Nothing Special   »   [go: up one dir, main page]

JP2010104873A - Oxygen-enriched air introducing apparatus - Google Patents

Oxygen-enriched air introducing apparatus Download PDF

Info

Publication number
JP2010104873A
JP2010104873A JP2008277258A JP2008277258A JP2010104873A JP 2010104873 A JP2010104873 A JP 2010104873A JP 2008277258 A JP2008277258 A JP 2008277258A JP 2008277258 A JP2008277258 A JP 2008277258A JP 2010104873 A JP2010104873 A JP 2010104873A
Authority
JP
Japan
Prior art keywords
oxygen
pipe
flow rate
enriched air
enriched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008277258A
Other languages
Japanese (ja)
Inventor
Yoshiyasu Ito
良泰 伊藤
Yasunari Maeda
康成 前田
Kenji Adachi
研治 安達
So Yamamoto
壮 山本
Shigeyuki Yamaguchi
重行 山口
Kyoko Tsutsumi
恭子 堤
Hitoshi Kitamura
仁史 北村
Hisanori Shibata
尚紀 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2008277258A priority Critical patent/JP2010104873A/en
Publication of JP2010104873A publication Critical patent/JP2010104873A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control For Baths (AREA)
  • Devices For Medical Bathing And Washing (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oxygen-enriched air introducing apparatus which is adjustable of the flow rate of oxygen-enriched air. <P>SOLUTION: In the oxygen-enriched air introducing apparatus, negative pressure generated by the water flow of a water flow pipe 6 is applied to an oxygen enriching means 2 from an introducing pipe 1, and the oxygen-enriched air produced in the oxygen enriching means 2 is introduced to the water flow pipe 6 from the introducing pipe 1. Wherein, the plurality of the oxygen enriching means 2 are provided, and the introducing pipe 1 comprises a collective pipe 11 communicated with the water flow pipe 6 and branched pipes 12a, 12b branched from the collective pipe 11 and communicated with the respective oxygen enriching means 2. The respective branched pipes 12a, 12b are provided with flow control valves 24a, 24b controlling the flow of the oxygen-enriched air from the oxygen enriching means 2a, 2b, and also provided with at least any one of a sensor 4 detecting the pressure in the collective pipe 11 of the introducing pipe 1 or the flow rate of the oxygen-enriched air, and a sensor 5 detecting the temperature of oxygen enriching membranes 21a, 21b of the oxygen enriching means 2a, 2b or atmospheric temperature in the vicinity thereof. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、酸素富化空気導入装置に関するものである。   The present invention relates to an oxygen-enriched air introduction device.

従来より、酸素富化装置で生成した酸素富化空気を浴槽の浴槽水をポンプで循環させる管路に導入して浴槽水に酸素富化空気を混入し、これを再び浴槽内に吐出する酸素富化給湯装置が知られている(例えば、特許文献1参照)。   Conventionally, oxygen-enriched air generated by an oxygen-enriching device is introduced into a pipe that circulates bathtub water in the bathtub with a pump, oxygen-enriched air is mixed into the bathtub water, and oxygen is discharged into the bathtub again. An enriched hot water supply apparatus is known (see, for example, Patent Document 1).

この酸素富化給湯装置は、管路に絞り部を設けてこの絞り部で生ずる負圧により酸素富化装置で生成した酸素富化空気を管路に導入している。酸素富化装置では酸素富化膜が使用されており、この酸素富化膜において酸素を選択的に透過させて酸素富化空気を生成している。酸素富化膜の特性上、環境温度によって透過流量が変動するため、上記酸素富化給湯装置では、管路に導入される酸素富化空気の流量にバラツキが生じ、このバラツキが管路のポンプ内部での気液混合比を変動させ、気体の比率が高い場合にはポンプがエアロックしてしまう等の問題が生じるおそれがあった。そこで、所望の気体流量を確保するために、真空ポンプを設け、酸素富化膜に真空ポンプによる真空圧を作用させて酸素富化空気を過剰に吸引し、全部もしくはその一部を管路に導入することが考えられる。すなわち、想定される最悪温度条件(低温条件)下でも所望の流量が得られるように流量設定しておき、高温条件下において空気が多すぎる場合には余剰空気を他へ排出することが考えられるが、真空ポンプおよび別経路が必要になる等のコスト高になるという問題があった。
特開2004−350932号公報
In this oxygen-enriched hot water supply apparatus, a throttle portion is provided in a pipe, and oxygen-enriched air generated by the oxygen enricher is introduced into the pipe by a negative pressure generated in the throttle. In the oxygen enrichment apparatus, an oxygen enriched film is used, and oxygen is selectively permeated through the oxygen enriched film to generate oxygen enriched air. Due to the characteristics of the oxygen-enriched membrane, the permeation flow rate varies depending on the environmental temperature. Therefore, in the oxygen-enriched hot water supply apparatus, the flow rate of oxygen-enriched air introduced into the pipe line varies, and this variation is the pump of the pipe line. When the gas-liquid mixing ratio in the interior is changed and the gas ratio is high, there is a possibility that a problem such as air lock of the pump may occur. Therefore, in order to secure a desired gas flow rate, a vacuum pump is provided, the vacuum pressure by the vacuum pump is applied to the oxygen-enriched membrane, and oxygen-enriched air is excessively sucked, and all or part of it is placed in the pipe line. It is possible to introduce. That is, it is conceivable that the flow rate is set so that a desired flow rate is obtained even under the assumed worst temperature condition (low temperature condition), and excess air is discharged to others when there is too much air under high temperature conditions. However, there is a problem that the cost becomes high, for example, a vacuum pump and another path are required.
JP 2004-350932 A

本発明は、以上のとおりの事情に鑑みてなされたものであり、酸素富化空気の流量を調整することができる酸素富化空気導入装置を提供することを課題としている。   The present invention has been made in view of the circumstances as described above, and an object thereof is to provide an oxygen-enriched air introducing device capable of adjusting the flow rate of oxygen-enriched air.

本発明は、上記の課題を解決するために、以下のことを特徴としている。   The present invention is characterized by the following in order to solve the above problems.

第1には、酸素富化膜を有し酸素富化空気を生成する酸素富化手段と、この酸素富化手段で生成された酸素富化空気を通水管に導入する導入配管を備え、通水管の水流で発生する負圧を導入配管から酸素富化手段に作用させて酸素富化手段で生成された酸素富化空気を導入配管から通水管に導入する酸素富化空気導入装置において、酸素富化手段は複数設けられており、導入配管は通水管に連通する集合配管とこの集合配管から分岐して各酸素富化手段に連通される分岐配管で構成され、各分岐配管には酸素富化手段からの酸素富化空気の流量を調整する流量調整弁が設けられており、導入配管の集合配管内の圧力または酸素富化空気の流量を検知するセンサ、および酸素富化手段の酸素富化膜の温度またはその近傍の雰囲気温度を検知するセンサのうち少なくともいずれか一方のセンサが設けられており、前記センサで検知した導入配管の集合配管内の圧力もしくは酸素富化空気の流量または酸素富化膜の温度もしくはその近傍の雰囲気温度に応じて分岐配管の流量調整弁を開閉して導入配管から通水管に導入される酸素富化空気の流量を調整する。   First, an oxygen-enriching means that has an oxygen-enriched membrane and generates oxygen-enriched air, and an introduction pipe that introduces oxygen-enriched air generated by the oxygen-enriched means into the water pipe are provided. In an oxygen-enriched air introduction device that introduces oxygen-enriched air generated by the oxygen-enriching means from the introduction pipe to the water pipe by causing negative pressure generated in the water flow of the water pipe to act on the oxygen-enriching means from the introduction pipe. A plurality of enrichment means are provided, and the introduction pipe is composed of a collective pipe communicating with the water pipe and a branch pipe branched from the collective pipe and communicated with each oxygen enrichment means. A flow rate adjustment valve for adjusting the flow rate of the oxygen-enriched air from the oxygenation means, a sensor for detecting the pressure in the collecting pipe of the introduction pipe or the flow rate of the oxygen-enriched air, and the oxygen enrichment of the oxygen enrichment means Detect the temperature of the chemical film or the ambient temperature near it At least one of the sensors is provided and depends on the pressure in the collecting pipe of the introduction pipe detected by the sensor, the flow rate of the oxygen-enriched air, the temperature of the oxygen-enriched film, or the ambient temperature in the vicinity thereof. The flow control valve of the branch pipe is opened and closed to adjust the flow rate of the oxygen-enriched air introduced from the introduction pipe to the water pipe.

第2には、上記第1の発明において、センサで検知した導入配管の集合配管内の圧力が高いときもしくは酸素富化空気の流量が大きいときまたは酸素富化膜の温度が高いときに、複数設けられた酸素富化手段に連通する分岐配管に設けられた流量調整弁のうち一部の酸素富化手段に連通する分岐配管の流量調整弁を閉じて酸素富化手段からの酸素富化空気の流量を抑制する。   Second, in the first invention, when the pressure in the collecting pipe of the introduction pipe detected by the sensor is high, the flow rate of the oxygen-enriched air is large, or the temperature of the oxygen-enriched film is high, a plurality of Oxygen-enriched air from the oxygen-enriching means by closing the flow-regulating valves of branch pipes communicating with some of the oxygen-enriching means among the flow-regulating valves provided in the branch pipes communicating with the provided oxygen-enriching means To suppress the flow rate.

第3には、上記第1または第2の発明において、通水管の水流で発生する負圧を可変させる、通水管の流量を調整する流量調整手段がさらに設けられており、センサで検知した導入配管内の圧力もしくは酸素富化空気の流量または酸素富化膜の温度もしくはその近傍の雰囲気温度に応じて、通水管の流量を流量調整手段で調整することにより通水管の水流で発生する負圧を変化させて導入配管から通水管に導入される酸素富化空気の流量を調整する。   Third, in the first or second aspect of the present invention, a flow rate adjusting means for adjusting the flow rate of the water pipe that varies the negative pressure generated in the water flow of the water pipe is further provided, and the introduction detected by the sensor Negative pressure generated in the water flow of the water pipe by adjusting the flow rate of the water pipe with the flow rate adjusting means according to the pressure in the pipe or the flow rate of oxygen-enriched air or the temperature of the oxygen-enriched membrane or the ambient temperature in the vicinity To adjust the flow rate of oxygen-enriched air introduced from the introduction pipe to the water pipe.

第1の発明によれば、導入配管内の圧力もしくは酸素富化空気の流量または酸素富化膜の温度もしくはその近傍の雰囲気温度に応じて分岐配管の流量調整弁を開閉し、導入配管から通水管に導入される酸素富化空気の流量が大きく変動しないように予め設定した範囲内に調整することができる。したがって、環境温度の変動による酸素富化空気の流量のバラツキが抑制され、通水管に酸素富化空気を安定した流量で導入することができる。また、真空ポンプおよび余剰空気を排出する別経路を設置せずに酸素富化空気の流量のバラツキを抑制することができるためコスト安になるほか、真空ポンプと別経路の設置空間を確保することが不要になり、装置としての小型化設計が可能になる。   According to the first aspect of the invention, the flow regulating valve of the branch pipe is opened and closed according to the pressure in the introduction pipe or the flow rate of oxygen-enriched air, the temperature of the oxygen-enriched film or the ambient temperature in the vicinity thereof, and the flow from the introduction pipe. The flow rate of the oxygen-enriched air introduced into the water pipe can be adjusted within a preset range so as not to fluctuate greatly. Therefore, variation in the flow rate of the oxygen-enriched air due to fluctuations in the environmental temperature is suppressed, and the oxygen-enriched air can be introduced into the water pipe at a stable flow rate. In addition, it is possible to suppress the variation in the flow rate of oxygen-enriched air without installing a vacuum pump and a separate path for discharging excess air. Is no longer necessary, and the device can be miniaturized.

第2の発明によれば、複数ある流量調整弁うち一部の流量調整弁を開状態にすることによって容易に酸素富化手段からの酸素富化空気の流量を抑制することができる。   According to the second invention, the flow rate of oxygen-enriched air from the oxygen-enriching means can be easily suppressed by opening some of the plurality of flow rate control valves.

第3の発明によれば、通水管の水流で発生する負圧を流量調整手段で調整して導入配管から通水管に導入される酸素富化空気の流量を調整することができるので、より細かな流量制御が可能になる。また、酸素富化膜の枚数の低減も可能になるため、さらなるコストダウンが見込める。   According to the third invention, the flow rate of oxygen-enriched air introduced from the introduction pipe to the water pipe can be adjusted by adjusting the negative pressure generated in the water flow of the water pipe by the flow rate adjusting means. Flow control is possible. Moreover, since the number of oxygen-enriched films can be reduced, further cost reduction can be expected.

本発明は前記のとおりの特徴をもつものであるが、以下に、本発明を実施するための最良の形態を説明する。   The present invention has the features as described above. The best mode for carrying out the present invention will be described below.

図1は、本発明の一実施形態である浴槽用の酸素富化空気導入装置の概略構成図である。図2は、図1の酸素富化手段2の断面図である。   FIG. 1 is a schematic configuration diagram of an oxygen-enriched air introducing device for bathtubs according to an embodiment of the present invention. FIG. 2 is a cross-sectional view of the oxygen enrichment means 2 of FIG.

浴槽20の側壁には、吸入口8と吐出口9が設けられており、吸入口8において浴槽20内の浴槽水Wを吸入し、吐出口9においてその浴槽水Wに酸素富化空気を溶解させた気体溶解水を吐出するようになっている。   A suction port 8 and a discharge port 9 are provided on the side wall of the bathtub 20, and the bathtub water W in the bathtub 20 is sucked into the suction port 8, and oxygen-enriched air is dissolved in the bathtub water W at the discharge port 9. The dissolved gas dissolved water is discharged.

吸入口8と吐出口9は浴槽20の外部に配設された浴槽水循環用の通水管6で連通されており、その通水管6の途中には流量調整手段3を構成する液送ポンプ31が配設され、液送ポンプ31の駆動により浴槽20内の浴槽水Wを吸入口8から吸入し、通水管6を経由して吐出口9から浴槽20内に吐出するようになっている。   The suction port 8 and the discharge port 9 are communicated with a water pipe 6 for circulating bath water disposed outside the bathtub 20, and a liquid feed pump 31 constituting the flow rate adjusting means 3 is provided in the middle of the water pipe 6. The bath water W in the bathtub 20 is sucked from the suction port 8 by driving the liquid feed pump 31 and discharged from the discharge port 9 into the bathtub 20 through the water pipe 6.

液送ポンプ31の上流側の通水管6には気体導入部10が設けられ、この気体導入部10に導入配管1が接続されている。さらに、この導入配管1の上流側には酸素富化手段2が配設されており、酸素富化手段2で作り出された酸素富化空気が導入配管1を経由して気体導入部10から通水管6に導入されるようになっている。   A gas introduction part 10 is provided in the water flow pipe 6 on the upstream side of the liquid feed pump 31, and the introduction pipe 1 is connected to the gas introduction part 10. Furthermore, an oxygen enrichment means 2 is disposed upstream of the introduction pipe 1, and oxygen-enriched air produced by the oxygen enrichment means 2 passes through the introduction pipe 1 from the gas introduction section 10. The water pipe 6 is introduced.

通水管6の気体導入部10はエジェクタ構造となっており、液送ポンプ31の駆動により発生した水流が通過すると負圧が発生し、この負圧を導入配管1から酸素富化手段2の酸素富化膜21a,21bに作用させることで、酸素富化手段2で生成された酸素富化空気を導入配管1から通水管6に導入するようにしている。この気体導入部10で発生する負圧は通水管6の水流の強さによって変動し、水流が強いほどより負圧の圧力が発生する。   The gas introduction part 10 of the water flow pipe 6 has an ejector structure, and a negative pressure is generated when the water flow generated by driving the liquid feed pump 31 passes, and this negative pressure is supplied from the introduction pipe 1 to the oxygen of the oxygen enrichment means 2. By acting on the enrichment membranes 21a and 21b, the oxygen-enriched air generated by the oxygen enrichment means 2 is introduced from the introduction pipe 1 into the water pipe 6. The negative pressure generated in the gas introduction unit 10 varies depending on the strength of the water flow in the water pipe 6, and the stronger the water flow, the more negative pressure is generated.

酸素富化手段2は複数設けられており、図1および図2に示すように、本実施形態では2つの酸素富化手段2a,2bが設けられている。酸素富化手段2a,2bはそれぞれ、各窒素と酸素を分離して酸素を選択的に透過させる酸素富化膜21a,21bで構成されており、図2に示すように、酸素富化膜21a,21bが互いに対向するように配設されている。大気圧よりも低い負圧をこの酸素富化膜21a,21bの内面側(酸素富化膜21a,21bの下流側)、つまり酸素が透過する側に作用させることにより酸素富化膜21a,21bの外面側(酸素富化膜21a,21bの上流側)の空気から酸素が選択的に多く取り込まれて相対的に酸素濃度の高い空気(酸素富化空気)が生成されるようになっている。図2に示すように、酸素富化膜21a,21bの内面側には経路25a,25bがそれぞれ独立に形成されており、経路25aは導入配管1の分岐配管12aに接続され、経路25bは導入配管1の分岐配管12bに接続され、酸素富化膜21a,21bを透過した酸素富化空気はそれぞれ経路25a,25bを経由して導入配管1に導入されるようになっている。また、経路25aおよび経路25bを分けるパッキン40a,40bが設けられており、経路25aおよび経路25bを流れる酸素富化空気が外部に漏れないように密封されている。酸素富化膜21a,21bの近傍には透過しにくい窒素が富化された空気が滞留する。このため本実施形態では酸素富化膜21a,21bの表面を換気する換気ファン22(図2では不図示)が設けられている。   A plurality of oxygen enriching means 2 are provided. As shown in FIGS. 1 and 2, in this embodiment, two oxygen enriching means 2a and 2b are provided. Each of the oxygen enriching means 2a and 2b is composed of oxygen enriched films 21a and 21b that separate nitrogen and oxygen and selectively permeate oxygen, and as shown in FIG. 2, the oxygen enriched film 21a. , 21b are arranged to face each other. By applying a negative pressure lower than the atmospheric pressure to the inner surfaces of the oxygen-enriched films 21a and 21b (downstream of the oxygen-enriched films 21a and 21b), that is, the side through which oxygen permeates, the oxygen-enriched films 21a and 21b. Oxygen is selectively taken in from the air on the outer surface side (upstream side of the oxygen-enriched films 21a and 21b), and air having a relatively high oxygen concentration (oxygen-enriched air) is generated. . As shown in FIG. 2, paths 25a and 25b are independently formed on the inner surfaces of the oxygen-enriched films 21a and 21b. The path 25a is connected to the branch pipe 12a of the introduction pipe 1 and the path 25b is introduced. The oxygen-enriched air that is connected to the branch pipe 12b of the pipe 1 and permeates through the oxygen-enriched films 21a and 21b is introduced into the introduction pipe 1 via the paths 25a and 25b, respectively. Further, packings 40a and 40b that separate the path 25a and the path 25b are provided, and are sealed so that oxygen-enriched air flowing through the path 25a and the path 25b does not leak to the outside. In the vicinity of the oxygen-enriched films 21a and 21b, air enriched with nitrogen that is difficult to permeate stays. For this reason, in this embodiment, the ventilation fan 22 (not shown in FIG. 2) for ventilating the surfaces of the oxygen-enriched films 21a and 21b is provided.

この酸素富化膜21a,21bは一般に次のような特性を有している。すなわち、酸素富化膜21a,21bに作用させる負圧を一定とした場合、酸素富化膜21a,21bの温度が高くなればその透過流量は増大し、酸素富化膜21a,21b透過後の空気の酸素濃度は低下する。逆に温度が低くなれば透過流量が低下し、酸素富化膜21a,21b透過後の空気の酸素濃度は高くなる。そして酸素富化膜21a,21b透過後の空気の酸素濃度と透過流量との積で決定される酸素富化空気の供給量は、一般的に温度が高いほど増大する傾向にある。また、より負圧の圧力を酸素富化膜21a,21bに作用させると、透過流量が増大し、酸素富化膜21a,21b透過後の空気の酸素濃度が高くなり、酸素富化空気の供給量は一般的に増大する傾向にある。したがって、酸素富化膜21a,21bの温度が変動しても酸素富化膜21a,21bに作用させる負圧を変化させることにより酸素富化空気の供給量を調整することができる。   The oxygen-enriched films 21a and 21b generally have the following characteristics. That is, when the negative pressure applied to the oxygen-enriched films 21a and 21b is constant, the permeate flow rate increases as the temperature of the oxygen-enriched films 21a and 21b increases, and after the oxygen-enriched films 21a and 21b have permeated. The oxygen concentration in the air decreases. Conversely, if the temperature is lowered, the permeation flow rate is lowered, and the oxygen concentration of the air after permeating the oxygen-enriched films 21a and 21b is increased. The supply amount of oxygen-enriched air determined by the product of the oxygen concentration of the air after permeation of the oxygen-enriched membranes 21a and 21b and the permeation flow rate generally tends to increase as the temperature increases. Further, when a more negative pressure is applied to the oxygen-enriched membranes 21a and 21b, the permeate flow rate increases, the oxygen concentration of the air after permeating the oxygen-enriched membranes 21a and 21b increases, and the supply of oxygen-enriched air The amount generally tends to increase. Accordingly, even if the temperature of the oxygen-enriched films 21a and 21b varies, the supply amount of oxygen-enriched air can be adjusted by changing the negative pressure applied to the oxygen-enriched films 21a and 21b.

導入配管1は通水管6に連通する集合配管11とこの集合配管11から分岐する分岐配管12a,12bで構成されている。分岐配管12a,12bはそれぞれ、複数設けられている酸素富化手段2a,2bの各々に並列に連通されている。各分岐配管12a,12bには、酸素富化手段2a,2bからの酸素富化空気の流量を調整する流量調整弁24a,24bが設けられている。これら流量調整弁24a,24bは絞り開度の調整が可能な電磁弁であり、絞りが圧損となって酸素富化膜21a,21bに作用する負圧が減り酸素富化空気の流量が低下する。流量調整弁24a,24bの絞り開度は、流量調整弁24a,24bに電気的に接続される制御ユニット30によって調整される。   The introduction pipe 1 includes a collecting pipe 11 that communicates with the water pipe 6 and branch pipes 12 a and 12 b that branch from the collecting pipe 11. Each of the branch pipes 12a and 12b is connected in parallel to each of a plurality of oxygen enriching means 2a and 2b. The branch pipes 12a and 12b are provided with flow rate adjusting valves 24a and 24b for adjusting the flow rate of oxygen-enriched air from the oxygen-enriching means 2a and 2b. These flow rate adjusting valves 24a and 24b are electromagnetic valves capable of adjusting the throttle opening, and the throttle is subjected to pressure loss, so that the negative pressure acting on the oxygen-enriched films 21a and 21b is reduced and the flow rate of oxygen-enriched air is reduced. . The throttle openings of the flow rate adjusting valves 24a and 24b are adjusted by the control unit 30 that is electrically connected to the flow rate adjusting valves 24a and 24b.

さらに本実施形態では、図1に示すように、導入配管1の集合配管11内の圧力や酸素富化空気の流量を検知するセンサ4、および酸素富化手段2a,2bの酸素富化膜21a,21bの温度やその近傍の雰囲気温度を検知するセンサ5を設けている。これらセンサ4,5は制御ユニット30に接続されており、前記センサ4,5で検知した導入配管1内の圧力、酸素富化空気の流量、酸素富化膜21a,21bの温度やその近傍の雰囲気温度等の情報に基づいて流量調整弁24a,24bの開度を調整して酸素富化手段2a,2bからの酸素富化空気の流量を調整できるようになっている。以下具体的に説明する。   Furthermore, in this embodiment, as shown in FIG. 1, the sensor 4 for detecting the pressure in the collective pipe 11 of the introduction pipe 1 and the flow rate of oxygen-enriched air, and the oxygen-enriched film 21a of the oxygen-enriching means 2a, 2b. , 21b and the ambient temperature in the vicinity thereof are provided. These sensors 4 and 5 are connected to the control unit 30, and the pressure in the introduction pipe 1 detected by the sensors 4 and 5, the flow rate of the oxygen-enriched air, the temperature of the oxygen-enriched films 21a and 21b, and the vicinity thereof. The flow rate of oxygen-enriched air from the oxygen-enriching means 2a, 2b can be adjusted by adjusting the opening of the flow rate adjusting valves 24a, 24b based on information such as the ambient temperature. This will be specifically described below.

本実施形態では、導入配管1の集合配管11内の圧力や酸素富化空気の流量を検知するセンサ4として導入配管にダイヤフラム型の圧力センサ41を設けている。この圧力センサ41は導入配管1の集合配管11内の圧力を検知するものであるが、集合配管11の内径が分かれば集合配管11内の酸素富化空気の流量も容易に算出することができる。したがって、酸素富化空気の供給量を所定の範囲内に調整する場合、圧力センサ41で検知した圧力に基づいて算出した酸素富化空気の流量が所定の範囲よりも大きければ、例えば、酸素富化手段2aに連通する分岐配管12aの流量調整弁24aを閉状態とし、他方の酸素富化手段2bに連通する分岐配管12bの流量調整弁24bの開状態を維持する。これにより酸素富化手段2aの酸素富化膜21aに作用させる負圧が遮断されて集合配管11に酸素富化空気が供給されなくなり、酸素富化手段2bからのみ酸素富化空気が供給されることになって全体として酸素富化手段2からの導入配管1への酸素富化空気の流量が抑制される。酸素富化手段2a,2bは導入配管1に並列に配設されているため、流量調整弁24aを閉じたことによる圧損が酸素富化膜21bに作用させる負圧に影響を与えて酸素濃度を低下させることはない。なお、酸素富化手段2からの導入配管1への酸素富化空気の流量の抑制にあたっては、酸素富化手段2a,2bに連通する分岐配管12a,12bの流量調整弁24a,24bの絞り開度を適宜調整するようにしてもよい。なお、圧力センサ41の代わりに酸素富化空気の流量を検知するセンサを設けてもよい。   In this embodiment, a diaphragm type pressure sensor 41 is provided in the introduction pipe as the sensor 4 for detecting the pressure in the collective pipe 11 of the introduction pipe 1 and the flow rate of the oxygen-enriched air. The pressure sensor 41 detects the pressure in the collective pipe 11 of the introduction pipe 1. If the inner diameter of the collective pipe 11 is known, the flow rate of oxygen-enriched air in the collective pipe 11 can be easily calculated. . Therefore, when adjusting the supply amount of oxygen-enriched air within a predetermined range, if the flow rate of oxygen-enriched air calculated based on the pressure detected by the pressure sensor 41 is larger than the predetermined range, for example, oxygen-enriched air The flow rate adjusting valve 24a of the branch pipe 12a communicating with the gasifying means 2a is closed, and the flow rate adjusting valve 24b of the branch pipe 12b communicating with the other oxygen enriching means 2b is maintained open. As a result, the negative pressure acting on the oxygen-enriched film 21a of the oxygen-enriching means 2a is cut off, so that oxygen-enriched air is not supplied to the collecting pipe 11, and oxygen-enriched air is supplied only from the oxygen-enriching means 2b. As a result, the flow rate of oxygen-enriched air from the oxygen-enriching means 2 to the introduction pipe 1 is suppressed as a whole. Since the oxygen enriching means 2a and 2b are arranged in parallel to the introduction pipe 1, the pressure loss caused by closing the flow rate regulating valve 24a affects the negative pressure acting on the oxygen enriched film 21b, thereby reducing the oxygen concentration. There is no reduction. In order to suppress the flow rate of oxygen-enriched air from the oxygen-enriching means 2 to the introduction pipe 1, the flow control valves 24a and 24b of the branch pipes 12a and 12b communicating with the oxygen-enriching means 2a and 2b are opened. You may make it adjust a degree suitably. Instead of the pressure sensor 41, a sensor that detects the flow rate of oxygen-enriched air may be provided.

酸素富化手段2a,2bの酸素富化膜21a,21bの温度やその近傍の雰囲気温度を検知するセンサ5としては酸素富化膜21a,21bおよび換気ファン22を収納するケース23の内部にサーミスタ51(図2では不図示)を設置し、酸素富化膜21a,21b近傍の雰囲気温度を常時検知するようにしている。酸素富化膜21a,21bの温度を検知する場合には、例えば酸素富化膜21a,21bにサーミスタ51を接触させて設ける。酸素富化膜21a,21bの温度が変動すればその温度に対応して酸素富化空気の供給量も変動することから、酸素富化空気の供給量を所定の範囲内に調整するためには、その所定の範囲から外れるような酸素富化膜21a,21bの温度範囲を予め把握しておく必要がある。酸素富化膜21a,21bの温度が予め把握しておいた所定の範囲から外れるような温度範囲内の場合、つまり酸素富化空気の供給量が所定の範囲から外れている場合には、流量調整弁24a,24bの開度を調整して酸素富化手段2a,2bからの酸素富化空気の流量を調整する。例えば、サーミスタ51で検知した酸素富化膜21a,21bの温度が高くて酸素富化空気の供給量が所定の範囲を超える場合、酸素富化手段2aに連通する分岐配管12aの流量調整弁24aを閉状態とし、他方の酸素富化手段2bに連通する分岐配管12bの流量調整弁24bの開状態を維持する。これにより酸素富化手段2aの酸素富化膜21aに作用させる負圧が遮断されて集合配管11に酸素富化空気が供給されなくなり、酸素富化手段2bからのみ酸素富化空気が供給されることになって全体として酸素富化手段2からの導入配管1への酸素富化空気の流量が抑制される。酸素富化手段2a,2bは導入配管1に並列に配設されているため、流量調整弁24aを閉じたことによる圧損が酸素富化膜21bに作用させる負圧に影響を与えて酸素濃度を低下させることはない。なお、酸素富化手段2からの導入配管1への酸素富化空気の流量の抑制にあたっては、酸素富化手段2a,2bに連通する分岐配管12a,12bの流量調整弁24a,24bの絞り開度を適宜調整するようにしてもよい。   As the sensor 5 for detecting the temperature of the oxygen-enriched films 21a and 21b of the oxygen-enriching means 2a and 2b and the ambient temperature in the vicinity thereof, the thermistor is provided inside the case 23 housing the oxygen-enriched films 21a and 21b and the ventilation fan 22. 51 (not shown in FIG. 2) is installed to constantly detect the ambient temperature in the vicinity of the oxygen-enriched films 21a and 21b. When detecting the temperature of the oxygen-enriched films 21a and 21b, for example, the thermistor 51 is provided in contact with the oxygen-enriched films 21a and 21b. If the temperature of the oxygen-enriched membranes 21a and 21b varies, the supply amount of oxygen-enriched air also varies in accordance with the temperature. Therefore, in order to adjust the supply amount of oxygen-enriched air within a predetermined range, It is necessary to know in advance the temperature range of the oxygen-enriched films 21a and 21b that deviate from the predetermined range. When the temperature of the oxygen-enriched films 21a and 21b is within a temperature range that deviates from a predetermined range that has been grasped in advance, that is, when the supply amount of oxygen-enriched air deviates from the predetermined range, The flow rate of the oxygen-enriched air from the oxygen-enriching means 2a, 2b is adjusted by adjusting the opening degree of the regulating valves 24a, 24b. For example, when the temperature of the oxygen-enriched films 21a and 21b detected by the thermistor 51 is high and the supply amount of oxygen-enriched air exceeds a predetermined range, the flow control valve 24a of the branch pipe 12a communicating with the oxygen-enriching means 2a. Is closed, and the flow regulating valve 24b of the branch pipe 12b communicating with the other oxygen enriching means 2b is kept open. As a result, the negative pressure acting on the oxygen-enriched film 21a of the oxygen-enriching means 2a is cut off, so that oxygen-enriched air is not supplied to the collecting pipe 11, and oxygen-enriched air is supplied only from the oxygen-enriching means 2b. As a result, the flow rate of oxygen-enriched air from the oxygen-enriching means 2 to the introduction pipe 1 is suppressed as a whole. Since the oxygen enriching means 2a and 2b are arranged in parallel to the introduction pipe 1, the pressure loss caused by closing the flow rate regulating valve 24a affects the negative pressure acting on the oxygen enriched film 21b, thereby reducing the oxygen concentration. There is no reduction. In order to suppress the flow rate of oxygen-enriched air from the oxygen-enriching means 2 to the introduction pipe 1, the flow control valves 24a and 24b of the branch pipes 12a and 12b communicating with the oxygen-enriching means 2a and 2b are opened. You may make it adjust a degree suitably.

図1では圧力センサ41およびサーミスタ51をともに設けた例について説明したが、導入配管1の集合配管11内の圧力や酸素富化空気の流量を検知するセンサ4と、酸素富化手段2a,2bの酸素富化膜21a,21bの温度やその近傍の雰囲気温度を検知するセンサ5は、少なくともいずれか一方が設けられていればよい。   Although the example which provided both the pressure sensor 41 and the thermistor 51 was demonstrated in FIG. 1, the sensor 4 and the oxygen enrichment means 2a, 2b which detect the pressure in the collection pipe | tube 11 of the introduction piping 1, and the flow volume of oxygen-enriched air are demonstrated. At least one of the sensors 5 for detecting the temperature of the oxygen-enriched films 21a and 21b and the ambient temperature in the vicinity thereof may be provided.

さらに本実施形態では、センサ4,5で検知した導入配管1の集合配管11内の圧力、酸素富化空気の流量、酸素富化膜21a,21bの温度やその近傍の雰囲気温度等の情報に基づいて流量調整弁24a,24bの開度を調整することに加えて、液送ポンプ31の出力電圧(ポンプ能力)を変化させて通水管6内を流れる浴槽水Wの流量を調整するようにしてもよい。通水管6内を流れる浴槽水Wの流量が変わると水流の強さも変わり、上述したように気体導入部10で発生する負圧も変わる。負圧が変われば、酸素富化膜21a,21bの特性上、酸素富化空気の流量が変わるため、液送ポンプ31のポンプ能力を変化させることで通水管6に導入する酸素富化空気の流量を予め設定した範囲内に調整することができる。液送ポンプ31のポンプ能力は、液送ポンプ31に電気的に接続される制御ユニット30によって変化させている。   Further, in the present embodiment, information on the pressure in the collecting pipe 11 of the introduction pipe 1 detected by the sensors 4 and 5, the flow rate of oxygen-enriched air, the temperature of the oxygen-enriched films 21 a and 21 b, the ambient temperature in the vicinity thereof, and the like. In addition to adjusting the opening degree of the flow rate adjusting valves 24a and 24b based on this, the output voltage (pump capacity) of the liquid feed pump 31 is changed to adjust the flow rate of the bathtub water W flowing through the water pipe 6. May be. When the flow rate of the bathtub water W flowing in the water pipe 6 is changed, the strength of the water flow is changed, and the negative pressure generated in the gas introduction unit 10 is changed as described above. If the negative pressure changes, the flow rate of the oxygen-enriched air changes due to the characteristics of the oxygen-enriched membranes 21a and 21b. Therefore, the oxygen-enriched air introduced into the water pipe 6 can be changed by changing the pumping capacity of the liquid feed pump 31. The flow rate can be adjusted within a preset range. The pumping capacity of the liquid feed pump 31 is changed by the control unit 30 that is electrically connected to the liquid feed pump 31.

次に液送ポンプ31のポンプ能力を変化させることで酸素富化空気の流量が具体的にどのように変化するのか、図3を参照して説明する。図3は、酸素富化空気の流量−負圧特性を示す図であり、(a)は液送ポンプのポンプ能力が一定の場合、(b)は本実施形態を想定したものであり、液送ポンプのポンプ能力が可変する場合を示している。縦軸は酸素富化空気の流量を示し、横軸は負圧を示している。横軸に示す負圧はグラフの右側にいくほどより大きな負圧の圧力になっている。酸素富化膜のP−Q特性は膜の材料ロットや環境温度の変化によって変わり、直線AおよびBはそれぞれ想定される酸素富化膜のP−Q特性のバラツキの上限値と下限値を示している。酸素富化空気の流量は、酸素富化膜のP−Q特性と液送ポンプのP−Q特性とのつりあうポイントで決まる。例えば、(a)では液送ポンプのP−Q特性を示す直線Cと酸素富化膜のP−Q特性を示す直線Aとが交差するポイントaの横軸から読み取れる負圧が酸素富化膜に作用する圧力であり、そのときの酸素富化空気の流量が縦軸から読み取れるようにQU1となる。同様に、液送ポンプのP−Q特性を示す直線Cと酸素富化膜のP−Q特性を示す直線Bとが交差するポイントbの横軸から読み取れる負圧が酸素富化膜に作用する圧力であり、そのときの酸素富化空気の流量が縦軸から読み取れるようにQL1となる。したがって酸素富化膜のP−Q特性のバラツキを考慮した場合の酸素富化空気の流量変化はQL1〜QU1の範囲となる。 Next, how the flow rate of the oxygen-enriched air specifically changes by changing the pumping capacity of the liquid feed pump 31 will be described with reference to FIG. FIG. 3 is a diagram showing the flow rate-negative pressure characteristics of oxygen-enriched air, where (a) shows a case where the pumping capacity of the liquid feed pump is constant, and (b) shows this embodiment. The case where the pumping capacity of the feed pump is variable is shown. The vertical axis represents the flow rate of oxygen-enriched air, and the horizontal axis represents negative pressure. The negative pressure shown on the horizontal axis is a larger negative pressure as it goes to the right side of the graph. The PQ characteristics of the oxygen-enriched film vary with changes in the material lot of the film and the environmental temperature, and the straight lines A and B indicate the upper and lower limits of the variation in the PQ characteristics of the oxygen-enriched film, respectively. ing. The flow rate of the oxygen-enriched air is determined by a balance point between the PQ characteristic of the oxygen-enriched film and the PQ characteristic of the liquid feed pump. For example, in (a), the negative pressure that can be read from the horizontal axis at the point a where the straight line C indicating the PQ characteristic of the liquid feed pump intersects the straight line A indicating the PQ characteristic of the oxygen-enriched film is the oxygen-enriched film. Q U1 so that the flow rate of the oxygen-enriched air at that time can be read from the vertical axis. Similarly, a negative pressure that can be read from the horizontal axis at point b where the straight line C indicating the PQ characteristic of the liquid feed pump and the straight line B indicating the PQ characteristic of the oxygen-enriched film intersect acts on the oxygen-enriched film. The pressure is Q L1 so that the flow rate of the oxygen-enriched air at that time can be read from the vertical axis. Therefore, the change in the flow rate of the oxygen-enriched air when the variation in the PQ characteristic of the oxygen-enriched film is taken into consideration is in the range of Q L1 to Q U1 .

図3(b)の直線Dおよび直線Eは、それぞれ想定される液送ポンプのP−Q特性の上限値と下限値を示している。液送ポンプの出力電圧を変化させてポンプ能力を変化させたときのP−Q特性は、その上限値と下限値の間において直線Dまたは直線Eを平行移動させた直線で決定される。液送ポンプのポンプ能力を変化させると、(a)における酸素富化空気の流量変化であるQL1〜QU1の範囲よりもさらにその流量変化を小さくすることができる。例えば、液送ポンプのP−Q特性を示す直線Eと酸素富化膜のP−Q特性を示す直線Aとが交差するポイントcでは酸素富化空気の流量がQU2となり、液送ポンプのP−Q特性を示す直線Dと酸素富化膜のP−Q特性を示す直線Bとが交差するポイントdでは酸素富化空気の流量がQL2となる。すなわち、酸素富化膜のP−Q特性のバラツキを考慮した場合でも酸素富化空気の流量変化を、QL1〜QU1の範囲よりも小さいQL2〜QU2の範囲にすることができる。 A straight line D and a straight line E in FIG. 3B indicate an upper limit value and a lower limit value of the PQ characteristics of the assumed liquid feed pump, respectively. The PQ characteristic when the pump capacity is changed by changing the output voltage of the liquid feed pump is determined by a straight line obtained by translating the straight line D or the straight line E between the upper limit value and the lower limit value. When the pumping capacity of the liquid feed pump is changed, the flow rate change can be made smaller than the range of Q L1 to Q U1 , which is the flow rate change of the oxygen-enriched air in (a). For example, at a point c where the straight line E indicating the PQ characteristic of the liquid feed pump and the straight line A indicating the PQ characteristic of the oxygen-enriched membrane intersect, the flow rate of the oxygen-enriched air becomes Q U2 , At a point d where the straight line D indicating the PQ characteristic and the straight line B indicating the PQ characteristic of the oxygen-enriched film intersect, the flow rate of the oxygen-enriched air becomes QL2 . That is, even when the variation in the PQ characteristics of the oxygen-enriched film is taken into account, the change in the flow rate of the oxygen-enriched air can be in the range of Q L2 to Q U2 that is smaller than the range of Q L1 to Q U1 .

通水管6に酸素富化空気が導入されると、通水管6内を流れる浴槽水Wに酸素富化空気が混入して気液混合水が生成する。この気液混合水は予め設定した範囲内の流量の酸素富化空気が導入されるため、液送ポンプ31にエアロックが生じるような高い気体比率とはならない。   When oxygen-enriched air is introduced into the water pipe 6, the oxygen-enriched air is mixed into the bathtub water W flowing through the water pipe 6 to generate gas-liquid mixed water. Since the gas-liquid mixed water is introduced with oxygen-enriched air at a flow rate within a preset range, the gas ratio does not become so high that an air lock occurs in the liquid feed pump 31.

液送ポンプ31と吐出口9の間の通水管6には溶解タンク7が配設されており、溶解タンク7内において蛇行した経路に気液混合水を通過させたり、気液混合水を攪拌したりすることで浴槽水Wに酸素富化空気を溶解させて気体溶解水を生成している。   A dissolution tank 7 is disposed in the water pipe 6 between the liquid feed pump 31 and the discharge port 9, and the gas-liquid mixed water is passed through a meandering path in the dissolution tank 7 or the gas-liquid mixed water is stirred. By doing so, the oxygen-enriched air is dissolved in the bath water W to generate gas-dissolved water.

溶解タンク7で生成された気体溶解水は、吐出口9から浴槽20内に吐出される。   The dissolved gas generated in the dissolution tank 7 is discharged into the bathtub 20 from the discharge port 9.

以上の構成の酸素富化空気導入装置は、環境温度の変動による酸素富化空気の流量のバラツキを抑制しつつ、酸素富化空気を安定した流量で通水管6に導入することができる。また、酸素富化空気の流量のバラツキの抑制にあたり、真空ポンプおよび余剰空気を排出する別経路を設置する必要がなくコスト安になるほか、真空ポンプおよび別経路の設置空間を確保することも不要になり、装置としての小型化設計が可能になる。   The oxygen-enriched air introduction device having the above configuration can introduce the oxygen-enriched air into the water pipe 6 at a stable flow rate while suppressing variations in the flow rate of the oxygen-enriched air due to changes in the environmental temperature. In addition, it is not necessary to install a vacuum pump and a separate path for exhausting excess air to reduce the variation in the flow rate of oxygen-enriched air, and it is not necessary to secure a space for installing the vacuum pump and another path. Therefore, it is possible to design the device as a small size.

以上、実施形態に基づき本発明を説明したが、本発明は上記の実施形態に何ら限定されるものではなく、その要旨を逸脱しない範囲内において各種の変更が可能である。上記実施形態では酸素富化手段が2つの場合を説明したがそれ以上であってもよい。また、酸素富化空気導入装置を浴槽に適用した場合を説明したが、シャワー装置等に適用してもよい。この場合には、例えば、通水管を水道管に連結して水道管からの水道水に酸素富化空気を導入し、溶解タンクを経てシャワーヘッドから気体溶解水を吐出するようにしてもよい。   While the present invention has been described based on the embodiments, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the invention. In the above embodiment, the case where there are two oxygen-enriching means has been described. Moreover, although the case where the oxygen-enriched air introducing device is applied to a bathtub has been described, it may be applied to a shower device or the like. In this case, for example, a water pipe may be connected to the water pipe, oxygen-enriched air may be introduced into the tap water from the water pipe, and the gas dissolved water may be discharged from the shower head through the dissolution tank.

本発明の一実施形態である浴槽用の酸素富化空気導入装置の概略構成図である。It is a schematic block diagram of the oxygen enriched air introduction apparatus for bathtubs which is one Embodiment of this invention. 図1の酸素富化手段の断面図である。It is sectional drawing of the oxygen enrichment means of FIG. 酸素富化空気の流量−負圧特性を示す図であり、(a)は液送ポンプのポンプ能力が一定の場合、(b)は液送ポンプのポンプ能力が可変する場合を示している。It is a figure which shows the flow volume-negative pressure characteristic of oxygen-enriched air, (a) shows the case where the pump capacity of a liquid feed pump is constant, (b) shows the case where the pump capacity of a liquid feed pump varies.

符号の説明Explanation of symbols

1 導入配管
11 集合配管
12a,12b 分岐配管
2 酸素富化手段
2a,2b 酸素富化手段
21a,21b 酸素富化膜
22 換気ファン
23 ケース
24a,24b 流量調整弁
3 流量調整手段
31 液送ポンプ
4,5 センサ
6 通水管
W 浴槽水
DESCRIPTION OF SYMBOLS 1 Introduction piping 11 Collecting piping 12a, 12b Branch piping 2 Oxygen enrichment means 2a, 2b Oxygen enrichment means 21a, 21b Oxygen enrichment film | membrane 22 Ventilation fan 23 Case 24a, 24b Flow rate adjustment valve 3 Flow rate adjustment means 31 Liquid feed pump 4 , 5 Sensor 6 Water pipe W Bath water

Claims (3)

酸素富化膜を有し酸素富化空気を生成する酸素富化手段と、この酸素富化手段で生成された酸素富化空気を通水管に導入する導入配管を備え、通水管の水流で発生する負圧を導入配管から酸素富化手段に作用させて酸素富化手段で生成された酸素富化空気を導入配管から通水管に導入する酸素富化空気導入装置において、酸素富化手段は複数設けられており、導入配管は通水管に連通する集合配管とこの集合配管から分岐して各酸素富化手段に連通される分岐配管で構成され、各分岐配管には酸素富化手段からの酸素富化空気の流量を調整する流量調整弁が設けられており、導入配管の集合配管内の圧力または酸素富化空気の流量を検知するセンサ、および酸素富化手段の酸素富化膜の温度またはその近傍の雰囲気温度を検知するセンサのうち少なくともいずれか一方のセンサが設けられており、前記センサで検知した導入配管の集合配管内の圧力もしくは酸素富化空気の流量または酸素富化膜の温度もしくはその近傍の雰囲気温度に応じて分岐配管の流量調整弁を開閉して導入配管から通水管に導入される酸素富化空気の流量を調整することを特徴とする酸素富化空気導入装置。   Oxygen-enriching means that has an oxygen-enriched membrane and generates oxygen-enriched air, and an introduction pipe that introduces oxygen-enriched air generated by this oxygen-enriched means into the water pipe, and is generated by the water flow in the water pipe In the oxygen-enriched air introducing device that introduces oxygen-enriched air generated by the oxygen-enriching means from the introducing pipe to the water pipe by causing negative pressure to act on the oxygen-enriching means, the oxygen-enriching means includes a plurality of oxygen-enriching means. The introduction pipe is composed of a collection pipe communicating with the water pipe and a branch pipe branched from the collection pipe and communicated with each oxygen enrichment means, and each branch pipe has oxygen from the oxygen enrichment means. A flow rate adjusting valve for adjusting the flow rate of the enriched air is provided, a sensor for detecting the pressure in the collecting pipe of the introduction pipe or the flow rate of the oxygen enriched air, and the temperature of the oxygen enriched film of the oxygen enrichment means or A sensor that detects the ambient temperature in the vicinity. At least one of the sensors is provided, and the branch pipe according to the pressure in the collective pipe of the introduction pipe detected by the sensor, the flow rate of the oxygen-enriched air, the temperature of the oxygen-enriched film, or the ambient temperature in the vicinity thereof An oxygen-enriched air introduction device characterized by adjusting the flow rate of oxygen-enriched air introduced from the introduction pipe to the water pipe by opening and closing the flow rate adjustment valve. センサで検知した導入配管の集合配管内の圧力が高いときもしくは酸素富化空気の流量が大きいときまたは酸素富化膜の温度が高いときに、複数設けられた酸素富化手段に連通する分岐配管に設けられた流量調整弁のうち一部の酸素富化手段に連通する分岐配管の流量調整弁を閉じて酸素富化手段からの酸素富化空気の流量を抑制することを特徴とする請求項1に記載の酸素富化空気導入装置。   Branch piping that communicates with multiple oxygen-enriching means provided when the pressure in the collective piping of the introduction piping detected by the sensor is high, when the flow rate of oxygen-enriched air is high, or when the temperature of the oxygen-enriched membrane is high The flow control valve of the branch pipe communicating with some of the oxygen enrichment means among the flow control valves provided in the valve is closed to suppress the flow rate of the oxygen-enriched air from the oxygen enrichment means. 2. The oxygen-enriched air introduction device according to 1. 通水管の水流で発生する負圧を可変させる、通水管の流量を調整する流量調整手段がさらに設けられており、センサで検知した導入配管内の圧力もしくは酸素富化空気の流量または酸素富化膜の温度もしくはその近傍の雰囲気温度に応じて、通水管の流量を流量調整手段で調整することにより通水管の水流で発生する負圧を変化させて導入配管から通水管に導入される酸素富化空気の流量を調整することを特徴とする請求項1または2に記載の酸素富化空気導入装置。   A flow rate adjusting means for adjusting the flow rate of the water pipe, which varies the negative pressure generated by the water flow in the water pipe, is further provided, and the pressure in the introduction pipe detected by the sensor or the flow rate of oxygen-enriched air or oxygen enrichment is provided. Depending on the temperature of the membrane or the ambient temperature in the vicinity, the flow rate of the water pipe is adjusted by the flow rate adjusting means, thereby changing the negative pressure generated in the water flow of the water pipe and introducing oxygen rich into the water pipe from the introduction pipe The oxygen-enriched air introduction device according to claim 1 or 2, wherein the flow rate of the oxygenated air is adjusted.
JP2008277258A 2008-10-28 2008-10-28 Oxygen-enriched air introducing apparatus Pending JP2010104873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008277258A JP2010104873A (en) 2008-10-28 2008-10-28 Oxygen-enriched air introducing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008277258A JP2010104873A (en) 2008-10-28 2008-10-28 Oxygen-enriched air introducing apparatus

Publications (1)

Publication Number Publication Date
JP2010104873A true JP2010104873A (en) 2010-05-13

Family

ID=42294855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008277258A Pending JP2010104873A (en) 2008-10-28 2008-10-28 Oxygen-enriched air introducing apparatus

Country Status (1)

Country Link
JP (1) JP2010104873A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012245238A (en) * 2011-05-30 2012-12-13 Gastar Corp Bath device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60231403A (en) * 1984-04-26 1985-11-18 Kuraray Co Ltd Feeder of oxygen-enriched air
JPS61155201A (en) * 1984-12-27 1986-07-14 Teijin Ltd Oxygen enriching apparatus
JP2006136655A (en) * 2004-11-15 2006-06-01 Matsushita Electric Works Ltd Microbubble generating bathtub
JP3139460U (en) * 2007-10-30 2008-02-21 渉 室田 Mass production equipment for gas-dissolved liquid by continuous pressurized flow system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60231403A (en) * 1984-04-26 1985-11-18 Kuraray Co Ltd Feeder of oxygen-enriched air
JPS61155201A (en) * 1984-12-27 1986-07-14 Teijin Ltd Oxygen enriching apparatus
JP2006136655A (en) * 2004-11-15 2006-06-01 Matsushita Electric Works Ltd Microbubble generating bathtub
JP3139460U (en) * 2007-10-30 2008-02-21 渉 室田 Mass production equipment for gas-dissolved liquid by continuous pressurized flow system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012245238A (en) * 2011-05-30 2012-12-13 Gastar Corp Bath device

Similar Documents

Publication Publication Date Title
US6158721A (en) Apparatus and method for adding carbon dioxide gas to ultra pure water
JP5368767B2 (en) Artificial carbonated spring production equipment
JP2009279472A (en) Reverse osmosis membrane device
KR20100060219A (en) Apparatus for producing carbonated water
KR101006869B1 (en) Apparatus for producing carbonated water having optimized abstracting system of carbonated water using membrane
CN101135483A (en) An apparatus for adding humidity to gas
JP4964829B2 (en) Carbonated water production method and carbonated water production equipment
JP4760469B2 (en) Humidifier and fuel cell system
JP2010104873A (en) Oxygen-enriched air introducing apparatus
CN107427786B (en) Resistivity value adjusting device and resistivity value adjusting method
JP5953138B2 (en) Wet gas generation method and humidity controller for small flow rate
JP5266015B2 (en) Oxygen-enriched air introduction device
TWI736661B (en) Specific resistance value adjusting device and specific resistance value adjusting method
JP2000159504A (en) Resistivity controlling apparatus for ultrapure water and controlling of ultrapure water
JP2008209396A (en) Continuous concentrating apparatus for analyszer
CN111788150A (en) Ozone generating device and ozone generating method
JP2010051842A (en) Oxygen enrichment device
JP5215126B2 (en) Gas dissolved water supply device
JP2008136974A (en) Water treatment system
JP2003236353A (en) Apparatus for producing ozonized water
JPH07303802A (en) Diaphragm deaeration device
JP2003269754A (en) Gas humidifying apparatus
JP4944074B2 (en) Oxygen enrichment equipment
KR100519391B1 (en) Apparatus and method for adding carbon dioxide gas to ultrapure water
JP4957946B2 (en) Gas dissolving device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110519

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130910