Nothing Special   »   [go: up one dir, main page]

JP2010110211A - Electric motor - Google Patents

Electric motor Download PDF

Info

Publication number
JP2010110211A
JP2010110211A JP2010003966A JP2010003966A JP2010110211A JP 2010110211 A JP2010110211 A JP 2010110211A JP 2010003966 A JP2010003966 A JP 2010003966A JP 2010003966 A JP2010003966 A JP 2010003966A JP 2010110211 A JP2010110211 A JP 2010110211A
Authority
JP
Japan
Prior art keywords
rotor
magnetic
electric motor
short
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010003966A
Other languages
Japanese (ja)
Inventor
Masaru Takashima
大 高島
Yuki Nakajima
祐樹 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2010003966A priority Critical patent/JP2010110211A/en
Publication of JP2010110211A publication Critical patent/JP2010110211A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electric motor that efficiently controls both a strong field and a weak field by having both normal and reverse contradicting salient pole characteristics to have a wide range of operation at high torque and high revolution (high output). <P>SOLUTION: The electric motor includes a stator 12 having a field coil and teeth to wind the coil and a rotor 41 having multiple permanent magnets 13 and rotatably mounted on the stator 12 to rotate around the rotary axis being the center. The permanent magnets 13 are arranged on the periphery of the rotary axis being the center in a way that different magnetic poles are linearly arranged. The electric motor further includes a magnetic flux short-circuit mechanism 43 provided between the peripheral side of the rotor 41 and different magnetic poles of the permanent magnets 13 to change the short-circuit magnetic flux amounts in the rotor 41. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、電動機に関し、特に、永久磁石を備えた回転子とコイルを備えた固定子を有し、順突極構造と逆突極構造の二種類の構造を選択することができる電動機に関する。   The present invention relates to an electric motor, and more particularly to an electric motor having a rotor having a permanent magnet and a stator having a coil, and capable of selecting two types of structures, a forward salient pole structure and a reverse salient pole structure.

従来、コイルを備えた円筒形の固定子と、この固定子の内側に配置されて永久磁石が埋め込まれた回転子を有する、永久磁石(Permanent Magnet :PM)モータが知られている。PMモータは、固定子に配置された複数のコイルに、順次、電流を流すことで、コイルに発生した回転磁界と回転子の永久磁石による磁界との相互作用により、回転子を回転させている。このようなPMモータでは、電流を流すコイルを、順次、切り替えて行く速度に応じて、回転数を制御している。   2. Description of the Related Art Conventionally, a permanent magnet (PM) motor having a cylindrical stator provided with a coil and a rotor disposed inside the stator and embedded with a permanent magnet is known. In the PM motor, the rotor is rotated by the interaction between the rotating magnetic field generated in the coil and the magnetic field generated by the permanent magnet of the rotor by passing current sequentially through the plurality of coils arranged in the stator. . In such a PM motor, the number of rotations is controlled in accordance with the speed at which the coils for passing current are sequentially switched.

つまり、PMモータにおいては、永久磁石を備えた回転子の回転により、固定子に、回転子の回転数に応じた誘導起電力が生じるが、この誘導起電力は、固定子のコイルに外部から印加される電圧を打ち消す方向に発生する。そのため、PMモータの最大回転数は、かかる誘起電圧が外部からコイルに印加する電圧以下となるように、制限される。   That is, in the PM motor, an induced electromotive force is generated in the stator according to the number of rotations of the rotor due to the rotation of the rotor provided with the permanent magnet. This induced electromotive force is generated from the outside in the stator coil. Generated in a direction to cancel the applied voltage. Therefore, the maximum rotation speed of the PM motor is limited so that the induced voltage is equal to or less than the voltage applied to the coil from the outside.

例えば、従来のPMモータである「電動機」(特許文献1参照)では、高回転時に回転子内で磁束が流れる経路を形成し固定子に流れる磁束量を減らすことで、誘起電圧の低減が可能になるように、外回転子と内回転子の位相差を制御する。   For example, in the “motor” (see Patent Document 1), which is a conventional PM motor, the induced voltage can be reduced by forming a path through which the magnetic flux flows in the rotor at high speed and reducing the amount of magnetic flux flowing through the stator. The phase difference between the outer rotor and the inner rotor is controlled so that

ところで、モータの制御において、高トルクを得ることができる強め界磁制御と、逆起電力を減少させて駆動電流を流れ易くし高回転を可能にする弱め界磁制御が知られており、強め界磁制御には順突極特性の構造、弱め界磁制御には逆突極特性の構造が適している。このため、順突極構造と逆突極構造の二種類の構造を任意に選択することができれば、高トルクと高回転(高出力)を両立することが可能となる。   By the way, in the control of a motor, there are known a strong field control capable of obtaining a high torque, and a weak field control capable of reducing the back electromotive force to facilitate the flow of a drive current and enabling high rotation. The structure of the salient pole characteristic is suitable for the structure of the salient pole characteristic and the field weakening control. For this reason, if two types of structures, a forward salient pole structure and a reverse salient pole structure, can be arbitrarily selected, both high torque and high rotation (high output) can be achieved.

特開2004−072978号公報JP 2004-072978 A

しかしながら、従来のPMモータである「電動機」においては、順突極構造と逆突極構造の二種類の構造を任意に選択するようなことはできない。そのため、高トルクと高回転(高出力)を両立することができなかった。   However, in the “motor” which is a conventional PM motor, it is not possible to arbitrarily select two types of structures, a forward salient pole structure and a reverse salient pole structure. Therefore, it was impossible to achieve both high torque and high rotation (high output).

この発明の目的は、相反する順突極特性と逆突極特性を併せ持つことで強め界磁制御と弱め界磁制御を効率的に行うことができるようにして、高トルクと高回転を両立した広範囲な運転を可能とする電動機を提供することである。   The object of the present invention is to enable both strong field control and field weakening control to be efficiently performed by having the opposite forward salient pole characteristics and reverse salient pole characteristics at the same time. It is to provide an electric motor that can be used.

上記目的を達成するため、この発明に係る電動機は、界磁用のコイルおよび該コイルを巻回するためのティースを有する固定子と、複数の永久磁石を有し、固定子に対して回転軸を中心として回転自在に装着された回転子とを有し、永久磁石は、回転軸を中心とした外周部分に、異なる磁極が直線状に並ぶように配置されている。この電動機は、回転子の外周側と永久磁石の異なる磁極間との間に設けられ、回転子内の短絡磁束量を変化させる磁束短絡機構を備える。   In order to achieve the above object, an electric motor according to the present invention includes a stator having a field coil and teeth for winding the coil, and a plurality of permanent magnets. The permanent magnet is arranged so that different magnetic poles are arranged in a straight line on the outer peripheral portion around the rotation axis. This electric motor includes a magnetic flux short-circuit mechanism that is provided between the outer peripheral side of the rotor and between different magnetic poles of the permanent magnet, and changes the amount of short-circuit magnetic flux in the rotor.

この発明によれば、複数の磁石が配置された回転子に設けた磁路切り換え部により、回転子の磁路を切り換えて、順突極構造としての強め界磁制御或いは逆突極構造としての弱め界磁制御が選択される。このため、相反する順突極特性と逆突極特性を併せ持つことで強め界磁制御と弱め界磁制御を効率的に行うことができるようになり、高トルクと高回転を両立した広範囲な運転が可能となる。   According to the present invention, the magnetic path switching unit provided in the rotor in which a plurality of magnets are arranged switches the magnetic path of the rotor so that the strong field control as the forward salient pole structure or the weak field control as the reverse salient pole structure Is selected. For this reason, it becomes possible to efficiently perform strong field control and weak field control by having both the opposite salient pole characteristics and reverse salient pole characteristics, and a wide range of operation that achieves both high torque and high rotation is possible. .

この発明の第1実施の形態に係る電動機を半径方向で断面し固定子と回転子について示す説明図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram showing a stator and a rotor by sectioning a motor according to a first embodiment of the present invention in a radial direction. 図1の回転子を示し、(a)は磁路切り換え部により順突極特性を示している平面図、(b)は磁路切り換え部により逆突極特性を示している平面図である。1A is a plan view showing a forward salient pole characteristic by a magnetic path switching unit, and FIG. 1B is a plan view showing a reverse salient pole characteristic by a magnetic path switching unit. この発明の第2実施の形態に係る回転子を示し、(a)は磁路切り換え部により順突極特性を示している平面図、(b)は磁路切り換え部により逆突極特性を示している平面図である。The rotor which concerns on 2nd Embodiment of this invention is shown, (a) is a top view which shows the forward salient pole characteristic by a magnetic path switching part, (b) shows a reverse salient pole characteristic by a magnetic path switching part FIG. この発明の第3実施の形態に係る回転子の平面図である。It is a top view of the rotor which concerns on 3rd Embodiment of this invention. 図4の磁気素子の構成を示し、(a)は電圧を印加したときの説明図、(b)は電圧を印加しないときの説明図である。4 shows the configuration of the magnetic element of FIG. 4, (a) is an explanatory diagram when a voltage is applied, and (b) is an explanatory diagram when no voltage is applied. FIG. この発明に係る電動機の位相制御機構の一例を示し、(a)は回転軸に沿って断面した概略説明図、(b)は油圧機構を説明する平面図である。An example of the phase control mechanism of the electric motor which concerns on this invention is shown, (a) is the schematic explanatory drawing which followed the rotating shaft, (b) is a top view explaining a hydraulic mechanism. この発明に係る電動機の位相制御機構の他の例を示し、(a)は回転軸に沿って断面した概略説明図、(b)は油圧機構を説明する平面図である。The other example of the phase control mechanism of the electric motor which concerns on this invention is shown, (a) is the schematic explanatory drawing cut along the rotating shaft, (b) is a top view explaining a hydraulic mechanism. この発明の第5実施の形態に係る電動機の短絡磁束量可変機構の一例を示す回転軸に沿って断面した概略説明図である。It is the schematic explanatory drawing sectioned along the rotating shaft which shows an example of the short circuit magnetic flux amount variable mechanism of the electric motor which concerns on 5th Embodiment of this invention. この発明の第6実施の形態に係る電動機の回転子を示し、(a)は低回転時の180度モデル断面説明図、(b)は高回転時の180度モデル断面説明図である。The rotor of the electric motor which concerns on 6th Embodiment of this invention is shown, (a) is 180 degree model cross section explanatory drawing at the time of low rotation, (b) is 180 degree model cross section explanatory drawing at the time of high rotation. この発明の第7実施の形態に係る電動機の回転子を示し、(a)は低回転時の180度モデル断面説明図、(b)は高回転時の180度モデル断面説明図である。The rotor of the electric motor which concerns on 7th Embodiment of this invention is shown, (a) is 180 degree model cross section explanatory drawing at the time of low rotation, (b) is 180 degree model cross section explanatory drawing at the time of high rotation. この発明の第8実施の形態に係る電動機の回転子を示し、(a)は低回転時の180度モデル断面説明図、(b)は高回転時の180度モデル断面説明図である。The rotor of the electric motor which concerns on 8th Embodiment of this invention is shown, (a) is 180 degree model cross section explanatory drawing at the time of low rotation, (b) is 180 degree model cross section explanatory drawing at the time of high rotation. この発明の第9実施の形態に係る電動機の回転子を示し、(a)は低回転時の180度モデル断面説明図、(b)は高回転時の180度モデル断面説明図である。The rotor of the electric motor which concerns on 9th Embodiment of this invention is shown, (a) is 180 degree model cross section explanatory drawing at the time of low rotation, (b) is 180 degree model cross section explanatory drawing at the time of high rotation. この発明の第10実施の形態に係る電動機の回転子を示し、(a)は低回転時の斜視説明図、(b)は高回転時の斜視説明図である。The rotor of the electric motor which concerns on 10th Embodiment of this invention is shown, (a) is perspective explanatory drawing at the time of low rotation, (b) is perspective explanatory drawing at the time of high rotation. この発明の第11実施の形態に係る電動機の回転子を示し、(a)は低回転時の180度モデル断面説明図、(b)は高回転時の180度モデル断面説明図である。The rotor of the electric motor which concerns on 11th Embodiment of this invention is shown, (a) is 180 degree model cross section explanatory drawing at the time of low rotation, (b) is 180 degree model cross section explanatory drawing at the time of high rotation. この発明の第12実施の形態に係る電動機の回転子を示し、(a)は低回転時の斜視説明図、(b)は高回転時の斜視説明図である。The rotor of the electric motor which concerns on 12th Embodiment of this invention is shown, (a) is perspective explanatory drawing at the time of low rotation, (b) is perspective explanatory drawing at the time of high rotation. 第5実施の形態における給電機構の一例を示す回転子の180度モデル断面説明図である。It is a 180 degree model cross-section explanatory drawing of the rotor which shows an example of the electric power feeding mechanism in 5th Embodiment. 第10実施の形態における位相制御機構の一例を示す回転軸に沿う断面図である。It is sectional drawing in alignment with the rotating shaft which shows an example of the phase control mechanism in 10th Embodiment. 第12実施の形態における位相制御機構の一例を示し、(a)は回転軸に沿って断面した概略説明図、(b)は油圧機構を説明する平面図である。An example of the phase control mechanism in 12th Embodiment is shown, (a) is the schematic explanatory drawing sectioned along the rotating shaft, (b) is a top view explaining a hydraulic mechanism.

以下、この発明を実施するための最良の形態について図面を参照して説明する。
(第1実施の形態)
図1は、この発明の第1実施の形態に係る電動機を半径方向で断面し固定子と回転子について示す説明図である。図1に示すように、電動機(モータ)10は、回転子(ロータ)11と固定子(ステータ)12を有しており、回転子11は磁石(永久磁石)13を、固定子12は界磁用のコイル14を、それぞれ備えている。回転子11は、回転子表面に対し直交配置された回転軸15を有し、回転軸15は、ケース(図示しない)に回動自在に保持されている。
The best mode for carrying out the present invention will be described below with reference to the drawings.
(First embodiment)
FIG. 1 is an explanatory diagram showing a stator and a rotor by sectioning the electric motor according to the first embodiment of the present invention in the radial direction. As shown in FIG. 1, an electric motor (motor) 10 has a rotor (rotor) 11 and a stator (stator) 12. The rotor 11 has a magnet (permanent magnet) 13, and the stator 12 has a field. Magnet coils 14 are provided. The rotor 11 has a rotating shaft 15 arranged orthogonal to the rotor surface, and the rotating shaft 15 is rotatably held in a case (not shown).

固定子12は、円環状に形成された強磁性体からなる積層鋼板を、回転軸15の中心軸方向に沿って積み重ねた円筒形状に形成されている。固定子12の内周側には、回転磁界を発生させるコイル14を巻回するためのスロット16が複数個、内周方向に略等間隔離間して配置されると共に回転軸15に向けて突設されている。   The stator 12 is formed in a cylindrical shape in which laminated steel plates made of a ferromagnetic material formed in an annular shape are stacked along the central axis direction of the rotary shaft 15. On the inner peripheral side of the stator 12, a plurality of slots 16 for winding a coil 14 that generates a rotating magnetic field are arranged at substantially equal intervals in the inner peripheral direction and project toward the rotating shaft 15. It is installed.

この固定子12に対して回転自在に装着された回転子11は、固定子12と同様、円環状に形成された強磁性体からなる積層鋼板を、回転軸15の中心軸方向に積み重ねた円筒形状に構成されている。回転子11の外周部分には、円周方向に沿って、所定数(この例では、8個)の磁石13が、それぞれ略等間隔離間すると共に、N極とS極が2個ずつ交互に配置され、固着されている。各磁石13の配列方向外側には、回転子半径方向に沿ってエアギャップ17が設けられ、隣接するエアギャップ17の間、即ち、隣接する磁石13,13の間には、エアギャップ17を挟んで磁路切り換え部18が設けられている。   The rotor 11 rotatably mounted on the stator 12 is a cylinder in which laminated steel plates made of a ferromagnetic material formed in an annular shape are stacked in the direction of the central axis of the rotary shaft 15, as with the stator 12. It is configured in shape. A predetermined number (eight in this example) of magnets 13 are spaced apart at substantially equal intervals along the circumferential direction on the outer peripheral portion of the rotor 11, and two N poles and two S poles are alternately arranged. Arranged and secured. An air gap 17 is provided on the outer side in the arrangement direction of the magnets 13 along the radial direction of the rotor, and the air gap 17 is sandwiched between the adjacent air gaps 17, that is, between the adjacent magnets 13 and 13. A magnetic path switching unit 18 is provided.

磁路切り換え部18は、磁気異方性を持つ部材からなり、磁気異方性を変化させることにより、回転子11の磁路を切り換えて、順突極構造としての強め界磁制御或いは逆突極構造としての弱め界磁制御を選択することができる。つまり、磁路切り換え部18は、回転子11の同極磁石13間を結ぶ磁路と異極磁石13間を結ぶ磁路に配置された磁気異方性を持つ部材からなり、この部材の磁気異方性を変化させることにより順突極構造と逆突極構造を切り換える。磁気異方性を持つ部材は、例えば、真ん中にスリットが入った電磁鋼板で構成することができる。なお、磁路の切り換えを行う場合、磁路切り換え部18は全て同期して作動する。   The magnetic path switching unit 18 is made of a member having magnetic anisotropy, and by changing the magnetic anisotropy, the magnetic path of the rotor 11 is switched so that a strong field control or a reverse salient pole structure as a forward salient pole structure. Field weakening control can be selected. That is, the magnetic path switching unit 18 is composed of a member having magnetic anisotropy disposed in a magnetic path connecting between the homopolar magnets 13 of the rotor 11 and the magnetic pole connecting between the different polar magnets 13. The forward salient pole structure and the reverse salient pole structure are switched by changing the anisotropy. The member having magnetic anisotropy can be composed of, for example, an electromagnetic steel plate with a slit in the middle. In addition, when switching a magnetic path, all the magnetic path switching parts 18 operate | move synchronously.

図2は、図1の回転子を示し、(a)は磁路切り換え部により順突極特性を示している平面図、(b)は磁路切り換え部により逆突極特性を示している平面図である。図2(a)に示すように、回転子11は、同極(N極とN極、S極とS極)の磁石13,13間の磁路切り換え部18が回転子半径方向に異方性を持ち、異極(N極とS極)の磁石13,13間の磁路切り換え部18が回転子周方向に異方性を持っている。このため、回転子11は、順突極構造となり順突極特性を示す。   2 shows the rotor of FIG. 1, (a) is a plan view showing the forward salient pole characteristics by the magnetic path switching unit, and (b) is a plane showing the reverse salient pole characteristics by the magnetic path switching unit. FIG. As shown in FIG. 2A, the rotor 11 has an anisotropic magnetic path switching portion 18 between magnets 13 and 13 having the same polarity (N pole and N pole, S pole and S pole). The magnetic path switching unit 18 between the magnets 13 and 13 having different polarities (N pole and S pole) has anisotropy in the circumferential direction of the rotor. For this reason, the rotor 11 has a forward salient pole structure and exhibits forward salient pole characteristics.

図2(b)に示すように、回転子11は、同極(N極とN極、S極とS極)の磁石13,13間の磁路切り換え部18が回転子周方向に異方性を持ち、異極(N極とS極)の磁石13,13間の磁路切り換え部18が回転子半径方向に異方性を持っている。このため、回転子11は、逆突極構造となり逆突極特性を示す。   As shown in FIG. 2B, the rotor 11 has an anisotropic magnetic path switching portion 18 between magnets 13 and 13 having the same polarity (N pole and N pole, S pole and S pole). The magnetic path switching unit 18 between the magnets 13 and 13 having different polarities (N pole and S pole) has anisotropy in the rotor radial direction. For this reason, the rotor 11 has a reverse salient pole structure and exhibits reverse salient pole characteristics.

このように、回転子11に磁路切り換え部18を設け、低速回転時には、磁路の切り換えにより順突極構造として、高トルクを得る強め界磁制御を行い、規定速度以上の高速回転時には、磁路の切り換えにより逆突極構造として、弱め界磁制御を行うことができる。   In this way, the rotor 11 is provided with the magnetic path switching unit 18, and at the time of low-speed rotation, a strong salient pole control is obtained to obtain a high torque as a forward salient pole structure by switching the magnetic path. The field-weakening control can be performed as a reverse salient-pole structure by switching.

従って、この回転子11を有する電動機10は、相反する順突極特性と逆突極特性を併せ持ち、強め界磁制御と弱め界磁制御を効率的に行うことができるため、高トルクと高回転を両立した広範囲な運転を可能とする。また、順突極構造の強め界磁制御により、磁束を増加させるため、一般的な埋込磁石型(Interior Permanent Magnet:IPM)モータと同一磁束の場合、磁石量を減らすことができる。更に、磁石量の低減は、コスト低減に留まらず規定速度の高回転化に繋がり、より広範囲な運転が可能になる。   Therefore, since the electric motor 10 having the rotor 11 has both the opposite salient pole characteristics and the opposite salient pole characteristics, and can efficiently perform the strong field control and the weak field control, a wide range of both high torque and high rotation can be achieved. Enable easy operation. Further, since the magnetic flux is increased by the strong field control of the forward salient pole structure, the amount of magnets can be reduced in the case of the same magnetic flux as that of a general interior magnet type (IPM) motor. Furthermore, the reduction in the amount of magnets leads not only to cost reduction but also to higher rotation at a specified speed, enabling a wider range of operation.

(第2実施の形態)
図3は、この発明の第2実施の形態に係る回転子を示し、(a)は磁路切り換え部により順突極特性を示している平面図、(b)は磁路切り換え部により逆突極特性を示している平面図である。図3に示すように、この回転子20は、磁路の切り換えを、各磁石13の回転子半径方向内側に、回転子平面に沿って回動可能に設けた磁路切り換え部21を用いて行っている。この磁路切り換え部21に対応して、同極の磁石13,13間に並設された両エアギャップ17,17は、磁路切り換え部21の外周縁まで延長されている。その他の構成及び作用は、第1実施の形態の回転子11と同様である。
(Second Embodiment)
3A and 3B show a rotor according to a second embodiment of the present invention, in which FIG. 3A is a plan view showing forward salient pole characteristics by a magnetic path switching unit, and FIG. 3B is a reverse collision by a magnetic path switching unit. It is a top view which shows the polar characteristic. As shown in FIG. 3, the rotor 20 uses a magnetic path switching unit 21 that is provided so that the magnetic path can be switched along the rotor plane inside the rotor radial direction of each magnet 13. Is going. Corresponding to the magnetic path switching unit 21, both air gaps 17, 17 arranged in parallel between the magnets 13, 13 having the same polarity are extended to the outer peripheral edge of the magnetic path switching unit 21. Other configurations and operations are the same as those of the rotor 11 of the first embodiment.

磁路切り換え部21は、例えば、SR(Switched Reluctance)モータの回転子のような形状を有しており、磁路切り換え部21の円盤状表面外周部分の、等間隔離間する4箇所に配置された、磁路切り換え部21の外周を一部とする略扇形のエアギャップ22を有している。
従って、回転子20は、磁路切り換え部21を回動操作することにより、同極の磁石13間の位相と磁路切り換え部21の突極部の位相が一致した順突極特性((a)参照)、或いは異極の磁石13間の位相と磁路切り換え部21の突極部の位相が一致した逆突極特性((b)参照)を示す。
The magnetic path switching unit 21 has a shape like a rotor of an SR (Switched Reluctance) motor, for example, and is arranged at four positions that are spaced apart at equal intervals on the outer peripheral portion of the disk-like surface of the magnetic path switching unit 21. In addition, it has a substantially fan-shaped air gap 22 having a part of the outer periphery of the magnetic path switching unit 21.
Therefore, the rotor 20 rotates the magnetic path switching unit 21 so that the phase between the magnets 13 of the same polarity and the phase of the salient pole part of the magnetic path switching unit 21 coincide with each other. )), Or a reverse salient pole characteristic (see (b)) in which the phase between the magnets 13 of different polarities and the phase of the salient pole part of the magnetic path switching unit 21 coincide.

このように、磁路切り換え部21は、回転子11に設けられて、回転子11の同極磁石13間の位相或いは異極磁石13間の位相と選択的に位相を一致させることができる突極部を有する部材からなり、この部材の一致対象を変えることにより順突極構造と逆突極構造を切り換える。即ち、回転子20は、磁石トルクを得ることを主とする第1の回転子として、磁路切り換え部21は、磁路を可変にする第2の回転子として、それぞれ機能する。そして、回転子20と磁路を可変にする磁路切り換え部21の間の位相制御により、順突極構造と逆突極構造を切り換えるため、高トルクと高回転を両立した広範囲な運転が可能になる。   As described above, the magnetic path switching unit 21 is provided in the rotor 11, and is capable of selectively matching the phase with the phase between the homopolar magnets 13 or the phase between the heteropolar magnets 13 of the rotor 11. It consists of a member having a pole part, and the forward salient pole structure and the reverse salient pole structure are switched by changing the matching target of this member. That is, the rotor 20 functions as a first rotor that mainly obtains magnet torque, and the magnetic path switching unit 21 functions as a second rotor that makes the magnetic path variable. And, by switching between the forward salient pole structure and the reverse salient pole structure by phase control between the rotor 20 and the magnetic path switching unit 21 that makes the magnetic path variable, a wide range of operation compatible with both high torque and high rotation is possible. become.

(第3実施の形態)
図4は、この発明の第3実施の形態に係る回転子の平面図である。図4に示すように、回転子25は、隣接する両エアギャップ17,17の間に複数の磁気素子26を配置し、磁路切り換え部21に代えて、エアギャップ27及びエアギャップ27に配置した複数の磁気素子28を設けている。その他の構成及び作用は、第2実施の形態の回転子20と同様である。
(Third embodiment)
FIG. 4 is a plan view of a rotor according to the third embodiment of the present invention. As shown in FIG. 4, the rotor 25 has a plurality of magnetic elements 26 arranged between the adjacent air gaps 17, 17, and is arranged in the air gap 27 and the air gap 27 instead of the magnetic path switching unit 21. A plurality of magnetic elements 28 are provided. Other configurations and operations are the same as those of the rotor 20 of the second embodiment.

図5は、図4の磁気素子の構成を示し、(a)は電圧を印加したときの説明図、(b)は電圧を印加しないときの説明図である。図5に示すように、磁気素子26と磁気素子28は、同様の構成を有しており、磁歪素子26a(28a)と、磁歪素子26a(28a)を両側から挟み込む2個の圧電素子26b,26b(28b,28b)を有している。   FIG. 5 shows the configuration of the magnetic element of FIG. 4, (a) is an explanatory diagram when a voltage is applied, and (b) is an explanatory diagram when no voltage is applied. As shown in FIG. 5, the magnetic element 26 and the magnetic element 28 have the same configuration, and the magnetostrictive element 26a (28a) and the two piezoelectric elements 26b sandwiching the magnetostrictive element 26a (28a) from both sides, 26b (28b, 28b).

この圧電素子26b(28b)に電圧を印加すると、圧電素子26b(28b)が収縮した状態((a)参照)となるが、その後、圧電素子26b(28b)への電圧印加を停止すると、圧電素子26b(28b)が元に戻って収縮する前の状態になり、両圧電素子26b,26b(28b,28b)に挟み込まれた磁歪素子26a(28a)を両側から圧迫する((b)参照)。つまり、磁歪素子26a(28a)に応力を加えると透磁率が変化するので、圧電素子26b(28b)への電圧印加の有無によって、磁気素子26(28)において透磁率を変化させることが可能になる。   When a voltage is applied to the piezoelectric element 26b (28b), the piezoelectric element 26b (28b) is contracted (see (a)). After that, when the voltage application to the piezoelectric element 26b (28b) is stopped, the piezoelectric element 26b (28b) is stopped. The element 26b (28b) returns to its original state before being contracted, and the magnetostrictive element 26a (28a) sandwiched between the piezoelectric elements 26b and 26b (28b and 28b) is pressed from both sides (see (b)). . That is, since the magnetic permeability changes when a stress is applied to the magnetostrictive element 26a (28a), the magnetic permeability can be changed in the magnetic element 26 (28) depending on whether or not a voltage is applied to the piezoelectric element 26b (28b). Become.

エアギャップ27は、同極の磁石13,13間に並設された両エアギャップ17,17に外周が接する円環状に形成されており、このエアギャップ27の、両エアギャップ17,17間に配置された各磁気素子26に対応する位置に、磁歪素子28aを配置する。つまり、各磁気素子26(28)を、隣接する同極の磁石13,13間を結ぶ磁路と、隣接する異極の磁石13,13間を結ぶ磁路で極性が異なるように配置する。そして、圧電素子26b(28b)に、スリップリングや非接触回転トランス等で給電を行い、給電時の極性の変化により順突極構造と逆突極構造を切り換える。これにより、高トルクと高回転を両立した広範囲な運転が可能になる。   The air gap 27 is formed in an annular shape whose outer periphery is in contact with both air gaps 17, 17 arranged in parallel between the magnets 13, 13 having the same polarity, and between the air gaps 17, 17 of this air gap 27. Magnetostrictive elements 28 a are arranged at positions corresponding to the arranged magnetic elements 26. That is, each magnetic element 26 (28) is arranged so that the polarity is different between a magnetic path connecting adjacent magnets 13 and 13 having the same polarity and a magnetic path connecting adjacent magnets 13 and 13 having different polarities. Then, the piezoelectric element 26b (28b) is fed with a slip ring, a non-contact rotating transformer or the like, and the forward salient pole structure and the reverse salient pole structure are switched according to the change in polarity at the time of feeding. As a result, a wide range of operation that achieves both high torque and high rotation is possible.

このように、磁気素子26は、回転子11の同極磁石13間を結ぶ磁路と異極磁石13間を結ぶ磁路に配置された、収縮変化する圧電素子26b(28b)と圧電素子26b(28b)に挟み込まれ圧電素子26b(28b)の変化に対応して透磁率を変化させる磁歪素子26a(28a)を有しており、磁路切り換え部として機能する。この磁歪素子26a(28a)が透磁率を変化させることにより順突極構造と逆突極構造を切り換えることができる。   In this way, the magnetic element 26 is disposed in the magnetic path connecting the homopolar magnets 13 of the rotor 11 and the magnetic path connecting the heteropolar magnets 13, and the piezoelectric element 26b (28b) and the piezoelectric element 26b that change in contraction are arranged. (28b) has a magnetostrictive element 26a (28a) that changes the magnetic permeability corresponding to the change of the piezoelectric element 26b (28b), and functions as a magnetic path switching unit. The magnetostrictive element 26a (28a) can switch the forward salient pole structure and the reverse salient pole structure by changing the magnetic permeability.

(第4実施の形態)
図6は、この発明の第4実施の形態に係る電動機の位相制御機構の一例を示し、(a)は回転軸に沿って断面した概略説明図、(b)は油圧機構を説明する平面図である。図7は、この発明に係る電動機の位相制御機構の他の例を示し、(a)は回転軸に沿って断面した概略説明図、(b)は油圧機構を説明する平面図である。
(Fourth embodiment)
6A and 6B show an example of a phase control mechanism for an electric motor according to a fourth embodiment of the present invention. FIG. 6A is a schematic explanatory view taken along a rotation axis, and FIG. 6B is a plan view for explaining a hydraulic mechanism. It is. 7A and 7B show another example of the phase control mechanism of the electric motor according to the present invention. FIG. 7A is a schematic explanatory view taken along a rotation axis, and FIG. 7B is a plan view for explaining the hydraulic mechanism.

この発明に係る回転子11(図2参照)の磁路切り換え部18、及び回転子20(図3参照)の磁路切り換え部21は、例えば、エンジンバルブタイミング調整装置に使われている油圧を用いた位相制御機構(特開2004−245192号公報参照)を用いることで、実現することができる。   The magnetic path switching unit 18 of the rotor 11 (see FIG. 2) and the magnetic path switching unit 21 of the rotor 20 (see FIG. 3) according to the present invention, for example, use the hydraulic pressure used in the engine valve timing adjusting device. This can be realized by using the phase control mechanism used (see JP 2004-245192 A).

図6に示すように、ハウジング30内部に、シャフト31により回動自在に軸支された回転子11(図2参照)の磁路切り換え部18の場合、回転子11の内部に位相稼動部32を設けて、位相稼動部32の油室32aに作動油33を入れ、進角油室の作動油33aと遅角油室の作動油33bのどちらか一方を供給し他方を排出する。これにより、回転子11と位相稼動部32との間に位相差が発生する。このとき、位置センサ等(図示しない)を用いることで、正確な位置制御が可能になる。順突極特性(図2(a)参照)と逆突極特性(図2(b)参照)の切り換えを行う場合は、位相稼動部32と磁路切り換え部18(磁気異方性を持つ部材)にそれぞれ歯車34,35を取り付け、両歯車34,35を噛合させることにより磁路の切り換えを行う。   As shown in FIG. 6, in the case of the magnetic path switching unit 18 of the rotor 11 (see FIG. 2) rotatably supported by the shaft 31 in the housing 30, the phase operating unit 32 is provided inside the rotor 11. The hydraulic oil 33 is put into the oil chamber 32a of the phase operating section 32, one of the hydraulic oil 33a of the advance oil chamber and the hydraulic oil 33b of the retard oil chamber is supplied, and the other is discharged. As a result, a phase difference is generated between the rotor 11 and the phase operating unit 32. At this time, accurate position control becomes possible by using a position sensor or the like (not shown). When switching between the forward salient pole characteristics (see FIG. 2A) and the reverse salient pole characteristics (see FIG. 2B), the phase operating part 32 and the magnetic path switching part 18 (members having magnetic anisotropy) ) Are attached to gears 34 and 35, respectively, and both gears 34 and 35 are engaged to switch the magnetic path.

図7に示すように、ハウジング30内部に、シャフト31により回動自在に軸支された回転子20(図3参照)の磁路切り換え部(第2の回転子)21の場合、回転子20の内部に、位相稼動部36を設けて、位相稼動部36の油室36aに作動油33を入れ、進角油室の作動油33aと遅角油室の作動油33bのどちらか一方を供給し他方を排出する。これにより、回転子20と位相稼動部36との間に位相差が発生する。このとき、位置センサ等(図示しない)を用いることで、正確な位置制御が可能になる。順突極特性(図3(a)参照)と逆突極特性(図3(b)参照)の切り換えを行う場合は、位相稼動部36と磁路切り換え部21を接続することで切り換えを行なう。   As shown in FIG. 7, in the case of a magnetic path switching unit (second rotor) 21 of a rotor 20 (see FIG. 3) rotatably supported by a shaft 31 inside the housing 30, the rotor 20 Is provided with a phase operating part 36, and the hydraulic oil 33 is put into the oil chamber 36a of the phase operating part 36, and either one of the hydraulic oil 33a for the advance oil chamber or the hydraulic oil 33b for the retard oil chamber is supplied. And discharge the other. Thereby, a phase difference is generated between the rotor 20 and the phase operating unit 36. At this time, accurate position control becomes possible by using a position sensor or the like (not shown). When switching between the forward salient pole characteristic (see FIG. 3A) and the reverse salient pole characteristic (see FIG. 3B), the phase operating unit 36 and the magnetic path switching unit 21 are connected. .

なお、上記各実施の形態で示した回転子の磁石外側半径方向に、例えば、スリット状のフラックスバリアを一つ以上設けることにより、磁路切り換え部によって得られる効果をより高めることができる。このスリット状のフラックスバリアを設けて、回転子内の短絡磁束量を変化させることができる機構について、以下に説明する。   The effect obtained by the magnetic path switching unit can be further enhanced by providing, for example, one or more slit-shaped flux barriers in the radial direction of the magnet outer side of the rotor shown in the above embodiments. A mechanism capable of changing the amount of short-circuit magnetic flux in the rotor by providing this slit-shaped flux barrier will be described below.

(第5実施の形態)
図8は、この発明の第5実施の形態に係る電動機の短絡磁束量可変機構の一例を示す回転軸に沿って断面した概略説明図である。図8に示すように、電動機40は、固定子12に対して回転自在に装着された回転子41を有し、回転子41の外周部分には、所定数(この例では、8個)の磁石13が、N極とS極を直線状に密着並置した一対ずつを隣接間隙を設けて、矩形状に配置されている。
(Fifth embodiment)
FIG. 8 is a schematic explanatory view taken along a rotation axis showing an example of a short-circuit magnetic flux amount varying mechanism for an electric motor according to a fifth embodiment of the present invention. As shown in FIG. 8, the electric motor 40 has a rotor 41 that is rotatably mounted on the stator 12, and a predetermined number (eight in this example) is provided on the outer periphery of the rotor 41. The magnets 13 are arranged in a rectangular shape with an adjacent gap provided between a pair of N poles and S poles arranged in close contact with each other in a straight line.

N極とS極の一対の磁石13の両端及び接合部には、回転子半径方向に沿って、漏れ磁束低減用のフラックスバリア(スリット)42が設けられており、磁石13の両端のフラックスバリア42,42に挟まれて、エアギャップ17が形成されている。磁石13の接合部である磁石異極(N極とS極)間のフラックスバリア42には、コイル43が配置されている。その他の構成及び作用は、第1実施の形態の回転子11及び固定子12(図1参照)と同様である。   A flux barrier (slit) 42 for reducing leakage magnetic flux is provided along the radial direction of the rotor at both ends and joints of the pair of magnets 13 of N and S poles. An air gap 17 is formed between 42 and 42. A coil 43 is disposed in the flux barrier 42 between the magnets having different polarities (N pole and S pole), which is a joint portion of the magnet 13. Other configurations and operations are the same as those of the rotor 11 and the stator 12 (see FIG. 1) of the first embodiment.

磁石異極間のフラックスバリア42に配置されたコイル43に、例えば、スリップリング等で給電し、回転子41の回転数に応じてコイル43に流す電流量と方向を制御することにより、磁束量と磁極の方向を制御することができ、高トルク、高出力を実現することができる。更に、コイル43のティース部を、磁性体の代わりに低保持力の永久磁石を用いて形成すれば、磁極の方向を変えるときだけ電流を流せば良く、効率向上につながる。   By supplying power to the coil 43 disposed in the flux barrier 42 between the magnets different poles, for example, by a slip ring, and controlling the amount and direction of current flowing through the coil 43 according to the number of rotations of the rotor 41, the amount of magnetic flux The direction of the magnetic pole can be controlled, and high torque and high output can be realized. Furthermore, if the teeth portion of the coil 43 is formed using a permanent magnet having a low coercive force instead of a magnetic body, it is only necessary to pass a current only when changing the direction of the magnetic pole, leading to an improvement in efficiency.

また、コイル43のティース部が磁性体ならば、低回転時のみ電流を流し電磁石とすることで、磁力量を増加させ、且つ、フラックスバリア42の効果を得ることができ、高回転時は電流を流さないことで、コイル43は磁性体となり回転子41内で短絡電流を発生させる。このため、コイル43に流す電流の方向を固定し電流量のみを制御することにより、高トルク、高出力を実現することができる。同様に、コイル43のティース部が非磁性体ならば、回転数に応じて発電量が増加する機構を設けることで、低回転時はフラックスバリア42となり、高回転時は回転子41内の短絡磁束を発生させる電磁石となって、速度領域の広域化を受動的に行うことができる。   Further, if the teeth portion of the coil 43 is a magnetic body, an electric current is allowed to flow only during low rotation to make an electromagnet, thereby increasing the amount of magnetic force and obtaining the effect of the flux barrier 42. As a result, the coil 43 becomes a magnetic material and generates a short-circuit current in the rotor 41. For this reason, high torque and high output can be realized by fixing the direction of the current flowing through the coil 43 and controlling only the amount of current. Similarly, if the teeth portion of the coil 43 is a non-magnetic material, by providing a mechanism that increases the amount of power generation according to the number of revolutions, a flux barrier 42 is provided at low speeds and a short circuit within the rotor 41 at high speeds. An electromagnet that generates magnetic flux can be used to passively widen the speed region.

つまり、コイル43は、回転子41内の短絡磁束量を変化させることができる磁束短絡機構として機能する。従って、フラックスバリア42に配置されたコイル43により、コイル14を有する固定子12と、磁石13を有し、磁石異極(N極とS極)間と異極間の磁路より磁石同極(N極とN極、S極とS極)間と同極間の磁路の方が磁気抵抗の小さい回転子41からなる電動機にあって、回転数に応じて回転子41内の短絡磁束量を変化させることができる。   That is, the coil 43 functions as a magnetic flux short-circuit mechanism that can change the amount of short-circuit magnetic flux in the rotor 41. Accordingly, the coil 43 disposed in the flux barrier 42 has the stator 12 having the coil 14 and the magnet 13, and the magnets have the same polarity from the magnetic paths between the magnets having different polarities (N pole and S pole) and between the different poles. In the electric motor including the rotor 41 having a smaller magnetic resistance, the magnetic path between the N pole and the N pole, and between the S pole and the S pole is a short circuit magnetic flux in the rotor 41 according to the number of rotations. The amount can be varied.

ところで、上述した、従来のPMモータにおいては、モータの最大回転数は誘起電圧が外部からコイルに印加する電圧以下となるように制限されており、例えば、「磁束量可変磁石型ロータ」(特開2004−242462号公報参照)では、遠心力を用いてフラックスバリアで遮断された磁路を磁束短絡部材で短絡させることにより、高回転化を実現している。しかしながら、従来の「磁束量可変磁石型ロータ」においては、磁路を遮断している異極間のフラックスバリアを短絡させるのに伴いインダクタンス比が減少するため、リラクタンストルクが減少してしまうことが避けられなかった。   By the way, in the conventional PM motor described above, the maximum rotational speed of the motor is limited so that the induced voltage is equal to or lower than the voltage applied to the coil from the outside. In Japanese Unexamined Patent Application Publication No. 2004-242462, high rotation speed is realized by short-circuiting a magnetic path interrupted by a flux barrier using a magnetic flux short-circuit member using centrifugal force. However, in the conventional “magnetic flux amount variable magnet rotor”, the reluctance torque may decrease because the inductance ratio decreases as the flux barrier between the different poles blocking the magnetic path is short-circuited. It was inevitable.

また、従来の逆突極型の電動機では、磁石を減磁させないために、減磁方向に電流を流す弱め界磁制御の代わりに、異極間のフラックスバリアを短絡させているが、リラクタンストルクを得るためには、結局、減磁方向に電流を流す必要があり、減磁のリスクを負うことになる。   In addition, in the conventional reverse salient pole type electric motor, in order not to demagnetize the magnet, the flux barrier between different poles is short-circuited instead of the field weakening control in which current flows in the demagnetizing direction, but the reluctance torque is obtained. In order to achieve this, after all, it is necessary to pass a current in the demagnetizing direction, and there is a risk of demagnetization.

これに対し、磁束短絡機構として機能するコイル43をフラックスバリア42に配置することにより、回転数に応じて回転子41内の短絡磁束量を変化させることが可能になり、高回転化を実現することができる。これにより、高回転化に不向きではあるが、減磁し難く、熱に強いといった特徴を持つ強め界磁制御で、高回転化を実現することができる。この結果、強め界磁制御で最大トルクを発生させる順突極型の電動機は、弱め界磁制御で最大トルクとなる逆突極型の電動機に比べ、磁束短絡機構により磁路を短絡させた場合、インダクタンス比の減少が小さいため、リラクタンストルクを高回転でも大きくとることができる。   On the other hand, by arranging the coil 43 functioning as a magnetic flux short-circuit mechanism in the flux barrier 42, it becomes possible to change the short-circuit magnetic flux amount in the rotor 41 according to the number of rotations, thereby realizing high rotation. be able to. Thereby, although it is not suitable for high rotation, high rotation can be realized by strong field control having characteristics such that it is difficult to demagnetize and is resistant to heat. As a result, a forward salient pole type motor that generates maximum torque with strong field control has a higher inductance ratio when the magnetic path is short-circuited with a magnetic flux short-circuit mechanism than a reverse salient pole type motor that has maximum torque with weak field control. Since the decrease is small, the reluctance torque can be increased even at high speeds.

(第6実施の形態)
図9は、この発明の第6実施の形態に係る電動機の回転子を示し、(a)は低回転時の180度モデル断面説明図、(b)は高回転時の180度モデル断面説明図である。図9に示すように、回転子45は、コイル43を設けず、磁石異極間のフラックスバリアを、透磁率の変更が可能な部材、例えば、一対の圧電素子46a,46aの間に磁歪素子46bを挟み込んだ磁気素子46、により形成している。その他の構成及び作用は、第5実施の形態の回転子41(図8参照)と同様である。なお、磁気素子46の構成及び作用は、磁気素子26或いは磁気素子28(図5参照)と同様である。
(Sixth embodiment)
9A and 9B show a rotor of an electric motor according to a sixth embodiment of the present invention, in which FIG. 9A is an explanatory diagram of a 180-degree model cross section during low rotation, and FIG. 9B is an explanatory diagram of a 180-degree model cross section during high rotation. It is. As shown in FIG. 9, the rotor 45 does not include the coil 43, and the flux barrier between the magnets having different polarities is a member capable of changing the magnetic permeability, for example, a magnetostrictive element between a pair of piezoelectric elements 46 a and 46 a. It is formed by a magnetic element 46 sandwiching 46b. Other configurations and operations are the same as those of the rotor 41 (see FIG. 8) of the fifth embodiment. The configuration and operation of the magnetic element 46 are the same as those of the magnetic element 26 or 28 (see FIG. 5).

回転子45の低回転時、圧電素子46aに印加する電圧を開放若しくは動作電圧未満にすることで、圧電素子46aが磁歪素子46bを圧迫する((a)参照)ため、透磁率が下がり、フラックスバリアの役割を果たす。回転子45の高回転時、圧電素子46aに動作電圧を印加することで、圧電素子46aが収縮し、圧迫されていた磁歪素子46bが元に戻る((b)参照)。このため、透磁率が上がって、回転子45内で短絡磁路が形成されるので、誘起電圧が低減され、速度領域の広域化に繋がる。   When the rotor 45 is rotated at a low speed, the voltage applied to the piezoelectric element 46a is opened or less than the operating voltage, so that the piezoelectric element 46a presses the magnetostrictive element 46b (see (a)). Acts as a barrier. When the rotor 45 rotates at a high speed, an operating voltage is applied to the piezoelectric element 46a, whereby the piezoelectric element 46a contracts and the compressed magnetostrictive element 46b returns (see (b)). For this reason, the magnetic permeability is increased and a short-circuit magnetic path is formed in the rotor 45, so that the induced voltage is reduced and the speed region is widened.

(第7実施の形態)
図10は、この発明の第7実施の形態に係る電動機の回転子を示し、(a)は低回転時の180度モデル断面説明図、(b)は高回転時の180度モデル断面説明図である。図10に示すように、回転子50は、コイル43を設けず、磁石異極間のフラックスバリアを、磁石付き回転部材51により形成している。磁石付き回転部材51は、円盤を二分割して一方側がN極、他方側がS極に形成され、回転子50に回転自在に装着されている。その他の構成及び作用は、第5実施の形態の回転子41(図8参照)と同様である。
(Seventh embodiment)
10A and 10B show a rotor of an electric motor according to a seventh embodiment of the present invention, in which FIG. 10A is a 180 ° model cross-sectional explanatory diagram at a low rotation, and FIG. 10B is a 180 ° model cross-sectional explanatory diagram at a high rotation. It is. As shown in FIG. 10, the rotor 50 does not include the coil 43, and a flux barrier between magnets having different polarities is formed by a rotating member 51 with a magnet. The rotating member 51 with a magnet is formed by dividing the disk into two parts and forming one side as an N pole and the other side as an S pole, and is rotatably attached to the rotor 50. Other configurations and operations are the same as those of the rotor 41 (see FIG. 8) of the fifth embodiment.

回転子50の低回転時、磁石付き回転部材51は、磁石付き回転部材51のN極とS極がそれぞれ主磁石13と同極同士になるように位相制御される((a)参照)。これにより、磁石13の磁束が増加し、高トルクを得ることができる。回転子50の高回転時、磁石付き回転部材51は、磁石付き回転部材51のN極とS極がそれぞれ主磁石13と異極同士になるように位相制御される((b)参照)。これにより、磁石13の磁束が回転子50内で短絡することになり、誘起電圧が低減され、速度領域の広域化に繋がる。   When the rotor 50 rotates at low speed, the rotating member 51 with magnet is phase-controlled so that the N pole and S pole of the rotating member 51 with magnet are in the same polarity as the main magnet 13 (see (a)). Thereby, the magnetic flux of the magnet 13 increases and a high torque can be obtained. During the high rotation of the rotor 50, the rotating member 51 with magnet is phase-controlled so that the N pole and the S pole of the rotating member 51 with magnet are different from the main magnet 13, respectively (see (b)). As a result, the magnetic flux of the magnet 13 is short-circuited in the rotor 50, the induced voltage is reduced, and the speed region is widened.

(第8実施の形態)
図11は、この発明の第8実施の形態に係る電動機の回転子を示し、(a)は低回転時の180度モデル断面説明図、(b)は高回転時の180度モデル断面説明図である。図11に示すように、回転子55は、コイル43を設けず、磁石異極間のフラックスバリアを、磁気異方性回転部材56により形成している。その他の構成及び作用は、第5実施の形態の回転子41(図8参照)と同様である。
(Eighth embodiment)
11A and 11B show a rotor of an electric motor according to an eighth embodiment of the present invention, in which FIG. 11A is an explanatory diagram of a 180-degree model cross section during low rotation, and FIG. It is. As shown in FIG. 11, the rotor 55 does not include the coil 43, and a flux barrier between magnets having different poles is formed by a magnetic anisotropic rotating member 56. Other configurations and operations are the same as those of the rotor 41 (see FIG. 8) of the fifth embodiment.

回転子55の低回転時、磁気異方性回転部材56がフラックスバリアとなるように位相制御され((a)参照)、回転子55の高回転時、磁気異方性回転部材56が回転子55内で短絡磁路を形成するように位相制御される((b)参照)。これにより、磁石13の磁束が回転子55内で短絡することになり、誘起電圧が低減され、速度領域の広域化に繋がる。   When the rotor 55 is rotated at a low speed, the phase is controlled so that the magnetic anisotropic rotating member 56 becomes a flux barrier (see (a)). When the rotor 55 is rotated at a high speed, the magnetic anisotropic rotating member 56 is rotated by the rotor. The phase is controlled so as to form a short-circuit magnetic path within 55 (see (b)). Thereby, the magnetic flux of the magnet 13 is short-circuited in the rotor 55, the induced voltage is reduced, and the speed region is widened.

(第9実施の形態)
図12は、この発明の第9実施の形態に係る電動機の回転子を示し、(a)は低回転時の180度モデル断面説明図、(b)は高回転時の180度モデル断面説明図である。図12に示すように、回転子60は、磁石13を超えて回転子面中心側に延長された、磁石異極間のフラックスバリア42に、コイル43に代えて、フラックスバリア42に沿って摺動自在に装着された磁性体61を有している。磁性体61は、例えば、コイルスプリング等の付勢部材62に接続されており、付勢部材62の付勢力により、常時、フラックスバリア42の回転子面中心側、即ち、磁石13上に位置している。その他の構成及び作用は、第5実施の形態の回転子41(図8参照)と同様である。
(Ninth embodiment)
12A and 12B show a rotor of an electric motor according to a ninth embodiment of the present invention, in which FIG. 12A is an explanatory diagram of a 180-degree model cross section during low rotation, and FIG. 12B is an explanatory diagram of a 180-degree model cross section during high rotation. It is. As shown in FIG. 12, the rotor 60 is slid along the flux barrier 42 instead of the coil 43 to the flux barrier 42 between the magnets different poles, which extends to the rotor surface center side beyond the magnet 13. The magnetic body 61 is mounted so as to be movable. The magnetic body 61 is connected to an urging member 62 such as a coil spring, for example, and is always positioned on the rotor surface center side of the flux barrier 42, that is, on the magnet 13 by the urging force of the urging member 62. ing. Other configurations and operations are the same as those of the rotor 41 (see FIG. 8) of the fifth embodiment.

回転子60の低回転時、遠心力が小さいため、磁性体61は、付勢部材62の付勢力により回転子面中心側に位置し((a)参照)、回転子60内の短絡磁路を形成することはない。しかしながら、回転子60の高回転時、遠心力が大きくなると、磁性体61は、付勢部材62の付勢力に抗してフラックスバリア42上に位置し((b)参照)、回転子60内の短絡磁路を形成する。これにより、誘起電圧が低減され、速度領域の広域化に繋がる。   Since the centrifugal force is small when the rotor 60 rotates at a low speed, the magnetic body 61 is positioned on the rotor surface center side by the biasing force of the biasing member 62 (see (a)), and the short-circuit magnetic path in the rotor 60 Will not form. However, when the centrifugal force increases during the high rotation of the rotor 60, the magnetic body 61 is positioned on the flux barrier 42 against the urging force of the urging member 62 (see (b)), The short circuit magnetic path is formed. Thereby, an induced voltage is reduced and it leads to the widening of a speed area | region.

(第10実施の形態)
図13は、この発明の第10実施の形態に係る電動機の回転子を示し、(a)は低回転時の斜視説明図、(b)は高回転時の斜視説明図である。図13に示すように、回転子65は、コイル43を設けず、磁石異極間のフラックスバリアを、回転子65内に縦軸に沿って設けたギャップ66と、ギャップ66内に納められた磁性流体67及び非磁性流体68と、磁性流体67及び非磁性流体68を仕切る仕切り部材69により形成している。その他の構成及び作用は、第5実施の形態の回転子41(図8参照)と同様である。
(Tenth embodiment)
FIGS. 13A and 13B show a rotor of an electric motor according to a tenth embodiment of the present invention. FIG. 13A is a perspective explanatory view at a low rotation, and FIG. 13B is a perspective explanatory view at a high rotation. As shown in FIG. 13, the rotor 65 is not provided with the coil 43, and a flux barrier between magnets having different poles is accommodated in the gap 66 and the gap 66 provided along the vertical axis in the rotor 65. The magnetic fluid 67 and the nonmagnetic fluid 68 are formed by a partition member 69 that partitions the magnetic fluid 67 and the nonmagnetic fluid 68. Other configurations and operations are the same as those of the rotor 41 (see FIG. 8) of the fifth embodiment.

回転子65が回転すると、磁性流体67の圧力と非磁性流体68の圧力差により仕切り部材69がギャップ66内を縦軸方向に移動する。このため、回転子65の低回転時は、非磁性流体側から磁性流体側に圧力をかけることで、ギャップ66が非磁性流体で満たされ((a)参照)、回転子65内の短絡磁路を形成しない。一方、高回転時は、磁性流体側から非磁性流体側に圧力をかけることで、ギャップ66が磁性流体で満たされ((b)参照)、回転子65内の短絡磁路を形成することにより、誘起電圧が低減され、速度領域の広域化に繋がる。   When the rotor 65 rotates, the partition member 69 moves in the vertical direction in the gap 66 due to the pressure difference between the magnetic fluid 67 and the nonmagnetic fluid 68. For this reason, when the rotor 65 is rotating at a low speed, the gap 66 is filled with the nonmagnetic fluid by applying pressure from the nonmagnetic fluid side to the magnetic fluid side (see (a)), and the short circuit magnet in the rotor 65 is filled. Does not form a road. On the other hand, by applying pressure from the magnetic fluid side to the non-magnetic fluid side at the time of high rotation, the gap 66 is filled with the magnetic fluid (see (b)), and a short circuit magnetic path in the rotor 65 is formed. , The induced voltage is reduced, leading to a wider speed range.

(第11実施の形態)
図14は、この発明の第11実施の形態に係る電動機の回転子を示し、(a)は低回転時の180度モデル断面説明図、(b)は高回転時の180度モデル断面説明図である。図14に示すように、回転子70は、コイル43を設けず、磁石13の異極間を密着させず離間配置した第1回転子71と、第1回転子71の内側に回転自在に設置され、第1回転子71の磁石13の離間部分に対応するように磁石72を密着させて配置した第2回転子73を有し、第1回転子71の各磁石13の離間部分中央、及び第1回転子71の各磁石13と第2回転子73の各磁石72の間にフラックスバリア74を設けている。その他の構成及び作用は、第5実施の形態の回転子41(図8参照)と同様である。
(Eleventh embodiment)
14A and 14B show a rotor of an electric motor according to an eleventh embodiment of the present invention, in which FIG. 14A is a 180-degree model cross-sectional explanatory view during low rotation, and FIG. 14B is a 180-degree model cross-sectional explanatory view during high rotation. It is. As shown in FIG. 14, the rotor 70 is not provided with the coil 43, and is disposed so as to be rotatable inside the first rotor 71 and the first rotor 71 that are spaced apart from each other with no close contact between the different poles of the magnet 13. The second rotor 73 is disposed in close contact with the magnets 72 of the first rotor 71 so as to correspond to the spaced portions of the magnets 13 of the first rotor 71; A flux barrier 74 is provided between each magnet 13 of the first rotor 71 and each magnet 72 of the second rotor 73. Other configurations and operations are the same as those of the rotor 41 (see FIG. 8) of the fifth embodiment.

つまり、この回転子70は、磁石トルクを得るための主となる第1回転子71と、回転子70内の短絡磁束を発生させるための第2回転子73で構成し、第1回転子71と第2回転子73の位相制御を行う。回転子70の低回転時、回転子70内の短絡磁路は形成されない((a)参照)が、高回転時には、第1回転子71の磁石異極間の短絡磁路が第2回転子73を通して形成される((b)参照)ので、誘起電圧が低減され、速度領域の広域化に繋がる。   That is, the rotor 70 includes a first rotor 71 that is a main for obtaining magnet torque, and a second rotor 73 that generates a short-circuit magnetic flux in the rotor 70. And the phase control of the second rotor 73 is performed. When the rotor 70 is rotated at a low speed, a short circuit magnetic path in the rotor 70 is not formed (see (a)). At a high speed, the short circuit magnetic path between the magnets of the first rotor 71 is a second rotor. 73 (see (b)), the induced voltage is reduced, leading to a wider speed region.

(第12実施の形態)
図15は、この発明の第12実施の形態に係る電動機の回転子を示し、(a)は低回転時の斜視説明図、(b)は高回転時の斜視説明図である。図15に示すように、回転子75は、コイル43を設けず、縦軸方向に二分割した第1回転子76と第2回転子77により形成し、第1回転子76と第2回転子77の位相制御を行う。その他の構成及び作用は、第5実施の形態の回転子41(図8参照)と同様である。
(Twelfth embodiment)
FIGS. 15A and 15B show a rotor of an electric motor according to a twelfth embodiment of the present invention. FIG. 15A is a perspective explanatory view at a low rotation, and FIG. 15B is a perspective explanatory view at a high rotation. As shown in FIG. 15, the rotor 75 is formed by a first rotor 76 and a second rotor 77 that are divided into two in the vertical axis direction without providing the coil 43, and the first rotor 76 and the second rotor. 77 phase control is performed. Other configurations and operations are the same as those of the rotor 41 (see FIG. 8) of the fifth embodiment.

回転子75の低回転時、第1回転子76と第2回転子77の磁石13が同極同士となる((a)参照)ため、回転子75内の縦軸方向における短絡磁路は形成されない。一方、回転子75の高回転時には、第1回転子76と第2回転子77の磁石13が異極同士となる((b)参照)ため、回転子75内の縦軸方向における短絡磁路が形成され、誘起電圧が低減され、速度領域の広域化に繋がる。   When the rotor 75 rotates at a low speed, the magnets 13 of the first rotor 76 and the second rotor 77 have the same polarity (see (a)), so a short-circuit magnetic path in the longitudinal direction in the rotor 75 is formed. Not. On the other hand, when the rotor 75 rotates at a high speed, the magnets 13 of the first rotor 76 and the second rotor 77 have different polarities (see (b)). Is formed, the induced voltage is reduced, and the speed region is widened.

上述したように、この発明に係る電動機は、複数の磁石が配置され、磁石異極間と同士の磁路より磁石同極間同士の磁路の方が磁気抵抗の小さい回転子を有し、前記回転子の回転数に応じて、前記回転子内の短絡磁束量を変化させる磁束短絡機構を有している。また、前記磁束短絡機構は、前記磁石異極間のフラックスバリアにコイルを配置した構成、或いは、前記磁石異極間のフラックスバリアを透磁率の変更が可能な部材により形成した構成、或いは、前記磁石異極間のフラックスバリアを磁石付き回転部材により形成した構成、或いは、前記磁石異極間のフラックスバリアを磁気異方性回転部材により形成した構成、或いは、前記磁石異極間のフラックスバリアに付勢部材に接続された磁性体を装着した構成、或いは、前記磁石異極間のフラックスバリアを前記回転子内のギャップ、前記ギャップ内の磁性流体及び非磁性流体、前記磁性流体及び前記非磁性流体を仕切る仕切り部材により形成した構成、或いは、磁石トルクを得るための主となる第1回転子、及び前記回転子内の短絡磁束を発生させるための第2回転子の複数の回転子を有し、前記第1回転子と前記第2回転子の位相制御を行う構成、或いは、回転子軸方向に分割した複数の回転子を有し、前記複数の回転子の位相制御を行う構成、をそれぞれ有している。   As described above, the electric motor according to the present invention has a rotor in which a plurality of magnets are arranged, and the magnetic path between the magnet poles is smaller in magnetic resistance than the magnetic path between the magnet poles, A magnetic flux short-circuit mechanism is provided that changes the amount of short-circuit magnetic flux in the rotor according to the number of rotations of the rotor. In addition, the magnetic flux short-circuit mechanism has a configuration in which a coil is disposed in a flux barrier between the magnets different poles, or a configuration in which the flux barrier between the magnets different poles is formed by a member capable of changing permeability, or A configuration in which a flux barrier between magnets having different poles is formed by a rotating member with a magnet, a configuration in which a flux barrier between magnets having different poles is formed by a magnetic anisotropic rotating member, or a flux barrier between magnets having different poles A structure in which a magnetic body connected to an urging member is mounted, or a flux barrier between the magnets having different poles is used as a gap in the rotor, a magnetic fluid and a nonmagnetic fluid in the gap, the magnetic fluid and the nonmagnetic A structure formed by a partition member for partitioning the fluid, or a first rotor for obtaining magnet torque, and a short-circuit magnetic flux in the rotor are generated. Having a plurality of rotors of the second rotor for controlling the phase of the first rotor and the second rotor, or having a plurality of rotors divided in the rotor axial direction And a configuration for performing phase control of the plurality of rotors.

(第13実施の形態)
図16は、第5実施の形態及び第6実施の形態における給電機構の一例を示す回転子の180度モデル断面説明図である。図16に示すように、第5実施の形態(図8参照)及び第6実施の形態(図9参照)における給電のための機構として、回転子(一例として、第6実施の形態(図9参照)の回転子45の場合を示す)内の磁石同極間の磁路にコイル80を設ける。回転子45内のコイル80は、基本波成分では誘起電圧は発生しないが、一次より次数の多い成分を印加することで、誘起電圧が発生する。実際に電動機を動作させる場合、高調波成分が存在するため、敢えて高調波を印加しなくても誘起電圧が発生し、ダイオードブリッジ(図示しない)を通すことで給電が可能になる。
(13th Embodiment)
FIG. 16 is a 180-degree model cross-sectional explanatory diagram of a rotor showing an example of a power feeding mechanism in the fifth and sixth embodiments. As shown in FIG. 16, as a mechanism for supplying power in the fifth embodiment (see FIG. 8) and the sixth embodiment (see FIG. 9), a rotor (as an example, the sixth embodiment (FIG. 9) is used. The coil 80 is provided in the magnetic path between the magnets having the same polarity in the rotor 45 shown in FIG. The coil 80 in the rotor 45 does not generate an induced voltage in the fundamental wave component, but generates an induced voltage by applying a component having a higher order than the primary. When the motor is actually operated, a harmonic component is present, so that an induced voltage is generated without applying a harmonic, and power can be supplied by passing through a diode bridge (not shown).

これにより、回転子(41,45)の高回転時は、誘起電圧が大きくなり、第5実施の形態(図8参照)においては、コイル80に流す電流が増すことで磁力が強くなり、第6実施の形態(図9参照)においては、閾値となる電圧を超えることで圧電素子46aが動作する。   As a result, the induced voltage increases when the rotor (41, 45) rotates at a high speed. In the fifth embodiment (see FIG. 8), the current flowing through the coil 80 increases and the magnetic force increases. In the sixth embodiment (see FIG. 9), the piezoelectric element 46a operates by exceeding a threshold voltage.

上述した、第7実施の形態(図10参照)、第8実施の形態(図11参照)、第11実施の形態(図14参照)、第12実施の形態(図15参照)の磁路切り換えは、例えば、エンジンバルブタイミング調整装置に使われている油圧を用いた位相制御機構(第4実施の形態、図6及び図7参照)を用いることで実現することができる。
第7実施の形態(図10参照)、第8実施の形態(図11参照)における低回転時と高回転時の切り換えは、位相可動部32と磁路切り換え部18(磁気異方性を持つ部材)にそれぞれ歯車34,35を取り付け、両歯車34,35を噛合させることで行う(図6(a)参照)。第11実施の形態(図14参照)における低回転時と高回転時の切り換えは、位相可動部32と磁路を切り換える第2回転子73を接続することで行う。
Magnetic path switching of the seventh embodiment (see FIG. 10), the eighth embodiment (see FIG. 11), the eleventh embodiment (see FIG. 14), and the twelfth embodiment (see FIG. 15) described above. Can be realized, for example, by using a phase control mechanism using hydraulic pressure used in an engine valve timing adjusting device (see the fourth embodiment, FIGS. 6 and 7).
In the seventh embodiment (see FIG. 10) and the eighth embodiment (see FIG. 11), the switching between the low rotation and the high rotation is performed by the phase movable unit 32 and the magnetic path switching unit 18 (having magnetic anisotropy). The gears 34 and 35 are respectively attached to the members and the gears 34 and 35 are engaged with each other (see FIG. 6A). Switching between low rotation and high rotation in the eleventh embodiment (see FIG. 14) is performed by connecting the phase movable unit 32 and a second rotor 73 that switches the magnetic path.

図17は、第10実施の形態における位相制御機構の一例を示す回転軸に沿う断面図である。図17に示すように、第10実施の形態(図13参照)の磁路切り換え機構を構成する複数のギャップ66が形成された回転子65は、電動機のハウジング30内にシャフト31により回転自在に装着されており、各ギャップ66は、各ギャップ66の両端にそれぞれ連通しシャフト31の両端をそれぞれ貫通する上下各流路85a,85bに接続されている。この上流路85a内を非磁性流体68が、下流路85b内を磁性流体67が、それぞれ流動する。   FIG. 17 is a cross-sectional view along the rotation axis showing an example of the phase control mechanism in the tenth embodiment. As shown in FIG. 17, the rotor 65 in which a plurality of gaps 66 forming the magnetic path switching mechanism of the tenth embodiment (see FIG. 13) is formed can be freely rotated by the shaft 31 in the housing 30 of the electric motor. Each gap 66 communicates with both ends of each gap 66 and is connected to each of the upper and lower flow paths 85a and 85b passing through both ends of the shaft 31. The non-magnetic fluid 68 flows in the upper flow path 85a, and the magnetic fluid 67 flows in the lower flow path 85b.

図18は、第12実施の形態における位相制御機構の一例を示し、(a)は回転軸に沿って断面した概略説明図、(b)は油圧機構を説明する平面図である。図18に示すように、回転子75を、縦軸方向に二分割した第1回転子76と第2回転子77により形成し、第1回転子76と第2回転子77の位相制御を行う(第12実施の形態、図15参照)場合、回転子75の内部に、位相稼動部36を設けて、位相稼動部36の油室36aに作動油33を入れ、進角油室の作動油33aと遅角油室の作動油33bのどちらか一方を供給し他方を排出する。これにより、回転子75と位相稼動部36との間に位相差が発生する。このとき、位置センサ等(図示しない)を用いることで、正確な位置制御が可能になる。第12実施の形態(図15参照)における低回転時と高回転時の切り換えは、位相可動部32と磁路を切り換える第2回転子77を接続することで行う。   18A and 18B show an example of a phase control mechanism according to the twelfth embodiment. FIG. 18A is a schematic explanatory view taken along a rotation axis, and FIG. 18B is a plan view illustrating a hydraulic mechanism. As shown in FIG. 18, the rotor 75 is formed by a first rotor 76 and a second rotor 77 that are divided into two in the vertical axis direction, and phase control of the first rotor 76 and the second rotor 77 is performed. In the case of the twelfth embodiment (see FIG. 15), the phase operating unit 36 is provided inside the rotor 75, and the hydraulic oil 33 is placed in the oil chamber 36 a of the phase operating unit 36, so Either one of 33a and retarding oil chamber hydraulic oil 33b is supplied and the other is discharged. Thereby, a phase difference is generated between the rotor 75 and the phase operating unit 36. At this time, accurate position control becomes possible by using a position sensor or the like (not shown). Switching between low rotation and high rotation in the twelfth embodiment (see FIG. 15) is performed by connecting the phase movable unit 32 and the second rotor 77 that switches the magnetic path.

このように、この発明によれば、複数の磁石が配置された回転子に設けた磁路切り換え部により、回転子の磁路を切り換えて、順突極構造としての強め界磁制御或いは逆突極構造としての弱め界磁制御が選択されるので、相反する順突極特性と逆突極特性を併せ持つことで強め界磁制御と弱め界磁制御を効率的に行うことができるようになり、高トルクと高回転(高出力)を両立した広範囲な運転が可能となる。   As described above, according to the present invention, the magnetic path switching unit provided in the rotor having a plurality of magnets is used to switch the magnetic path of the rotor, so that the strong field control or the reverse salient pole structure as the forward salient pole structure is achieved. Field-weakening control is selected, and by combining the opposite forward and reverse saliency characteristics, it becomes possible to efficiently perform the strong field control and the weak field control, resulting in high torque and high rotation (high output) ) Can be operated over a wide range.

なお、上記実施の形態においては、内側に回転子が存在するラジアルギャップ型電動機について説明したが、これに限るものではなく、外側に回転子が存在するラジアルギャップ型電動機や、アキシャルギャップ型電動機等でも実現することができる。また、上記実施の形態においては、埋め込み磁石型電動機について説明したが、これに限るものではなく、表面磁石型電動機でも実現することができ、更に、ステータの形状や回転子の極数等についても、これに限るものではない。   In the above embodiment, the radial gap type motor having the rotor on the inner side has been described. However, the present invention is not limited to this, and the radial gap type motor having the rotor on the outer side, the axial gap type motor, or the like. But it can be realized. In the above embodiment, the embedded magnet type motor has been described. However, the present invention is not limited to this, and can be realized by a surface magnet type motor. Further, the shape of the stator, the number of poles of the rotor, etc. However, it is not limited to this.

10,40 電動機
11,20,25,41,45,50,55,60,65,70,75 回転子
12 固定子
13,72 磁石
14 コイル
15 回転軸
16 スロット
17,22,27 エアギャップ
18,21 磁路切り換え部
26,28 磁気素子
26a,28a,46b 磁歪素子
26b,28b,46a 圧電素子
30 ハウジング
31 シャフト
32,36 位相稼動部
32a,36a 油室
33 作動油
33a 進角油室の作動油
33b 遅角油室の作動油
34,35 歯車
42,74 フラックスバリア
43,80 コイル
46 磁気素子
51 磁石付き回転部材
56 磁気異方性回転部材
61 磁性体
62 付勢部材
66 ギャップ
67 磁性流体
68 非磁性流体
69 仕切り部材
71,76 第1回転子
73,77 第2回転子
85a 上流路
85b 下流路
10, 40 Electric motors 11, 20, 25, 41, 45, 50, 55, 60, 65, 70, 75 Rotor 12 Stator 13, 72 Magnet 14 Coil 15 Rotating shaft 16 Slots 17, 22, 27 Air gap 18, 21 Magnetic path switching part 26, 28 Magnetic element 26a, 28a, 46b Magnetostrictive element 26b, 28b, 46a Piezoelectric element 30 Housing 31 Shaft 32, 36 Phase operating part 32a, 36a Oil chamber 33 Hydraulic oil 33a Hydraulic oil for advance oil chamber 33b Hydraulic oil 34, 35 gears 42, 74 Flux barrier 43, 80 Coil 46 Magnetic element 51 Rotating member 56 with magnet Magnetic anisotropic rotating member 61 Magnetic body 62 Energizing member 66 Gap 67 Magnetic fluid 68 Non Magnetic fluid 69 Partition members 71, 76 First rotor 73, 77 Second rotor 85a Upper flow path 85b Lower flow path

Claims (9)

界磁用のコイルおよび該コイルを巻回するためのティースを有する固定子と、
複数の永久磁石を有し、前記固定子に対して回転軸を中心として回転自在に装着された回転子と、
を有する電動機であって、
前記永久磁石は、前記回転軸を中心とした外周部分に、異なる磁極が直線状に並ぶように配置されており、
前記回転子の外周側と前記永久磁石の異なる磁極間との間に設けられ、前記回転子内の短絡磁束量を変化させる磁束短絡機構を備える、
ことを特徴とする電動機。
A stator having a field coil and teeth for winding the coil;
A rotor having a plurality of permanent magnets and attached to the stator so as to be rotatable around a rotation axis;
An electric motor having
The permanent magnet is arranged so that different magnetic poles are arranged in a straight line on the outer peripheral portion around the rotation axis,
Provided between the outer peripheral side of the rotor and between different magnetic poles of the permanent magnet, provided with a magnetic flux short-circuit mechanism that changes the amount of short-circuit magnetic flux in the rotor,
An electric motor characterized by that.
前記磁束短絡機構は、前記永久磁石の異なる磁極間のフラックスバリアにコイルを配置した構成を有することを特徴とする請求子1に記載の電動機。   The electric motor according to claim 1, wherein the magnetic flux short-circuit mechanism has a configuration in which a coil is disposed in a flux barrier between different magnetic poles of the permanent magnet. 前記磁束短絡機構は、前記永久磁石の異なる磁極間のフラックスバリアを透磁率の変更が可能な部材により形成した構成を有することを特徴とする請求子1に記載の電動機。   The electric motor according to claim 1, wherein the magnetic flux short-circuit mechanism has a configuration in which a flux barrier between different magnetic poles of the permanent magnet is formed by a member capable of changing a magnetic permeability. 前記磁束短絡機構は、前記永久磁石の異なる磁極間のフラックスバリアを磁石付き回転部材により形成した構成を有する請求項1に記載の電動機。   The electric motor according to claim 1, wherein the magnetic flux short-circuit mechanism has a configuration in which a flux barrier between different magnetic poles of the permanent magnet is formed by a rotating member with a magnet. 前記磁束短絡機構は、前記永久磁石の異なる磁極間のフラックスバリアを磁気異方性回転部材により形成した構成を有する請求項1に記載の電動機。   The electric motor according to claim 1, wherein the magnetic flux short-circuit mechanism has a configuration in which a flux barrier between different magnetic poles of the permanent magnet is formed by a magnetic anisotropic rotating member. 前記磁束短絡機構は、前記永久磁石の異なる磁極間のフラックスバリアに、付勢部材に接続された磁性体を装着した構成を有する請求項1に記載の電動機。   The electric motor according to claim 1, wherein the magnetic flux short-circuit mechanism has a configuration in which a magnetic body connected to an urging member is attached to a flux barrier between different magnetic poles of the permanent magnet. 前記磁束短絡機構は、前記永久磁石の異なる磁極間のフラックスバリアを、前記回転子内のギャップ、前記ギャップ内の磁性流体及び非磁性流体、前記磁性流体及び前記非磁性流体を仕切る仕切り部材により形成した構成を有する請求項1に記載の電動機。   In the magnetic flux short-circuit mechanism, a flux barrier between different magnetic poles of the permanent magnet is formed by a gap in the rotor, a magnetic fluid and a nonmagnetic fluid in the gap, and a partition member that partitions the magnetic fluid and the nonmagnetic fluid. The electric motor according to claim 1, having the configuration described above. 前記回転子は、磁石トルクを得るための主となる第1回転子、及び前記回転子内の短絡磁束を発生させるための第2回転子を有し、
前記磁束短絡機構は、前記第1回転子と前記第2回転子の位相制御を行う構成を有する請求項1に記載の電動機。
The rotor has a first rotor for obtaining magnet torque, and a second rotor for generating a short-circuit magnetic flux in the rotor,
The electric motor according to claim 1, wherein the magnetic flux short-circuit mechanism has a configuration for performing phase control of the first rotor and the second rotor.
前記回転子は、回転子軸方向に分割した複数の回転子を有し、
前記磁束短絡機構は、前記複数の回転子の位相制御を行う構成を有する請求項1に記載の電動機。
The rotor has a plurality of rotors divided in the rotor axial direction,
The electric motor according to claim 1, wherein the magnetic flux short-circuit mechanism has a configuration for performing phase control of the plurality of rotors.
JP2010003966A 2005-03-09 2010-01-12 Electric motor Pending JP2010110211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010003966A JP2010110211A (en) 2005-03-09 2010-01-12 Electric motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005065153 2005-03-09
JP2010003966A JP2010110211A (en) 2005-03-09 2010-01-12 Electric motor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005249674A Division JP2006288183A (en) 2005-03-09 2005-08-30 Dynamo-electric motor

Publications (1)

Publication Number Publication Date
JP2010110211A true JP2010110211A (en) 2010-05-13

Family

ID=42299073

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2010003966A Pending JP2010110211A (en) 2005-03-09 2010-01-12 Electric motor
JP2010087911A Expired - Fee Related JP5321523B2 (en) 2005-03-09 2010-04-06 Electric motor

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2010087911A Expired - Fee Related JP5321523B2 (en) 2005-03-09 2010-04-06 Electric motor

Country Status (1)

Country Link
JP (2) JP2010110211A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011205896A (en) * 2005-06-14 2011-10-13 Nissan Motor Co Ltd Dynamo-electric machine
JP2013162612A (en) * 2012-02-03 2013-08-19 Suzuki Motor Corp Electric rotary machine
WO2021033432A1 (en) * 2019-08-22 2021-02-25 パナソニックIpマネジメント株式会社 Electric power tool

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5605164B2 (en) * 2010-10-26 2014-10-15 株式会社明電舎 Permanent magnet type synchronous motor and method for operating permanent magnet type synchronous motor
JP2013126272A (en) 2011-12-13 2013-06-24 Samsung Electronics Co Ltd Motor
WO2013141323A1 (en) * 2012-03-23 2013-09-26 三菱重工オートモーティブサーマルシステムズ株式会社 Motor and electric compressor using same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0993846A (en) * 1995-07-14 1997-04-04 Meidensha Corp Permanent magnet type synchronous motor
JP3269346B2 (en) * 1995-08-24 2002-03-25 トヨタ自動車株式会社 Permanent magnet motor
JP3722166B2 (en) * 1995-11-17 2005-11-30 株式会社安川電機 Field of permanent magnet motor
JPH1146471A (en) * 1997-07-25 1999-02-16 Hitachi Metals Ltd Magnet excited brushless motor
JP2000134891A (en) * 1998-10-28 2000-05-12 Okuma Corp Synchronous motor and controller therefor
JP4147732B2 (en) * 2000-08-11 2008-09-10 株式会社デンソー Permanent magnet type rotating electric machine
JP4225001B2 (en) * 2002-08-09 2009-02-18 株式会社エクォス・リサーチ Electric motor
JP2004242462A (en) * 2003-02-07 2004-08-26 Denso Corp Rotor of variable magnetic flux magnet
JP4069796B2 (en) * 2003-05-08 2008-04-02 日産自動車株式会社 Magnetic circuit controller for multi-axis multilayer motor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011205896A (en) * 2005-06-14 2011-10-13 Nissan Motor Co Ltd Dynamo-electric machine
JP2013162612A (en) * 2012-02-03 2013-08-19 Suzuki Motor Corp Electric rotary machine
WO2021033432A1 (en) * 2019-08-22 2021-02-25 パナソニックIpマネジメント株式会社 Electric power tool

Also Published As

Publication number Publication date
JP5321523B2 (en) 2013-10-23
JP2010154755A (en) 2010-07-08

Similar Documents

Publication Publication Date Title
JP2006288183A (en) Dynamo-electric motor
JP5321523B2 (en) Electric motor
CN103051075B (en) Electromechanical assembly and assemble method
KR200210795Y1 (en) Motor for Reclamated Eternatiy Magnet
JP5141030B2 (en) Rotating electric machine
JP2004072978A (en) Electric motor
JP7284503B2 (en) Variable magnetic force motor
JP6539004B1 (en) Rotor and rotating electric machine
JP2009539336A (en) Electrical synchronous machine
JP2012175738A (en) Permanent magnet type rotary electric machine
AU2006345546B2 (en) Single field rotor motor
AU2004317320B2 (en) Single field rotor motor
JP6201405B2 (en) Rotating electric machine
JP5114135B2 (en) Axial gap type motor
JP7039322B2 (en) Variable field motor
JP2007259525A (en) Permanent magnet synchronous motor/generator
JP2021103928A (en) Rotary electric machine
JP3797488B2 (en) Multi-pole rotating electric machine
JP6176072B2 (en) Rotating electric machine
JP4767997B2 (en) Rotating electric machine rotor and electric motor
JP2002010597A (en) Motor
KR100408051B1 (en) Resonance type magnet motor
JP2021061644A (en) Rotary electric machine
JP2006141106A (en) Hybrid motor or generator, and motor or generator driving system using it
WO2017038859A1 (en) Motor