JP2010112565A - Heat exchanger - Google Patents
Heat exchanger Download PDFInfo
- Publication number
- JP2010112565A JP2010112565A JP2008282750A JP2008282750A JP2010112565A JP 2010112565 A JP2010112565 A JP 2010112565A JP 2008282750 A JP2008282750 A JP 2008282750A JP 2008282750 A JP2008282750 A JP 2008282750A JP 2010112565 A JP2010112565 A JP 2010112565A
- Authority
- JP
- Japan
- Prior art keywords
- heat exchanger
- pipe
- tube
- corrugated
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Details Of Fluid Heaters (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Description
本発明は、外管と内管との二重管式の熱交換器に関し、特に、貯湯式ヒートポンプ給湯機などの水−冷媒熱交換に好適な熱交換器に関する。 The present invention relates to a double-tube heat exchanger having an outer tube and an inner tube, and more particularly to a heat exchanger suitable for water-refrigerant heat exchange such as a hot water storage heat pump water heater.
貯湯式ヒートポンプ給湯機(以下、単に「ヒートポンプ給湯機」と称する場合もある)に用いられる熱交換器として、水が流通する外管と、冷媒(二酸化炭素など)が流通する内管との二重管からなる二重管式熱交換器が知られている。 As heat exchangers used in hot water storage type heat pump water heaters (hereinafter sometimes simply referred to as “heat pump water heaters”), an outer pipe through which water flows and an inner pipe through which refrigerant (such as carbon dioxide) flows are used. A double-pipe heat exchanger composed of a heavy pipe is known.
このような二重管式熱交換器では、冷媒が流通する内管に腐食による孔が開くと、水と冷媒が混ざり合ってしまうことから、水または冷媒の漏洩を検知して装置を停止するために、内周面に漏洩検知溝を有する漏洩検知管を内管の外周に設けることがしばしば行われている(この場合、内管と漏洩検知管と外管との三重管構造とも言える)。 In such a double-pipe heat exchanger, if a hole due to corrosion is opened in the inner pipe through which the refrigerant flows, water and the refrigerant will be mixed together, so the leakage of water or refrigerant is detected and the apparatus is stopped. Therefore, a leak detection tube having a leak detection groove on the inner peripheral surface is often provided on the outer periphery of the inner tube (in this case, it can also be said to be a triple tube structure of the inner tube, the leak detection tube, and the outer tube). .
貯湯式ヒートポンプ給湯機では、夜間に時間をかけてお湯を沸かすものであり、外管内を流れる水の流速が小さく層流となるため、熱交換器としての性能を向上させるには、水管の伝熱性能の向上が不可欠となる。 The hot water storage type heat pump water heater boils hot water at night, and the flow rate of water flowing in the outer pipe is small and laminar. Therefore, to improve the performance as a heat exchanger, Improvement of thermal performance is essential.
伝熱性能の向上を目的とした二重管式熱交換器としては、第一伝熱管(外管)内に、複数本の伝熱管を螺旋状にねじって構成した第二伝熱管(内管)を配置したものがある(特許文献1参照)。特許文献1の熱交換器によれば、水の圧力損失やスケール成分の溶出が小さく、伝熱促進体としての別部品を用いずに伝熱促進することができる旨が記載されている。 As a double tube heat exchanger for the purpose of improving heat transfer performance, the second heat transfer tube (inner tube) is constructed by spirally twisting a plurality of heat transfer tubes in the first heat transfer tube (outer tube). ) Are arranged (see Patent Document 1). According to the heat exchanger of Patent Document 1, it is described that water pressure loss and elution of scale components are small, and heat transfer can be promoted without using another component as a heat transfer accelerator.
また、図4に示すように、外管41と外管41内に挿入された内管42とからなる二重管を備え、内管42は、内部に第1流体流路43が形成された複数の冷媒管44と、複数の冷媒管44を覆うと共に、内面の軸方向に複数の漏洩検知溝46を備えた1本の漏洩検知管45とからなり、内管42の外側と外管41の内壁との間に第2流体流路47を形成したものがある(特許文献2参照)。特許文献2の熱交換器によれば、熱交換性能を維持したまま、銅の使用量を少なくすることができるので、熱交換器の重量の低減、低コスト化が可能になる旨が記載されている。 Further, as shown in FIG. 4, a double pipe comprising an outer pipe 41 and an inner pipe 42 inserted into the outer pipe 41 is provided, and the inner pipe 42 has a first fluid channel 43 formed therein. It consists of a plurality of refrigerant tubes 44 and a single leakage detection tube 45 that covers the plurality of refrigerant tubes 44 and has a plurality of leakage detection grooves 46 in the axial direction of the inner surface. There is one in which a second fluid channel 47 is formed between the inner wall and the inner wall (see Patent Document 2). According to the heat exchanger of Patent Document 2, since the amount of copper used can be reduced while maintaining the heat exchange performance, it is described that the weight of the heat exchanger can be reduced and the cost can be reduced. ing.
また、内管と内管の外側に配置された外管とを備え、外管は、スパイラル状のコルゲート形状を有するコルゲート管として可撓性を付与した二重管式熱交換器がある(特許文献3参照)。特許文献3の熱交換器によれば、コルゲート管を使用することで曲げ加工性が良くなるので、熱交換器をコイル状にする場合など、平滑管では曲げることが困難な小さい曲げが要求される配管などに使用できる旨が記載されている。 In addition, there is a double-tube heat exchanger that includes an inner tube and an outer tube disposed outside the inner tube, and the outer tube is flexible as a corrugated tube having a spiral corrugated shape (patent) Reference 3). According to the heat exchanger of Patent Document 3, since bending workability is improved by using a corrugated tube, a small bend that is difficult to bend with a smooth tube is required, such as when the heat exchanger is coiled. That it can be used for piping.
しかしながら、上記特許文献1の熱交換器では、複数本の伝熱管を螺旋状にねじる工程が複雑でコストが掛かることに加えて、第一伝熱管(外管)と複数本の第二伝熱管(内管)を分離する熱交換器端末部分の処理・構造が複雑になるという問題がある。また、複数
本の第二伝熱管(内管)を使用するため、熱交換器の重量が大きくなるという問題がある。
また、上記特許文献2の熱交換器では、複数本の伝熱管(内管)を螺旋状にねじる工程は省略されているが、特許文献1と同様、外管と複数本の伝熱管(内管)を分離する熱交換器端末部分の処理・構造が複雑になるという問題がある。また、特許文献1に比べ軽量化が可能とはなるが、複数本の伝熱管(内管)を使用するため、熱交換器の十分な軽量化が図れないという問題がある。
一方、特許文献3の熱交換器は、コルゲート管(外管)を使用することで曲げ加工性が改善され、また、内管が1本であるため軽量、コンパクトで熱交換率を高くすることができる。ただし、コルゲート管のコルゲート形状・寸法に関しては特に検討されていない。しかしながら、伝熱・熱交換性能は、コルゲート形状・寸法によって大きく変化するものであり、特許文献3の熱交換器では、所望の性能が得られない可能性がある。
However, in the heat exchanger of the above-mentioned patent document 1, in addition to the complicated and costly process of twisting a plurality of heat transfer tubes in a spiral shape, the first heat transfer tube (outer tube) and the plurality of second heat transfer tubes There exists a problem that the process and structure of the heat exchanger terminal part which isolate | separates (inner pipe | tube) become complicated. Further, since a plurality of second heat transfer tubes (inner tubes) are used, there is a problem that the weight of the heat exchanger increases.
Moreover, in the heat exchanger of the said patent document 2, although the process which twists a several heat exchanger tube (inner tube) helically is abbreviate | omitted, like the patent document 1, an outer tube and a plurality of heat exchanger tubes (inner tube) There is a problem that the processing and structure of the end portion of the heat exchanger that separates the tubes are complicated. In addition, although it is possible to reduce the weight as compared with Patent Document 1, since a plurality of heat transfer tubes (inner tubes) are used, there is a problem that the heat exchanger cannot be sufficiently reduced in weight.
On the other hand, the heat exchanger of Patent Document 3 is improved in bending workability by using a corrugated tube (outer tube), and also has a single inner tube that is lightweight, compact, and has a high heat exchange rate. Can do. However, the corrugate shape and dimensions of the corrugated pipe are not particularly studied. However, the heat transfer / heat exchange performance varies greatly depending on the corrugated shape and dimensions, and the heat exchanger disclosed in Patent Document 3 may not obtain the desired performance.
本発明の目的は、貯湯式ヒートポンプ給湯機のような水の流速が小さい使用形態においても、熱交換器の伝熱性能を向上でき、かつ軽量、コンパクトな熱交換器を提供することにある。 An object of the present invention is to provide a lightweight and compact heat exchanger that can improve the heat transfer performance of a heat exchanger even in a use form where the flow rate of water is small, such as a hot water storage type heat pump water heater.
上記課題を解決するために、本発明は次のように構成されている。 In order to solve the above problems, the present invention is configured as follows.
本発明の第1の態様は、冷媒を通す内管と、前記内管の外側に配置され、前記内管との間に水を通す外管とを備えた熱交換器において、前記外管にはコルゲート加工によりスパイラル状のコルゲート溝が形成されており、前記コルゲート溝の深さをHc、管軸方向に隣り合う前記コルゲート溝の間隔をPc、前記外管の最大内径と前記内管の外径との差をDeとすると、Pc/De≦560×(Hc/De)2−70×(Hc/De)+2.5
であり、かつHc/De≧0.09を満たすことを特徴とする熱交換器である。
According to a first aspect of the present invention, in the heat exchanger including an inner pipe through which a refrigerant passes and an outer pipe disposed outside the inner pipe and through which water passes, the outer pipe includes A corrugated groove is formed by corrugation, and the depth of the corrugated groove is Hc, the distance between the corrugated grooves adjacent to each other in the tube axis direction is Pc, the maximum inner diameter of the outer tube and the outer diameter of the inner tube When the difference from the diameter is De, Pc / De ≦ 560 × (Hc / De) 2 −70 × (Hc / De) +2.5
And satisfying Hc / De ≧ 0.09.
本発明の第2の態様は、第1の態様の熱交換器において、前記外管の管軸と前記コルゲート溝とのなす角が、40°以上であることを特徴とする。 According to a second aspect of the present invention, in the heat exchanger according to the first aspect, an angle formed by a tube axis of the outer tube and the corrugated groove is 40 ° or more.
本発明の第3の態様は、第1又は第2の態様の熱交換器において、前記外管にはスパイラル状の前記コルゲート溝が、1条〜3条で形成されていることを特徴とする。 According to a third aspect of the present invention, in the heat exchanger according to the first or second aspect, the spiral corrugated groove is formed in 1 to 3 in the outer tube. .
本発明によれば、貯湯式ヒートポンプ給湯機のような水の流速が小さい使用形態においても、熱交換器の伝熱性能を向上させることができ、且つ軽量・コンパクトで、安価な熱交換器が得られる。 According to the present invention, it is possible to improve the heat transfer performance of a heat exchanger even in a use form where the flow rate of water is small, such as a hot water storage type heat pump water heater, and a heat exchanger that is lightweight, compact, and inexpensive. can get.
以下に、本発明に係る熱交換器の実施形態を図面を用いて説明する。 Embodiments of a heat exchanger according to the present invention will be described below with reference to the drawings.
(第1の実施形態)
図1は、本発明の第1の実施形態に係る熱交換器の構造を示すもので、図1(a)は管軸を含む断面で一部を破断した側面図、図1(b)は図1(a)のA−A断面図である。また、図2は、図1の外管を示すもので、図2(a)は一部を破断した側面図、図2(b)は図2(a)のB部の拡大断面図である。
第1の実施形態に係る熱交換器1は、図1に示すように、冷媒を通す内管2と、内管2の外側に配置され、内管2との間に水を通す外管3とを備えた二重管式熱交換器である。
(First embodiment)
FIG. 1 shows the structure of a heat exchanger according to the first embodiment of the present invention. FIG. 1 (a) is a side view in which a part of the cross section including the tube axis is broken, and FIG. It is AA sectional drawing of Fig.1 (a). 2 shows the outer tube of FIG. 1, FIG. 2 (a) is a side view with a part broken away, and FIG. 2 (b) is an enlarged cross-sectional view of part B of FIG. 2 (a). .
As shown in FIG. 1, the heat exchanger 1 according to the first embodiment includes an inner pipe 2 through which a refrigerant passes and an outer pipe 3 that is disposed outside the inner pipe 2 and passes water between the inner pipe 2. Is a double tube heat exchanger.
内管2は、内部にCO2(二酸化炭素)などの冷媒が流れる冷媒管21と、冷媒管21
の外周部を覆う漏洩検知管22とから構成されている。漏洩検知管22の内周面には軸方向に沿って漏洩検知溝23が形成され、内管2の外面となる漏洩検知管22の外周面は平滑面となっている。
冷媒管21の外周部を漏洩検知管22が覆っているので、高温・高圧の冷媒などが通過する冷媒管21の一部が破断などしても、冷媒と水とが混合することを防止できる。また、冷媒管21または漏洩検知管22が破断して冷媒または水が漏洩しても、漏洩検知溝23を通じて外部に冷媒または水を導出させることによって、漏洩を検知することができる。
The inner pipe 2 includes a refrigerant pipe 21 in which a refrigerant such as CO 2 (carbon dioxide) flows, and a refrigerant pipe 21.
And a leak detection tube 22 covering the outer periphery of the tube. A leak detection groove 23 is formed along the axial direction on the inner peripheral surface of the leak detection tube 22, and the outer peripheral surface of the leak detection tube 22 serving as the outer surface of the inner tube 2 is a smooth surface.
Since the outer periphery of the refrigerant pipe 21 is covered by the leak detection pipe 22, it is possible to prevent the refrigerant and water from mixing even if a part of the refrigerant pipe 21 through which a high-temperature / high-pressure refrigerant or the like passes is broken. . Even if the refrigerant pipe 21 or the leakage detection pipe 22 is broken and the refrigerant or water leaks, the leakage can be detected by extracting the refrigerant or water to the outside through the leakage detection groove 23.
外管3は、コルゲート加工によりスパイラル状の1条のコルゲート溝4が形成されたコルゲート管である。ここで、コルゲート管とは、管の内外面に波形のスパイラル構造を持った管をいう。
外管3はコルゲート溝4が形成されたコルゲート管となっているので、平滑な外管と比較して可撓性が高く、小さな曲率半径で曲げ加工することが可能であり、熱交換器のコンパクト化を促進できる。
The outer tube 3 is a corrugated tube in which one spiral corrugated groove 4 is formed by corrugating. Here, the corrugated tube refers to a tube having a corrugated spiral structure on the inner and outer surfaces of the tube.
Since the outer tube 3 is a corrugated tube in which the corrugated grooves 4 are formed, the outer tube 3 is more flexible than a smooth outer tube and can be bent with a small radius of curvature. Compacting can be promoted.
ヒートポンプ式給湯機は、圧縮機、給湯用熱交換器、膨張弁、及び外気を熱源とする室外熱交換器を備えた冷凍サイクルと、給湯用熱交換器、給水ポンプ、及び給湯タンクを備えた給湯サイクルとから構成されている。
上記二重管式の熱交換器1は、例えば、ヒートポンプ式給湯機の給湯用熱交換器に用いられる。すなわち、内管2の冷媒管21内には、冷凍サイクルの圧縮機側からの高温・高圧のCO2冷媒が流され、内管2と外管3との環状部には、給湯サイクルの給水ポンプ側から水が流され、給湯用熱交換器でCO2冷媒と水とが熱交換されて、高温となった水(湯)が給湯タンクに送られる。熱交換器1では、冷媒と水は互いに逆方向に向流させて流される。
The heat pump water heater includes a compressor, a heat exchanger for hot water supply, an expansion valve, and a refrigeration cycle including an outdoor heat exchanger that uses outside air as a heat source, a heat exchanger for hot water supply, a water pump, and a hot water tank. It consists of a hot water supply cycle.
The double-pipe heat exchanger 1 is used, for example, as a heat exchanger for hot water supply of a heat pump type hot water heater. That is, a high-temperature and high-pressure CO 2 refrigerant from the compressor side of the refrigeration cycle flows in the refrigerant pipe 21 of the inner pipe 2, and the annular portion between the inner pipe 2 and the outer pipe 3 flows into the water supply cycle water supply cycle. Water is flowed from the pump side, the CO 2 refrigerant and water are heat-exchanged by a hot water supply heat exchanger, and water (hot water) that has reached a high temperature is sent to a hot water supply tank. In the heat exchanger 1, the refrigerant and water are caused to flow in opposite directions.
上記内管2及びコルゲート加工された外管3の形状・寸法は、コルゲート溝4の深さをHc、管軸方向に隣り合うコルゲート溝4の間隔(コルゲートピッチ)をPc、外管3の最大内径(コルゲート加工前の原管内径)IDと内管2の外径(この実施形態では、漏洩検知管22の外径)doとの差をDeとすると、Pc/De≦560×(Hc/De)2−70×(Hc/De)+2.5であり、かつHc/De≧0.09を満たすように設定されている。 The shape and dimensions of the inner tube 2 and the corrugated outer tube 3 are as follows: the depth of the corrugated groove 4 is Hc, the distance between the corrugated grooves 4 adjacent in the tube axis direction (corrugated pitch) is Pc, and the maximum of the outer tube 3 Assuming that the difference between the inner diameter (original pipe inner diameter before corrugation) ID and the outer diameter of the inner pipe 2 (in this embodiment, the outer diameter of the leak detection pipe 22) do is De, Pc / De ≦ 560 × (Hc / De) 2 −70 × (Hc / De) +2.5 and is set to satisfy Hc / De ≧ 0.09.
このように、Hc、Pc、Deの値を上記範囲に規定することで、外管3内面の波形の凹凸面(コルゲート面)を水が乗り越える際の水の攪拌効果が促進され、確実に伝熱性能の向上が図れる。このため、ヒートポンプ式給湯機の水−冷媒熱交換器における問題、すなわち、水の流速が非常に小さく層流となるために伝熱性能が非常に低いという問題を解決することができる。
また、上記範囲にHc、Pc、Deの値を規定することで攪拌効果が促進されるため、図4に示すような複数本の冷媒管(伝熱管)44を使用する熱交換器と比較しても、同等以上の伝熱性能の熱交換器が得られる。しかも、1本の内管(伝熱管)2を挿入するだけで伝熱性能が十分に得られるため、管材料(銅など)の使用量を低減でき、熱交換器を更に軽量化し、低コスト化することが可能となる。更には、管構造がシンプルであって、製造性・取扱性にも優れる。
Thus, by regulating the values of Hc, Pc, and De within the above ranges, the water stirring effect when water gets over the corrugated uneven surface (corrugated surface) on the inner surface of the outer tube 3 is promoted and transmitted reliably. The thermal performance can be improved. For this reason, the problem in the water-refrigerant heat exchanger of the heat pump type hot water heater, that is, the problem that the heat transfer performance is very low because the flow rate of water becomes very small and becomes a laminar flow can be solved.
Further, since the stirring effect is promoted by defining the values of Hc, Pc, and De in the above range, compared with a heat exchanger that uses a plurality of refrigerant tubes (heat transfer tubes) 44 as shown in FIG. However, a heat exchanger having the same or better heat transfer performance can be obtained. In addition, since sufficient heat transfer performance can be obtained simply by inserting one inner tube (heat transfer tube) 2, the amount of pipe material (copper, etc.) can be reduced, the heat exchanger can be further reduced in weight, and the cost can be reduced. Can be realized. Furthermore, the pipe structure is simple, and it is excellent in manufacturability and handling.
また、図2に示すように、外管3のコルゲート溝4と管軸Taとのなす角である、ねじれ角βcは、40゜以上の高ねじれ形状とすることが望ましい。これにより、外管3のコルゲート溝4によって内周面に形成される波形の凹凸面を乗り越えて流れることになる水の乱流化を促進することができる。なお、上述のコルゲート管の定義から、ねじれ角βcは、0°<βc<90°の範囲にある。 Further, as shown in FIG. 2, it is desirable that the twist angle βc, which is an angle formed between the corrugated groove 4 of the outer tube 3 and the tube axis Ta, be a high twist shape of 40 ° or more. Thereby, the turbulent flow of water that flows over the corrugated irregular surface formed on the inner peripheral surface by the corrugated groove 4 of the outer tube 3 can be promoted. From the definition of the corrugated tube described above, the twist angle βc is in the range of 0 ° <βc <90 °.
外管3のコルゲートピッチPcは、上記のHc、Pc、Deの関係式を満足する範囲にあれば、特に限定されず、例えば、3mm≦Pc≦30mmのものを使用できる。
また、外管3の端末平滑部の肉厚Twは、特に限定されるものではないが、例えば、0.4mm≦Tw≦1.7mm、のものを使用できる。
また、内管2,外管3の材質としては、特に限定されるものではないが、熱伝導率や機械的強度を勘案すると、銅や銅合金、またはアルミニウムやアルミニウム合金などが好ましい。
The corrugated pitch Pc of the outer tube 3 is not particularly limited as long as it satisfies the above relational expression of Hc, Pc, and De. For example, a corrugated pitch Pc of 3 mm ≦ Pc ≦ 30 mm can be used.
Further, the thickness Tw of the terminal smooth portion of the outer tube 3 is not particularly limited, but for example, a thickness of 0.4 mm ≦ Tw ≦ 1.7 mm can be used.
Further, the material of the inner tube 2 and the outer tube 3 is not particularly limited, but copper, copper alloy, aluminum, aluminum alloy, or the like is preferable in consideration of thermal conductivity and mechanical strength.
(第2の実施形態)
図3は、本発明の第2の実施形態に係る熱交換器に用いられる外管の構造を示す一部破断した側面図である。
上記第1の実施形態の外管3が、コルゲート加工により1条のスパイラル状のコルゲート溝4を形成したコルゲート管であるのに対し、本実施形態の外管5は、3条のスパイラル状のコルゲート溝6を形成したコルゲート管である。この外管5も二重管式熱交換器を構成する水管として使用されるもので、外管5内に上記第1の実施形態と同様に冷媒を流す内管が配置される。
コルゲート溝の条数が大きくなると、加工速度が上がるため、製造コスト的なメリットが大きい。
コルゲート溝のねじれ角βcは、3条加工の場合、1条加工の場合よりも小さくなる傾
向にあるが、隣り合うコルゲート溝の間隔、すなわちコルゲートピッチPcを小さくすることで、40°以上の高いねじれ角を実現できる。これを、コルゲート構造の外管ではなく、内面溝付管を外管として用いる場合、その製造は困難である。
(Second Embodiment)
FIG. 3 is a partially broken side view showing the structure of the outer tube used in the heat exchanger according to the second embodiment of the present invention.
The outer tube 3 of the first embodiment is a corrugated tube in which a single spiral corrugated groove 4 is formed by corrugation, whereas the outer tube 5 of the present embodiment has a three-spiral shape. It is a corrugated pipe in which a corrugated groove 6 is formed. The outer pipe 5 is also used as a water pipe constituting a double-pipe heat exchanger, and an inner pipe through which a refrigerant flows is arranged in the outer pipe 5 as in the first embodiment.
When the number of corrugated grooves is increased, the processing speed is increased, resulting in a large manufacturing cost advantage.
The twist angle βc of the corrugated groove tends to be smaller in the case of the three-row processing than in the case of the single-row processing, but by increasing the interval between the adjacent corrugated grooves, that is, the corrugated pitch Pc, the twist angle is high by 40 ° or more. A twist angle can be realized. If this is not an outer tube with a corrugated structure but an inner grooved tube is used as the outer tube, its manufacture is difficult.
なお、上記実施形態では、1条と3条のコルゲート溝を施した外管について説明したが、外管に2条、或いは4条以上のコルゲート溝を形成してもよい。コルゲート溝の条数は、1条〜3条が好ましい。これは、1条〜3条のコルゲート構造の外管では、内面溝付管では困難な高いねじれ角を実現しやすいからである。 In the above-described embodiment, the outer tube provided with the first and third corrugated grooves has been described, but two or four or more corrugated grooves may be formed in the outer tube. The number of corrugated grooves is preferably 1 to 3. This is because the outer tube having the corrugated structure having 1 to 3 corrugated structures easily realizes a high twist angle that is difficult with an internally grooved tube.
次に、本発明の実施例を説明する。 Next, examples of the present invention will be described.
この実施例では、図1に示す上記第1の実施形態に係る熱交換器において、外管のコルゲート構造の形状・寸法を種々に変更して性能を検討した。表1に、検討した内管、外管の伝熱管仕様を示す。なお、表1のNo.1〜No.15は、図1と同一構造の熱交換器の例であるが、No.16は、図4に示す従来構造の熱交換器を模擬した例である。表1に
おいて、ODは外管の最大外径(コルゲート加工前の原管外径)、Twは外管の肉厚、IDは外管の最大内径(コルゲート加工前の原管内径)、Hcはコルゲート溝の深さ、Pcはコルゲートピッチ、doは内管の外径、Deは外管の最大内径IDと内管の外径doとの差である。
なお、図4に示す従来構造の熱交換器を模擬したNo.16におけるDeは、De=4
S/Lから求めた。ここで、Sは流路面積で、S=(π/4)×(ID2−2・do2)である。また、Lは濡れ淵長さで、L=π(ID+2do)である。
In this example, the performance of the heat exchanger according to the first embodiment shown in FIG. 1 was examined by variously changing the shape and dimensions of the corrugated structure of the outer tube. Table 1 shows the heat transfer tube specifications of the inner and outer tubes studied. In addition, No. 1 to No. 15 in Table 1 are examples of heat exchangers having the same structure as FIG. 1, but No. 16 is an example of simulating the heat exchanger having the conventional structure shown in FIG. . In Table 1, OD is the maximum outer diameter of the outer pipe (original pipe outer diameter before corrugating), Tw is the thickness of the outer pipe, ID is the maximum inner diameter of the outer pipe (original pipe inner diameter before corrugating), and Hc is The depth of the corrugated groove, Pc is the corrugated pitch, do is the outer diameter of the inner tube, and De is the difference between the maximum inner diameter ID of the outer tube and the outer diameter do of the inner tube.
In addition, De in No. 16 which simulated the heat exchanger of the conventional structure shown in FIG. 4 is De = 4.
It calculated | required from S / L. Here, S is a flow path area, and S = (π / 4) × (ID 2 −2 · do 2 ). L is the length of the wet wrinkle and L = π (ID + 2do).
表1の熱交換器の水側熱伝達率を求めた方法を以下に示す。
表1の二重管式熱交換器の内管内には30℃の温水を流し、外管と内管の環状部には20℃の冷水を流して熱交換させた。内管内の流量と環状部の流量、それらの出入口温度を測定し、熱交換量Q及び熱通過率Kを求めた。内管内の熱伝達率は、出入口温度の平均値を代表温度とし、プラントル数Pr=μCp/λ(ここで、μ:粘性係数、Cp:比熱、λ:熱伝導率)と、レイノルズ数Re=ρvdi/μ(ここで、ρ:密度、v:流速、di:内管の内径)を求め、Dittus-Boelter の式(ヌッセルト数Nu=0.023・Re0.8Pr0.4)と代表温度での熱伝導率λから、管内熱伝達率αi=Nuλ/diを求めた。これより、管外熱伝達率αo=1/(1/K−1/αi)として求められる。
The method which calculated | required the water side heat transfer coefficient of the heat exchanger of Table 1 is shown below.
Warm water at 30 ° C. was allowed to flow through the inner pipe of the double-pipe heat exchanger shown in Table 1, and cold water at 20 ° C. was allowed to flow through the annular part of the outer pipe and the inner pipe for heat exchange. The flow rate in the inner pipe, the flow rate of the annular portion, and the inlet / outlet temperature thereof were measured, and the heat exchange amount Q and the heat passage rate K were determined. The heat transfer coefficient in the inner pipe is represented by the average value of the inlet / outlet temperature, the Prandtl number Pr = μCp / λ (where μ: viscosity coefficient, Cp: specific heat, λ: thermal conductivity), and Reynolds number Re = ρvdi / μ (where ρ: density, v: flow velocity, di: inner diameter of the inner tube) is obtained, and the Dittus-Boelter equation (Nussell number Nu = 0.023 · Re 0.8 Pr 0.4 ) and representative From the thermal conductivity λ at temperature, the in-tube heat transfer coefficient αi = Nuλ / di was obtained. From this, the external heat transfer coefficient αo = 1 / (1 / K−1 / αi) is obtained.
次に、熱交換器の熱交換量を求めた方法を以下に示す。
上述した方法で求めた管外熱伝達率を定式化し、CO2の物性を考慮したシミュレーションにより熱交換量を算出した。このときの計算条件を表2に示す。
Next, the method for obtaining the heat exchange amount of the heat exchanger is shown below.
The external heat transfer coefficient obtained by the above-described method was formulated, and the heat exchange amount was calculated by simulation considering the physical properties of CO 2 . Table 2 shows the calculation conditions at this time.
CO2の物性計算は Propath を用い、超臨界状態のCO2は単相流として扱えるため
、熱伝達率はDittus-Boelter の式を、圧力損失は Blasius の式(管摩擦係数f=0.3
164・Re−0.25)を用いた。シミュレーションは熱交換器を20分割して実施し
、熱交換量を計算した。
表1のNo.16の熱交換器の長さを8mとして、熱交換量を計算して求め、No.16の熱交換器の重量は、図4に示す構造の熱交換器から計算した。表3に、表1におけるNo.1〜15とNo.16の内管(冷媒管と漏洩検知管)の構成を示す。
The calculation of the physical properties of CO 2 uses Propath, and CO 2 in the supercritical state can be treated as a single-phase flow. Therefore, the heat transfer coefficient is the Dittus-Boelter equation, the pressure loss is the Blasius equation (pipe friction coefficient f = 0.3).
164 · Re− 0.25 ). The simulation was performed by dividing the heat exchanger into 20 parts, and the heat exchange amount was calculated.
The length of the heat exchanger No. 16 in Table 1 was set to 8 m, and the amount of heat exchange was calculated. The weight of the heat exchanger No. 16 was calculated from the heat exchanger having the structure shown in FIG. Table 3 shows the configurations of No. 1 to 15 and No. 16 inner pipes (refrigerant pipe and leakage detection pipe) in Table 1.
図5には、表1における従来構造であるNo.16の熱交換器の重量と、このNo.16の熱交換器と同等の熱交換性能にしたときの、No.1〜15の熱交換器の重量との重量
比を示す。重量比が1より小さければ、高性能化により管の長さを短くすることで、熱交換器を軽量化できることを示している。
In FIG. 5, the heat exchange of No. 1-15 when it is set as the heat exchange performance equivalent to the weight of the heat exchanger of No. 16 which is the conventional structure in Table 1, and this No. 16 heat exchanger. The weight ratio with the weight of the vessel is shown. If the weight ratio is smaller than 1, it is shown that the heat exchanger can be reduced in weight by shortening the length of the tube due to higher performance.
図5に示すように、No.1〜4の場合(Hc/De=0.19の場合)は、全てのコルゲートピッチPcでNo.16より軽量化できている。
No.5〜8のHc/De=0.15の場合(Hc/De=0.15の場合)は、No.6〜8がNo.16より軽量化できている。
No.9〜12の場合(Hc/De=0.13の場合)は、No.11,12がNo.16より軽量化できている。
No.13〜15の場合(Hc/De=0.09の場合)は、No.15のみ軽量化でき
ている。
As shown in FIG. 5, in the case of No. 1 to 4 (Hc / De = 0.19), the weight can be reduced more than No. 16 in all corrugated pitches Pc.
In the case of No. 5 to 8 of Hc / De = 0.15 (in the case of Hc / De = 0.15), No. 6 to 8 can be lighter than No. 16.
In the case of No. 9 to 12 (in the case of Hc / De = 0.13), No. 11 and 12 are lighter than No. 16.
In the case of No. 13 to 15 (when Hc / De = 0.09), only No. 15 can be reduced in weight.
以上の結果より、No.16の熱交換器と同等性能、重量になる熱交換器の(Hc/D
e、Pc/De)値をプロットしたものを図6に示す。図6には、これらプロットした点
を近似する近似曲線である、Pc/De=560(Hc/De)2−70(Hc/De)+2.5も示す。この近似曲線の下側で且つHc/Deが0.09以上の領域(図中、斜
線を施した領域)の(Hc/De、Pc/De)値を満たす熱交換器であれば、No.1
6の熱交換器よりも高性能化でき軽量化できる。
From the above results, the heat exchanger (Hc / D
e, Pc / De) values are plotted in FIG. FIG. 6 also shows Pc / De = 560 (Hc / De) 2 -70 (Hc / De) +2.5, which is an approximate curve that approximates these plotted points. If the heat exchanger satisfies the (Hc / De, Pc / De) value of the area below the approximate curve and having Hc / De of 0.09 or more (the hatched area in the figure), No. 1
Higher performance and lighter weight than 6 heat exchangers.
1 熱交換器
2 内管
21 伝熱管
22 漏洩検知管
3 外管
4 コルゲート溝
5 外管
6 コルゲート溝
Hc コルゲート溝の深さ
Pc 管軸方向に隣り合うコルゲート溝の間隔
De 外管の最大内径IDと内管の外径doとの差
Ta 管軸
DESCRIPTION OF SYMBOLS 1 Heat exchanger 2 Inner tube 21 Heat transfer tube 22 Leak detection tube 3 Outer tube 4 Corrugated groove 5 Outer tube 6 Corrugated groove Hc Corrugated groove depth Pc Distance between adjacent corrugated grooves in the tube axis direction De Maximum inner diameter ID of outer tube Difference between the outer diameter do and the inner pipe Ta
Claims (3)
前記外管にはコルゲート加工によりスパイラル状のコルゲート溝が形成されており、前記コルゲート溝の深さをHc、管軸方向に隣り合う前記コルゲート溝の間隔をPc、前記外管の最大内径と前記内管の外径との差をDeとすると、Pc/De≦560×(Hc/De)2−70×(Hc/De)+2.5であり、かつHc/De≧0.09を満たすことを特徴とする熱交換器。 In a heat exchanger comprising an inner pipe for passing a refrigerant and an outer pipe disposed outside the inner pipe and passing water between the inner pipe,
A spiral corrugated groove is formed in the outer tube by corrugation, the depth of the corrugated groove is Hc, the interval between the corrugated grooves adjacent in the tube axis direction is Pc, the maximum inner diameter of the outer tube and the When the difference from the outer diameter of the inner tube is De, Pc / De ≦ 560 × (Hc / De) 2 −70 × (Hc / De) +2.5 and Hc / De ≧ 0.09 is satisfied. A heat exchanger characterized by
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008282750A JP2010112565A (en) | 2008-11-04 | 2008-11-04 | Heat exchanger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008282750A JP2010112565A (en) | 2008-11-04 | 2008-11-04 | Heat exchanger |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010112565A true JP2010112565A (en) | 2010-05-20 |
Family
ID=42301261
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008282750A Pending JP2010112565A (en) | 2008-11-04 | 2008-11-04 | Heat exchanger |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010112565A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012077917A (en) * | 2010-09-30 | 2012-04-19 | Hitachi Cable Ltd | Inner grooved corrugated tube, and heat exchanger |
JP2016211770A (en) * | 2015-05-06 | 2016-12-15 | 株式会社アクアノエル | Heat exchange body, heat exchange unit and air conditioning system |
CN106871450A (en) * | 2016-12-30 | 2017-06-20 | 青岛海尔智能技术研发有限公司 | A kind of heat-pump water-heater water tank and Teat pump boiler |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0473593A (en) * | 1990-07-12 | 1992-03-09 | Mitsubishi Heavy Ind Ltd | Double pipe oil cooler |
JP2004360974A (en) * | 2003-06-03 | 2004-12-24 | Matsushita Electric Ind Co Ltd | Heat exchanging device and heat pump water heater |
JP2005009832A (en) * | 2003-06-20 | 2005-01-13 | Hitachi Cable Ltd | Double pipe type heat exchanger |
JP2007218486A (en) * | 2006-02-15 | 2007-08-30 | Hitachi Cable Ltd | Heat transfer tube for heat exchanger, and heat exchanger using the same |
JP2008057860A (en) * | 2006-08-31 | 2008-03-13 | Matsushita Electric Ind Co Ltd | Heat exchanger |
JP2008261566A (en) * | 2007-04-12 | 2008-10-30 | Sumitomo Light Metal Ind Ltd | Double-pipe heat exchanger |
-
2008
- 2008-11-04 JP JP2008282750A patent/JP2010112565A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0473593A (en) * | 1990-07-12 | 1992-03-09 | Mitsubishi Heavy Ind Ltd | Double pipe oil cooler |
JP2004360974A (en) * | 2003-06-03 | 2004-12-24 | Matsushita Electric Ind Co Ltd | Heat exchanging device and heat pump water heater |
JP2005009832A (en) * | 2003-06-20 | 2005-01-13 | Hitachi Cable Ltd | Double pipe type heat exchanger |
JP2007218486A (en) * | 2006-02-15 | 2007-08-30 | Hitachi Cable Ltd | Heat transfer tube for heat exchanger, and heat exchanger using the same |
JP2008057860A (en) * | 2006-08-31 | 2008-03-13 | Matsushita Electric Ind Co Ltd | Heat exchanger |
JP2008261566A (en) * | 2007-04-12 | 2008-10-30 | Sumitomo Light Metal Ind Ltd | Double-pipe heat exchanger |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012077917A (en) * | 2010-09-30 | 2012-04-19 | Hitachi Cable Ltd | Inner grooved corrugated tube, and heat exchanger |
CN102445101A (en) * | 2010-09-30 | 2012-05-09 | 日立电线株式会社 | Corrugated pipe with inner surface tank and heat exchanger |
JP2016211770A (en) * | 2015-05-06 | 2016-12-15 | 株式会社アクアノエル | Heat exchange body, heat exchange unit and air conditioning system |
CN106871450A (en) * | 2016-12-30 | 2017-06-20 | 青岛海尔智能技术研发有限公司 | A kind of heat-pump water-heater water tank and Teat pump boiler |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Biçer et al. | Design optimization of a shell-and-tube heat exchanger with novel three-zonal baffle by using CFD and taguchi method | |
JP2007218486A (en) | Heat transfer tube for heat exchanger, and heat exchanger using the same | |
JP4420117B2 (en) | Heat exchanger tube for heat exchanger and heat exchanger using the same | |
JP2008069993A (en) | Heat exchanger and heat pump water heater using the same | |
JP4572662B2 (en) | Heat exchanger | |
CN105026869B (en) | Pipeline configuration for heat exchanger | |
JP2010112565A (en) | Heat exchanger | |
CN105202950A (en) | Shell-and-tube type heat exchanger | |
JP5642462B2 (en) | Heat exchanger tube for heat exchanger and heat exchanger using the same | |
JP6211313B2 (en) | Triple tube heat exchanger | |
JP2012077917A (en) | Inner grooved corrugated tube, and heat exchanger | |
CA2556651A1 (en) | Advanced gravity-film & double-helix heat exchangers | |
CN110765645B (en) | Design method of built-in coil type compressed air heat exchange system | |
JP2009186130A (en) | Heat transfer tube for radiator with inner face fin | |
JP2009174832A (en) | Heat exchanging system, and hot water storage type heat pump water heater, heater and water heater using the same | |
JP2005009833A (en) | Double pipe type heat exchanger | |
JP4947162B2 (en) | Heat exchanger | |
JP2005009832A (en) | Double pipe type heat exchanger | |
JP2008175450A (en) | Heat exchanger | |
JP5548957B2 (en) | Heat exchanger and heat pump water heater using the same | |
JP2005061771A (en) | Heat exchanger | |
JP2009264643A (en) | Heat exchanger | |
JP2008267631A (en) | Heat exchanger | |
JP2006162165A (en) | Heat exchanger | |
JP2020016393A (en) | Heat exchanger |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20101217 |
|
A977 | Report on retrieval |
Effective date: 20120425 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120508 |
|
A02 | Decision of refusal |
Effective date: 20120927 Free format text: JAPANESE INTERMEDIATE CODE: A02 |