Nothing Special   »   [go: up one dir, main page]

JP2010192369A - 有機エレクトロルミネセンス素子の製造方法及び該製造方法により製造された有機エレクトロルミネセンス素子 - Google Patents

有機エレクトロルミネセンス素子の製造方法及び該製造方法により製造された有機エレクトロルミネセンス素子 Download PDF

Info

Publication number
JP2010192369A
JP2010192369A JP2009037648A JP2009037648A JP2010192369A JP 2010192369 A JP2010192369 A JP 2010192369A JP 2009037648 A JP2009037648 A JP 2009037648A JP 2009037648 A JP2009037648 A JP 2009037648A JP 2010192369 A JP2010192369 A JP 2010192369A
Authority
JP
Japan
Prior art keywords
organic
layer
organic electroluminescent
electroluminescent element
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009037648A
Other languages
English (en)
Inventor
Wataru Ishikawa
渉 石川
Tadashi Sekiguchi
忠 関口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2009037648A priority Critical patent/JP2010192369A/ja
Publication of JP2010192369A publication Critical patent/JP2010192369A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

【課題】湿式法で安定に製造可能であり、高発光効率である有機エレクトロルミネセンス素子およびその製造方法を提供する。
【解決手段】1対の電極間に、複数の有機層を有する有機エレクトロルミネセンス素子の製造方法において、該有機層の少なくとも1層が湿式塗布法で形成され、用いられる溶媒の分光吸収スペクトルが200nm〜300nmに吸収極大を持ち、かつその吸光度が0.01〜1.0であることを特徴とする有機エレクトロルミネセンス素子の製造方法及び該製造方法により製造された有機エレクトロルミネセンス素子。
【選択図】なし

Description

本発明は有機エレクトロルミネセンス素子(有機EL素子とも言う。)素子およびその製造方法に関する。詳しくは、湿式法により製造可能であり、高効率で且つ、均一発光性が改善された有機エレクトロルミネセンス素子およびその製造方法に関する。
有機エレクトロルミネセンスには、リン光性発光化合物と蛍光性光化合物があるが、リン光発光化合物の方が効率が高いことが知られている。さらに、リン光性発光性材料を効率よく発光させるためには、正孔輸送層、発光層、電子輸送層などの、機能層を設けると高い効率が得られることが知られている。
一方、材料の高い利用効率などから、湿式法による有機ELの製造方法が着目されている。
しかしながら、湿式法で素子を作製した場合、塗布ムラによる発光のムラといった問題が生じることがあった。更に、湿式法による素子は、蒸着により作成された素子に比べ、発光効率が低いことが判った。
高分子材料を、溶媒で塗布することが記載されている(例えば、特許文献1、2参照)が、低分子材料の塗布におけるムラの問題については、記載は無い。また、特許文献3には、湿式法による素子の高効率化について記載があるが、高分子材料についてであり、低分子材料の記載は無く、溶媒についての考察は一切無い。
特開2006−244806号公報 特開2002−359072号公報 特開2008−140620号公報
本発明は、上記課題に鑑みなされたものであり、その目的は、湿式法で安定に製造可能であり、高発光効率である有機エレクトロルミネセンス素子およびその製造方法を提供することにある。
本発明の上記目的は、以下の構成により達成することができる。
1.1対の電極間に、複数の有機層を有する有機エレクトロルミネセンス素子の製造方法において、該有機層の少なくとも1層が湿式塗布法で形成され、用いられる溶媒の200nm〜300nmにおける吸光度が0.01〜1.0であることを特徴とする有機エレクトロルミネセンス素子の製造方法。
2.前記溶媒が脂肪族エステル溶媒またはアルコール溶媒であることを特徴とする前記1に記載の有機エレクトロルミネセンス素子の製造方法。
3.前記有機層の塗布液の固形分濃度が0.1質量%〜10質量%であることを特徴とする前記1又は2に記載の有機エレクトロルミネセンス素子の製造方法。
4.前記有機エレクトロルミネセンス素子が分子量300〜2000である低分子量ホスト及び低分子量ドーパントをそれぞれ1種以上含有することを特徴とする前記1〜3の何れか1項に記載の有機エレクトロルミネセンス素子の製造方法。
5.前記有機エレクトロルミネセンス素子は少なくとも有機発光層と、電子輸送層とを有するが、該有機発光層は脂肪族エステル溶媒を用い、該電子輸送層はアルコール溶媒を用い、湿式塗布法で形成されることを特徴とする前記2〜4の何れか1項に記載の有機エレクトロルミネセンス素子の製造方法。
6.前記脂肪族エステル溶媒が、酢酸n−プロピル、酢酸イソプロピル、酢酸n−ブチル、酢酸イソブチル、酪酸メチル、酪酸ブチル、の中から選ばれる少なくとも一種以上の溶媒であることを特徴とする前記5に記載の有機エレクトロルミネセンス素子の製造方法。
7.前記アルコール溶媒が、含フッ素アルコールであるトリフルオロエタノール、又は、テトラフルオロプロパノール或いは両者の混合物であることを特徴とする前記5又は6に記載の有機エレクトロルミネセンス素子の製造方法。
8.前記有機層の塗布液が、40℃以下で溶解調整されることを特徴とする前記1〜7の何れか1項に記載の有機エレクトロルミネセンス素子の製造方法。
9.溶液を塗布する方法が、ディップコート法、スピンコート法、ブレード法、及びスリットコート法から選ばれる何れかであることを特徴とする前記1〜8の何れか1項に記載の有機エレクトロルミネセンス素子の製造方法。
10.前記1〜9の何れか1項に記載の有機エレクトロルミネセンス素子の製造方法で製造されたことを特徴とする有機エレクトロルミネセンス素子。
本発明により、湿式法で安定に製造が可能であり、高発光効率で長寿命である有機エレクトロルミネセンス素子およびその製造方法を提供することができる。
クロロベンゼン及びトルエンの分光吸収スペクトルである。 酢酸イソプロピルと酢酸n−プロピルの分光吸収スペクトルである。 酢酸イソブチルと酢酸ブチルの分光吸収スペクトルである。 酪酸メチルと1−ブタノールの分光吸収スペクトルである。 2,2,3,3−テトラフルオロプロパノール(TFPO)と、2,2,3,3,3−ペンタフルオロプロパノール(PFPO)の分光吸収スペクトルである。
発明者らが鋭意検討を行った結果、本発明の方法にて塗布すると、塗布ムラが無く、発光が均一で、且つ、発光効率の高い素子を作成することが出来ることがわかった。
その理由は定かではないが、溶媒中の微量の不純物量をコントロールすることにより、結晶化が制限され均一なアモルファスの膜が成膜されるものと推定している。
本発明を更に詳しく説明する。
《脂肪族エステル溶媒》
エステル溶媒としては、具体的には、酢酸n−プロピル、酢酸イソプロピル、酢酸イソブチル、酪酸メチル、酪酸ブチル、ギ酸エチル、ギ酸n−ブチル、酢酸エチル、酢酸プロピル、酢酸n−ブチル、酢酸イソブチル、酢酸sec−ヘキシル、酢酸2−エチルヘキシル、プロピオン酸エチル、プロピオン酸n−ブチル、イソ吉草酸エチル等の脂肪族エステル、マレイン酸ジメチル等の脂肪族ジエステル、およびカルビトールアセテート等のエーテルエステル等が挙げられる。これらのうちで、一般式、RCOOR〔式中、Rは水素原子または炭素数1〜8のアルキル基を示し、Rは炭素数1〜10のアルキル基を示す〕で表される脂肪族エステルが好ましい。特に好ましくは、酢酸n−ブチル、酢酸n−プロピル、酢酸イソプロピル、酢酸イソブチル、酪酸メチル、酪酸ブチルである。
《アルコール溶媒》
本発明においては、アルコール溶媒が好ましい。特に、電子輸送層の塗布においてアルコール溶媒を使うことが、発光効率、溶解性の点から好ましい。アルコール溶媒としては、種々のアルコール溶媒を使用することがかのうであるが、特に好ましくは、含フッ素アルコール溶媒である。アルコール溶媒の例を以下に記載するが、それ以外のアルコール溶媒を使用することも可能である。
メタノール、エタノール、1−プロパノール、2−プロパノール、2−メチル−1−プロパノール、1−ブタノール、2−ブタノール、1−ペンタノール、2−ペンタノール、1−ヘキサノール、2−ヘキサノール、1−ヘプタノール、1−オクタノール、2−オクタノール等のアルカノール;シクロヘキサノール等のシクロアルカノール;ベンジルアルコール等のアラルキルアルコール;2−メトキシエタノール等のアルコキシアルカノール等。n−ブタノール、n−アミルアルコール、ネオペンチルアクコール、4−メチル−2−ヘペンタノール、n−ヘプタノール、2−エチルヘキシルアルコール、n−デカノール オクタノール、ノナノール、イソノナノール、デカノール、イソデカノール、イソウンデカノール、イソドデカノール、イソトリデカノール、2−エチルヘキサノール、イソヘキサデカノール、イソオクタデカノールなどが挙げられる。
《含フッ素アルコール溶媒》
本発明においては、これらの中でも、発光効率や低電圧で駆動出来る素子が得られるなどの観点で、フッ素含有アルコールを用いることが好ましい。
好ましいフッ素含有アルコールの1つとして、下記一般式(1)また、一般式(2)、(3)で表される化合物を挙げることができる。
一般式(1)
A−CHOH
一般式(1)において、AはCF又はCHF(CFを表し、nは1〜5の整数を表す。より好ましくは1〜3であり、更に好ましくは1である。フッ素含有アルコールの具体例としては例えば下記化合物が挙げられる。
Figure 2010192369
一般式(2)、(3)において、A、B、Dは、CH3−xまたはCH3−x(CH2−yを表し、xは1〜3、yは1〜2、nは1〜0の整数を表す。
これらフッ素含有アルコールの具体例としては例えば、
2,2,3,3−テトラフルオロプロパノール、
2,2,3,3,3−ペンタフルオロプロパノール、
2−トリフオロメチル−2−プロパノール、
2,2,3,3,4,4−ヘキサフルオロブタノール、
2,2,3,3,4,4,5,5−オクタフルオロペンタノール、
1,1,1,3,3,3−ヘキサフルオロ−2−プロパノール、
2,2,2−トリフルオロ−1−エタノール、
2,3−ジフルオロベンジルアルコール、
2,2,2−トリフルオロエタノール、
1,3−ジフルオロ−2−プロパノール、
1,1,1−トリフルオロ−2−プロパノール、
3,3,3−トリフルオロ−1−プロパノール、
2,2,3,3,4,4,4−ヘプタフルオロ−1−ブタノール、
2,2,3,3,4,4,5,5−オクタフルオロ−1−ペンタノール、
3,3,4,4,5,5,5−ヘプタフルオロ−2−ペンタノール、
2,2,3,3,4,4,5,5,6,6,7,7,8,8,8−ペンタデカフルオロ−1−オクタノール、
3,3,4,4,5,5,6,6,7,7,8,8,8−トリデカフルオロ−1−オクタノール、
1H,1H,9H−パーフルオロ−1−ノナノール、
1H,1H,2H,3H,3H−パーフルオロノナン−1,2−ジオール、
1H,1H,2H,2H−パーフルオロ−1−デカノール、
1H,1H,2H,3H,3H−パーフルオロウンデカン−1,2−ジオール、
等の化合物が挙げられる。
さらに、フッ素含有プロパノールが好ましく、更に、2,2,3,3−テトラフルオロ−2−プロパノール、若しくは、1,1,1,3,3,3−ヘキサフルオロ−2−プロパノール、若しくは、2,2,3,3,3−ペンタフルオロプロパノールが好ましい。
本発明で用いられるこれらの含フッ素溶媒は蒸留したものを用いることが好ましい。
《調液時温度》
塗布液を調液する場合の溶液温度は、40℃以下が好ましい。更に好ましくは、30℃以下である。40℃以上になると溶解したドーパントが変質する不具合が発生することがある。
《分光光度計における吸光度》
分光光度計による、本発明に係る溶媒の200nm〜300nmにおける吸光度は0.01〜1.0である。更に好ましくは、0.01〜0.5である。溶媒の吸光度は、蒸留及びモレキュラーシーブによる処理を繰り返すことにより、精製を行い、調整した。
《発光層》
製膜される層が発光層であることが好ましい。発光層において、本発明のように溶媒をコントロールをすることにより、塗布性を大幅に良化させることが出来る。
本発明に使用される有機化合物は低分子化合物であることが好ましい。低分子化合物を使用した場合に、塗布性良化効果が顕著に発現する。
発光層塗布液の固形分量は、0.1質量%〜10質量%の範囲であることが好ましい。更に好ましくは、0.1質量%〜2質量%である。0.1質量%より低いと発光効率が低下してしまい、10質量%以上では塗布ムラによる発光ムラが悪くなる。
発光層を塗布する場合には、溶解性及び発光性能の点から、脂肪族エステル溶媒を使うことが好ましい。更に好ましくは、酢酸n−ブチル、酢酸n−プロピル、酢酸イソプロピル、酢酸イソブチル、酪酸メチル、酪酸ブチルである。
本発明に係る発光層は、電極または電子輸送層、正孔輸送層から注入されてくる電子及び正孔が再結合して発光する層であり、発光する部分は発光層の層内であっても発光層と隣接層との界面であってもよい。
発光層の膜厚は、特に制限はないが、形成する膜の均質性や、発光時に不必要な高電圧を印加するのを防止し、かつ、駆動電流に対する発光色の安定性向上の観点から、2〜200nmの範囲に調整することが好ましく、さらに好ましくは5〜100nmの範囲に調整される。
本発明に係る有機EL素子の発光層には、発光ホスト化合物とゲスト材料としての発光ドーパントの少なくとも一種を含有することが好ましく、発光ホスト化合物と3種以上の発光ドーパントを含有することがさらに好ましい。以下に発光層に含まれるホスト化合物(発光ホスト等ともいう)と発光ドーパント(発光ドーパント化合物ともいう)について説明する。
(ホスト化合物)
本発明に用いられるホスト化合物について説明する。
ここで、本発明においてホスト化合物とは、その分子量が300以上2000以下である低分子化合物であることが好ましい。更に好ましくは、500以上1500以下であることが好ましい。300未満では結晶化し易く、また、2000以上では溶媒に対する溶解性が劣化してしまう。
発光層に含有される化合物の内でその層中での質量比が20%以上であり、かつ室温(25℃)においてリン光発光のリン光量子収率が、0.1未満の化合物と定義される。好ましくはリン光量子収率が0.01未満である。また、発光層に含有される化合物の中で、その層中での質量比が20%以上であることが好ましい。
ホスト化合物としては、公知のホスト化合物を単独で用いてもよく、または複数種併用して用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能であり、有機EL素子を高効率化することができる。また、後述する発光ドーパントを複数種用いることで、異なる発光を混ぜることが可能となり、これにより任意の発光色を得ることができる。
また、本発明に用いられる発光ホストとしては、従来公知の低分子化合物でも、繰り返し単位をもつ高分子化合物でもよく、ビニル基やエポキシ基のような重合性基を有する低分子化合物(蒸着重合性発光ホスト)でもよい。
併用してもよい公知のホスト化合物としては、正孔輸送能、電子輸送能を有しつつ、かつ発光の長波長化を防ぎ、なおかつ高Tg(ガラス転移温度)である化合物が好ましい。
公知のホスト化合物の具体例としては、以下の文献に記載されている化合物が挙げられる。
特開2001−257076号公報、同2002−308855号公報、同2001−313179号公報、同2002−319491号公報、同2001−357977号公報、同2002−334786号公報、同2002−8860号公報、同2002−334787号公報、同2002−15871号公報、同2002−334788号公報、同2002−43056号公報、同2002−334789号公報、同2002−75645号公報、同2002−338579号公報、同2002−105445号公報、同2002−343568号公報、同2002−141173号公報、同2002−352957号公報、同2002−203683号公報、同2002−363227号公報、同2002−231453号公報、同2003−3165号公報、同2002−234888号公報、同2003−27048号公報、同2002−255934号公報、同2002−260861号公報、同2002−280183号公報、同2002−299060号公報、同2002−302516号公報、同2002−305083号公報、同2002−305084号公報、同2002−308837号公報等。
(発光ドーパント)
本発明に係る発光ドーパントについて説明する。
本発明に係る発光ドーパントとしては、その分子量が300以上2000以下である低分子化合物であることが好ましい。更に好ましくは、500以上1500以下であることが好ましい。300未満では結晶化し易く、また、2000以上では溶媒に対する溶解性が劣化してしまう。
蛍光ドーパント(蛍光性化合物ともいう)、リン光ドーパント(リン光発光体、リン光性化合物、リン光発光性化合物等ともいう)を用いることができるが、より発光効率の高い有機EL素子を得る観点からは、本発明に係る有機EL素子の発光層や発光ユニットに使用される発光ドーパント(単に、発光材料ということもある)としては、上記のホスト化合物を含有すると同時に、リン光ドーパントを含有することが好ましい。
リン光ドーパントは、有機EL素子の発光層に使用される公知のものの中から適宜選択して用いることができる。
本発明に係るリン光ドーパントとしては、好ましくは元素の周期表で8〜10族の金属を含有する錯体系化合物であり、さらに好ましくはイリジウム化合物、オスミウム化合物、または白金化合物(白金錯体系化合物)、希土類錯体であり、中でも最も好ましいのはイリジウム化合物である。
以下に、リン光ドーパントとして用いられる化合物の具体例を示すが、本発明はこれらに限定されない。これらの化合物は、例えば、Inorg.Chem.40巻、1704〜1711に記載の方法等により合成できる。
以下、発光ドーパントとして、中でもリン光発光ドーパントとして好ましく用いられる化合物を例示するが、本発明はこれらに限定されない。
Figure 2010192369
Figure 2010192369
Figure 2010192369
Figure 2010192369
Figure 2010192369
Figure 2010192369
また、リン光発光性ドーパントしては、下記に示す従来公知の化合物を併用することができる。
Figure 2010192369
Figure 2010192369
Figure 2010192369
Figure 2010192369
Figure 2010192369
Figure 2010192369
《塗布方法》
溶液を塗布する方法が、ディップコート法、スピンコート法、ブレード法、スリットコート法であることが好ましい。大面積に均一な塗布膜を形成するのに適した塗布方法であり、これらの方法にて、本発明を適用することにより、塗布ムラを大幅に良化することが可能となる。
以下、本発明の有機エレクトロルミネセンス素子について詳述する。
《有機EL素子の層構成》
次に、本発明に係る有機EL素子の層構成の好ましい具体例を以下に示すが、本発明はこれらに限定されない。
(i)陽極/発光層/電子輸送層/陰極
(ii)陽極/正孔輸送層/発光層/電子輸送層/陰極
(iii)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極
(iv)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極
(v)陽極/陽極バッファー層/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極
次に、本発明の有機EL素子の構成層として用いられる、注入層、阻止層、電子輸送層等について説明する。
《注入層:電子注入層、正孔注入層》
注入層は必要に応じて設け、電子注入層と正孔注入層があり、上記の如く陽極と発光層または正孔輸送層の間、及び陰極と発光層または電子輸送層との間に存在させてもよい。
注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123〜166頁)に詳細に記載されており、正孔注入層(陽極バッファー層)と電子注入層(陰極バッファー層)とがある。
陽極バッファー層(正孔注入層)は、特開平9−45479号公報、同9−260062号公報、同8−288069号公報等にもその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニンバッファー層、酸化バナジウムに代表される酸化物バッファー層、アモルファスカーボンバッファー層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子バッファー層等が挙げられる。
また、特開平6−025658号公報に記載されているフェロセン化合物、特開平10−233287号公報等に記載されているスターバースト型の化合物、特開2000−068058号公報、特開2004−6321号公報に記載されているトリアリールアミン型の化合物、特開2002−117979号公報に記載されている含硫黄環含有化合物、米国特許第2002/0158242号明細書、米国特許第2006/0251922号明細書、特開2006−49393号公報等に記載されているヘキサアザトリフェニレン化合物等も正孔注入層として挙げられる。
本発明の適用は、有機エレクトロルミネセンス素子の有機層の何れに適用しても良いが、好ましくは電極に隣接した層への適用が好ましく、特に陽極バッファー層(正孔注入層或いは正孔注入輸送層とも言う。)への適用が最も好ましい。
陰極バッファー層(電子注入層)は、特開平6−325871号公報、同9−17574号公報、同10−74586号公報等にもその詳細が記載されており、具体的にはストロンチウムやアルミニウム等に代表される金属バッファー層、フッ化リチウムに代表されるアルカリ金属化合物バッファー層、フッ化マグネシウムに代表されるアルカリ土類金属化合物バッファー層、酸化アルミニウムに代表される酸化物バッファー層等が挙げられる。上記バッファー層(注入層)はごく薄い膜であることが望ましく、素材にもよるがその膜厚は0.1nm〜5μmの範囲が好ましい。
《阻止層:正孔阻止層、電子阻止層》
阻止層は、上記の如く有機化合物薄膜の基本構成層の他に必要に応じて設けられるものである。例えば、特開平11−204258号公報、同11−204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層がある。
正孔阻止層とは広い意味では電子輸送層の機能を有し、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述する電子輸送層の構成を必要に応じて、本発明に係わる正孔阻止層として用いることができる。
本発明に係る有機EL素子の正孔阻止層は、発光層に隣接して設けられていることが好ましい。
正孔阻止層には、前述のホスト化合物として挙げたアザカルバゾール誘導体を含有することが好ましい。
また、正孔素子層は発光層のホスト化合物に対しそのイオン化ポテンシャルが0.3eV以上大きいことが好ましい。複数の発光層を有する場合、そのもっとも陰極側に位置するホスト化合物に対し、そのイオン化ポテンシャルが0.3eV以上大きいことが好ましい。
イオン化ポテンシャルは化合物のHOMO(最高被占分子軌道)レベルにある電子を真空準位に放出するのに必要なエネルギーで定義され、例えば下記に示すような方法により求めることができる。
(1)米国Gaussian社製の分子軌道計算用ソフトウェアであるGaussian98(Gaussian98、Revision A.11.4,M.J.Frisch,et al,Gaussian,Inc.,Pittsburgh PA,2002.)を用い、キーワードとしてB3LYP/6−31G*を用いて構造最適化を行うことにより算出した値(eV単位換算値)の小数点第2位を四捨五入した値としてイオン化ポテンシャルを求めることができる。この計算値が有効な背景には、この手法で求めた計算値と実験値の相関が高いためである。
(2)イオン化ポテンシャルは光電子分光法で直接測定する方法により求めることもできる。例えば、理研計器社製の低エネルギー電子分光装置「Model AC−1」を用いて、あるいは紫外光電子分光として知られている方法を好適に用いることができる。
一方、電子阻止層とは広い意味では正孔輸送層の機能を有し、正孔を輸送する機能を有しつつ電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述する正孔輸送層の構成を必要に応じて電子阻止層として用いることができる。本発明に係る正孔阻止層、電子輸送層の膜厚としては、好ましくは3〜100nmであり、さらに好ましくは5〜30nmである。
《正孔輸送層》
正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層または複数層設けることができる。
正孔輸送材料としては、正孔の注入または輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられる。
正孔輸送材料としては上記のものを使用することができるが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物、特に芳香族第3級アミン化合物を用いることが好ましい。
芳香族第3級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′−テトラフェニル−4,4′−ジアミノフェニル;N,N′−ジフェニル−N,N′−ビス(3−メチルフェニル)−〔1,1′−ビフェニル〕−4,4′−ジアミン(TPD);2,2−ビス(4−ジ−p−トリルアミノフェニル)プロパン;1,1−ビス(4−ジ−p−トリルアミノフェニル)シクロヘキサン;N,N,N′,N′−テトラ−p−トリル−4,4′−ジアミノビフェニル;1,1−ビス(4−ジ−p−トリルアミノフェニル)−4−フェニルシクロヘキサン;ビス(4−ジメチルアミノ−2−メチルフェニル)フェニルメタン;ビス(4−ジ−p−トリルアミノフェニル)フェニルメタン;N,N′−ジフェニル−N,N′−ジ(4−メトキシフェニル)−4,4′−ジアミノビフェニル;N,N,N′,N′−テトラフェニル−4,4′−ジアミノジフェニルエーテル;4,4′−ビス(ジフェニルアミノ)クオードリフェニル;N,N,N−トリ(p−トリル)アミン;4−(ジ−p−トリルアミノ)−4′−〔4−(ジ−p−トリルアミノ)スチリル〕スチルベン;4−N,N−ジフェニルアミノ−(2−ジフェニルビニル)ベンゼン;3−メトキシ−4′−N,N−ジフェニルアミノスチルベンゼン;N−フェニルカルバゾール、さらには米国特許第5,061,569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば、4,4′−ビス〔N−(1−ナフチル)−N−フェニルアミノ〕ビフェニル(NPD)、特開平4−308688号公報に記載されているトリフェニルアミンユニットが3つスターバースト型に連結された4,4′,4″−トリス〔N−(3−メチルフェニル)−N−フェニルアミノ〕トリフェニルアミン(MTDATA)等が挙げられる。
さらにこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。また、p型−Si、p型−SiC等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。
また、特開平11−251067号公報、J.Huang et.al.著文献(Applied Physics Letters 80(2002),p.139)に記載されているような、所謂p型正孔輸送材料を用いることもできる。本発明においては、より高効率の発光素子が得られることからこれらの材料を用いることが好ましい。
正孔輸送層は上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法の公知の方法により、薄膜化することにより形成することができる。正孔輸送層の膜厚については特に制限はないが、通常は5nm〜5μm程度、好ましくは5〜200nmである。この正孔輸送層は上記材料の1種または2種以上からなる一層構造であってもよい。
また、不純物をドープしたp性の高い正孔輸送層を用いることもできる。その例としては、特開平4−297076号公報、特開2000−196140号公報、同2001−102175号公報の各公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。
本発明においては、このようなp性の高い正孔輸送層を用いることが、より低消費電力の素子を作製することができるため好ましい。
《電子輸送層》
電子輸送層とは電子を輸送する機能を有する材料からなり、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。電子輸送層は単層または複数層設けることができる。
従来、単層の電子輸送層、及び複数層とする場合は発光層に対して陰極側に隣接する電子輸送層に用いられる電子輸送材料(正孔阻止材料を兼ねる)としては、陰極より注入された電子を発光層に伝達する機能を有していればよく、その材料としては従来公知の化合物の中から任意のものを選択して用いることができ、例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体等が挙げられる。さらに上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。さらにこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
また8−キノリノール誘導体の金属錯体、例えば、トリス(8−キノリノール)アルミニウム(Alq)、トリス(5,7−ジクロロ−8−キノリノール)アルミニウム、トリス(5,7−ジブロモ−8−キノリノール)アルミニウム、トリス(2−メチル−8−キノリノール)アルミニウム、トリス(5−メチル−8−キノリノール)アルミニウム、ビス(8−キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、GaまたはPbに置き替わった金属錯体も、電子輸送材料として用いることができる。その他、メタルフリーもしくはメタルフタロシアニン、またはそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送材料として好ましく用いることができる。また、発光層の材料として例示したジスチリルピラジン誘導体も、電子輸送材料として用いることができるし、正孔注入層、正孔輸送層と同様にn型−Si、n型−SiC等の無機半導体も電子輸送材料として用いることができる。
電子輸送層は上記電子輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法の公知の方法により、薄膜化することにより形成することができる。電子輸送層の膜厚については特に制限はないが、通常は5nm〜5μm程度、好ましくは5〜200nmである。電子輸送層は上記材料の1種または2種以上からなる一層構造であってもよい。
また、不純物をゲスト材料としてドープしたn性の高い電子輸送層を用いることもできる。その例としては、特開平4−297076号公報、同10−270172号公報、特開2000−196140号公報、同2001−102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。
本発明においては、このようなn性の高い電子輸送層を用いることがより低消費電力の素子を作製することができるため好ましい。
《陽極》
有機EL素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、Au等の金属、CuI、インジウムチンオキシド(ITO)、SnO、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In−ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。陽極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。あるいは、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。さらに膜厚は材料にもよるが、通常10〜1000nm、好ましくは10〜200nmの範囲で選ばれる。
《陰極》
陰極としては仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム−カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm〜5μm、好ましくは50〜200nmの範囲で選ばれる。なお、発光した光を透過させるため、有機EL素子の陽極または陰極のいずれか一方が透明または半透明であれば発光輝度が向上し好都合である。
また、陰極に上記金属を1〜20nmの膜厚で作製した後に、陽極の説明で挙げた導電性透明材料をその上に作製することで、透明または半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。
《基板》
本発明に係る有機EL素子に用いることのできる基板(以下、基体、基材、支持基板、支持体等とも言う)としては、ガラス、プラスチック等の種類には特に限定はなく、また透明であっても不透明であってもよい。基板側から光を取り出す場合には、基板は透明であることが好ましい。好ましく用いられる透明な基板としては、ガラス、石英、透明樹脂フィルムを挙げることができる。特に好ましい基板は、有機EL素子にフレキシブル性を与えることが可能な樹脂フィルムである。
樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート(TAC)、セルロースナイトレート等のセルロースエステル類またはそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリルあるいはポリアリレート類、アートン(商品名JSR社製)あるいはアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等を挙げられる。
樹脂フィルムの表面には、無機物、有機物の被膜またはその両者のハイブリッド被膜が形成されていてもよく、水蒸気透過度が0.01g/m/日・atm以下のバリア性フィルムであることが好ましく、さらには酸素透過度10−3g/m/日以下、水蒸気透過度10−5g/m/日以下の高バリア性フィルムであることが好ましい。
バリア膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。さらに該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。
バリア膜の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスタ−イオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができるが、特開2004−68143号公報に記載されているような大気圧プラズマ重合法によるものが特に好ましい。
不透明な基板としては、例えば、アルミ、ステンレス等の金属板、フィルムや不透明樹脂基板、セラミック製の基板等が挙げられる。
本発明に係る有機EL素子の発光の室温における外部取り出し効率は、1%以上であることが好ましく、より好ましくは5%以上である。
外部取り出し量子効率とは、
外部取り出し量子効率(%)=(有機EL素子外部に発光した光子数)/(有機EL素子に流した電子数)×100
である。
また、カラーフィルター等の色相改良フィルター等を併用しても、有機EL素子からの発光色を蛍光体を用いて多色へ変換する色変換フィルターを併用してもよい。色変換フィルターを用いる場合においては、有機EL素子の発光のλmaxは480nm以下が好ましい。
《封止》
本発明に用いられる有機EL素子の封止手段としては、例えば、封止部材と電極、支持基板とを接着剤で接着する方法を挙げることができる。
封止部材としては、有機EL素子の表示領域を覆うように配置されておればよく、凹板状でも平板状でもよい。また透明性、電気絶縁性は特に問わない。
具体的には、ガラス板、ポリマー板・フィルム、金属板・フィルム等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。また、ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。金属板としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブテン、シリコン、ゲルマニウム及びタンタルからなる群から選ばれる一種以上の金属または合金からなるものが挙げられる。
本発明においては、有機EL素子を薄膜化できるということからポリマーフィルム、金属フィルムを好ましく使用することができる。さらには、ポリマーフィルムは、JIS K 7126−1987に準拠した方法で測定された酸素透過度が1×10−3ml/m/24h以下、JIS K 7129−1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、1×10−3g/(m/24h)以下のものであることが好ましい。
封止部材を凹状に加工するのは、サンドブラスト加工、化学エッチング加工等が使われる。
接着剤として具体的には、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化及び熱硬化型接着剤、2−シアノアクリル酸エステル等の湿気硬化型等の接着剤を挙げることができる。また、エポキシ系等の熱及び化学硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。
なお、有機EL素子が熱処理により劣化する場合があるので、室温から80℃までに接着硬化できるものが好ましい。また、前記接着剤中に乾燥剤を分散させておいてもよい。封止部分への接着剤の塗布は市販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。
また、有機層を挟み基板と対向する側の電極の外側に該電極と有機層を被覆し、基板と接する形で無機物、有機物の層を形成し封止膜とすることも好適にできる。この場合、該膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。さらに該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることが好ましい。これらの膜の形成方法については、特に限定はなく、例えば真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。
封止部材と有機EL素子の表示領域との間隙には、気相及び液相では、窒素、アルゴン等の不活性気体やフッ化炭化水素、シリコンオイルのような不活性液体を注入することが好ましい。また真空とすることも可能である。また、内部に吸湿性化合物を封入することもできる。
吸湿性化合物としては、例えば、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、沃化バリウム、沃化マグネシウム等)、過塩素酸類(例えば、過塩素酸バリウム、過塩素酸マグネシウム等)等が挙げられ、硫酸塩、金属ハロゲン化物及び過塩素酸類においては無水塩が好適に用いられる。
《有機EL素子の作製方法》
本発明に係る有機EL素子の作製方法は、陽極と陰極に挟まれた有機層の一部または全部を湿式法で製膜することを特徴とする。
本発明でいう湿式法とは、層を形成する際に層形成材料を溶液の形態で供給し層形成を行うものである。
本発明に係る有機EL素子の作製方法の一例として、陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極からなる有機EL素子の作製法を説明する。
まず適当な基体上に所望の電極物質、例えば、陽極用物質からなる薄膜を1μm以下、好ましくは10〜200nmの膜厚になるように、蒸着やスパッタリング等の方法により形成させ陽極を作製する。
次に、この上に有機EL素子材料である正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層、正孔阻止層の有機化合物薄膜(有機層)を形成させる。
これら各層の形成方法としては、前記の如く蒸着法、湿式法(スピンコート法、キャスト法、エクストールジョン法等いわゆるダイを用いる塗布方法)等がある。さらには均質な膜が得られやすく、かつピンホールが生成しにくい等の点から、本発明においてはスピンコート法、エクストールジョン法の塗布法による成膜が好ましい。
本発明に係る有機EL材料を溶解する溶媒としては、例えば、アセトニトリル、プロピオニトリル等のニトリル類、メタノール、エタノール、ブタノール等のアルコール類、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン(カルボニル)類、酢酸エチル等の脂肪酸エステル類、ジクロロベンゼン等のハロゲン化炭化水素類、DMF等のアミド類、DMSO等のスルホキシド類、ニトロメタン等の有機溶媒を用いることができる。
これらの層を形成後、その上に陰極用物質からなる薄膜を1μm以下、好ましくは、50〜200nmの範囲の膜厚になるように、例えば、蒸着やスパッタリング等の方法により形成させ、陰極を設けることにより所望の有機EL素子が得られる。
また作製順序を逆にして、陰極、電子注入層、電子輸送層、発光層、正孔輸送層、正孔注入層、陽極の順に作製することも可能である。このようにして得られた多色の表示装置に、直流電圧を印加する場合には陽極を+、陰極を−の極性として電圧2〜40V程度を印加すると発光が観測できる。また交流電圧を印加してもよい。なお、印加する交流の波形は任意でよい。
《保護膜、保護板》
有機層を挟み基板と対向する側の前記封止膜、あるいは前記封止用フィルムの外側に、素子の機械的強度を高めるために保護膜、あるいは保護板を設けてもよい。特に封止が前記封止膜により行われている場合には、その機械的強度は必ずしも高くないため、このような保護膜、保護板を設けることが好ましい。これに使用することができる材料としては、前記封止に用いたのと同様なガラス板、ポリマー板・フィルム、金属板・フィルム等を用いることができるが、軽量かつ薄膜化ということからポリマーフィルムを用いることが好ましい。
《光取り出し》
有機EL素子は空気よりも屈折率の高い(屈折率が1.7〜2.1程度)層の内部で発光し、発光層で発生した光のうち15%から20%程度の光しか取り出せないことが一般的に言われている。これは、臨界角以上の角度θで界面(透明基板と空気との界面)に入射する光は、全反射を起こし素子外部に取り出すことができないことや、透明電極ないし発光層と透明基板との間で光が全反射を起こし、光が透明電極ないし発光層を導波し、結果として光が素子側面方向に逃げるためである。
この光の取り出しの効率を向上させる手法としては、例えば、透明基板表面に凹凸を形成し、透明基板と空気界面での全反射を防ぐ方法(米国特許第4,774,435号明細書)、基板に集光性を持たせることにより効率を向上させる方法(特開昭63−314795号公報)、有機EL素子の側面等に反射面を形成する方法(特開平1−220394号公報)、基板と発光体の間に中間の屈折率を持つ平坦層を導入し、反射防止膜を形成する方法(特開昭62−172691号公報)、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法(特開2001−202827号公報)、基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法(特開平11−283751号公報)等がある。
本発明においては、これらの方法を本発明に係る有機EL素子と組み合わせて用いることができるが、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法、あるいは基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法を好適に用いることができる。
本発明はこれらの手段を組み合わせることにより、さらに高輝度あるいは耐久性に優れた有機EL素子を得ることができる。
透明電極と透明基板の間に低屈折率の媒質を光の波長よりも長い厚みで形成すると、透明電極から出てきた光は、媒質の屈折率が低いほど外部への取り出し効率が高くなる。
低屈折率層としては、例えば、エアロゲル、多孔質シリカ、フッ化マグネシウム、フッ素系ポリマー等が挙げられる。透明基板の屈折率は一般に1.5〜1.7程度であるので、低屈折率層は屈折率がおよそ1.5以下であることが好ましい。また、さらに1.35以下であることが好ましい。
また、低屈折率媒質の厚みは媒質中の波長の2倍以上となるのが望ましい。これは低屈折率媒質の厚みが、光の波長程度になってエバネッセントで染み出した電磁波が基板内に入り込む膜厚になると、低屈折率層の効果が薄れるからである。
全反射を起こす界面もしくはいずれかの媒質中に回折格子を導入する方法は、光取り出し効率の向上効果が高いという特徴がある。この方法は回折格子が1次の回折や2次の回折といった所謂ブラッグ回折により、光の向きを屈折とは異なる特定の向きに変えることができる性質を利用して、発光層から発生した光のうち層間での全反射等により外に出ることができない光を、いずれかの層間もしくは、媒質中(透明基板内や透明電極内)に回折格子を導入することで光を回折させ、光を外に取り出そうとするものである。
導入する回折格子は、二次元的な周期屈折率を持っていることが望ましい。これは発光層で発光する光はあらゆる方向にランダムに発生するので、ある方向にのみ周期的な屈折率分布を持っている一般的な1次元回折格子では、特定の方向に進む光しか回折されず、光の取り出し効率がさほど上がらない。しかしながら、屈折率分布を二次元的な分布にすることにより、あらゆる方向に進む光が回折され、光の取り出し効率が上がる。
回折格子を導入する位置としては前述の通り、いずれかの層間もしくは媒質中(透明基板内や透明電極内)でもよいが、光が発生する場所である有機発光層の近傍が望ましい。このとき、回折格子の周期は媒質中の光の波長の約1/2〜3倍程度が好ましい。
回折格子の配列は正方形のラチス状、三角形のラチス状、ハニカムラチス状等、2次元的に配列が繰り返されることが好ましい。
《集光シート》
本発明に係る有機EL素子は基板の光取り出し側に、例えば、マイクロレンズアレイ状の構造を設けるように加工したり、あるいは所謂集光シートと組み合わせることにより、特定方向、例えば、素子発光面に対し正面方向に集光することにより、特定方向上の輝度を高めることができる。
マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を2次元に配列する。一辺は10〜100μmが好ましい。これより小さくなると回折の効果が発生して色付く、大きすぎると厚みが厚くなり好ましくない。
集光シートとしては、例えば、液晶表示装置のLEDバックライトで実用化されているものを用いることが可能である。このようなシートとして、例えば、住友スリーエム社製輝度上昇フィルム(BEF)等を用いることができる。プリズムシートの形状としては、例えば、基材に頂角90度、ピッチ50μmの△状のストライプが形成されたものであってもよいし、頂角が丸みを帯びた形状、ピッチをランダムに変化させた形状、その他の形状であってもよい。
また、発光素子からの光放射角を制御するために、光拡散板・フィルムを集光シートと併用してもよい。例えば、(株)きもと製拡散フィルム(ライトアップ)等を用いることができる。
《用途》
本発明に係る有機EL素子は、表示デバイス、ディスプレイ、各種発光光源として用いることができる。発光光源として、例えば、照明装置(家庭用照明、車内照明)、時計や液晶用バックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるがこれに限定するものではないが、特に液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。
本発明に係る有機EL素子や本発明に係る化合物の発光する色は、「新編色彩科学ハンドブック」(日本色彩学会編、東京大学出版会、1985)の108頁の図4.16において、分光放射輝度計CS−1000(コニカミノルタセンシング社製)で測定した結果をCIE色度座標に当てはめたときの色で決定される。
また、本発明に係る有機EL素子が白色素子の場合には、白色とは、2度視野角正面輝度を上記方法により測定した際に、1000cd/mでのCIE1931表色系における色度がX=0.33±0.07、Y=0.33±0.1の領域内にあることを言う。本発明に係る有機EL素子の発光層には、発光ホスト化合物とゲスト材料としての発光ドーパントの少なくとも一種を含有することが好ましい。
以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「%」の表示を用いるが、特に断りがない限り「質量%」を表す。
実施例1
(基板の作製)
市販の無アルカリ硝子基板上に、スパッタ装置により透明電極としてITO膜、厚さ110nmを設けた。フォトリソグラフィー法により、4mm×4mmの発光部位が得られるようにITOのパターニングを実施し、基板を作製した。
《有機エレクトロルミネセンス素子(有機EL素子)の作製》
基板を洗浄後、大気下、ISO14644−1に準拠し、測定した清浄度がクラス5のクリーンブースへ移動した。この基板を市販のスピンコーターに取り付け、ポリ(3,4−エチレンジオキシチオフェン)−ポリスチレンスルホネート(PEDOT/PSS、Bayer製、Baytron P Al 4083)を超純水にて2倍に希釈して、4000rpm、30秒の条件で塗布した。更にこの基板を大気下にて200℃で30分加熱し、正孔注入層を設けた。別途用意した基板にて、同条件にて塗布を行い測定したところ、膜厚は20nmであった。
上記基板を、窒素雰囲気下、ISO14644−1に準拠し、測定した清浄度がクラス5で、露点温度が−80℃以下、酸素濃度0.8ppmのグローブボックスへ移した。
〔有機EL素子1−1〜1−4の作製〕
(正孔輸送層1−1〜1−4の調製)
次いで、正孔輸送層塗布液を下記のように調製し、ブレード法であるアプリケーターにて、塗布時液膜厚が20nmになるように調整し、塗布した。なお、膜厚が一定になるように、0.5質量%に調整した。塗布乾燥後、更に120℃で30分加熱し正孔輸送層を設けた。別途用意した基板にて、同条件にて塗布を行い測定したところ、膜厚は20nmであった。正孔輸送層1−1〜1−4の作製条件は表1に示す通りである。なお、溶媒の吸光度は、蒸留及びモレキュラーシーブによる処理を繰り返すことにより、精製を行い、調整した。図にクロロベンゼンの吸収スペクトルを示す。
〈正孔輸送層塗布液〉
クロロベンゼンにて、膜厚が20nmになるようにポリ−トリフェニルジアミン(American Dye Source製 ADS254)の濃度を0.5質量%に調整した。
Figure 2010192369
正孔輸送層1−1〜1−4を用いる素子については、発光層、電子輸送層はそれぞれ以下のように蒸着にて形成した。
(蒸着による発光層の調製)
上記のように正孔輸送層を調製した後、大気暴露させずに蒸着機に移動し、4×10−4Paまで減圧した。なお、タンタル製抵抗加熱ボートにホスト化合物としてH−A、発光ドーパントとしてD−28、Ir−1、Ir−14を入れ、蒸着機内に取り付けておいた。まず、H−Aと、D−28、Ir−1、Ir−14の入った抵抗加熱ボートに通電し加熱し、H−AとD−28とIr−1とIr−14の蒸着速度比が、0.86対0.10対0.02対0.02になるように調整し、その速度比のまま基板に蒸着をしてH−AとD−28、Ir−1、Ir−14からなる膜厚40nmの発光層を設けた。
(蒸着による電子輸送層の調製)
上記のように発光層を作製した後、大気暴露させずに、蒸着機に移動し、4×10−4Paまで減圧した。なお、タンタル製抵抗加熱ボートにET−Aを入れ、蒸着機内に取り付けておいた。ET−Aの入った抵抗加熱ボートを通電し加熱し、基板上にET−Aからなる膜厚30nmの電子輸送層を設けた。
Figure 2010192369
次いで、電子輸送層まで設けた基板を、大気暴露させずに蒸着機に移動し、4×10−4Paまで減圧した。
なお、タンタル製抵抗加熱ボートにフッ化カリウムを入れ、またタングステン製抵抗加熱ボートにアルミニウムを入れ、蒸着機内に取り付けておいた。
まず、フッ化カリウムの入った抵抗加熱ボートを通電し加熱し、基板上にフッ化カリウムからなる電子注入層を3nm設けた。続いて、アルミニウムの入った製抵抗熱ボートに通電加熱し、蒸着速度1〜2nm/秒でアルミニウムからなる膜厚100nmの陰極を付けた。
陰極までつけた基板を大気暴露させることなく、窒素雰囲気下、ISO14644−1に準拠し、測定した清浄度がクラス5で、露点温度が−80℃以下、酸素濃度0.8ppmのグローブボックスへ移した。
補水剤である酸化バリウムを貼付したガラス製の封止缶にて封止を行い、素子を作製した。なお、補水剤である酸化バリウムは、アルドリッチ製の高純度酸化バリウム粉末を、粘着剤付きのフッ素樹脂系半透過膜(ミクロテックス S−NTF8031Q 日東電工製)でガラス製封止缶に貼り付けたものを予め準備して使用した。封止缶と有機EL素子の接着には紫外線硬化型の接着剤を用い、紫外線ランプを照射することで両者を接着し封止して有機EL素子1−1〜1−4を作製した。
《評価》
〔塗布ムラ〕
直流電源(株式会社テクシオ製直流安定化電源PA13−B)を用いて、素子を発光させて、マイクロスコープ(株式会社モリテックス製MS−804、レンズA−1468)を用いて発光面の観察を行い、全発光面(4mm四方)の発光ムラを下記のように目視評価し、表4、5、6、7に表した。なお、評価4、2はそれぞれ評価5と3の中間、評価3と1の中間を表す。
5:ムラがなく、問題がないレベル
3:僅かにムラが見られるが、使用上は問題がないレベル
1:ムラの発生が大きく、使用上問題となるレベル。
〔外部取り出し量子効率〕
作製した有機EL素子に対し、2.5mA/cm定電流を流したときの外部取り出し量子効率(%)を測定した。なお、測定には分光放射輝度計CS−1000(コニカミノルタセンシング製)を用いた。得られた結果を、有機EL素子1−3の測定値を100としたときの相対値で表2に表した。
Figure 2010192369
表2から、正孔輸送層が本発明の製造方法で調製された有機EL素子は比較の素子に対して、塗布ムラ、外部取り出し量子効率のいずれにおいても優れていることがわかる。
実施例2
《有機EL素子2−1〜2−20の作製》
実施例1で作製した正孔注入層まで設けた基板を、窒素雰囲気下、ISO14644−1に準拠し、測定した清浄度がクラス5で、露点温度が−80℃以下、酸素濃度0.8ppmのグローブボックスへ移した。
その後、下記のように蒸着による正孔輸送層の形成を行った。
(蒸着による正孔輸送層の調製)
大気暴露させずに、蒸着機に移動し、4×10−4Paまで減圧した。なお、タンタル製抵抗加熱ボートに、ポリ−トリフェニルジアミン(American Dye Source製 ADS254)を入れ、蒸着機内に取り付けておいた。ポリ−トリフェニルジアミンの入った抵抗加熱ボートを通電し加熱し、基板上にポリ−トリフェニルジアミンからなる膜厚20nmの正孔輸送層を設けた。
(発光層2−1〜2−20の調製)
次いで、発光層塗布液を下記のように調製し、ブレード法であるアプリケーターにて、塗布時液膜厚が表2になるように調整し、塗布した。なお、膜厚が一定になるように、液膜にあわせて、塗布液濃度を表2に示すように調整した。更に150℃で30分加熱し発光層を設けた。別途用意した基板にて、同条件にて塗布を行い測定をしたところ、膜厚は40nmであった。発光層2−1〜2−20の作製条件は表3に示す通りである。
〈発光層塗布液〉
表3に記載の溶媒にて、D−28をH−Aに対して20質量%、Ir−1をH−Aに対して2質量%、Ir−14をH−Aに対して0.1質量%として、膜厚が40nmになるように濃度調整を行った。なお、溶媒の吸光度は、蒸留及びモレキュラーシーブによる処理を繰り返すことにより、精製を行い、調整した。図1〜4に各溶媒の分光吸収スペクトルを示す。
次に有機EL素子1−1〜1−4と同様に蒸着により電子輸送層を設け、更に有機EL素子1−1〜1−4の作製と同様に行って、有機EL素子2−1〜2−20を作製した。得られた有機EL素子2−1〜2−20を実施例1に記載の評価方法で評価し結果を表4に示す。
Figure 2010192369
Figure 2010192369
表4から、本発明の製造方法で調製された有機EL素子は比較の素子に対して、塗布ムラ、外部取り出し量子効率のいずれにおいても優れていることがわかる。
実施例3
〔有機EL素子3−1〜3−8の作製〕
実施例1で作製した正孔注入層まで設けた基板を、窒素雰囲気下、ISO14644−1に準拠し、測定した清浄度がクラス5で、露点温度が−80℃以下、酸素濃度0.8ppmのグローブボックスへ移した。
次に実施例1と同様に正孔輸送層、発光層を蒸着により形成した。
(電子輸送層3−1〜3−8の調製)
次いで、電子輸送層塗布液を下記のように調製し、ブレード法であるアプリケーターにて、塗布時液膜厚が30nmになるように調整し、塗布した。なお、膜厚が一定になるように、液膜にあわせて、塗布液濃度を調整した。更に150℃で30分加熱し電子輸送層用を設けた。別途用意した基板にて、同条件にて塗布を行い測定をしたところ、膜厚は30nmであった。電子輸送層3−1〜3−8の作製条件は表5に示す通りである。
〈電子輸送層塗布液〉
使用溶媒にて、膜厚が30nmになるようにET−Aの濃度を0.7質量%に調整を行った。なお、溶媒の吸光度は、蒸留及びモレキュラーシーブによる処理を繰り返すことにより、精製を行い、調整した。図4と5に各溶媒の分光吸収スペクトルを示す。
電子輸送層を作製した後、有機EL素子1−1〜1−4の作製と同様に行って、有機EL素子3−1〜3−8を作製し、得られた有機EL素子を実施例1に記載の評価方法で評価し結果を表5に示す。
Figure 2010192369
Figure 2010192369
表6から、本発明の製造方法で調製された有機EL素子は比較の素子に対して、塗布ムラ、外部取り出し量子効率のいずれにおいても優れていることがわかる。
実施例4
《有機EL素子4−1〜4−3の作製》
表7に示すような構成の有機EL素子4−1〜4−3を作製した。表7において、正孔輸送層欄の1−4とは、上記有機EL素子1−4の正孔輸送層であり、蒸着とは、実施例2の正孔輸送層である。発光層は有機EL素子2−5の発光層である。電子輸送層の欄の3−3とは、有機EL素子3−3の電子輸送層であり、蒸着とは、実施例1の正孔輸送層である。従って、有機EL素子4−1の場合、正孔輸送層は有機EL素子1−4の正孔輸送層で、発光層は有機EL素子2−5の発光層で、電子輸送層は有機EL素子3−3の電子輸送層からなる有機EL素子を意味する。得られた有機EL素子を実施例1で用いた評価方法で評価し結果を表7に示す。
Figure 2010192369
表7は正孔輸送層、発光層、電子輸送層の内、2層以上が本発明の製造方法で調製された有機EL素子であるが、塗布ムラ、外部取り出し量子効率のいずれにおいても非常に優れていることがわかる。
更に有機EL素子2−5の作製において、正孔注入層用塗布液に用いた化合物について特開平6−025658号公報に記載されているフェロセン化合物、特開平10−233287号公報等に記載されているスターバースト型の化合物、特開2000−068058号公報、特開2004−6321号公報に記載されているトリアリールアミン型の化合物、特開2002−117979号公報に記載されている含硫黄環含有化合物、米国特許出願公開第2002/0158242号明細書、米国特許出願公開第2006/0251922号明細書、特開2006−49393号公報等に記載されているヘキサアザトリフェニレン化合物に変更し、更に各々の化合物に対応して同じ置換基を有する溶媒を用い、それ以外は同様にして素子を作製したところ、同様に優れた効果が得られた。
更に有機EL素子2−12の作製において、溶液を塗布する方法をディップコート法、スピンコート法、スリットコート法にそれぞれ変更して素子作製を行ったが、同様の優れた効果が得られた。

Claims (10)

  1. 1対の電極間に、複数の有機層を有する有機エレクトロルミネセンス素子の製造方法において、該有機層の少なくとも1層が湿式塗布法で形成され、用いられる溶媒の200nm〜300nmにおける吸光度が0.01〜1.0であることを特徴とする有機エレクトロルミネセンス素子の製造方法。
  2. 前記溶媒が脂肪族エステル溶媒またはアルコール溶媒であることを特徴とする請求項1に記載の有機エレクトロルミネセンス素子の製造方法。
  3. 前記有機層の塗布液の固形分濃度が0.1質量%〜10質量%であることを特徴とする請求項1又は2に記載の有機エレクトロルミネセンス素子の製造方法。
  4. 前記有機エレクトロルミネセンス素子が分子量300〜2000である低分子量ホスト及び低分子量ドーパントをそれぞれ1種以上含有することを特徴とする請求項1〜3の何れか1項に記載の有機エレクトロルミネセンス素子の製造方法。
  5. 前記有機エレクトロルミネセンス素子は少なくとも有機発光層と、電子輸送層とを有するが、該有機発光層は脂肪族エステル溶媒を用い、該電子輸送層はアルコール溶媒を用い、湿式塗布法で形成されることを特徴とする請求項2〜4の何れか1項に記載の有機エレクトロルミネセンス素子の製造方法。
  6. 前記脂肪族エステル溶媒が、酢酸n−プロピル、酢酸イソプロピル、酢酸n−ブチル、酢酸イソブチル、酪酸メチル、酪酸ブチル、の中から選ばれる少なくとも一種以上の溶媒であることを特徴とする請求項5に記載の有機エレクトロルミネセンス素子の製造方法。
  7. 前記アルコール溶媒が、含フッ素アルコールであるトリフルオロエタノール、又は、テトラフルオロプロパノール或いは両者の混合物であることを特徴とする請求項5又は6に記載の有機エレクトロルミネセンス素子の製造方法。
  8. 前記有機層の塗布液が、40℃以下で溶解調整されることを特徴とする請求項1〜7の何れか1項に記載の有機エレクトロルミネセンス素子の製造方法。
  9. 溶液を塗布する方法が、ディップコート法、スピンコート法、ブレード法、及びスリットコート法から選ばれる何れかであることを特徴とする請求項1〜8の何れか1項に記載の有機エレクトロルミネセンス素子の製造方法。
  10. 請求項1〜9の何れか1項に記載の有機エレクトロルミネセンス素子の製造方法で製造されたことを特徴とする有機エレクトロルミネセンス素子。
JP2009037648A 2009-02-20 2009-02-20 有機エレクトロルミネセンス素子の製造方法及び該製造方法により製造された有機エレクトロルミネセンス素子 Pending JP2010192369A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009037648A JP2010192369A (ja) 2009-02-20 2009-02-20 有機エレクトロルミネセンス素子の製造方法及び該製造方法により製造された有機エレクトロルミネセンス素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009037648A JP2010192369A (ja) 2009-02-20 2009-02-20 有機エレクトロルミネセンス素子の製造方法及び該製造方法により製造された有機エレクトロルミネセンス素子

Publications (1)

Publication Number Publication Date
JP2010192369A true JP2010192369A (ja) 2010-09-02

Family

ID=42818172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009037648A Pending JP2010192369A (ja) 2009-02-20 2009-02-20 有機エレクトロルミネセンス素子の製造方法及び該製造方法により製造された有機エレクトロルミネセンス素子

Country Status (1)

Country Link
JP (1) JP2010192369A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012089398A (ja) * 2010-10-21 2012-05-10 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子の製造方法及び該製造方法により製造された有機エレクトロルミネッセンス素子
WO2017187906A1 (ja) * 2016-04-25 2017-11-02 住友化学株式会社 組成物
KR101839331B1 (ko) * 2011-08-09 2018-03-16 엘지디스플레이 주식회사 유기 발광 표시 장치의 제조 방법
JP6332581B1 (ja) * 2017-01-27 2018-05-30 住友化学株式会社 組成物及び該組成物を用いて得られる発光素子
JP6332582B1 (ja) * 2017-01-27 2018-05-30 住友化学株式会社 組成物、並びに、該組成物を用いた膜及び発光素子の製造方法
WO2018139442A1 (ja) * 2017-01-27 2018-08-02 住友化学株式会社 組成物、並びに、該組成物を用いた膜及び発光素子の製造方法
WO2018139441A1 (ja) * 2017-01-27 2018-08-02 住友化学株式会社 組成物及び該組成物を用いて得られる発光素子

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004039297A (ja) * 2002-06-28 2004-02-05 Fuji Photo Film Co Ltd 発光素子の製造方法
JP2004039565A (ja) * 2002-07-05 2004-02-05 Seiko Epson Corp 組成物とその製造方法、電気光学装置、及び電子機器
JP2004265672A (ja) * 2003-02-28 2004-09-24 Asahi Glass Co Ltd 有機エレクトロルミネッセンス素子の製造方法
JP2005302516A (ja) * 2004-04-12 2005-10-27 Seiko Epson Corp 有機エレクトロルミネッセンス装置の製造方法、有機エレクトロルミネッセンス装置、及び電子機器
WO2005104628A1 (ja) * 2004-04-20 2005-11-03 Kyushu Electric Power Co., Inc. 有機電界発光素子およびその製造方法ならびにリン含有有機化合物およびその製造方法
WO2006070711A1 (ja) * 2004-12-28 2006-07-06 Idemitsu Kosan Co., Ltd. 有機el塗布膜形成用インク及びその製造方法
JP2006185864A (ja) * 2004-12-28 2006-07-13 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子及びその製造方法
JP2007084485A (ja) * 2005-09-22 2007-04-05 Kyoto Univ ナフタレン誘導体及び有機半導体材料と、これを用いた発光トランジスタ素子及び有機エレクトロルミネッセンス素子

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004039297A (ja) * 2002-06-28 2004-02-05 Fuji Photo Film Co Ltd 発光素子の製造方法
JP2004039565A (ja) * 2002-07-05 2004-02-05 Seiko Epson Corp 組成物とその製造方法、電気光学装置、及び電子機器
JP2004265672A (ja) * 2003-02-28 2004-09-24 Asahi Glass Co Ltd 有機エレクトロルミネッセンス素子の製造方法
JP2005302516A (ja) * 2004-04-12 2005-10-27 Seiko Epson Corp 有機エレクトロルミネッセンス装置の製造方法、有機エレクトロルミネッセンス装置、及び電子機器
WO2005104628A1 (ja) * 2004-04-20 2005-11-03 Kyushu Electric Power Co., Inc. 有機電界発光素子およびその製造方法ならびにリン含有有機化合物およびその製造方法
WO2006070711A1 (ja) * 2004-12-28 2006-07-06 Idemitsu Kosan Co., Ltd. 有機el塗布膜形成用インク及びその製造方法
JP2006185864A (ja) * 2004-12-28 2006-07-13 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子及びその製造方法
JP2007084485A (ja) * 2005-09-22 2007-04-05 Kyoto Univ ナフタレン誘導体及び有機半導体材料と、これを用いた発光トランジスタ素子及び有機エレクトロルミネッセンス素子

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012089398A (ja) * 2010-10-21 2012-05-10 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子の製造方法及び該製造方法により製造された有機エレクトロルミネッセンス素子
KR101839331B1 (ko) * 2011-08-09 2018-03-16 엘지디스플레이 주식회사 유기 발광 표시 장치의 제조 방법
US10686135B2 (en) 2016-04-25 2020-06-16 Sumitomo Chemical Company, Limited Composition
JP6320642B2 (ja) * 2016-04-25 2018-05-09 住友化学株式会社 組成物
JPWO2017187906A1 (ja) * 2016-04-25 2018-05-10 住友化学株式会社 組成物
WO2017187906A1 (ja) * 2016-04-25 2017-11-02 住友化学株式会社 組成物
JP6332582B1 (ja) * 2017-01-27 2018-05-30 住友化学株式会社 組成物、並びに、該組成物を用いた膜及び発光素子の製造方法
WO2018139442A1 (ja) * 2017-01-27 2018-08-02 住友化学株式会社 組成物、並びに、該組成物を用いた膜及び発光素子の製造方法
WO2018139441A1 (ja) * 2017-01-27 2018-08-02 住友化学株式会社 組成物及び該組成物を用いて得られる発光素子
KR20190104065A (ko) * 2017-01-27 2019-09-05 스미또모 가가꾸 가부시키가이샤 조성물 및 해당 조성물을 사용하여 얻어지는 발광 소자
CN110235266A (zh) * 2017-01-27 2019-09-13 住友化学株式会社 组合物和使用该组合物得到的发光元件
CN110235267A (zh) * 2017-01-27 2019-09-13 住友化学株式会社 组合物、以及使用了该组合物的膜和发光元件的制造方法
JP6332581B1 (ja) * 2017-01-27 2018-05-30 住友化学株式会社 組成物及び該組成物を用いて得られる発光素子
US10811610B2 (en) 2017-01-27 2020-10-20 Sumitomo Chemical Company, Limited Composition and light emitting device obtained by using the composition
US10916706B2 (en) 2017-01-27 2021-02-09 Sumitomo Chemical Company, Limited Composition, film production method, and light emitting device
CN110235266B (zh) * 2017-01-27 2021-04-02 住友化学株式会社 组合物和使用该组合物得到的发光元件
CN110235267B (zh) * 2017-01-27 2021-07-13 住友化学株式会社 组合物、以及使用了该组合物的膜和发光元件的制造方法
KR102360595B1 (ko) 2017-01-27 2022-02-09 스미또모 가가꾸 가부시키가이샤 조성물 및 해당 조성물을 사용하여 얻어지는 발광 소자

Similar Documents

Publication Publication Date Title
JP5413459B2 (ja) 白色発光有機エレクトロルミネッセンス素子
WO2012029750A1 (ja) 有機エレクトロルミネッセンス素子、その製造方法、表示装置及び照明装置
JP5186757B2 (ja) 有機エレクトロルミネッセンス素子の製造方法、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2010192369A (ja) 有機エレクトロルミネセンス素子の製造方法及び該製造方法により製造された有機エレクトロルミネセンス素子
WO2011132550A1 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5589852B2 (ja) 有機エレクトロルミネッセンス素子及びその製造方法
JP5181920B2 (ja) 有機エレクトロルミネッセンス素子の製造方法
JP5879737B2 (ja) 有機エレクトロルミネッセンス素子の製造方法
JP5180429B2 (ja) 有機エレクトロルミネッセンス素子
JPWO2009116414A1 (ja) 有機エレクトロルミネッセンス素子
JP4985602B2 (ja) 有機エレクトロルミネッセンス素子の製造方法及び有機エレクトロルミネッセンス素子
JP2009252944A (ja) 有機エレクトロルミネセンス素子とその製造方法
WO2012063656A1 (ja) 有機エレクトロルミネッセンス素子の製造方法
JP2010177338A (ja) 有機エレクトロルミネッセンス素子及びその製造方法
JP5472107B2 (ja) 有機エレクトロルミネセンス素子の製造方法
JP2010272286A (ja) 白色発光有機エレクトロルミネッセンス素子の製造方法
JP2008305613A (ja) 有機エレクトロルミネッセンス素子の製造方法
JP2009152033A (ja) 有機エレクトロルミネッセンス素子の製造方法、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JPWO2010084816A1 (ja) 有機エレクトロルミネッセンス素子及びその製造方法
JP2009289716A (ja) 有機エレクトロルミネセンス素子及びその製造方法
JP5152331B2 (ja) 有機エレクトロルミネセンス素子およびその製造方法
JPWO2006092964A1 (ja) 有機エレクトロルミネッセンス表示装置及び有機エレクトロルミネッセンス照明装置
JP2012234972A (ja) 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス素子の製造方法
JP2010199021A (ja) 有機エレクトロルミネセンス素子の製造方法
JP5266533B2 (ja) 有機エレクトロルミネッセンス素子の製造方法および照明装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110701

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120626