JP2010199050A - Composite electrolyte membrane for fuel cell and method for manufacturing the same - Google Patents
Composite electrolyte membrane for fuel cell and method for manufacturing the same Download PDFInfo
- Publication number
- JP2010199050A JP2010199050A JP2009092214A JP2009092214A JP2010199050A JP 2010199050 A JP2010199050 A JP 2010199050A JP 2009092214 A JP2009092214 A JP 2009092214A JP 2009092214 A JP2009092214 A JP 2009092214A JP 2010199050 A JP2010199050 A JP 2010199050A
- Authority
- JP
- Japan
- Prior art keywords
- electrolyte membrane
- fuel cell
- hydrocarbon
- fluorine
- based electrolyte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Fuel Cell (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Conductive Materials (AREA)
Abstract
Description
本発明は、二種類の電解質膜を複合化して成る燃料電池用複合型電解質膜及びその製造方法に関する。さらに詳細には、本発明は、多孔性炭化水素系電解質膜とフッ素系電解質膜とを複合化して作製される燃料電池用複合型電解質膜及びその製造方法に関する。 The present invention relates to a composite electrolyte membrane for a fuel cell formed by combining two types of electrolyte membranes and a method for producing the same. More specifically, the present invention relates to a composite electrolyte membrane for a fuel cell produced by combining a porous hydrocarbon electrolyte membrane and a fluorine electrolyte membrane, and a method for producing the same.
燃料電池用の電解質膜は、その構成材料によって分類すると、フッ素系電解質膜と炭化水素系電解質膜に二分される。一般に、フッ素系電解質膜は、炭化水素系電解質膜より電気的特性や化学的安定性について優れるが、ガス透過度が高く(ガスが透過し易く)かつ機械的強度が低いといった特徴を有する。 An electrolyte membrane for a fuel cell is divided into a fluorine-based electrolyte membrane and a hydrocarbon-based electrolyte membrane when classified according to its constituent materials. In general, a fluorine-based electrolyte membrane is superior in electrical characteristics and chemical stability to a hydrocarbon-based electrolyte membrane, but has a characteristic that gas permeability is high (gas can easily pass through) and mechanical strength is low.
ところで、フッ素系電解質膜について、同膜を含む燃料電池の発電性能を向上させる要請から、同膜を薄膜化して膜抵抗を下げ、又は低EW(EQUIVALENT WEIGHT)化して、プロトン伝導性を改善することが行われている。
しかし、フッ素系電解質膜のプロトン伝導性が改善したとしても、これでは、同膜のガス透過度が高まり、そのため、外部から燃料電池に供給される水素燃料の消費が早まることになる。そして、ガス透過度が高まると、水素ガス及び酸素ガスがフッ素系電解質膜を透過して、酸化剤極へ水素ガスが、燃料極へ酸素ガスがクロスオーバーする。さらに、このような状況下では、フッ素系電解質膜の電解質成分を化学的に劣化させるラジカル種が発生し易くなり、このラジカル種がフッ素系電解質膜を攻撃し膜成分を分解するといった不具合が発生する。
By the way, with respect to the demand for improving the power generation performance of a fuel cell including the same for a fluorine-based electrolyte membrane, the proton conductivity is improved by reducing the membrane resistance by reducing the membrane thickness or by reducing the EW (EQUIVALENT WEIGHT). Things have been done.
However, even if the proton conductivity of the fluorine-based electrolyte membrane is improved, this increases the gas permeability of the membrane, thereby accelerating the consumption of hydrogen fuel supplied from the outside to the fuel cell. When the gas permeability increases, hydrogen gas and oxygen gas permeate through the fluorine-based electrolyte membrane, and hydrogen gas crosses over to the oxidant electrode and oxygen gas crosses over to the fuel electrode. Furthermore, under these circumstances, radical species that chemically degrade the electrolyte component of the fluorine-based electrolyte membrane are likely to be generated, and this radical species attacks the fluorine-based electrolyte membrane and causes a problem of decomposing the membrane component. To do.
一方、フッ素系電解質膜を固体高分子形燃料電池(Polymer Electrode Fuel Cell:以下「PEFC」と略す)に含め作製する際、フッ素系電解質膜上に触媒層を形成して膜-電極接合体(MEMBRANE-ELECTRODE ASSEMBLY:以下「MEA」と略す)を中間生産物として作製し、そして、その上からガス拡散層(Gas Diffusion Layer:以下「GDL」と略す)を覆うように接合し、さらに後工程において、MEAの上に、触媒層を取り囲むようにガスシール(ガスケット)を接合する。
そのため、ガスシール用の一定幅の接合しろを電解質膜の周縁部にあらかじめ縁取ることになる。
On the other hand, when a fluorine-based electrolyte membrane is included in a polymer electrolyte fuel cell (hereinafter referred to as “PEFC”), a catalyst layer is formed on the fluorine-based electrolyte membrane to form a membrane-electrode assembly ( MEMBRANE-ELECTRODE ASSEMBLY (hereinafter abbreviated as “MEA”) is produced as an intermediate product, and then joined over the gas diffusion layer (hereinafter abbreviated as “GDL”) to cover further processes. In FIG. 2, a gas seal (gasket) is joined on the MEA so as to surround the catalyst layer.
For this reason, a fixed margin for gas sealing is preliminarily edged at the peripheral edge of the electrolyte membrane.
ところが、フッ素系電解質膜の機械的強度が低いことから、同膜の周縁部と、この周縁部に額縁状に接合し触媒層を包囲するガスシールの間において、燃料電池(単セル)内においてフッ素系電解質膜を挟んで存在する燃料ガスと酸化剤ガスとの間に圧力差が発生した場合、フッ素系電解質膜が損傷するといった不具合が発生する。 However, since the mechanical strength of the fluorine-based electrolyte membrane is low, in the fuel cell (single cell) between the peripheral portion of the membrane and the gas seal that is joined to the peripheral portion in a frame shape and surrounds the catalyst layer When a pressure difference is generated between the fuel gas and the oxidant gas that are present with the fluorine-based electrolyte membrane interposed therebetween, there is a problem that the fluorine-based electrolyte membrane is damaged.
また、フッ素系電解質膜を含むMEAを備えた燃料電池に一定負荷(例えばモータ)をかける変動要素を接続した場合に負荷がないとき、フッ素系電解質膜がドライアップして、機械的ストレスや熱応力を起因として燃料電池の構成部材が歪み、同様に、フッ素系電解質膜が損傷するといった不具合が発生する。
さらに、MEAを覆うように形成されるGDL基材からのカーボンの繊維等がフッ素系電解質膜に突き刺さり、同膜を挟む両極間にクロスリークを生じさせるといった不具合も発生する。
In addition, when a variable element that applies a constant load (for example, a motor) is connected to a fuel cell equipped with an MEA including a fluorine-based electrolyte membrane and there is no load, the fluorine-based electrolyte membrane dries up, causing mechanical stress and heat. Due to the stress, the constituent members of the fuel cell are distorted, and similarly, there is a problem that the fluorine-based electrolyte membrane is damaged.
In addition, carbon fibers or the like from the GDL base material formed so as to cover the MEA pierce the fluorine-based electrolyte membrane, causing a problem that a cross leak occurs between the two electrodes sandwiching the membrane.
以上のように、フッ素系電解質膜は、機械的強度が低いために、様々な要因から損傷を受け易い。
よって、フッ素系電解質膜を補強するための手段が要請されるところ、本発明者等は、その手段として、先述した炭化水素系電解質膜に着目した。
炭化水素系電解質膜には、耐熱性、耐酸化性及び機械的強度に優れ、かつ高温・低加湿でのプロトン伝導性が優れているものがある。特に、炭化水素系電解質膜は、やや脆性を有するものの、その分子構造に起因して剛性や硬さがある。
脆性に着目すると、炭化水素系電解質膜のみでは、電極接合化(炭化水素系電解質膜と触媒層との接合による一体構造化)や、単セルをスタックして燃料電池を作製するためのアセンブリ時のハンドリング性がフッ素系電解質膜に比べて劣りがちになる。しかし、炭化水素系電解質膜の硬いが脆い面は、比較的に柔軟な樹脂製の被覆材として、フッ素系電解質膜を用いて被覆すれば炭化水素系電解質膜に塗布を行うことにより補うことができる。
As described above, since the fluorine-based electrolyte membrane has low mechanical strength, it is easily damaged by various factors.
Therefore, when means for reinforcing the fluorine-based electrolyte membrane is required, the present inventors paid attention to the above-described hydrocarbon-based electrolyte membrane as the means.
Some hydrocarbon-based electrolyte membranes have excellent heat resistance, oxidation resistance and mechanical strength, and excellent proton conductivity at high temperature and low humidity. In particular, although the hydrocarbon electrolyte membrane is somewhat brittle, it has rigidity and hardness due to its molecular structure.
Focusing on brittleness, the hydrocarbon electrolyte membrane alone is used for electrode joining (integrated structure by joining the hydrocarbon electrolyte membrane and the catalyst layer) or during assembly for stacking single cells to produce a fuel cell. The handling property tends to be inferior to that of a fluorine-based electrolyte membrane. However, the hard but brittle surface of the hydrocarbon electrolyte membrane can be compensated by coating the hydrocarbon electrolyte membrane if it is coated with a fluorine electrolyte membrane as a relatively flexible resin coating. it can.
そこで、発明者らは、炭化水素系電解質膜をフッ素系電解質膜の機械的強度を補強する基材として用い、同時に、フッ素系電解質膜を炭化水素系電解質膜の全体を覆う樹脂製被覆材として用いることで、両電解質膜の長所を活かしつつ短所を補完する複合型電解質膜(ハイブリッド型電解質膜)の作製方法を検討した。 Therefore, the inventors use the hydrocarbon-based electrolyte membrane as a base material that reinforces the mechanical strength of the fluorine-based electrolyte membrane, and at the same time, the fluorine-based electrolyte membrane as a resin coating material that covers the entire hydrocarbon-based electrolyte membrane. By using this method, a method for producing a composite electrolyte membrane (hybrid electrolyte membrane) that takes advantage of both electrolyte membranes and complements the disadvantages was examined.
その際、検討対象となった、二種類の膜を複合化する従来技術を以下に示す。
まず、特許文献1では、当該膜を貫通する孔の平均孔径が0.1μmから10μmの多孔膜を準備し、各孔にプロトン伝導性を有する電解質樹脂(イオン交換樹脂)を充填して成る複合型電解質膜を提示している。
In this case, a conventional technique for compositing two types of films, which was the subject of examination, is shown below.
First, in
さらに、特許文献2では、ポリイミド、ポリアミド等の高分子フィルムに電解質樹脂を充填するための貫通孔を明け多孔膜を準備するに際し、各孔を明ける手段に、例えば炭酸ガスレーザ、エキシマレーザ等によるレーザ熱を利用し、その貫通孔に電解質樹脂を充填して成る複合型電解質膜を提示している。
Further, in
ところが、上記に採り上げられた従来技術による電解質膜の複合化方法は、以下のような問題がある。
まず、特許文献1が示す複合型電解質膜の細孔の平均孔径は、0.05μmから1μmといったようなミクロンオーダーのものである。このような極細の孔(直管)に、電解質樹脂を減圧しながら充填させるため、減圧装置が別途必要となり、その結果、設備が大掛かりとなり、作業を煩雑にし、コストアップを招来する。
However, the electrolyte membrane composite method according to the prior art picked up above has the following problems.
First, the average pore diameter of the pores of the composite electrolyte membrane disclosed in
次に、特許文献2が示す貫通孔の作製方法によれば、孔明け後においてもレーザ熱によって、基材となる高分子フィルムが溶融し、孔径がさらに拡張するため、隣り合う貫通孔同士が繋がらないように予め大きく貫通孔同士の間隔を取っておく必要がある。よって、高分子フィルムに明けられているプロトン伝導性樹脂を充填する貫通孔の開口率は、約10%と小さく設定されている。その結果、特許文献2が示す複合型電解質膜は、プロトン伝導性樹脂からなる開口部が小さいため良好なプロトン伝導性を有しない。
Next, according to the method for producing a through hole shown in
さらにまた、特許文献2によれば、MEAの周縁部と、この周縁部を額縁状に包囲するガスシールの周辺部に、電解質膜(固体高分子電解質膜)を支持・補強する手段が存在しないため、燃料ガスと酸化剤ガスとの圧力差が生じた場合、破壊し易くなり、燃料電池の構成要素が損傷を受け易いといった不具合が生じる。また、電気機器、電子機器等の負荷が燃料電池に接続され作動しているときに、燃料電池の単セル内がドライアップして機械ストレスや熱応力によって燃料電池の構成部材が歪み、その歪みを起点として燃料電池の構成要素が破損するといった不具合が生じる。
以上のように、いずれの従来技術も、フッ素系電解質膜と炭化水素系電解質膜とを複合化(ハイブリッド化)するために好適なものではない。
Furthermore, according to
As described above, none of the conventional techniques is suitable for combining (hybridizing) the fluorine-based electrolyte membrane and the hydrocarbon-based electrolyte membrane.
本発明は、斯かる実情に鑑み、フッ素系電解質膜と炭化水素系電解質膜とを容易かつ強固に複合化して、フッ素系電解質膜単体での、機械的強度の低さを補完し、かつガス透過度を低く抑制することが可能な複合型電解質膜(ハイブリッド型電解質膜)を提供する。 In view of such circumstances, the present invention easily and firmly combines a fluorine-based electrolyte membrane and a hydrocarbon-based electrolyte membrane, complementing the low mechanical strength of the fluorine-based electrolyte membrane alone, and gas Provided is a composite electrolyte membrane (hybrid electrolyte membrane) capable of suppressing permeability.
(発明の態様)
以下、発明の態様を示し、それらについて説明する。なお、(1)項から(14)項が、請求項1から請求項14に対応する。
(1) 多孔性炭化水素系電解質膜の孔を充填し、かつ、該膜面を覆うようにフッ素系電解質膜が形成され、並びに、前記多孔性炭化水素系電解質膜の前記孔は、膜厚方向に明けられたミリオーダーの径の貫通孔であり、かつ、前記膜面に平均して散在していることを特徴とする燃料電池用複合型電解質膜(本明細書で、「ミリオーダー」とは、小さくとも0.1mm、大きくとも3mm程度の孔径にかかる長さのオーダーを指す)。
(Aspect of the Invention)
Hereinafter, embodiments of the invention will be shown and described. The items (1) to (14) correspond to the
(1) A fluorine-based electrolyte membrane is formed so as to fill the pores of the porous hydrocarbon-based electrolyte membrane and cover the membrane surface, and the pores of the porous hydrocarbon-based electrolyte membrane have a film thickness A composite electrolyte membrane for a fuel cell, characterized in that it is a through-hole with a diameter of millimeter order opened in the direction and scattered on the membrane surface on average (in this specification, “milli-order” Is the order of length over a hole diameter of at least 0.1 mm and at most about 3 mm).
本項によれば、炭化水素系電解質膜に明けられたミリオーダー、さらに好ましくは10−1mmオーダーといった、従来品のミクロンオーダーものより大きな孔径の貫通孔にフッ素系電解質膜成分を充填すると共に、その貫通孔に充填されたフッ素系電解質膜と連続するように、炭化水素系電解質膜の膜面にもフッ素系電解質膜を形成することができる。その結果、図3中に一点鎖線で示された貫通孔の一つについて当該貫通孔の膜厚方向に沿って切り取られた断面部30からも分かるように、フッ素系電解質膜部分が、多孔性炭化水素系電解質膜の孔に充填され、かつ、多孔性炭化水素系電解質膜の膜面に形成される結果、横H字状部(若しくはハトメ状部)を形成し、もって、フッ素系電解質膜部分が、多孔状の炭化水素系電解質膜に強固に接合されて、両電解質膜が一体化・複合化される。
According to this section, a fluorine-based electrolyte membrane component is filled in through-holes having a pore size larger than that of the conventional micron order, such as a milli-order, more preferably on the order of 10 −1 mm. The fluorine-based electrolyte membrane can also be formed on the surface of the hydrocarbon-based electrolyte membrane so as to be continuous with the fluorine-based electrolyte membrane filled in the through holes. As a result, as can be seen from the
また、このような横H字状部が、炭化水素系電解質膜の膜面に平均して多数散在しているため、フッ素系電解質膜と炭化水素系電解質膜とからなる複合型電解質膜の機械的強度が従来品(例えば単に両膜を張り合わせて接合したもの)よりも総じて高くなる。また、併せて、フッ素系電解質膜の長所である電気的特性や化学的安定性が、複合型電解質膜の全体に均一にもたらされる。 In addition, since a large number of such horizontal H-shaped portions are scattered on the membrane surface of the hydrocarbon-based electrolyte membrane on average, the machine of the composite electrolyte membrane comprising the fluorine-based electrolyte membrane and the hydrocarbon-based electrolyte membrane The overall strength is generally higher than that of a conventional product (for example, a film obtained by simply bonding both films together). In addition, the electrical characteristics and chemical stability, which are the advantages of the fluorine-based electrolyte membrane, are uniformly provided throughout the composite electrolyte membrane.
また、従来、貫通孔の径は前述の通りミクロンオーダーであったが、本発明に係る複合型電解質膜中の炭化水素系電解質膜に形成される貫通孔よれば、ミリオーダー、さらに好ましくは10−1mmオーダーといった比較的大きな孔径のものであるため、従来のように減圧する必要性はなく、例えば、公知のキャスト法による塗布によって、貫通孔へのフッ素系電解質膜成分(樹脂)の充填作業が容易に行われる。 Conventionally, the diameter of the through hole has been in the micron order as described above, but according to the through hole formed in the hydrocarbon-based electrolyte membrane in the composite electrolyte membrane according to the present invention, it is in the order of millimeter, more preferably 10 Since it has a relatively large pore size such as −1 mm, there is no need to reduce the pressure as in the prior art. For example, filling a through-hole with a fluorine-based electrolyte membrane component (resin) by coating by a known casting method Work is done easily.
このようにして、本項では、炭化水素系電解質膜によって複合型電解質膜の機械的強度を高めながら、炭化水素系電解質膜に形成された比較的大きな径の多孔中にフッ素系電解質膜成分(樹脂)を充填し、かつその充填されたフッ素系電解質膜成分(樹脂)と連続するように炭化水素系電解質膜の膜面にフッ素系電解質膜を形成した。すなわち、本発明に係る複合型電解質膜では、機械的強度を高めかつガス透過度を低くする役割を炭化水素系電解質膜部分が担い、一方、電気的特性(プロトン伝導性)かつ化学的安定性を担保する役割をフッ素系電解質膜部分が担うようにしている。 Thus, in this section, while increasing the mechanical strength of the composite electrolyte membrane by the hydrocarbon electrolyte membrane, the fluorine-based electrolyte membrane component (in the relatively large-diameter pore formed in the hydrocarbon electrolyte membrane ( Resin) and a fluorine electrolyte membrane was formed on the membrane surface of the hydrocarbon electrolyte membrane so as to be continuous with the filled fluorine electrolyte membrane component (resin). That is, in the composite electrolyte membrane according to the present invention, the hydrocarbon-based electrolyte membrane portion plays a role of increasing mechanical strength and reducing gas permeability, while it has electrical characteristics (proton conductivity) and chemical stability. The fluorine-based electrolyte membrane portion plays a role of ensuring the above.
(2) 前記貫通孔の平均孔径は、0.1mmから0.5mmであることを特徴とする燃料電池用複合型電解質膜。 (2) The composite electrolyte membrane for a fuel cell, wherein an average hole diameter of the through holes is 0.1 mm to 0.5 mm.
本項は、上記貫通孔の好適平均孔径を例示するものである。前述したように、従来(特許文献1参照)はミクロンオーダー(μmオーダー又はサブμmオーダー)のサイズであったが、炭化水素系電解質膜はその機械的強度が高いため、ミリオーダー、より好ましくは10−1mmオーダーのサイズの孔を多数設けても機械的強度の点で不具合がなくなった。ただし、孔径が0.5mmより大きいと、炭化水素系電解質膜全体の機械的強度が低くなり好ましくない。一方、孔径が0.1mmより小さいと、従来と同様にフッ素系電解質を小さな孔へ充填させるために減圧装置が必要となり好ましくない。 This section exemplifies a preferable average hole diameter of the through hole. As described above, the conventional technology (see Patent Document 1) has a size of micron order (μm order or sub-μm order). However, the hydrocarbon electrolyte membrane has a high mechanical strength, and is preferably in the order of millimeter. Even if a large number of holes having a size of the order of 10 −1 mm were provided, there was no problem in terms of mechanical strength. However, if the pore diameter is larger than 0.5 mm, the mechanical strength of the entire hydrocarbon electrolyte membrane is lowered, which is not preferable. On the other hand, if the hole diameter is smaller than 0.1 mm, a decompression device is required to fill the small hole with the fluorine-based electrolyte as in the conventional case, which is not preferable.
(3) 前記貫通孔が、前記多孔性炭化水素系電解質膜面全体100%に対して、10%から50%の比率で明けられていることを特徴とする(1)又は(2)に記載の燃料電池用複合型電解質膜。 (3) The through-hole is opened at a ratio of 10% to 50% with respect to 100% of the entire surface of the porous hydrocarbon electrolyte membrane, described in (1) or (2) A composite electrolyte membrane for fuel cells.
本項は、上記貫通孔の多孔性炭化水素系電解質膜に対する開口率の好適範囲を例示する。多孔性炭化水素系電解質膜に相当する補強膜が電解質膜ではない場合[例えばPTFE(ポリテトラフルオロエチレン)樹脂膜である場合]は、プロトン伝導性を向上させるため、例えば、開口率を80%程度に設定する必要がある。しかし、本項によれば、多孔性炭化水素系電解質膜自身も電解質膜であるため、それ自体プロトン伝導性を有する。よって、本項のように、むしろ開口率をせいぜい50%に留めておき、炭化水素系電解質膜の長所のガス透過度を低く抑制し、かつ機械的強度を向上させるようにすることができる。一方、開口率を10%未満とすると、確かにガス透過度をより低く抑制し、かつ機械的強度をより向上させることはできるが、この場合にあっては、フッ素系電解質膜の長所が没却するため好ましくない。 This section exemplifies a preferable range of the opening ratio of the through hole with respect to the porous hydrocarbon electrolyte membrane. When the reinforcing membrane corresponding to the porous hydrocarbon-based electrolyte membrane is not an electrolyte membrane [for example, a PTFE (polytetrafluoroethylene) resin membrane], in order to improve proton conductivity, for example, the aperture ratio is 80%. It is necessary to set the degree. However, according to this section, since the porous hydrocarbon-based electrolyte membrane itself is also an electrolyte membrane, it itself has proton conductivity. Therefore, as in this section, the aperture ratio can be kept at 50% at most, the gas permeability of the advantage of the hydrocarbon electrolyte membrane can be suppressed low, and the mechanical strength can be improved. On the other hand, if the aperture ratio is less than 10%, the gas permeability can be suppressed to a lower level and the mechanical strength can be further improved. However, in this case, the advantages of the fluorine-based electrolyte membrane are lost. It is not preferable because it is rejected.
(4) 前記貫通孔が形成されていないガス拡散層を接合するための接合しろが、前記燃料電池用複合型電解質膜に含まれる前記多孔性炭化水素系電解質の周縁部の一定幅面に設けられていることを特徴とする(1)から(3)のいずれか1項に記載の燃料電池用複合型電解質膜。 (4) A joining margin for joining the gas diffusion layers in which the through holes are not formed is provided on a constant width surface of a peripheral edge portion of the porous hydrocarbon-based electrolyte included in the composite electrolyte membrane for a fuel cell. The composite electrolyte membrane for a fuel cell according to any one of (1) to (3), wherein:
本項は、燃料電池用複合型電解質膜に含まれる多孔性炭化水素系電解質に対して、(1)から(3)のいずれか1項に記載の貫通孔を、多孔性炭化水素系電解質の周縁部の一定幅面を除いた面に形成することを例示する。多孔性炭化水素系電解質の周縁部の一定幅面を除いた中央の面は、燃料電池用複合型電解質膜に白金担持カーボン粒子のような触媒金属担持導電性粒子からなる触媒層を形成する面となる。その面を包囲する多孔性炭化水素系電解質の周縁部の、一定幅の面には、貫通孔が存在しないようにして、触媒層及び当該周縁部を覆うGDL基材から発生するカーボンの繊維等が燃料電池用複合型電解質膜に突き刺さらないようにすることができる。すなわち、多孔性炭化水素系電解質膜の内、貫通孔のない硬い面が、GDL基材から発生するカーボンの繊維等に対する盾(防御面)として機能する。 In this item, the through hole according to any one of (1) to (3) is used for the porous hydrocarbon electrolyte contained in the composite electrolyte membrane for a fuel cell. Exemplifying the formation on the surface excluding the constant width surface of the peripheral edge. The central surface excluding the constant width surface at the peripheral edge of the porous hydrocarbon-based electrolyte is a surface on which a catalyst layer made of conductive metal-supported conductive particles such as platinum-supported carbon particles is formed on the composite electrolyte membrane for fuel cells. Become. Carbon fibers generated from the catalyst layer and the GDL base material covering the peripheral edge of the peripheral edge of the porous hydrocarbon-based electrolyte surrounding the surface so that there are no through holes in the constant-width surface Can be prevented from piercing the fuel cell composite electrolyte membrane. That is, a hard surface without a through hole in the porous hydrocarbon-based electrolyte membrane functions as a shield (defense surface) against carbon fibers generated from the GDL base material.
(5) 前記多孔性炭化水素系電解質膜の厚さが1μmから10μmであり、かつ、前記フッ素系電解質膜の厚さが2μmから30μmであることを特徴とする(1)から(4)のいずれか1項に記載の燃料電池用複合型電解質膜。 (5) The porous hydrocarbon electrolyte membrane has a thickness of 1 μm to 10 μm, and the fluorine electrolyte membrane has a thickness of 2 μm to 30 μm. The composite electrolyte membrane for a fuel cell according to any one of the above.
本項は、多孔性炭化水素系電解質膜の膜厚と、前記フッ素系電解質膜(二層中一層のもの)の膜厚の好適範囲を例示するものである。炭化水素系電解質膜を単体で燃料電池用の電解質膜に使用するときには、一般的に略20μm程度がその膜厚とするが、本発明では、多孔性炭化水素系電解質膜の役割が、フッ素系電解質膜の高いガス透過度を低くし、かつ、低い機械的強度を高めるものであり、かつ、なるべく膜厚を薄くした方が膜抵抗を低くすることができるため、その膜厚を1μmから10μmとしている。1μmより薄いとフッ素系電解質膜への補強効果が薄れるため好ましくなく、10μmより厚いと、膜抵抗が高くなり好ましくない。例えば、多孔性炭化水素系電解質の膜厚は、5μm程度が最も好適であると考えられる。 This section exemplifies a preferable range of the thickness of the porous hydrocarbon-based electrolyte membrane and the thickness of the fluorine-based electrolyte membrane (one layer in two layers). When a hydrocarbon-based electrolyte membrane is used alone as an electrolyte membrane for a fuel cell, the film thickness is generally about 20 μm. In the present invention, the role of the porous hydrocarbon-based electrolyte membrane is fluorine-based. Since the high gas permeability of the electrolyte membrane is lowered and the low mechanical strength is increased, and the film resistance can be lowered by reducing the film thickness as much as possible, the film thickness can be reduced from 1 μm to 10 μm. It is said. If the thickness is less than 1 μm, the reinforcing effect on the fluorine-based electrolyte membrane is reduced, which is not preferable. If the thickness is more than 10 μm, the membrane resistance increases, which is not preferable. For example, it is considered that the thickness of the porous hydrocarbon electrolyte is most preferably about 5 μm.
一方、フッ素系電解質膜の膜厚を2μmから30μmとするのは、フッ素系電解質膜の優れた電気的特性や化学的安定性の長所を担保するためである。しかし、フッ素系電解質膜が30μmより厚くなると膜抵抗が無用に大きくなってしまい、燃料電池の発電性能を劣化させるため好ましくない。フッ素系電解質膜の厚さ2μmは、多孔性炭化水素系電解質膜で補強される二枚のフッ素系電解質膜の上述した諸機能が発揮できる下限値と考えられる。 On the other hand, the film thickness of the fluorine-based electrolyte membrane is set to 2 μm to 30 μm in order to ensure the advantages of the excellent electrical characteristics and chemical stability of the fluorine-based electrolyte membrane. However, if the fluorine-based electrolyte membrane is thicker than 30 μm, the membrane resistance is unnecessarily increased, which is not preferable because the power generation performance of the fuel cell is deteriorated. A thickness of 2 μm of the fluorine-based electrolyte membrane is considered to be a lower limit value at which the above-described functions of the two fluorine-based electrolyte membranes reinforced with the porous hydrocarbon-based electrolyte membrane can be exhibited.
(6) (1)項から(5)項のいずれか1項の燃料電池用複合型電解質膜であって、前記多孔性炭化水素系電解質膜が、全膜厚方向の中央に形成されていることを特徴とする燃料電池用複合型電解質膜。 (6) The composite electrolyte membrane for a fuel cell according to any one of items (1) to (5), wherein the porous hydrocarbon-based electrolyte membrane is formed at the center in the entire film thickness direction. A composite electrolyte membrane for a fuel cell.
本項は、(1)項から(5)項のいずれか1項の燃料電池用複合型電解質膜の、構成要素である、二層のフッ素系電解質膜と、これら二層のフッ素系電解質膜に挟まれる一層の多孔性炭化水素系電解質膜との位置関係の一態様を例示するものである。この項の燃料電池用複合型電解質膜は、一層の多孔性炭化水素系電解質膜が全体の中央にあり、すなわち、二層のフッ素系電解質膜が、一層の多孔性炭化水素系電解質膜の膜面に平行な、膜の中心面に対称構造となっていることを特徴としている。対称構造であることから、二層のフッ素系電解質膜のどちらでも、アノード極側、カソード極側にセットすることができる。
This section includes two-layer fluorine-based electrolyte membranes, which are constituent elements of the composite electrolyte membrane for fuel cells according to any one of items (1) to (5), and these two-layer fluorine-based
(7) 該燃料電池用複合型電解質膜の膜厚を1とすると、前記多孔性炭化水素系電解質膜の膜厚は、0.01から0.5の割合で形成されることを特徴とする(6)に記載の燃料電池用複合型電解質膜。 (7) When the thickness of the fuel cell composite electrolyte membrane is 1, the thickness of the porous hydrocarbon electrolyte membrane is 0.01 to 0.5. The composite electrolyte membrane for a fuel cell according to (6).
本項は、(6)項の燃料電池用複合型電解質膜の中央に配置される一層の多孔性炭化水素系電解質膜の厚さ(膜厚)の全膜厚に対する比率を例示するものである。すなわち、多孔性炭化水素系電解質膜の厚さ(膜厚)を、全膜厚に対し、薄くすることもできるし、厚くすることもできる。
例えば、本項によれば、多孔性炭化水素系電解質膜は、全膜厚が25μmのとき、0.25μmまで薄膜化が可能であり、12.5μmまで厚膜化が可能である。多孔性炭化水素系電解質膜を薄膜化した燃料電池用複合型電解質膜は、フッ素系電解質膜の比率が高いため無加湿又は低加湿状態と成り易い用途の燃料電池に好適である。
This section exemplifies the ratio of the thickness (film thickness) of one porous hydrocarbon-based electrolyte membrane disposed in the center of the composite electrolyte membrane for a fuel cell according to item (6) to the total thickness. . That is, the thickness (film thickness) of the porous hydrocarbon-based electrolyte membrane can be made thinner or thicker than the total thickness.
For example, according to this section, when the total thickness of the porous hydrocarbon-based electrolyte membrane is 25 μm, it can be thinned to 0.25 μm and can be thickened to 12.5 μm. A composite electrolyte membrane for a fuel cell in which a porous hydrocarbon-based electrolyte membrane is thinned is suitable for a fuel cell for a use that tends to be in a non-humidified or low-humidified state because the ratio of the fluorine-based electrolyte membrane is high.
一方、多孔性炭化水素系電解質膜を厚膜化した燃料電池用複合型電解質膜は、多孔性炭化水素系電解質膜の比率が高いため機械的強度を高めることを重視する燃料電池に好適である。このように、両膜の短所を長所で補完すべく、ユーザからの燃料電池の仕様又は要請に応じて、多孔性炭化水素系電解質膜を好適に作製することができる。 On the other hand, a composite electrolyte membrane for a fuel cell in which a porous hydrocarbon-based electrolyte membrane is thickened is suitable for a fuel cell in which emphasis is placed on increasing mechanical strength because the ratio of the porous hydrocarbon-based electrolyte membrane is high. . Thus, in order to complement the disadvantages of both membranes with the advantages, the porous hydrocarbon electrolyte membrane can be suitably produced according to the specifications or requests of the fuel cell from the user.
(8) (6)又は(7)に記載の燃料電池用複合型電解質膜の全膜厚は、5μmから30μmであることを特徴とする燃料電池用複合型電解質膜。 (8) A composite electrolyte membrane for a fuel cell, wherein the total thickness of the composite electrolyte membrane for a fuel cell according to (6) or (7) is from 5 to 30 μm.
本項は、燃料電池用複合型電解質膜の全膜厚の好適範囲を例示するものである。5μmより薄いと、機械的強度が弱くなる点、ハンドリング性悪化の点等で好ましくなく、一方、30μmより厚いと、単位セルを所望の電力が得られるスタックの体積増加の点、プロトン導電性が劣化する点等で好ましくないためである。 This section exemplifies a preferable range of the total film thickness of the composite electrolyte membrane for fuel cells. If it is thinner than 5 μm, it is not preferable in that the mechanical strength becomes weak and the handling property deteriorates. On the other hand, if it is thicker than 30 μm, the unit cell has a stack volume that can obtain a desired power, and proton conductivity is low. This is because it is not preferable in terms of deterioration.
(9) (1)から(5)のいずれか1項に記載の燃料電池用複合型電解質膜であって、前記多孔性炭化水素系電解質膜が、全膜厚方向の非中央に形成されていることを特徴とする燃料電池用複合型電解質膜。 (9) The composite electrolyte membrane for a fuel cell according to any one of (1) to (5), wherein the porous hydrocarbon-based electrolyte membrane is formed at a non-center in the entire thickness direction. A composite electrolyte membrane for a fuel cell.
本項は、(1)項から(5)項のいずれか1項の燃料電池用複合型電解質膜の構成要素である、二層のフッ素系電解質膜と、これら二層のフッ素系電解質膜に挟まれる一層の多孔性炭化水素系電解質膜との位置関係の他の態様を例示する。この項の燃料電池用複合型電解質膜は、一層の多孔性炭化水素系電解質膜が全体の非中央にあり、すなわち、二層のフッ素系電解質膜が、一層の多孔性炭化水素系電解質膜(現実には、この膜面に平行な膜の中心面)に対して対称構造となっていないことを特徴としている。 This section describes the two-layer fluorine-based electrolyte membrane and the two-layer fluorine-based electrolyte membrane, which are the constituent elements of the fuel cell composite electrolyte membrane according to any one of items (1) to (5) The other aspect of the positional relationship with the porous hydrocarbon electrolyte membrane of one layer pinched | interposed is illustrated. The composite electrolyte membrane for a fuel cell in this section has a single porous hydrocarbon-based electrolyte membrane at the non-center of the whole, that is, a two-layer fluorine-based electrolyte membrane is a single-layer porous hydrocarbon-based electrolyte membrane ( In reality, it is characterized by not having a symmetric structure with respect to the central plane of the film parallel to the film surface.
非対称構造であることから、二層のフッ素系電解質膜のうちいずれかを、アノード極側、カソード極側にセットしたときに、そのアセンブリの態様によって、後述の実施例3−1、3−2で説明するように特性が変わるため、燃料電池へのアセンブリの際、どちらの面をアノード極側又はカソード極側にするか注意が必要となる。ただし、当該特性の好適利用により、例えば、アノード極側で発生するドライアップを防止することができる。それには、カソード極側に近い方に多孔性炭化水素系電解質膜を位置づけた非対称構造になるように燃料電池用複合型電解質膜を作製すればよい(次項参照)。 Because of the asymmetric structure, when any one of the two-layer fluorine-based electrolyte membranes is set on the anode electrode side and the cathode electrode side, Examples 3-1 and 3-2 described later are used depending on the assembly mode. Therefore, it is necessary to pay attention to which side is the anode side or the cathode side when assembling the fuel cell. However, it is possible to prevent, for example, dry-up that occurs on the anode electrode side by suitably using the characteristics. For this purpose, a composite electrolyte membrane for a fuel cell may be produced so as to have an asymmetric structure in which a porous hydrocarbon electrolyte membrane is positioned closer to the cathode side (see the next section).
(10) (9)に記載の燃料電池用複合型電解質膜であって、前記多孔性炭化水素系電解質膜の一方の面に近く位置づけられるフッ素系電解質膜の面を、燃料電池のカソード極用とし、かつ、前記多孔性炭化水素系電解質膜の前記一方の面の裏面に近く位置づけられるもう一方のフッ素系電解質膜の面を、燃料電池のアノード極用とすることを特徴とする燃料電池用複合型電解質膜。
本項は、前項で説明した非対象構造の燃料電池用複合型電解質膜の好適態様(好適三層膜の構成)を例示するものである。
(10) The composite electrolyte membrane for a fuel cell according to (9), wherein a surface of the fluorine-based electrolyte membrane positioned close to one surface of the porous hydrocarbon-based electrolyte membrane is used for a cathode electrode of a fuel cell. And the surface of the other fluorine-based electrolyte membrane positioned near the back surface of the one surface of the porous hydrocarbon-based electrolyte membrane is used for an anode electrode of a fuel cell. Composite electrolyte membrane.
This section exemplifies a preferred mode (configuration of a preferred three-layer film) of the composite electrolyte membrane for a fuel cell having the non-target structure described in the previous section.
(11) (8)から(10)のいずれか1項に記載の燃料電池用複合型電解質膜の厚みは、5μmから30μmであることを特徴とする燃料電池用複合型電解質膜。
本項は、対称構造を採る(6)項で例示した燃料電池用複合型電解質膜の全膜膜厚と同じ主旨のものであって、非対称構造の燃料電池用複合型電解質膜の全膜厚の好適範囲を例示する。好適範囲の上限、下限の意義は、(6)項の段落で説明したのでここでは当該説明を省略する。
(11) A fuel cell composite electrolyte membrane according to any one of (8) to (10), wherein the fuel cell composite electrolyte membrane has a thickness of 5 μm to 30 μm.
This section has the same purpose as the total film thickness of the fuel cell composite electrolyte membrane exemplified in (6), which has a symmetrical structure, and the total film thickness of the fuel cell composite electrolyte film having an asymmetric structure. The preferable range of is illustrated. The significance of the upper limit and the lower limit of the preferred range has been described in the paragraph (6), and the description thereof is omitted here.
(12) 炭化水素系電解質膜の周縁部にガス拡散層を接合するための接合しろとして前記炭化水素系電解質膜の周縁部の一定幅を残しながら、ニードルパンチ加工又はレーザ照射加工により、ミリオーダーの貫通孔を前記炭化水素系電解質膜に、平均的に散在するように明ける工程と、前記貫通孔が明けられた前記炭化水素系電解質膜に対して、フッ素系電解質樹脂を、キャスト法により塗布して、該フッ素系電解質樹脂からなるフッ素系電解質膜を、前記多孔性炭化水素系電解質膜に形成する工程とを含むことを特徴とする燃料電池用複合型電解質膜の製造方法。 (12) Milli-order by needle punching or laser irradiation while leaving a certain width of the peripheral edge of the hydrocarbon electrolyte membrane as a joining margin for joining the gas diffusion layer to the peripheral edge of the hydrocarbon electrolyte membrane And a fluorine-based electrolyte resin is applied to the hydrocarbon-based electrolyte membrane in which the through-holes are formed by a casting method. And forming a fluorine electrolyte membrane made of the fluorine electrolyte resin on the porous hydrocarbon electrolyte membrane. A method for producing a composite electrolyte membrane for a fuel cell, comprising:
本項は、(1)項から(12)項に記載した燃料電池用複合型電解質膜の製造方法を例示するものである。
本発明に係る燃料電池用複合型電解質膜に含まれる多孔性炭化水素系電解質膜に関し、貫通孔の径を、ミリオーダー、さらに好ましくは10-1mmオーダーといったように従来よりも大きくしている。よって、この貫通孔の孔明けは、量産加工に適したニードルパンチ加工またはレーザ照射加工で行うことが好ましい。
This section exemplifies the method for producing the composite electrolyte membrane for a fuel cell described in the sections (1) to (12).
The porous hydrocarbon electrolyte membrane contained in the fuel cell composite electrolyte membrane according to the present invention has a through-hole diameter larger than that of the prior art, such as on the order of millimeters, more preferably on the order of 10 −1 mm. . Therefore, it is preferable that this through hole is formed by needle punching or laser irradiation suitable for mass production.
また、多孔性炭化水素系電解質膜の貫通孔及び膜面にフッ素系電解質膜を形成するには、まず多孔性炭化水素系電解質膜をキャリアフィルムの上に固着する。そして、このキャリアフィルム付き多孔性炭化水素系電解質膜の上から、例えばフィオンDE2020CS(商品名)のようなフッ素系電解質膜形成用電解質液を公知のキャスト法で上記貫通孔及び膜面に一回乃至複数回(所望の膜厚が得られるまで)塗布する。そして、上記キャリアフィルムを剥離した後、フッ素系電解質膜が各孔に充填された多孔性炭化水素系電解質膜に対して同様にフッ素系電解質膜形成用電解質液を所望の膜厚が得られるまで塗布する。 In order to form a fluorine-based electrolyte membrane on the through-holes and the membrane surface of the porous hydrocarbon-based electrolyte membrane, first, the porous hydrocarbon-based electrolyte membrane is fixed on the carrier film. Then, from above the porous hydrocarbon-based electrolyte membrane with a carrier film, an electrolyte solution for forming a fluorine-based electrolyte membrane such as Fion DE2020CS (trade name) is once applied to the through holes and the membrane surface by a known casting method. It is applied a plurality of times (until a desired film thickness is obtained). And after peeling the said carrier film, until the desired film thickness is obtained for the electrolyte solution for fluorine-type electrolyte membrane formation similarly with respect to the porous hydrocarbon-type electrolyte membrane with which the fluorine-type electrolyte membrane was filled in each hole Apply.
この製造方法によれば、フッ素系電解質膜形成用電解質液が、ミリオーダー、さらに好ましくは10-1mmオーダーの径の貫通孔内を充填しつつ、貫通孔から溢れ出した当該電解質液が、多孔性炭化水素系電解質膜の膜面に均一に広がり、好適にフッ素系電解質膜が多孔性炭化水素系電解質膜を包囲するように形成されるようになる。 According to this production method, the electrolyte solution for forming a fluorine-based electrolyte membrane fills the inside of a through hole having a diameter of the order of millimeter, more preferably of the order of 10 −1 mm, and the electrolyte solution overflowing from the through hole is It spreads uniformly on the membrane surface of the porous hydrocarbon-based electrolyte membrane, and preferably the fluorine-based electrolyte membrane is formed so as to surround the porous hydrocarbon-based electrolyte membrane.
(14) 前記炭化水素系電解質膜の片面をフッ素系電解質樹脂が予め塗布されたキャリアフィルムに固着してから、前記貫通孔が明けられた前記炭化水素系電解質膜に対して、フッ素系電解質樹脂をキャスト法により塗布することを特徴とする(13)項に記載の燃料電池用複合型電解質膜の製造方法。 (14) After fixing one surface of the hydrocarbon-based electrolyte membrane to a carrier film on which a fluorine-based electrolyte resin has been applied in advance, the hydrocarbon-based electrolyte membrane in which the through-holes are formed is compared with the fluorine-based electrolyte resin. The method for producing a composite electrolyte membrane for a fuel cell according to the item (13), wherein the coating is applied by a casting method.
本項は、(6)項の対称構造又は(9)項の非対称構造の燃料電池用複合型電解質膜を製造するための製造方法を例示するものである。(9)項の非対称構造を製造するときには、炭化水素系電解質膜の片面をフッ素系電解質樹脂が予め塗布する際に、フッ素系電解質樹脂を薄膜状にすることが好ましい。 This section exemplifies a manufacturing method for manufacturing a composite electrolyte membrane for a fuel cell having the symmetrical structure of (6) or the asymmetric structure of (9). When manufacturing the asymmetric structure of (9), it is preferable that the fluorine-based electrolyte resin is formed into a thin film when the fluorine-based electrolyte resin is applied in advance to one side of the hydrocarbon-based electrolyte membrane.
(15) (1)項から(12)項のいずれか1項に記載の燃料電池用複合型電解質膜を含むことを特徴とする膜-電極接合体。 (15) A membrane-electrode assembly comprising the composite electrolyte membrane for a fuel cell according to any one of items (1) to (12).
本項は、(1)項から(12)項に記載の複合型電解質膜を、膜−電極接合体(MEMBRANE-ELECTRODE ASSEMBLY:「MEA」と略す)に適用したものを例示する。より具体的には、(1)項から(12)項に記載の複合型電解質膜の上に、一定幅のガスケット形成部を残して触媒層を形成して作製される。
特に、(10)項又は(11)項に記載の複合型電解質膜の場合は、アノード極側におけるドライアップを防止すべく、フッ素系電解質膜を薄した方の面をカソード極用、フッ素系電解質膜を厚くした方の面をアノード極用とし、それぞれの面に対し、適量の、触媒層を形成し、MEAを作製することが好ましい。
This section exemplifies one in which the composite electrolyte membrane described in the sections (1) to (12) is applied to a membrane-electrode assembly (abbreviated as “MEMBRANE-ELECTRODE ASSEMBLY:“ MEA ”). More specifically, it is produced by forming a catalyst layer on the composite electrolyte membrane described in the items (1) to (12), leaving a gasket forming portion having a constant width.
In particular, in the case of the composite electrolyte membrane according to (10) or (11), the surface on which the fluorine-based electrolyte membrane is thinned is used for the cathode electrode to prevent dry-up on the anode electrode side. It is preferable that the thickened surface of the electrolyte membrane is used for the anode electrode, and an appropriate amount of the catalyst layer is formed on each surface to produce the MEA.
(16) (1)項から(12)項の複合型電解質膜のいずれか、又は(14)項の膜-電極接合体を含むことを特徴とする固体高分子形燃料電池又は直接メタノール形燃料電池。 (16) A solid polymer fuel cell or a direct methanol fuel comprising any one of the composite electrolyte membranes of (1) to (12) or the membrane-electrode assembly of (14) battery.
本項は、(1)項から(12)項に記載の複合型電解質膜のいずれか、又は(14)項の膜-電極接合体(MEA)を、固体高分子形燃料電池又は直接メタノール形燃料電池に適用した燃料電池の好適種類を例示するものである。 In this section, any one of the composite electrolyte membranes described in the sections (1) to (12), or the membrane-electrode assembly (MEA) in the section (14), a solid polymer fuel cell or a direct methanol type This is an example of a suitable type of fuel cell applied to a fuel cell.
本発明によれば、フッ素系電解質膜と炭化水素系電解質膜とを複合化した複合化型電解質膜によって、炭化水素系電解質膜によりフッ素系電解質膜単体時の機械的強度の弱さを補いかつガス透過度を低く抑制することができる。 According to the present invention, the composite electrolyte membrane obtained by combining the fluorine-based electrolyte membrane and the hydrocarbon-based electrolyte membrane compensates for the weak mechanical strength of the fluorine-based electrolyte membrane alone by the hydrocarbon-based electrolyte membrane, and The gas permeability can be suppressed low.
以下、図1に示す本発明に係る燃料電池用複合型電解質膜の製造フロー(S1からS7)に沿って、本発明の実施の形態を説明する。 Hereinafter, an embodiment of the present invention will be described along a manufacturing flow (S1 to S7) of a composite electrolyte membrane for a fuel cell according to the present invention shown in FIG.
[炭化水素電解質膜準備工程(S1工程)]
まず、S1工程において、炭化水素系電解質膜(板状又はシート状)を準備する。炭化水素系電解質膜の材料は、機械的強度が高くかつガス透過度が低い性質を兼ね備えていることが必要であり、後述する実施例の欄に示す製造方法で得られるものや、スルホン酸化芳香族ポリエーテル[例えば、PEEK(ポリエーテルエーテルケトン)、PEEKK(ポリエーテルエーテルケトンケトン)等]、スルホン酸化ポリイミド、スルホン酸化ポリイミドアミド、ポリベンズイミダゾール系電解質、トリフルオロスチレンスルホン酸共重合体などの部分フッ素化炭化水素系電解質等を用いることができる。炭化水素系電解質膜は、本発明に係る複合型電解質膜にあって、フッ素系電解質膜の短所を補う補助膜としての機能を果たすものである。その膜厚は、1μmから10μmが好ましく、さらに4μmから6μm程度とすることがさらに好ましい。炭化水素系電解質膜は、この範囲中、例えば5μm程度の厚さを有するものであれば、十分な靭性(コシ)を備える。
[Hydrocarbon electrolyte membrane preparation process (S1 process)]
First, in step S1, a hydrocarbon electrolyte membrane (plate or sheet) is prepared. The material of the hydrocarbon-based electrolyte membrane must have the properties of high mechanical strength and low gas permeability, and can be obtained by the production method shown in the Examples section described later, sulfonated aroma Group polyether [for example, PEEK (polyether ether ketone), PEEKKK (polyether ether ketone ketone), etc.], sulfonated polyimide, sulfonated polyimide amide, polybenzimidazole electrolyte, trifluorostyrene sulfonate copolymer, etc. A partially fluorinated hydrocarbon electrolyte or the like can be used. The hydrocarbon-based electrolyte membrane is a composite electrolyte membrane according to the present invention, and functions as an auxiliary membrane that compensates for the disadvantages of the fluorine-based electrolyte membrane. The film thickness is preferably 1 μm to 10 μm, and more preferably about 4 μm to 6 μm. If the hydrocarbon electrolyte membrane has a thickness of, for example, about 5 μm in this range, the hydrocarbon electrolyte membrane has sufficient toughness.
[多孔性炭化水素系電解質膜作製工程(S2工程)]
S2工程は、S1工程で準備した炭化水素系電解質膜に多数の貫通孔を形成し、多孔性炭化水素系電解質膜を作製する工程である。
より具体的に説明すると、S1工程で準備した例えば5μm厚の炭化水素系電解質膜の膜厚方向に沿って、ミリオーダー、さらに好ましくは10−1mmオーダー、例えば0.1mmから0.5mm程度の孔径の貫通孔を、炭化水素系電解質膜に平均的に散在するように明ける。貫通孔の径は、0.1mm未満であれば、膜厚方向に形成されるフッ素系電解質の絶対量が少なくなりフッ素系電解質膜の長所を没却してしまう。さらに貫通孔の径がより小さく、すなわちミクロンオーダーになると、従来技術(特許文献1)のように、貫通孔にフッ素系電解質の樹脂を充填するために減圧装置が必要となる。一方、貫通孔の径が、0.5mmより大きくなると炭化水素系電解質膜全体の機械的強度が低くなり好ましくない。
[Porous hydrocarbon-based electrolyte membrane production process (S2 process)]
Step S2 is a step of forming a porous hydrocarbon electrolyte membrane by forming a large number of through holes in the hydrocarbon electrolyte membrane prepared in S1 step.
More specifically, along the film thickness direction of, for example, a 5 μm-thick hydrocarbon-based electrolyte membrane prepared in step S1, it is on the order of millimeters, more preferably on the order of 10 −1 mm, for example, about 0.1 mm to 0.5 mm. The through-holes having a pore diameter of 2 are opened so as to be scattered on the hydrocarbon electrolyte membrane on average. If the diameter of the through hole is less than 0.1 mm, the absolute amount of the fluorine-based electrolyte formed in the film thickness direction decreases, and the advantages of the fluorine-based electrolyte membrane are lost. Further, when the diameter of the through hole is smaller, that is, on the micron order, a pressure reducing device is required to fill the through hole with a resin of a fluorine-based electrolyte as in the prior art (Patent Document 1). On the other hand, when the diameter of the through hole is larger than 0.5 mm, the mechanical strength of the entire hydrocarbon electrolyte membrane is lowered, which is not preferable.
そして、炭化水素系電解質膜全体を100%とすると、貫通孔の開口率は10%から50%とすることが好ましい。貫通孔の開口率が、10%未満であると、貫通孔に充填されるフッ素系電解質膜の樹脂の長所が没却し、一方50%以上であると、補強膜たる炭化水素系電解質膜の強度を低下させ好ましくないからである。 When the entire hydrocarbon-based electrolyte membrane is 100%, the opening ratio of the through holes is preferably 10% to 50%. If the opening ratio of the through-hole is less than 10%, the advantages of the resin of the fluorine-based electrolyte membrane filled in the through-hole are lost, while if it is 50% or more, the hydrocarbon-based electrolyte membrane as the reinforcing membrane This is because the strength is lowered, which is not preferable.
貫通孔を、炭化水素系電解質膜に平均的に明ける量産的な方法は、ニードルパンチ加工が好適である。一度に多数の比較的に大きな径[ミリオーダー、さらに好適には10−1mmオーダーの径の孔(例えば0.1mmから0.5mm程度の孔径)]を明けることができ、ロールトゥロールの量産システムで迅速かつ連続的に正確に明けるには最も相応しい。なお、貫通孔を、CO2ガスレーザやエキシマレーザ等によるレーザによって明けるようにしてもよい。当該貫通孔は径が比較的大きくレーザ熱によって若干孔が事後的に溶解し拡張したとしても従来技術(特許文献2)で述べたような問題が生じない。 Needle punching is suitable as a mass-produced method for opening the through holes on the hydrocarbon-based electrolyte membrane on average. A number of relatively large diameters [holes on the order of millimeters, more preferably on the order of 10 −1 mm (for example, hole diameters of about 0.1 mm to 0.5 mm)] can be formed at one time. It is most suitable for rapid and continuous accurate dawn in a mass production system. The through hole may be opened by a laser such as a CO 2 gas laser or an excimer laser. Even if the through-hole has a relatively large diameter and is slightly melted and expanded later by laser heat, the problem described in the prior art (Patent Document 2) does not occur.
さらに、貫通孔は、図2(a)のW部で示されるように、炭化水素系電解質膜に対して、炭化水素系電解質膜の周縁部にGDLを接合するための接合しろとして炭化水素系電解質膜の周縁部の一定幅(W部)を残しながら明けるようにする。この一定幅W部があると、複合型電解質膜(図3の参照番号50)の両面に触媒層(図6の参照番号10)を形成してMEA(図6の参照番号60))を作製し、さらにその上をGDL(図6の参照番号11)が覆うようにホットプレスによって接合するが、GDL基材から発生するカーボンの繊維等が複合型電解質膜(図3の参照番号50)の周縁部(図3の参照符号w部)を突き刺すことがなくなり、クロスリークを防止できる。すなわち、機械的強度が高い炭化水素系電解質膜がGDL基材から発生するカーボンの繊維等の盾になるからである。例えば、当該周縁部は、50mm×50mmの複合型電解質膜50にあっては、5mm程度の一定幅Wがあればよい。
Further, as shown by the W portion in FIG. 2 (a), the through hole is a hydrocarbon-based as a joining margin for joining GDL to the peripheral portion of the hydrocarbon-based electrolyte membrane with respect to the hydrocarbon-based electrolyte membrane. It is made to be clear, leaving a fixed width (W part) of the peripheral part of the electrolyte membrane. When this constant width W portion is present, a catalyst layer (
さらに、貫通孔hは、図2(a)、(b)の斜視図に示されるように、千鳥配列状に形成することが好ましい。膜面に高密度で平均して貫通孔hを散在させるためには最も好ましい配列形態と考えられるからである。なお、貫通孔hの形状は、円に限られず、楕円状、三角、四角等の多角形やスリット状にしてもよい。 Furthermore, the through holes h are preferably formed in a staggered arrangement as shown in the perspective views of FIGS. This is because it is considered to be the most preferable arrangement form in order to disperse the through-holes h on the film surface at high density on average. The shape of the through hole h is not limited to a circle, and may be an elliptical shape, a polygonal shape such as a triangle or a square, or a slit shape.
[キャリアフィルム上へのフッ素系電解質膜のキャスト工程(S3工程)]
PET(ポリエチレンテレフタレート)のようなエンジニアリングプラスチック製フィルムをキャリアフィルム(不図示)として準備し、基台(不図示)に固定・設置する。そして、そのキャリアフィルムにフッ素系電解質膜用樹脂をスプレー法、キャスト法、インクジェット法等の塗布方法により塗布する。このときの膜厚は、当該複合型電解質膜を、全膜厚方向について対称型にするか非対称型にするか、さらには、全膜厚を何μmとするかによって、適宜変更することが望ましい。
[Casting process of fluorine electrolyte membrane on carrier film (S3 process)]
An engineering plastic film such as PET (polyethylene terephthalate) is prepared as a carrier film (not shown), and fixed and installed on a base (not shown). And the resin for fluorine-type electrolyte membrane is apply | coated to the carrier film with application | coating methods, such as a spray method, the casting method, and the inkjet method. The film thickness at this time is preferably changed as appropriate depending on whether the composite electrolyte membrane is symmetric or asymmetric with respect to the total film thickness direction, and how much μm the total film thickness is. .
[多孔性炭化水素系電解質膜1とキャリアフィルム付きフッ素系電解質膜との接合工程(S4工程)]
次に、S1工程において作製した図2に示す多孔性炭化水素系電解質膜1を、S3工程において作製されたキャリアフィルム付きフッ素系電解質膜をホットプレスのような熱圧手段により接合する。このとき、S3工程において半乾き状態のフッ素系電解質膜の上から多孔性炭化水素系電解質膜1を載置させて両者を接合するようにしてもよい。
[Jointing Step of Porous
Next, the porous hydrocarbon-based
[多孔性炭化水素系電解質膜1へのフッ素系電解質膜用樹脂のキャスト工程(S5工程)]
S4工程において作製されたフッ素系電解質膜で被覆されたキャリアフィルムに接合された多孔性炭化水素系電解質膜(キャリアフィルム付き多孔性炭化水素系電解質膜)1の孔h内及びその膜面に対して、S4工程で用いたものと同じ材質のフッ素系電解質膜用樹脂をキャスト法により塗布する。当該多孔性炭化水素系電解質膜1に形成された多数の孔hは、径がミリオーダー、さらに好適には10−1mmオーダーであり、容易にフッ素系電解質膜用樹脂が孔h内へ流入し充填されていき(従来のように充填時に減圧装置は不要)、同時に、フッ素系電解質膜用樹脂が、多孔性炭化水素系電解質膜1の膜面にも塗布される。このときの膜厚も、同様に10μmから30μmであることが好ましい。その理由は、S4工程で述べたものと同様である。
[Casting step of resin for fluorine electrolyte membrane to porous hydrocarbon electrolyte membrane 1 (step S5)]
In the hole h of the porous hydrocarbon electrolyte membrane (porous hydrocarbon electrolyte membrane with carrier film) 1 bonded to the carrier film covered with the fluorine electrolyte membrane produced in the step S4 and to the membrane surface Then, a fluorine-based electrolyte membrane resin made of the same material as that used in step S4 is applied by a casting method. A number of holes h formed in the porous hydrocarbon-based
[キャリアフィルム、フッ素系電解質膜、多孔性炭化水素系電解質膜の接合及びキャリアフィルム剥離工程(S6工程)]
S5工程で作製された、キャリアフィルムに形成されたフッ素系電解質膜、このフッ素系電解質膜の膜面に形成された多孔性炭化水素系電解質膜1、さらにこの多孔性炭化水素系電解質膜1の孔及び膜面に形成されたフッ素系電解質膜2に、別のキャリアフィルムを載置し、これら膜の両面から緩い条件(低圧、低温)でホットプレスのような熱圧手段を施すようにする。
その後(冷却・乾燥後)、最外面にある二枚のキャリアフィルムを剥離する。そうすると、図3の断面図で示す、多孔性炭化水素系電解質膜1と、この膜1の孔hを充填しかつ多孔性炭化水素系電解質膜1の両面をフッ素系電解質膜2で形成して成る、周縁部内部に多孔性炭化水素系電解質膜1の孔の存在しない一定幅部分wを有する複合型電解質膜50を得る。
[Carrier film, fluorine electrolyte membrane, porous hydrocarbon electrolyte membrane bonding and carrier film peeling step (step S6)]
The fluorine-based electrolyte membrane formed on the carrier film, the porous hydrocarbon-based
Thereafter (after cooling and drying), the two outermost carrier films are peeled off. As a result, the porous hydrocarbon-based
[燃料電池用複合型電解質膜の完成(S7)]
この複合型電解質膜50は、炭化水素系電解質膜とフッ素系電解質膜の両膜の長所を活かし、かつ短所を補完する膜である。加えて、参照符号30で示す断面部(一点鎖線部で囲んだ断面部分)に着目すると明らかであるが、多孔性炭化水素系電解質膜1の孔hに、フッ素系電解質膜2が横H字状(はとめ状)に強固に嵌合しており、このような断面部が膜内に多数平均して存在しているため、二種類の電解質膜が完全一体化して一つの電解質膜を形成する。そのため、この複合型電解質膜50は、機械的強度が高く、二種類の電解質膜が分離することがないため複合型膜としての頑強な膜となる。
[Completion of composite electrolyte membrane for fuel cell (S7)]
The
<実施例1、実施例2-1及び2−2、実施例3−1及び3−2、比較例1>
上記の本実施形態に従う、実施例1、実施例2-1、実施例2−2、実施例3−1及び実施例3−2に係る複合型電解質膜について説明し、比較例1に係る電解質膜[ナフィオン(商品名)製の単層膜]と対比しながら、各複合型電解質膜を評価する。
<Example 1, Examples 2-1 and 2-2, Examples 3-1 and 3-2, Comparative Example 1>
The composite electrolyte membrane according to Example 1, Example 2-1, Example 2-2, Example 3-1, and Example 3-2 according to the above-described embodiment will be described, and the electrolyte according to Comparative Example 1 will be described. Each composite electrolyte membrane is evaluated while contrasting with a membrane [a single-layer membrane made of Nafion (trade name)].
実施例1、実施例2−1、実施例2−2に係る複合型電解質膜は、順に、中央の炭化水素系電解質膜が5μmの場合、これより厚い膜厚のもの(同膜が10μm厚)、実施例1より薄い膜厚のもの(同膜が2.5μm厚)としたものである。なお、複合型電解質膜の全体の膜厚はいずれも25μmになるようにした。 The composite electrolyte membranes according to Example 1, Example 2-1, and Example 2-2 are thicker in order when the central hydrocarbon electrolyte membrane is 5 μm (the membrane is 10 μm thick). ), Having a film thickness thinner than that of Example 1 (the film is 2.5 μm thick). The total thickness of the composite electrolyte membrane was 25 μm.
実施例3−1、実施例3−2に係る複合型電解質膜は、炭化水素系電解質膜の膜厚を5μmとし、炭化水素系電解質膜が、複合型電解質膜の中でアノード極側の近くに位置づけたものと、複合型電解質膜の中でカソード極側の近くに位置づけたものである。また、同様にして、複合型電解質膜の全膜厚が、いずれも25μmになるようにした。
以下、各実施例、比較例1を説明するが、共通な内容は適宜その説明を省略する。
In the composite electrolyte membranes according to Example 3-1 and Example 3-2, the thickness of the hydrocarbon-based electrolyte membrane is 5 μm, and the hydrocarbon-based electrolyte membrane is close to the anode electrode side in the composite-type electrolyte membrane. And those located near the cathode side in the composite electrolyte membrane. Similarly, the total thickness of the composite electrolyte membrane was set to 25 μm.
Hereinafter, although each Example and Comparative Example 1 are demonstrated, the description is abbreviate | omitted suitably about a common content.
(実施例1)
[多孔性炭化水素系電解質膜の作製]
スルホン化剤とポリイミドアミド樹脂の反応を[化1]のように進行させて、炭化水素系スルホン化樹脂を得た。
[Preparation of porous hydrocarbon electrolyte membrane]
The reaction of the sulfonating agent and the polyimide amide resin was advanced as shown in [Chemical Formula 1] to obtain a hydrocarbon sulfonated resin.
この樹脂原料を、110℃、減圧下で5時間、乾燥した。この乾燥した樹脂原料1gに対し5倍の硫酸を添加し、さらにスルホン化剤を同樹脂原料に対して1.0倍となるように添加し、これを室温にて24時間攪拌しスルホン化を行った。スルホン化を行って得られた粘調な液体を攪拌しながら、この液体の約10倍の容量の水に滴下し、水のpHが7となるまで(pH試験紙により判定)、洗浄・濾過を3回行った。この後、得られた固形物を、80℃の温度下、真空乾燥により5時間乾燥し、スルホン化樹脂を得た。 This resin material was dried at 110 ° C. under reduced pressure for 5 hours. 5 times of sulfuric acid is added to 1 g of the dried resin raw material, and a sulfonating agent is further added to 1.0 times of the resin raw material. went. While stirring the viscous liquid obtained by sulfonation, the liquid is dropped into about 10 times the volume of this liquid and washed and filtered until the pH of the water reaches 7 (determined by pH test paper). Was performed three times. Thereafter, the obtained solid was dried by vacuum drying at 80 ° C. for 5 hours to obtain a sulfonated resin.
イオン交換当量重量の測定は、測定しようとするスルホン化ポリマーを、密閉可能なガラス容器に精秤(=aグラム)し、そこに過剰量の塩化カルシウム水溶液を添加し、12時間攪拌した。当該系内に発生した塩化水素を、0.05規定の水酸化ナトリウム水溶液(力価f)にて、指示薬にフェノールフタレインを用いて滴定(b[ml])した。 The ion exchange equivalent weight was measured by precisely weighing the sulfonated polymer to be measured into a sealable glass container (= a gram), adding an excessive amount of calcium chloride aqueous solution thereto, and stirring for 12 hours. Hydrogen chloride generated in the system was titrated (b [ml]) with 0.05 N aqueous sodium hydroxide solution (titer f) using phenolphthalein as an indicator.
以上の測定値から、イオン交換当量重量(g/mol)を[式1]により求め、さらに[式2]を用いてイオン交換容量(meq/g)に換算した。
[式1]
イオン交換当量重量[g/mol]=(1000/a)/(0.05×b×f)
[式2]
イオン交換容量[meq/g]=1/(イオン交換当量重量/1000)
From the above measured values, the ion exchange equivalent weight (g / mol) was determined by [Formula 1], and further converted to the ion exchange capacity (meq / g) using [Formula 2].
[Formula 1]
Ion exchange equivalent weight [g / mol] = (1000 / a) / (0.05 × b × f)
[Formula 2]
Ion exchange capacity [meq / g] = 1 / (ion exchange equivalent weight / 1000)
ポリアミドイミド樹脂に対して同量のクロロ硫酸を加えた。このときのイオン交換容量は、ナフィオン(登録商標)同等の0.9(meq/g)であった。
得られた炭化水素系スルホン酸樹脂を、水/エタノール=50/50(体積比)の溶媒に溶解し、その濃度が5wt%である炭化水素系スルホン酸樹脂溶液を得た。
The same amount of chlorosulfuric acid was added to the polyamideimide resin. The ion exchange capacity at this time was 0.9 (meq / g) equivalent to Nafion (registered trademark).
The obtained hydrocarbon-based sulfonic acid resin was dissolved in a solvent of water / ethanol = 50/50 (volume ratio) to obtain a hydrocarbon-based sulfonic acid resin solution having a concentration of 5 wt%.
平滑なPET製シートに炭化水素系スルホン酸樹脂溶液を、通常のスプレー法により繰り返し塗布した。塗布後、80℃の熱風を送ることができる乾燥機を用いて10分間乾燥した。得られた炭化水素系電解質膜の厚みは5μmであった(この炭化水素系電解質膜の製造方法及びこの方法によって得られる炭化水素系電解質膜は、一部膜厚の異なる点は除き、以下のすべての実施例、比較例1に適用される)。
図4に示されるように、得られた膜を、50mm×50mmに裁断し、周縁部を縁取るように5mm幅wを残し、それ以外のところ(周縁部の内側)にニードルパンチ加工で、貫通孔の中心間距離L1(図4(b)の縦方向)が0.6mm、貫通孔の中心間距離L3(図4(b)の横方向)が0.5mmの間隔となるように、さらに貫通孔の中心間距離L2(図4(b)の横方向)が1.0mmの間隔となるように、径Dが0.3mmの貫通孔を明けた。このときの貫通孔の開孔率は、23.5%となった。
The hydrocarbon-based sulfonic acid resin solution was repeatedly applied to a smooth PET sheet by an ordinary spray method. After the application, it was dried for 10 minutes using a dryer capable of sending hot air at 80 ° C. The thickness of the obtained hydrocarbon-based electrolyte membrane was 5 μm (the hydrocarbon-based electrolyte membrane obtained by this method and the hydrocarbon-based electrolyte membrane obtained by this method had the following differences except for the difference in film thickness) Applies to all examples, comparative example 1).
As shown in FIG. 4, the obtained film is cut into 50 mm × 50 mm, leaving a width w of 5 mm so as to frame the peripheral edge, and needle punching in other places (inside the peripheral edge), The distance L1 between the centers of the through holes (vertical direction in FIG. 4B) is 0.6 mm, and the distance L3 between the centers of the through holes (horizontal direction in FIG. 4B) is 0.5 mm. Furthermore, a through hole having a diameter D of 0.3 mm was opened so that the distance L2 between the centers of the through holes (lateral direction in FIG. 4B) was 1.0 mm. The opening rate of the through holes at this time was 23.5%.
[固体高分子形燃料電池用複合型電解質膜の作製]
ナフィオンDE2020CS(商品名)液を用い、キャスト法により10μm厚のキャスト膜(フッ素系電解質膜)を38μm厚のPETフィルム(キャリアフィルムに相当)上に成膜した。その後、PETフィルム毎、50mm×50mmに裁断し、先に作製した多孔性(貫通孔有り)炭化水素系電解質膜をその上に配置した。さらにその上からナフィオンDE2020CS(商品名)液を用い、キャスト法によりフッ素系電解質膜を多孔性炭化水素系電解質膜の上に作製した。作製された膜を80℃の温度下30分間乾燥し、多孔性炭化水素系電解質膜を中央に、二枚のフッ素系電解質膜が、全体の膜厚方向に対称に配置され、全膜厚が25μmの実施例1に係る複合型電解質膜50を得た。
[Preparation of composite electrolyte membrane for polymer electrolyte fuel cells]
Using a Nafion DE2020CS (trade name) solution, a cast film (fluorine electrolyte film) having a thickness of 10 μm was formed on a PET film (corresponding to a carrier film) having a thickness of 38 μm by a casting method. Thereafter, each PET film was cut into 50 mm × 50 mm, and the previously produced porous (with through-hole) hydrocarbon-based electrolyte membrane was disposed thereon. Further, a fluorine-based electrolyte membrane was produced on the porous hydrocarbon-based electrolyte membrane by casting using Nafion DE2020CS (trade name) solution. The produced membrane is dried at a temperature of 80 ° C. for 30 minutes, the porous hydrocarbon electrolyte membrane is centered, and the two fluorine electrolyte membranes are arranged symmetrically in the whole film thickness direction, so that the total thickness is A
(実施例2−1)
図7に実施例2−1に係る複合型電解質膜50Aを示す。
まず、複合型電解質膜50Aを製造するに当たり、実施例1に係る複合型電解質膜50の製造方法と同じようにして、ナフィオンDE2020CS(商品名)液によってキャスト法によりフッ素系電解質膜を形成したが、80℃で30分間の条件による乾燥とキャストを繰り返し、15μm厚のフッ素系電解質膜(以下「第1キャスト膜」という)が形成されるようにした。これとは別に、38μm厚のPETフィルム上に、ナフィオンDE2020C(商品名)液を用いキャスト法により5μm厚のフッ素系電解質膜(以下「第2キャスト膜」という)を作製した。
(Example 2-1)
FIG. 7 shows a
First, in manufacturing the
次に、第1キャスト膜と第2キャスト膜から38μm厚のPETフィルムを剥離した後、第1キャスト膜と、第2キャスト膜とを、多孔性炭化水素系電解質膜が中央に配置されるように、多孔性炭化水素系電解質膜に重ね合わせ、130℃、4MPaの圧力で10分間熱圧接合を行い、実施例2−1に係る、全膜厚が25μmの複合型電解質膜50Aを作製した。複合型電解質膜50Bが作製完了後、顕微鏡によってその断面を観察し、実施例2−1に係る複合型電解質膜50Aは、多孔性炭化水素系電解質膜1Aを中央に、二枚のフッ素系電解質膜2Aが、全体の膜厚方向に対称に配置され、そして、複合型電解質膜50Aの全膜厚と中央の多孔性炭化水素系電解質膜1Aの膜厚の比が、1:0.5であることを確認した(図7参照)。
Next, after the 38 μm-thick PET film is peeled off from the first cast film and the second cast film, the first cast film and the second cast film are disposed so that the porous hydrocarbon-based electrolyte film is disposed at the center. The
(実施例2−2)
図8に示された実施例2−2に係る複合型電解質膜50Bは、実施例1−1と同様の方法よって作製された。ただし、複合型電解質膜50Bの中央に配置された多孔性炭化水素系電解質膜1Bを0.2μm厚とし、複合型電解質膜50Bの全膜厚と中央の多孔性炭化水素系電解質膜1Bの比が、1:0.01となるようにし、かつ、複合型電解質膜の全膜厚を25μmとした(図8参照)。また、0.2μm厚の多孔性炭化水素系電解質膜1Bは、同膜が極薄のため、インクジェット法を用いインクジェットノズルから多孔性炭化水素系電解質膜1B用樹脂(スルホン化ポリイミドアミド)を吐出して形成した。複合型電解質膜50Bが作製完了後、顕微鏡によってその断面を観察し、実施例2−2に係る複合型電解質膜50Bは、多孔性炭化水素系電解質膜1Bを中央に、二枚のフッ素系電解質膜2Bが、複合型電解質膜50Bの全膜厚方向に対称に配置され、そして、全膜厚と中央の多孔性炭化水素系電解質膜2Bの比が、1:0.01であることを確認した(図8参照)。
(Example 2-2)
The
(実施例3−1)
図9(a)に示された実施例3−1に係る複合型電解質膜50Cは、38μm厚のPETフィルム上に、5μm厚の多孔性炭化水素系電解質膜1Cを載置し、その上から、ナフィオンDE2020CS(商品名)液によってキャスト法によりキャスト膜(フッ素系電解質膜)を形成した。この際、PETフィルムと多孔性炭化水素系電解質膜1Cとの間に、多孔性炭化水素系電解質膜1Cの各孔hからナフィオンDE2020CS(商品名)液が、多孔性炭化水素系電解質膜の裏面に回り込むようにして、PETフィルムと多孔性炭化水素系電解質膜1Cとの間に、ナフィオンDE2020CS(商品名)液によるフッ素系電解質膜2C1側が薄く(厚さ数μm程度)形成されるようにした。
(Example 3-1)
A
さらに、キャスト膜(フッ素系電解質膜)2C2に対して80℃で30分間の条件による乾燥とキャストを繰り返し、複合型電解質膜の全膜厚を25μmとした。多孔性炭化水素系電解質1Cの両面のフッ素系電解質膜2C1(薄膜)、2C2(厚膜)が、実施例2−1、2−2に係るフッ素系電解質膜2A、2Bとは異なり、非対称となっていることを顕微鏡によって断面観察し確認した(図9(a)参照)。
Further, drying and casting were repeated for the cast membrane (fluorine electrolyte membrane) 2C 2 at 80 ° C. for 30 minutes, so that the total thickness of the composite electrolyte membrane was 25 μm. The fluorine-based electrolyte membranes 2C 1 (thin film) and 2C 2 (thick film) on both sides of the porous hydrocarbon-based electrolyte 1C are different from the fluorine-based
(実施例3−2)
図9(b)に示された実施例3−2に係る複合型電解質膜50C´は、実施例3−1に係るものと全く同様にして作製される。実施例3−2も実施例3−1と同様に、多孔性炭化水素系電解質1Cが、複合型電解質膜50C´の膜厚方向の非中央かつ膜面に平行に形成されている。そして、厚膜側のフッ素系電解質膜2C2を燃料電池のアソード側に使用し、薄膜側のフッ素系電解質膜2C1を、燃料電池のカソード側に使用したものを、実施例3−2とした(図9(b)参照)。
(Example 3-2)
The
(比較例1)
比較例1は、ナフィオンDE2020CS(商品名)液を用い、キャスト法により全膜厚が25μmのフッ素系電解質膜のみ単層の電解質膜(従来のナフィオン単層の電解質膜)を得た。
(Comparative Example 1)
In Comparative Example 1, a Nafion DE2020CS (trade name) solution was used, and a single-layer electrolyte membrane (conventional Nafion single-layer electrolyte membrane) was obtained by a casting method using only a fluorine-based electrolyte membrane having a total thickness of 25 μm.
<各種評価>
(ガス透過度の評価)
このガス透過度の評価は、得られた複合型電解質膜のアノード極側とカソード極側との間のクロスリークの防止能力を試験するものである。
そのために、図5に示されているような気体透過度測定装置40を用いて、JISK7126 A法(差圧法)に基づき、温度80℃、相対湿度50%の水素ガスについて、単位分圧差で、単位時間に単位面積を通過する気体の体積を測定した。測定装置40は、透過セル3、ろ紙4、セル蓄積可変器9、圧力検出器5、試験気体供給器6、真空ポンプ7、試験気体8、及びストップバルブV1〜V5からなり、測定されるべき、実施例、比較例1の電解質膜を透過セル3に収容し、単位時間に単位面積を通過する気体(水素ガス)の体積を、上記JIS規格に規定された差圧法に従って測定した。
<Various evaluations>
(Evaluation of gas permeability)
This evaluation of gas permeability tests the ability to prevent cross leak between the anode and cathode sides of the obtained composite electrolyte membrane.
Therefore, using a gas
表1にその測定結果を示す。表1によれば、実施例1に係る複合型電解質膜は、比較例1のものに比べ、水素ガス透過度が低く抑制されていた(比較例1の6分の1以上)。
また、同表によれば、実施例2−1に係る複合型電解質膜も、比較例1のものに比べ、水素ガス透過度が低く抑制された(比較例1の24分の1程度)。
一方、同表によれば、実施例2−2に係る複合型電解質膜は、水素ガス透過度は、確かに比較例1のものに比べ、水素ガス透過度が低く抑制されたが、比較例1に係るものの1/2程度であり、実施例2−1に係るものよりも劣っていた。実施例2−2に係るものが、実施例2−1に係るものより薄膜に形成されていたため、水素ガスを透過し易くしたためと考えられる。
Further, according to the table, the composite electrolyte membrane according to Example 2-1 was also suppressed to have a lower hydrogen gas permeability than that of Comparative Example 1 (about 1/24 of Comparative Example 1).
On the other hand, according to the same table, the composite electrolyte membrane according to Example 2-2 was suppressed in hydrogen gas permeability to be lower than that of Comparative Example 1, but the Comparative Example It was about 1/2 of that according to 1 and was inferior to that according to Example 2-1. This is probably because the material according to Example 2-2 was formed in a thinner film than that according to Example 2-1, and thus facilitated the permeation of hydrogen gas.
(リーク電流の評価)
このリーク電流の評価は、得られた複合型電解質膜のGDL基材のカーボンの繊維等に対する防御能力を試験するものである。
そのために、図6に示されている触媒層10が形成された複合型電解質膜60を挟んだ両極間のリーク電流値を測定することで、アノード側とカソード側との間の電流リークの短絡の程度(リーク電流値)を調べた。
まず初めに、転写法により複合型電解質膜60の片面に40mm×40mの触媒層10を形成した。別途、GDL基材を45mm×45mに裁断し、GDL基材を触媒層10が形成されている複合型電解質膜60に対して130℃、4MPaの圧力で5分間ホットプレス処理を行って、GDL基材を複合型電解質膜60を含むMEAに接合した。
(Evaluation of leakage current)
This evaluation of the leakage current is to test the ability of the obtained composite electrolyte membrane to protect the carbon fibers of the GDL substrate.
For this purpose, a short circuit of current leakage between the anode side and the cathode side is performed by measuring a leakage current value between both electrodes sandwiching the
First, a 40 mm × 40 m
そして、この接合品70(MEMBRANE ELECTRODE GDL ASSEMBLY:「MEGA70」と略す)を、25℃、50%R.H.の恒温恒湿槽に1時間以上静置し、GDL基材による短絡状態を確認するため、二個の金属ブロックを用いて、2.3MPaの加圧状態でMEGA70を外側両面から挟み、さらに0.2Vの電圧をMEGA70のアノード側とカソード側の間に印加してリーク電流の測定を行った。
Then, this bonded product 70 (MEMBRANE ELECTRODE GDL ASSEMBLY: abbreviated as “MEGA70”) is allowed to stand in a constant temperature and humidity chamber at 25 ° C. and 50% RH for 1 hour or longer, and the short circuit state due to the GDL substrate is confirmed. Therefore, using two metal blocks, the
表2にその測定結果を示す。表2を参照しながら、実施例1を、比較例1と比べると、リーク電流値が約40分の1に抑制されており、炭化水素系電解質膜(図2の周縁部W)によってGDL基材による短絡が防止されていることが分かった。これは、複合型電解質膜60に炭化水素系電解質膜1の周縁部wが全膜厚方向の中心の周縁部に配置されており、GDL基材11から発生するカーボンの繊維等に対する盾になっているため、複合型電解質膜60を突き刺ささらなかったためであると考えられる。
一方、比較例1に係る電解質膜(不図示)には、炭化水素系電解質膜がまったく内挿されておらず、すなわちフッ素系電解質膜のみの膜であるため、機械的強度が弱くGDL基材11から発生するカーボンの繊維等が当該電解質膜を突き刺し、電解質膜の両側間において電流がリークしたものと考えられる。 On the other hand, in the electrolyte membrane (not shown) according to Comparative Example 1, the hydrocarbon electrolyte membrane is not interpolated at all, that is, since the membrane is only a fluorine electrolyte membrane, the mechanical strength is weak and the GDL substrate It is considered that carbon fibers or the like generated from 11 pierced the electrolyte membrane and current leaked between both sides of the electrolyte membrane.
(複合型電解質膜を燃料電池にアセンブリした電池性能としての評価)
この評価は、得られた複合型電解質膜を実際に燃料電池に組み込み、その燃料電池の電池性能を試験するものである。
(Evaluation as battery performance when a composite electrolyte membrane is assembled in a fuel cell)
In this evaluation, the obtained composite electrolyte membrane is actually incorporated into a fuel cell, and the cell performance of the fuel cell is tested.
まず、各複合型電解質膜の燃料電池(「単セル」を指す。以下同様)へのアセンブリ方法を、以下説明する。
最初に、ナフィオン(商品名)液と、白金金属粒子からなる白金粉体を、カーボン粉体を構成するカーボン粒子に45質量%担持させて成る白金粒子担持触媒粉との混合体を、質量比1:1となるように、エタノールと水との混合分散媒に分散させた。そして、このようにして得られた固形分濃度15質量%の白金触媒分散液を、200μm厚のPTFE(ポリテトラフルオロエチレン)製シートに、バーコート法により塗布し、80℃で乾燥した。このようにして、白金触媒担持量が約0.4mg/cm2の触媒層材料を作製した。
First, a method for assembling each composite electrolyte membrane into a fuel cell (referred to as “single cell”, hereinafter the same) will be described below.
First, a mass ratio of a mixture of Nafion (trade name) liquid and platinum particle-supported catalyst powder in which platinum powder composed of platinum metal particles is supported on carbon particles constituting carbon powder by 45 mass%. The mixture was dispersed in a mixed dispersion medium of ethanol and water so that the ratio was 1: 1. The platinum catalyst dispersion liquid having a solid content concentration of 15% by mass thus obtained was applied to a 200 μm thick PTFE (polytetrafluoroethylene) sheet by a bar coating method and dried at 80 ° C. In this way, a catalyst layer material having a platinum catalyst loading of about 0.4 mg / cm 2 was produced.
次に、この触媒層材料を3cm×3cmの大きさに切り抜き、触媒層材料の触媒層側の面と実施例3−1、3−2及び比較例に係る各複合型電解質膜の両面とを背中合わせにしてホットプレス機の対向する二つ型の間で挟み込み、温度130℃、圧力4MPaで熱圧処理をした。冷却後、PTFE製シートを熱圧処理面を界面として剥離し、膜-電極接合体(MEA)を作製した。一方、カーボン粉体と、PTFE分散液とからなる100μm厚の導電層が表面に形成された約300μm厚のカーボンペーパを二枚準備し、それらをGDL基材とした。さらに、MEAの両面を二枚のGDL基材で挟み、さらにMEA上の触媒層(3cm×3cm)の周りを額縁状のガスケット部材で囲み、燃料電池用MEAをそれぞれ作製した。 Next, this catalyst layer material is cut out to a size of 3 cm × 3 cm, and the catalyst layer side surface of the catalyst layer material and both surfaces of each of the composite electrolyte membranes according to Examples 3-1, 3-2 and Comparative Examples are used. They were sandwiched between two opposing molds of a hot press machine back to back and subjected to hot-pressure treatment at a temperature of 130 ° C. and a pressure of 4 MPa. After cooling, the PTFE sheet was peeled off using the hot-press treated surface as an interface to produce a membrane-electrode assembly (MEA). On the other hand, two sheets of about 300 μm thick carbon paper having a 100 μm thick conductive layer made of carbon powder and PTFE dispersion formed on the surface were prepared and used as GDL substrates. Furthermore, both sides of the MEA were sandwiched between two GDL substrates, and the catalyst layer (3 cm × 3 cm) on the MEA was surrounded by a frame-shaped gasket member to prepare fuel cell MEAs.
なお、実施例2−1及び実施例2−2に係る燃料電池用MEAは、表裏の区別なく、単位セルを構成するようにしたが、実施例3−1及び実施例3−2に係る燃料電池用MEAは、全膜厚方向において非対称構造であるためセット方向に留意しながら、単位セルを構成するようにした。 The fuel cell MEAs according to Example 2-1 and Example 2-2 are configured as unit cells without distinction between the front and back sides, but the fuel according to Example 3-1 and Example 3-2. Since the battery MEA has an asymmetric structure in the entire film thickness direction, the unit cell is configured while paying attention to the set direction.
すなわち、実施例3−1に係る燃料電池用MEAについては、多孔性炭化水素系電解質が薄膜となっている方のフッ素系電解質膜を、燃料電池のアノード極(燃料極)側になるように、そして当該多孔性炭化水素系電解質が厚膜となっている方のフッ素系電解質膜を、同燃料電池のカソード極(酸素極)側になるように、一方、実施例3−2に係るものについては、上記の実施例3−1に係るものと同一の燃料電池用MEAを裏返にして使用した。 That is, for the fuel cell MEA according to Example 3-1, the fluorine-based electrolyte membrane having the porous hydrocarbon-based electrolyte as a thin film is placed on the anode electrode (fuel electrode) side of the fuel cell. In addition, the fluorine-based electrolyte membrane in which the porous hydrocarbon-based electrolyte is a thick film is placed on the cathode electrode (oxygen electrode) side of the fuel cell, on the other hand, according to Example 3-2 For the above, the same fuel cell MEA as in Example 3-1 was used upside down.
初期電圧(0CV)の評価は、作動温度を80℃、水素バブラ温度及び空気バブラ温度を50℃に設定した。アノード極(燃料極)には、燃料ガスとして水素を、背圧約0.1MPa、ストイキ比の2.0倍量で供給した。カソード極(酸素極)には、酸素ガスとして空気を、背圧約0.1MPa、ストイキ比の2.5倍量で供給した。この燃料電池に対する負荷については、1.6A/cm2として放電し、20分間後の電圧値を初期電圧とした。内部抵抗は、1kHzの交流ミリオームメータを用いて測定した。 The initial voltage (0 CV) was evaluated by setting the operating temperature to 80 ° C., the hydrogen bubbler temperature, and the air bubbler temperature to 50 ° C. Hydrogen was supplied to the anode electrode (fuel electrode) as a fuel gas at a back pressure of about 0.1 MPa and 2.0 times the stoichiometric ratio. The cathode electrode (oxygen electrode) was supplied with air as oxygen gas at a back pressure of about 0.1 MPa and 2.5 times the stoichiometric ratio. About the load with respect to this fuel cell, it discharged as 1.6 A / cm < 2 > and the voltage value after 20 minutes was made into the initial voltage. The internal resistance was measured using a 1 kHz AC milliohm meter.
上記の燃料電池の電池特性結果を、表3にまとめた。
表3から分かるように、実施例3−1の複合型電解質膜を含む燃料電池の方が、実施例3−2のものよりも、セル電圧(mV)及び開回路電圧(OCV)の両方共、高い測定値を得た。セル電圧(mV)については、実施例3−2よりも実施例3−1の燃料電池の方が低加湿領域での乾きが抑制されたために、また、開回路電圧(OCV)については、実施例3−2と実施例3−1の燃料電池のガス透過が同等であるために、このような測定結果となったと考えられる。 As can be seen from Table 3, both the cell voltage (mV) and the open circuit voltage (OCV) of the fuel cell including the composite electrolyte membrane of Example 3-1 were higher than those of Example 3-2. A high measurement value was obtained. Regarding the cell voltage (mV), the fuel cell of Example 3-1 was suppressed from drying in the low humidification region than that of Example 3-2, and the open circuit voltage (OCV) was implemented. Since the gas permeation of the fuel cells of Example 3-2 and Example 3-1 is equivalent, it is considered that such a measurement result was obtained.
尚、本発明の複合型電解質膜は、上記実施の形態に限定されるものではなく本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
例えば、変形例として、上記実施形態において、S5工程、S6工程を省略することができる。かかる場合の複合型電解質膜50は、多孔性炭化水素系電解質膜1の片面に、一定厚のフッ素系電解質膜2が形成されているが、もう片面全体にはフッ素系電解質膜2は形成されないようにすることも可能である。
Of course, the composite electrolyte membrane of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the scope of the present invention.
For example, as a modification, in the above embodiment, the steps S5 and S6 can be omitted. In the
この場合にあっても、カソード極側とアノード極側でフッ素系電解質膜の有する特性の軽重は生じるが多孔性炭化水素系電解質膜1もフッ素系電解質膜2も電解質膜である限り双方ともプロトン伝導性を有することは言うまでもなく、全体としてプロトン伝導性を有する複合型電解質膜で足りえる。また、多孔性炭化水素系電解質膜1の片面にフッ素系電解質膜2を形成した場合、貫通孔hを充填して裏へはみ出たフッ素系電解質膜2の樹脂が裏面をつたって裏面に回り込むため、両面にフッ素系電解質膜2を形成したときのような「ハトメ状」部分が出現する結果、この場合にあっても両膜を強固に接合・複合することができる。
Even in this case, the weight of the characteristic of the fluorine-based electrolyte membrane occurs on the cathode electrode side and the anode electrode side, but both the protons as long as the porous hydrocarbon-based
1:多孔性炭化水素系電解質膜、2:フッ素系電解質膜、50、50A、50B、50C、50C´:燃料電池用複合型電解質膜、h:孔、w:炭化水素系電解質膜の周縁部の一定幅 1: porous hydrocarbon-based electrolyte membrane, 2: fluorine-based electrolyte membrane, 50, 50A, 50B, 50C, 50C ′: composite electrolyte membrane for fuel cell, h: hole, w: peripheral portion of hydrocarbon-based electrolyte membrane Constant width of
Claims (14)
前記多孔性炭化水素系電解質膜が、全膜厚方向の中央かつ膜面に平行に形成されていることを特徴とする燃料電池用複合型電解質膜。 A composite electrolyte membrane for a fuel cell according to any one of claims 1 to 5,
A composite electrolyte membrane for a fuel cell, wherein the porous hydrocarbon-based electrolyte membrane is formed in the center in the whole film thickness direction and in parallel with the membrane surface.
前記多孔性炭化水素系電解質膜が薄くなる側のフッ素系電解質膜の面を、燃料電池のカソード極用とし、かつ、前記多孔性炭化水素系電解質膜が厚くなる側のフッ素系電解質膜の面を、燃料電池のアノード極用とすることを特徴とする燃料電池用複合型電解質膜。 A composite electrolyte membrane for a fuel cell according to claim 9,
The surface of the fluorine-based electrolyte membrane on the side where the porous hydrocarbon-based electrolyte membrane becomes thin is used for the cathode electrode of a fuel cell, and the surface of the fluorine-based electrolyte membrane on the side where the porous hydrocarbon-based electrolyte membrane becomes thick For a fuel cell anode, a composite electrolyte membrane for a fuel cell.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009092214A JP2010199050A (en) | 2009-01-29 | 2009-04-06 | Composite electrolyte membrane for fuel cell and method for manufacturing the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009018054 | 2009-01-29 | ||
JP2009092214A JP2010199050A (en) | 2009-01-29 | 2009-04-06 | Composite electrolyte membrane for fuel cell and method for manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010199050A true JP2010199050A (en) | 2010-09-09 |
Family
ID=42823556
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009092214A Pending JP2010199050A (en) | 2009-01-29 | 2009-04-06 | Composite electrolyte membrane for fuel cell and method for manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010199050A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013114800A1 (en) * | 2012-01-31 | 2013-08-08 | 三洋電機株式会社 | Fuel cell and fuel cell system |
WO2019208346A1 (en) * | 2018-04-27 | 2019-10-31 | 富士フイルム株式会社 | Solid electrolyte-including sheet, electrode sheet for fully solid-state secondary battery, fully solid-state secondary battery, electronic device, electric vehicle, and manufacturing methods for these |
-
2009
- 2009-04-06 JP JP2009092214A patent/JP2010199050A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013114800A1 (en) * | 2012-01-31 | 2013-08-08 | 三洋電機株式会社 | Fuel cell and fuel cell system |
WO2019208346A1 (en) * | 2018-04-27 | 2019-10-31 | 富士フイルム株式会社 | Solid electrolyte-including sheet, electrode sheet for fully solid-state secondary battery, fully solid-state secondary battery, electronic device, electric vehicle, and manufacturing methods for these |
JPWO2019208346A1 (en) * | 2018-04-27 | 2021-03-11 | 富士フイルム株式会社 | Solid electrolyte-containing sheets, electrode sheets for all-solid-state secondary batteries, all-solid-state secondary batteries, electronic devices and electric vehicles, and methods for manufacturing these. |
JP7014899B2 (en) | 2018-04-27 | 2022-02-01 | 富士フイルム株式会社 | Solid electrolyte-containing sheets, electrode sheets for all-solid-state secondary batteries, all-solid-state secondary batteries, electronic devices and electric vehicles, and methods for manufacturing these. |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9083012B2 (en) | Membrane electrode assembly having an adhesive layer impregnating through an electrocatalyst layer and into a first gas diffusion substrate | |
EP2722918B1 (en) | Microporous layer sheet for fuel cells and method for producing same | |
US8415071B2 (en) | Electrolyte membrane with anisotopic swelling and aligned filler | |
JP5551215B2 (en) | Method for producing polymer electrolyte fuel cell | |
JP5151063B2 (en) | Porous material for electrolyte membrane for fuel cell, production method thereof, electrolyte membrane for polymer electrolyte fuel cell, membrane-electrode assembly (MEA), and fuel cell | |
KR20110001022A (en) | Polymer electrolyte membrane for fuel cell and method of manufacturing the same | |
Chun et al. | Analysis of microporous layer characteristics of the anode for high-temperature polymer electrolyte membrane fuel cell | |
JP2015146287A (en) | Method for inspecting fuel battery | |
JP2007048524A (en) | Catalyst layer of solid polymer fuel cell, mea, and manufacturing method of them | |
JP2006032275A (en) | Membrane electrode assembly, fuel cell stack, fuel cell system, and manufacturing method of membrane electrode assembly | |
CN102823047B (en) | Bonding material for fuel cell, and fuel cell | |
JP2010199050A (en) | Composite electrolyte membrane for fuel cell and method for manufacturing the same | |
JP2009272217A (en) | Activation method for membrane electrode assembly, and membrane electrode assembly as well as solid polymer fuel cell using same | |
JP7331253B2 (en) | Polymer electrolyte membrane and membrane-electrode assembly containing the same | |
CN106463746A (en) | Membrane-seal assembly | |
JP2009009910A (en) | Electrolyte membrane with catalyst layer, and method of manufacturing the same | |
JP6356436B2 (en) | Electrolyte membrane / electrode structure | |
KR102713853B1 (en) | Polymer Electrolyte Membrane and Membrane-Electrode Assembly Comprising The Same | |
JP6412995B2 (en) | Manufacturing method of electrolyte membrane / electrode structure | |
JP2003282069A (en) | Membrane electrode assembly for fuel cell | |
JP2024062492A (en) | Water electrolysis cell | |
JP2013157227A (en) | Direct alcohol type fuel cell | |
JP2012128996A (en) | Fuel battery | |
JP2018098097A (en) | Polymer electrolyte membrane, and fuel battery using the same | |
JP2007250471A (en) | Manufacturing method of fuel cell |