 4 was converted to ZrO 2 in an amount of 0.1 mass relative to the total amount of photocatalytic titanium oxide particles and photocatalytic tungsten oxide particles. A photocatalyst dispersion liquid was obtained in the same manner as in Example 1 except that it was used so as to be doubled. In 100 parts by mass of this photocatalyst dispersion, the total amount of photocatalytic titanium oxide particles and photocatalytic tungsten oxide particles was 4.55 parts by mass, and the amount of zirconium oxalate was 0.45 parts by mass in terms of ZrO 2 . .
When the obtained photocatalyst dispersion liquid was stored at 20 ° C. for 6 hours, no solid-liquid separation was observed during storage. Moreover, when the photocatalytic activity of the photocatalyst layer formed using the obtained photocatalyst dispersion liquid was evaluated, the first-order rate constant was 0.337 h −1 .

(実施例6)
実施例1において、蓚酸ジルコニウム(a)に代えて製造例4で得た蓚酸ジルコニウム(b)を、ZrO2換算で、光触媒酸化チタン粒子および光触媒酸化タングステン粒子の合計量に対して0.2質量倍となるように用いたこと以外は、実施例1と同様にして、光触媒体分散液を得た。この光触媒体分散液100質量部中、光触媒酸化チタン粒子と光触媒酸化タングステン粒子との合計量は4.16質量部であり、蓚酸ジルコニウムの量は、ZrO2換算で0.84質量部であった。
得られた光触媒体分散液を20℃で6時間保管したところ、保管中に固液分離は見られなかった。また、得られた光触媒体分散液を用いて形成した光触媒体層の光触媒活性を評価したところ、一次反応速度定数は0.385h-1であった。
(Example 6)
In Example 1, instead of zirconium oxalate (a), zirconium oxalate (b) obtained in Production Example 4 was 0.2 mass in terms of ZrO 2 with respect to the total amount of photocatalytic titanium oxide particles and photocatalytic tungsten oxide particles. A photocatalyst dispersion liquid was obtained in the same manner as in Example 1 except that it was used so as to be doubled. In 100 parts by mass of this photocatalyst dispersion, the total amount of photocatalytic titanium oxide particles and photocatalytic tungsten oxide particles was 4.16 parts by mass, and the amount of zirconium oxalate was 0.84 parts by mass in terms of ZrO 2 . .
When the obtained photocatalyst dispersion liquid was stored at 20 ° C. for 6 hours, no solid-liquid separation was observed during storage. Moreover, when the photocatalytic activity of the photocatalyst layer formed using the obtained photocatalyst dispersion liquid was evaluated, the first-order rate constant was 0.385 h −1 .

(比較例1)
実施例1において、蓚酸ジルコニウム(a)を添加しないこと以外は、実施例1と同様にして、光触媒体分散液を得た。この光触媒体分散液100質量部中、光触媒酸化チタン粒子と光触媒酸化タングステン粒子との合計量は5.0質量部であった。
得られた光触媒体分散液を20℃で6時間保管したところ、保管中に固液分離は見られなかった。また、得られた光触媒体分散液を用いて形成した光触媒体層の光触媒活性を評価したところ、一次反応速度定数は0.295h-1であった。
(Comparative Example 1)
In Example 1, a photocatalyst dispersion liquid was obtained in the same manner as Example 1 except that zirconium oxalate (a) was not added. In 100 parts by mass of this photocatalyst dispersion, the total amount of photocatalytic titanium oxide particles and photocatalytic tungsten oxide particles was 5.0 parts by mass.
When the obtained photocatalyst dispersion liquid was stored at 20 ° C. for 6 hours, no solid-liquid separation was observed during storage. Further, when the photocatalytic activity of the photocatalyst layer formed using the obtained photocatalyst dispersion liquid was evaluated, the first-order rate constant was 0.295 h −1 .

(比較例2)
実施例1において、製造例1で得た光触媒酸化チタン粒子分散液に代えて、市販の酸化チタン粒子分散液(石原産業社製「STS−01」;硝酸含有、平均分散粒径:50nm、固形分濃度:30質量%)を製造例1で得た光触媒酸化チタン粒子分散液と同じ固形分濃度になるよう水で希釈して用いたこと以外は、実施例1と同様にして、光触媒体分散液を得た。この光触媒体分散液100質量部中、光触媒酸化チタン粒子と光触媒酸化タングステン粒子との合計量は4.76質量部であり、蓚酸ジルコニウムの量は、ZrO2換算で0.24質量部であった。なお、ここで用いた酸化チタン粒子分散液(STS−01)に含まれる酸化チタン粒子のゼータ電位は+40.1mVであった。
得られた光触媒体分散液を20℃で6時間保管したところ、保管中に凝集粒子が生成し、固液分離が起こった。
(Comparative Example 2)
In Example 1, instead of the photocatalytic titanium oxide particle dispersion obtained in Production Example 1, a commercially available titanium oxide particle dispersion (“STS-01” manufactured by Ishihara Sangyo Co., Ltd .; nitric acid-containing, average dispersed particle diameter: 50 nm, solid The dispersion of the photocatalyst was carried out in the same manner as in Example 1 except that it was diluted with water so as to have the same solid content concentration as the photocatalytic titanium oxide particle dispersion obtained in Production Example 1. A liquid was obtained. In 100 parts by mass of this photocatalyst dispersion, the total amount of the photocatalytic titanium oxide particles and the photocatalytic tungsten oxide particles was 4.76 parts by mass, and the amount of zirconium oxalate was 0.24 parts by mass in terms of ZrO 2 . . In addition, the zeta potential of the titanium oxide particles contained in the titanium oxide particle dispersion (STS-01) used here was +40.1 mV.
When the obtained photocatalyst dispersion liquid was stored at 20 ° C. for 6 hours, aggregated particles were generated during storage, and solid-liquid separation occurred.

(比較例3)
実施例2において、製造例1で得た光触媒酸化チタン粒子分散液に代えて、比較例2と同じ市販の酸化チタン粒子分散液(STS−01)を製造例1で得た光触媒酸化チタン粒子分散液と同じ固形分濃度になるよう水で希釈して用いたこと以外は、実施例2と同様にして、光触媒体分散液を得た。この光触媒体分散液100質量部中、光触媒酸化チタン粒子と光触媒酸化タングステン粒子との合計量は4.55質量部であり、蓚酸ジルコニウムの量は、ZrO2換算で0.45質量部であった。
得られた光触媒体分散液を20℃で6時間保管したところ、保管中に凝集粒子が生成し、固液分離が起こった。
(Comparative Example 3)
In Example 2, instead of the photocatalytic titanium oxide particle dispersion obtained in Production Example 1, the same commercially available titanium oxide particle dispersion (STS-01) as Comparative Example 2 was obtained in Production Example 1. A photocatalyst dispersion liquid was obtained in the same manner as in Example 2 except that it was diluted with water so as to have the same solid content concentration as the liquid. In 100 parts by mass of this photocatalyst dispersion, the total amount of photocatalytic titanium oxide particles and photocatalytic tungsten oxide particles was 4.55 parts by mass, and the amount of zirconium oxalate was 0.45 parts by mass in terms of ZrO 2 . .
When the obtained photocatalyst dispersion liquid was stored at 20 ° C. for 6 hours, aggregated particles were generated during storage, and solid-liquid separation occurred.

(比較例4)
実施例3において、製造例1で得た光触媒酸化チタン粒子分散液に代えて、比較例2と同じ市販の酸化チタン粒子分散液(STS−01)を製造例1で得た光触媒酸化チタン粒子分散液と同じ固形分濃度になるよう水で希釈して用いたこと以外は、実施例3と同様にして、光触媒体分散液を得た。この光触媒体分散液100質量部中、光触媒酸化チタン粒子と光触媒酸化タングステン粒子との合計量は4.16質量部であり、蓚酸ジルコニウムの量は、ZrO2換算で0.84質量部であった。
得られた光触媒体分散液を20℃で6時間保管したところ、保管中に凝集粒子が生成し、固液分離が起こった。
(Comparative Example 4)
In Example 3, in place of the photocatalytic titanium oxide particle dispersion obtained in Production Example 1, the same commercially available titanium oxide particle dispersion (STS-01) as Comparative Example 2 was obtained in Production Example 1. A photocatalyst dispersion liquid was obtained in the same manner as in Example 3 except that it was diluted with water so as to have the same solid content concentration as the liquid. In 100 parts by mass of this photocatalyst dispersion, the total amount of photocatalytic titanium oxide particles and photocatalytic tungsten oxide particles was 4.16 parts by mass, and the amount of zirconium oxalate was 0.84 parts by mass in terms of ZrO 2 . .
When the obtained photocatalyst dispersion liquid was stored at 20 ° C. for 6 hours, aggregated particles were generated during storage, and solid-liquid separation occurred.

Claims (7)

光触媒酸化チタン粒子および光触媒酸化タングステン粒子が分散媒中に分散されてなり、光触媒酸化チタン粒子および光触媒酸化タングステン粒子は表面が互いに同じ極性に帯電しており、さらに、この光触媒酸化チタン粒子および光触媒酸化タングステン粒子と同じ極性に帯電するジルコニウム化合物を含むことを特徴とする光触媒体分散液。   Photocatalytic titanium oxide particles and photocatalytic tungsten oxide particles are dispersed in a dispersion medium, and the surfaces of the photocatalytic titanium oxide particles and the photocatalytic tungsten oxide particles are charged to the same polarity. A photocatalyst dispersion liquid comprising a zirconium compound charged to the same polarity as tungsten particles. 電子吸引性物質またはその前駆体を含有する請求項1に記載の光触媒体分散液。   The photocatalyst dispersion liquid according to claim 1, comprising an electron-withdrawing substance or a precursor thereof. 電子吸引性物質またはその前駆体が、Cu、Pt、Au、Pd、Ag、Fe、Nb、Ru、Ir、RhおよびCoから選ばれる少なくとも1種の金属原子を含有してなるものである請求項1または2に記載の光触媒体分散液。   The electron withdrawing substance or a precursor thereof contains at least one metal atom selected from Cu, Pt, Au, Pd, Ag, Fe, Nb, Ru, Ir, Rh and Co. The photocatalyst dispersion liquid according to 1 or 2. ジルコニウム化合物の酸化物換算での含有量が、光触媒酸化チタン粒子および光触媒酸化タングステン粒子の合計量に対して0.02〜0.3質量倍である請求項1〜3のいずれかに記載の光触媒体分散液。   The photocatalyst according to any one of claims 1 to 3, wherein the content of the zirconium compound in terms of oxide is 0.02 to 0.3 times the total amount of the photocatalytic titanium oxide particles and the photocatalytic tungsten oxide particles. Body dispersion. ジルコニウム化合物が蓚酸ジルコニウムである請求項1〜4のいずれかに記載の光触媒体分散液。   The photocatalyst dispersion liquid according to any one of claims 1 to 4, wherein the zirconium compound is zirconium oxalate. 基材の表面に請求項1〜5のいずれかに記載の光触媒体分散液を塗布し、分散媒を揮発させることを特徴とする光触媒機能製品の製造方法。   A method for producing a photocatalytic functional product, wherein the photocatalyst dispersion liquid according to any one of claims 1 to 5 is applied to the surface of a substrate to volatilize the dispersion medium. 基材の表面に請求項1〜5のいずれかに記載の光触媒体分散液を塗布し、分散媒を揮発させて光触媒体層を形成し、この光触媒体層と気相中に含まれる揮発性有機化合物とを光照射下で接触させることを特徴とする揮発性有機化合物の分解方法。   The photocatalyst dispersion liquid according to any one of claims 1 to 5 is applied to the surface of the substrate, and the dispersion medium is volatilized to form a photocatalyst layer, and the photocatalyst layer and the volatile property contained in the gas phase A method for decomposing a volatile organic compound, comprising contacting the organic compound with light irradiation.
JP2008295396A 2008-11-19 2008-11-19 Photocatalytic body dispersion Pending JP2010120805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008295396A JP2010120805A (en) 2008-11-19 2008-11-19 Photocatalytic body dispersion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008295396A JP2010120805A (en) 2008-11-19 2008-11-19 Photocatalytic body dispersion

Publications (2)

Publication Number Publication Date
JP2010120805A true JP2010120805A (en) 2010-06-03
JP2010120805A5 JP2010120805A5 (en) 2011-08-11

Family

ID=42322481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008295396A Pending JP2010120805A (en) 2008-11-19 2008-11-19 Photocatalytic body dispersion

Country Status (1)

Country Link
JP (1) JP2010120805A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013179681A1 (en) * 2012-06-01 2013-12-05 株式会社 東芝 Aqueous dispersion, and coating using same, photocatalytic film, and product
JP6103414B1 (en) * 2016-08-12 2017-03-29 株式会社アンディーン Cockroach repellent paint

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005231935A (en) * 2004-02-18 2005-09-02 Taki Chem Co Ltd Tungsten oxide-containing titanium oxide sol, method of manufacturing the same, coating material and optical functional body
JP2005350643A (en) * 2004-03-17 2005-12-22 Sumitomo Chemical Co Ltd Photocatalytic coating liquid
JP2010270094A (en) * 2008-06-09 2010-12-02 Sumitomo Chemical Co Ltd Zirconium oxalate sol

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005231935A (en) * 2004-02-18 2005-09-02 Taki Chem Co Ltd Tungsten oxide-containing titanium oxide sol, method of manufacturing the same, coating material and optical functional body
JP2005350643A (en) * 2004-03-17 2005-12-22 Sumitomo Chemical Co Ltd Photocatalytic coating liquid
JP2010270094A (en) * 2008-06-09 2010-12-02 Sumitomo Chemical Co Ltd Zirconium oxalate sol

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013179681A1 (en) * 2012-06-01 2013-12-05 株式会社 東芝 Aqueous dispersion, and coating using same, photocatalytic film, and product
CN103796755A (en) * 2012-06-01 2014-05-14 株式会社东芝 Aqueous dispersion, and coating using same, photocatalytic film, and product
JPWO2013179681A1 (en) * 2012-06-01 2016-01-18 株式会社東芝 Aqueous dispersion and paint, photocatalyst film and product using the same
JP2016106025A (en) * 2012-06-01 2016-06-16 株式会社東芝 Aqueous dispersion liquid, coating material using the same, and method for producing photocatalyst film
CN106238036A (en) * 2012-06-01 2016-12-21 株式会社东芝 Aqueous dispersion, the use coating of aqueous dispersion, photocatalysis membrana and goods
US10010869B2 (en) 2012-06-01 2018-07-03 Kabushiki Kaisha Toshiba Aqueous dispersion and coating material using the same, and photocatalytic film and product
US10335771B2 (en) 2012-06-01 2019-07-02 Kabushiki Kaisha Toshiba Aqueous dispersion and coating material using the same, and photocatalytic film and product
JP6103414B1 (en) * 2016-08-12 2017-03-29 株式会社アンディーン Cockroach repellent paint
JP2018024623A (en) * 2016-08-12 2018-02-15 株式会社アンディーン Cockroach repellent coating material
WO2018029732A1 (en) * 2016-08-12 2018-02-15 株式会社アンディーン Cockroach-repellent coating material

Similar Documents

Publication Publication Date Title
JP2011005475A (en) Photocatalyst dispersion liquid and photocatalyst functional product using the same
JP2011036770A (en) Method for producing noble metal-supported photocatalyst particle
US8298979B2 (en) Zirconium oxalate sol
JP5512934B2 (en) Sol comprising amorphous Zr-O-based particles as a dispersoid, method for producing the same, photocatalyst coating liquid using the sol as a binder, and method for producing a photocatalytic functional product coated with the photocatalyst coating liquid
US20090305879A1 (en) Photocatalyst dispersion liquid and process for producing the same
JP2010180303A (en) Hydrophilizing agent, method of producing the same, and use of the same
JP2011132626A (en) Textile product supporting photocatalyst
JP2011078930A (en) Photocatalyst dispersion and photocatalyst functional product using the same
JP5313051B2 (en) Zirconium oxalate sol
JP2011020009A (en) Photocatalyst body for decomposing volatile aromatic compound, and functional product of photocatalyst
JP2011178930A (en) Photocatalytic coating liquid and article having photocatalytic layer coated with the coating liquid
JP5113723B2 (en) Photocatalyst dispersion
JP2010120805A (en) Photocatalytic body dispersion
JP2010214309A (en) Photocatalytic body-dispersed liquid and application thereof
JP2010215781A (en) Precoating liquid for photocatalyst layer, wallpaper intermediate including photocatalyst layer with precoating liquid applied thereto, and wallpaper including photocatalyst layer
JP5342370B2 (en) Precoat liquid for underlayer of photocatalyst layer, wallpaper intermediate with photocatalyst layer, and wallpaper with photocatalyst layer
JP2011050802A (en) Method for producing dispersion liquid of noble metal-deposited photocatalyst particle
JP5512223B2 (en) Noble metal-supported photocatalyst particle dispersion and photocatalyst functional product
JP2010270543A (en) Product with photocatalytic body layer
JP2012025849A (en) Photocatalyst coating liquid and product having photocatalytic function
CA2668256A1 (en) Photocatalyst dispersion liquid and process for producing the same
JP2010214234A (en) Product having photocatalytic body layer, and wallpaper having photocatalytic body layer
JP2011092797A (en) Hydrophilizing agent, method for producing the same, and product having hydrophilic function
JP2011092847A (en) Dispersion of noble-metal supporting photocatalyst particles, and functional product of photocatalyst

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110627

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121023