Nothing Special   »   [go: up one dir, main page]

JP2010188278A - Gas diffuser, membrane module, membrane separator, gas diffusion method and membrane separation method - Google Patents

Gas diffuser, membrane module, membrane separator, gas diffusion method and membrane separation method Download PDF

Info

Publication number
JP2010188278A
JP2010188278A JP2009035138A JP2009035138A JP2010188278A JP 2010188278 A JP2010188278 A JP 2010188278A JP 2009035138 A JP2009035138 A JP 2009035138A JP 2009035138 A JP2009035138 A JP 2009035138A JP 2010188278 A JP2010188278 A JP 2010188278A
Authority
JP
Japan
Prior art keywords
discharge port
membrane
diffuser
air
bubbles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009035138A
Other languages
Japanese (ja)
Inventor
Akira Ishiyama
明 石山
Atsushi Kawashima
淳 川嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Kobelco Eco Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Eco Solutions Co Ltd filed Critical Kobelco Eco Solutions Co Ltd
Priority to JP2009035138A priority Critical patent/JP2010188278A/en
Priority to PCT/JP2010/052243 priority patent/WO2010095609A1/en
Priority to CN2010800075440A priority patent/CN102317217A/en
Publication of JP2010188278A publication Critical patent/JP2010188278A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/231Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
    • B01F23/23105Arrangement or manipulation of the gas bubbling devices
    • B01F23/2312Diffusers
    • B01F23/23126Diffusers characterised by the shape of the diffuser element
    • B01F23/231264Diffusers characterised by the shape of the diffuser element being in the form of plates, flat beams, flat membranes or films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/231Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
    • B01F23/23105Arrangement or manipulation of the gas bubbling devices
    • B01F23/2312Diffusers
    • B01F23/23123Diffusers consisting of rigid porous or perforated material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1268Membrane bioreactor systems
    • C02F3/1273Submerged membrane bioreactors
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/20Activated sludge processes using diffusers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/20Activated sludge processes using diffusers
    • C02F3/201Perforated, resilient plastic diffusers, e.g. membranes, sheets, foils, tubes, hoses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/26Specific gas distributors or gas intakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/18Use of gases
    • B01D2321/185Aeration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the scale of a space in which a gas diffuser is arranged while diffusing bubbles substantially uniformly from each through hole. <P>SOLUTION: The gas diffuser includes a porous plate having a plurality of through holes, and a diffuser pipe arranged in such a manner that a discharge port for discharging bubbles into a sludge mixture liquid is located below the porous plate. In the diffuser, the center of the opening plane of the discharge port is located substantially directly under the center of the smallest circle surrounding the through holes of the porous plate, and the opening direction of the discharge port is set to be any one of the horizontal direction, vertical downward direction, and the direction between the horizontal direction and vertical downward direction. The inner diameter of the discharge port is 16 mm or above, and the ratio (L/D) of the distance L between the lower surface of the porous plate and the center of the opening plane of the discharge port to the diameter D of the circle is 0.8-1.2. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、汚泥混合液中に気泡を散気する散気装置、該散気装置を備えてなる膜モジュール、該膜モジュールが設けられてなる膜分離装置、汚泥混合液中に気泡を散気する散気方法、及び該膜モジュールを用いた膜分離方法に関する。   The present invention relates to an air diffuser that diffuses air bubbles in a sludge mixed solution, a membrane module that includes the air diffuser, a membrane separation device that includes the membrane module, and air bubbles that diffuse into the sludge mixed solution. The present invention relates to an air diffusion method and a membrane separation method using the membrane module.

従来から、廃水等の水処理を行う際には、様々な目的で被処理水中への気泡(主に、空気)の散気が行われている。例えば、活性汚泥を用いて廃水を処理する活性汚泥法では、活性汚泥中の微生物が廃水中の有機物を分解するために必要な酸素を供給する目的で、活性汚泥と廃水等とを混合した活性汚泥混合液中に空気の散気が行われている。   Conventionally, when water treatment such as waste water is performed, bubbles (mainly air) are diffused into the water to be treated for various purposes. For example, in the activated sludge process that uses activated sludge to treat wastewater, the activated sludge is mixed with activated sludge and wastewater for the purpose of supplying oxygen necessary for the microorganisms in the activated sludge to decompose organic matter in the wastewater. Air is diffused in the sludge mixture.

また、別の目的としては、汚泥と水との固液分離を目的として汚泥混合液中に浸漬された分離膜に付着物が付着するのを抑制し、且つ付着物を分離膜の表面から剥がし取る目的で、分離膜の下方から気泡を散気し、気泡が浮上する際の水流や分離膜への気泡の接触によって、分離膜を揺れ動かすために散気が行われている。   In addition, as another purpose, for the purpose of solid-liquid separation of sludge and water, it is possible to suppress adhesion of the deposits to the separation membrane immersed in the sludge mixture, and to remove the deposits from the surface of the separation membrane. For the purpose of taking air bubbles, air bubbles are diffused from below the separation membrane, and air is diffused to shake and move the separation membrane by the water flow when the bubbles rise and the contact of the bubbles with the separation membrane.

活性汚泥混合液中に気泡を散気する散気装置としては、活性汚泥混合液が入った活性汚泥処理槽内の下方から気泡を散気するものが一般的である。斯かる散気装置としては、具体的には、複数の貫通孔を有する多孔板と活性汚泥混合液中に気泡を吐出する吐出口が前記多孔板の下方に位置するように配された散気管とを備え、前記吐出口の開口方向が上方を向くように構成されてなる装置が知られている(例えば、特許文献1)。   As an air diffuser that diffuses air bubbles in the activated sludge mixed liquid, an apparatus that diffuses air bubbles from below in the activated sludge treatment tank containing the activated sludge mixed liquid is generally used. As such an air diffuser, specifically, an air diffuser arranged such that a porous plate having a plurality of through holes and an outlet for discharging air bubbles in the activated sludge mixed liquid are positioned below the porous plate. There is known an apparatus configured such that the opening direction of the discharge port faces upward (for example, Patent Document 1).

特開2004−8981号公報Japanese Patent Laid-Open No. 2004-8981

しかしながら、斯かる散気装置は、吐出口が小さいと吐出口から吐出される気泡の分裂と拡散が不十分となるという問題がある。また、斯かる散気装置は、吐出口と多孔板との距離が短いと各貫通孔から気泡が均一に散気されない場合があるという問題があり、逆に、各貫通孔からの気泡が均一に散気させようとすると吐出口と多孔板との距離が非常に長くなり、散気装置自体が大きすぎて気泡を散気させたい汚泥分離槽(汚泥混合液が入った槽)内に設置が困難な場合があるという問題もある。さらに、斯かる散気装置は、吐出口から吐出される気泡が上向きの初速度を有しているので気泡を拡散させるのに吐出口と多孔板との距離をより長くしなければならず、散気装置自体がより大きくなり、その結果、散気の動力も増加するという問題があり、また、散気管に汚泥が侵入して目詰まりを起こすという問題もある。   However, such an air diffuser has a problem that if the discharge port is small, splitting and diffusion of bubbles discharged from the discharge port are insufficient. In addition, such an air diffuser has a problem that air bubbles may not be uniformly diffused from each through hole if the distance between the discharge port and the perforated plate is short. When the air is diffused, the distance between the discharge port and the perforated plate becomes very long, and the air diffuser itself is too large to be installed in the sludge separation tank (tank containing the sludge mixture) where air bubbles are to be diffused. There is also a problem that it may be difficult. Furthermore, in such an air diffuser, since the bubbles discharged from the discharge port have an upward initial velocity, the distance between the discharge port and the perforated plate must be made longer in order to diffuse the bubbles, There is a problem that the air diffuser itself becomes larger, and as a result, the power of the air diffuser also increases, and there is also a problem that sludge enters the air diffuser and causes clogging.

そこで、本発明は、各貫通孔から略均一に気泡を散気させると共に、散気装置を配置する空間の小規模化を図ることを課題とする。   Accordingly, an object of the present invention is to diffuse bubbles from each through hole substantially uniformly and to reduce the size of a space in which an air diffuser is disposed.

本発明は、複数の貫通孔を有する多孔板と、汚泥混合液中に気泡を吐出する吐出口が前記多孔板の下方に位置するように配された散気管とを備えてなる散気装置であって、
前記吐出口の開口面の中心が、前記多孔板の貫通孔を囲み且つ最小となる円の中心の略真下に位置し、前記吐出口の開口方向が、水平方向、鉛直下方向、及び水平方向と鉛直下方向との間の方向の何れかの方向となるように構成されてなり、
前記吐出口の内径は、16mm以上であり、
前記円の直径Dに対する前記多孔板の下面と前記吐出口の開口面の中心との距離Lの比(L/D)は、0.8〜1.2であることを特徴とする散気装置にある。
The present invention is an air diffuser comprising a perforated plate having a plurality of through holes and an air diffuser arranged so that a discharge port for discharging air bubbles in the sludge mixed solution is positioned below the perforated plate. There,
The center of the opening surface of the discharge port is located substantially directly below the center of the circle that surrounds and is the smallest circle surrounding the through hole of the perforated plate, and the opening direction of the discharge port is a horizontal direction, a vertically downward direction, and a horizontal direction. Is configured to be any direction between the vertical direction and the vertical downward direction,
The discharge port has an inner diameter of 16 mm or more,
The ratio (L / D) of the distance L between the lower surface of the perforated plate and the center of the opening surface of the discharge port with respect to the diameter D of the circle is 0.8 to 1.2. It is in.

斯かる散気装置によれば、前記吐出口の開口方向が水平方向、鉛直下方向、及び水平方向と鉛直下方向との間の方向の何れかの方向となることにより、吐出口から吐出される気泡の上向きの初速度が0m/s以下となり、吐出口からの距離の割には気泡が水平方向に拡散しやすくなる。また、前記吐出口の開口面の中心が、前記多孔板の貫通孔を囲み且つ最小となる円の中心の略真下に位置することにより、吐出口から外側の貫通孔まで気泡が拡散すべき水平方向の距離が比較的短くなる。更に、前記吐出口の内径が16mm以上であり、且つ前記円の直径Dに対する前記多孔板の下面と前記吐出口の開口面の中心との距離Lの比(L/D)が0.8以上であることにより、吐出口から吐出される気泡が比較的大きなものとなり、その大きな気泡が瞬間的に小さい気泡に分裂して拡散し、最も外側の貫通孔まで気泡が到達することができる。従って、各貫通孔から略均一に気泡を散気させることができる。
また、前記円の直径Dに対する前記多孔板の下面と前記吐出口の開口面の中心との距離Lの比(L/D)が1.2以下であることにより、多孔板の水平方向の大きさの割には散気装置を配置する縦方向の空間の小規模化を図ることができる。
さらに、吐出口の内径が16mm以上である散気管を吐出口の開口方向が、水平方向、鉛直下方向、及び水平方向と鉛直下方向との間の方向の何れかの方向となるように構成されてなることにより、散気管内への汚泥混合液の侵入が抑制され、結果として、より一層各貫通孔から略均一に気泡を散気させることができる。
According to such an air diffuser, the discharge port is discharged from the discharge port when the opening direction of the discharge port is any one of a horizontal direction, a vertically downward direction, and a direction between the horizontal direction and the vertically downward direction. The upward initial velocity of the bubbles is 0 m / s or less, and the bubbles easily diffuse in the horizontal direction for the distance from the discharge port. In addition, since the center of the opening surface of the discharge port is positioned almost directly below the center of the circle that surrounds and is the smallest of the perforations of the perforated plate, horizontal air bubbles should diffuse from the discharge port to the outer through hole. The direction distance is relatively short. Furthermore, the inner diameter of the discharge port is 16 mm or more, and the ratio (L / D) of the distance L between the lower surface of the porous plate and the center of the opening surface of the discharge port with respect to the diameter D of the circle is 0.8 or more. As a result, the bubbles discharged from the discharge port are relatively large, and the large bubbles are instantaneously split into small bubbles and diffused, and the bubbles can reach the outermost through hole. Therefore, the bubbles can be diffused from each through hole substantially uniformly.
In addition, since the ratio (L / D) of the distance L between the lower surface of the porous plate and the center of the opening surface of the discharge port with respect to the diameter D of the circle is 1.2 or less, the horizontal size of the porous plate is increased. For this reason, it is possible to reduce the size of the vertical space in which the air diffuser is arranged.
Further, the air diffuser having an inner diameter of the discharge port of 16 mm or more is configured such that the opening direction of the discharge port is any one of a horizontal direction, a vertically downward direction, and a direction between the horizontal direction and the vertically downward direction. As a result, the intrusion of the sludge mixed liquid into the air diffuser is suppressed, and as a result, the air bubbles can be diffused more uniformly from each through hole.

また、本発明に係る散気装置においては、好ましくは、前記多孔板の外周部に下向きに延びるスカート部が設けられてなる。   In the air diffuser according to the present invention, preferably, a skirt portion extending downward is provided on the outer peripheral portion of the perforated plate.

斯かる散気装置によれば、前記スカート部が設けられてなることにより、スカート部がない場合に貫通孔から散気されずに他の部分から漏出され得る気泡が、効率良く各貫通孔から散気され得るという利点がある。   According to such an air diffuser, by providing the skirt portion, when there is no skirt portion, air bubbles that can be leaked from other portions without being diffused from the through hole can be efficiently discharged from each through hole. There is an advantage that it can be diffused.

さらに、前記スカート部が設けられてなる散気装置においては、好ましくは、前記スカート部の下端部に開口部が設けられてなる。   Further, in the air diffuser provided with the skirt portion, an opening is preferably provided at the lower end portion of the skirt portion.

斯かる散気装置によれば、前記スカート部で囲まれている散気装置の内部に滞留し得る汚泥混合液の汚泥が該開口部から流出されやすくなり、該内部に、該汚泥が滞留しにくくなるため、結果として、より一層各貫通孔から略均一に気泡を散気させることができる。   According to such an air diffuser, the sludge of the sludge mixed liquid that can stay inside the air diffuser surrounded by the skirt portion is likely to flow out from the opening, and the sludge stays in the inside. Since it becomes difficult, as a result, air bubbles can be diffused substantially uniformly from each through hole.

また、本発明は、前記散気装置の多孔板の上部に、複数の分離膜が束になって構成された分離膜部が設けられて形成されてなる膜モジュールにある。   In addition, the present invention resides in a membrane module formed by providing a separation membrane portion formed by bundling a plurality of separation membranes on an upper portion of the porous plate of the air diffuser.

さらに、本発明は、汚泥混合液が収容される槽を備え、該槽内には、前記膜モジュールが浸漬膜として設けられてなる膜分離装置にある。   Furthermore, the present invention resides in a membrane separation apparatus that includes a tank in which a sludge mixed solution is accommodated, and in which the membrane module is provided as an immersion membrane.

また、本発明は、前記散気装置で、汚泥混合液中に気泡を散気させる散気方法にある。   Moreover, this invention exists in the aeration method which diffuses a bubble in the sludge liquid mixture with the said aeration apparatus.

さらに、本発明は、前記膜モジュールで、汚泥混合液を膜分離して浄化水を得る膜分離方法にある。   Furthermore, the present invention resides in a membrane separation method for obtaining purified water by membrane separation of a sludge mixed solution with the membrane module.

以上のように、本発明によれば、各貫通孔から略均一に気泡を散気させると共に、散気装置を配置する空間の小規模化を図ることができる。   As described above, according to the present invention, air bubbles can be diffused from each through hole substantially uniformly, and the space in which the diffuser is disposed can be reduced in size.

本実施形態に係る散気装置の側面図である。It is a side view of the aeration apparatus concerning this embodiment. 本実施形態に係る散気装置の正面図である。It is a front view of the diffuser concerning this embodiment. 本実施形態に係る散気装置の背面図である。It is a rear view of the air diffusion apparatus which concerns on this embodiment. 本実施形態に係る散気装置の側面断面図であり、図2のI−I断面図である。It is side surface sectional drawing of the diffuser which concerns on this embodiment, and is II sectional drawing of FIG. (a)は、本実施形態に係る散気管の側面図であり、(b)は、本実施形態に係る散気管の正面図である。(A) is a side view of the air diffuser according to the present embodiment, and (b) is a front view of the air diffuser according to the present embodiment. 本実施形態に係る膜モジュールの側面断面図である。It is side surface sectional drawing of the membrane module which concerns on this embodiment.

以下、添付図面を参照しつつ、本発明の一実施形態について説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.

図1〜4に示すように、本実施形態の散気装置1は、複数の貫通孔2aを有する多孔板2と、汚泥混合液中に気泡を吐出する吐出口3aが前記多孔板2の下方に位置するように配された散気管3とを備えてなる。   As shown in FIGS. 1 to 4, the air diffuser 1 according to the present embodiment includes a porous plate 2 having a plurality of through holes 2 a and a discharge port 3 a that discharges air bubbles in the sludge mixed solution below the porous plate 2. And an air diffuser 3 arranged so as to be located at the center.

前記多孔板2は、汚泥混合液中に配置された際に、多孔板2の面が略水平面となるように構成されてなる。また、多孔板2は、面の形状が略円形状になるように形成されてなる。   The perforated plate 2 is configured such that the surface of the perforated plate 2 is substantially horizontal when placed in the sludge mixed liquid. The perforated plate 2 is formed so that the surface has a substantially circular shape.

前記多孔板2の貫通孔2aは、多孔板2に、複数個設けられてなる。
また、貫通孔2aの形状は、略円形状になるように形成されてなる。
さらに、貫通孔2aは、直径が5〜15mm、好ましくは8〜11mmとなるように形成されている。
本実施形態の散気装置1は、貫通孔2aの直径が5mm以上であることにより、汚泥混合液の汚泥による貫通孔2aの閉塞が生じ難くなるという利点がある。また、本実施形態の散気装置1は、貫通孔2aの直径が15mm以下であることにより、貫通孔2aを通過する気泡が小さくなり酸素溶解効率が高まりやすくなるという利点がある。
A plurality of through holes 2 a of the porous plate 2 are provided in the porous plate 2.
Moreover, the shape of the through-hole 2a is formed so that it may become a substantially circular shape.
Furthermore, the through-hole 2a is formed to have a diameter of 5 to 15 mm, preferably 8 to 11 mm.
The air diffuser 1 according to the present embodiment has an advantage that the through hole 2a is less likely to be blocked by the sludge of the sludge mixed liquid because the diameter of the through hole 2a is 5 mm or more. Further, the air diffuser 1 of the present embodiment has an advantage that the diameter of the through hole 2a is 15 mm or less, whereby the bubbles passing through the through hole 2a are reduced and the oxygen dissolution efficiency is easily increased.

前記多孔板2は、貫通孔2aの軸が多孔板の面に対して略垂直をなすように形成されてなる。また、多孔板2は、貫通孔2aを囲み且つ最小となる円の中心と多孔板2の略円形状の中心とが略同心となるように形成されてなる。   The porous plate 2 is formed so that the axis of the through hole 2a is substantially perpendicular to the surface of the porous plate. The perforated plate 2 is formed so that the center of the circle that surrounds the through-hole 2a and is the minimum and the substantially circular center of the perforated plate 2 are substantially concentric.

前記散気管3は、活性汚泥処理槽や汚泥分離槽等の汚泥混合液中に配置された際に、前記吐出口3aが前記多孔板2の下方に位置するように構成されてなる。また、散気管3は、図5に示すように、断面形状が円状となるように形成されている。さらに、散気管3は、一端部に気泡を吐出する吐出口3aを備え、他端側が気体供給手段に連なるように構成されている。前記吐出口3aは、散気管3の軸方向に開口するように形成されている。前記吐出口3aの形状は、図5(a)に示すように、略円形となるように形成され、その内径Rが、16mm以上、好ましくは、散気装置自体がよりコンパクトになるという観点から20mm以上50mm以下となるように形成されている。
本実施形態の散気装置1は、吐出口3aの内径Rが16mm以上であることにより、吐出口3aから吐出された大きな気泡が瞬間的に小さな気泡に分裂して拡散するため、多孔板2と散気管3の吐出口3aとの距離を縮めることができる。また、本実施形態の散気装置1は、吐出口3aの内径Rが20mm以上であることにより、より大きな径の気泡を吐出することができるため、より確実に気泡を拡散させ得るので、多孔板2と散気管3の吐出口3aとの距離をより一層に縮めることができる。
The air diffuser 3 is configured such that the discharge port 3a is positioned below the perforated plate 2 when disposed in a sludge mixed solution such as an activated sludge treatment tank or a sludge separation tank. Further, as shown in FIG. 5, the air diffuser 3 is formed so that the cross-sectional shape is circular. Further, the air diffuser 3 is provided with a discharge port 3a for discharging bubbles at one end, and the other end is connected to the gas supply means. The discharge port 3 a is formed so as to open in the axial direction of the diffuser tube 3. As shown in FIG. 5 (a), the shape of the discharge port 3a is formed to be substantially circular, and its inner diameter R is 16 mm or more, preferably from the viewpoint that the air diffuser itself is more compact. It is formed to be 20 mm or more and 50 mm or less.
In the air diffuser 1 of this embodiment, since the inner diameter R of the discharge port 3a is 16 mm or more, large bubbles discharged from the discharge port 3a are instantaneously split into small bubbles and diffused. And the discharge port 3a of the air diffuser 3 can be shortened. Moreover, since the air diffusion apparatus 1 of this embodiment can discharge a bubble with a larger diameter when the inner diameter R of the discharge port 3a is 20 mm or more, the bubble can be more reliably diffused. The distance between the plate 2 and the discharge port 3a of the air diffusing tube 3 can be further reduced.

また、前記散気管3は、吐出口3aから他端側に離れた位置で屈曲しており、屈曲部3bが形成されている。該屈曲部3bは、吐出口3aから所定の位置に形成されている。具体的には、屈曲部3bで生じた気泡の流れの乱れが吐出口3aに到達するまでに整えることができるような位置に形成されている。より詳しくは、散気管3が直角に屈曲している場合、屈曲部3bは、図5(b)に示すように、吐出口3aの開口端から屈曲部3bよりも他端側の散気管3の軸線までの距離Hと、吐出口3aの内径Rとが下記式(1)の関係となることが好ましい。
H ≧ R×3 (1)
該距離Hと該内径Rとが上記式(1)の関係となることにより、散気管3の屈曲による遠心力等によって散気管3の向き(吐出口の開口方向)と異なる向きを向いてしまった気泡が屈曲部3bから吐出口3aの開口端までに移動する間に吐出口の開口方向を向きやすくなるという利点がある。
また、散気管3は、吐出口3aよりも他端側で分割可能に構成されている。具体的には、散気管3は、屈曲部3bよりも他端側に連結部3cを備え、該連結部3cを境に吐出口側(先端側)と他端側(基端側)とに分割可能に構成されている。
The air diffuser 3 is bent at a position away from the discharge port 3a toward the other end, and a bent portion 3b is formed. The bent portion 3b is formed at a predetermined position from the discharge port 3a. Specifically, it is formed at a position where the turbulence of the bubble flow generated in the bent portion 3b can be adjusted before reaching the discharge port 3a. More specifically, when the air diffusing tube 3 is bent at a right angle, the bent portion 3b is, as shown in FIG. 5B, the air diffusing tube 3 on the other end side from the opening end of the discharge port 3a to the bent portion 3b. It is preferable that the distance H to the axis and the inner diameter R of the discharge port 3a have the relationship of the following formula (1).
H ≧ R × 3 (1)
When the distance H and the inner diameter R are in the relationship of the above formula (1), the direction of the air diffuser 3 (the opening direction of the discharge port) is directed differently due to the centrifugal force caused by the bending of the air diffuser 3. There is an advantage that it becomes easy to face the opening direction of the discharge port while the air bubbles move from the bent portion 3b to the opening end of the discharge port 3a.
Moreover, the air diffusing tube 3 is configured to be splittable on the other end side with respect to the discharge port 3a. Specifically, the air diffuser 3 is provided with a connecting portion 3c on the other end side than the bent portion 3b, and on the discharge port side (front end side) and the other end side (base end side) with the connecting portion 3c as a boundary. It is configured to be splittable.

また、散気管3は、吐出口3aの開口方向が略水平方向となるように構成されている。具体的には、散気管3は、汚泥混合液中に配置された際に、該開口方向の軸が水平となるように構成されている。また、散気管3は、汚泥混合液中に配置された際に、吐出口3aの開口面が水平方向に対して直角をなすように形成されている。言い換えれば、吐出口3aの開口面は、散気管3の軸に対して直角をなすように形成されている。   The air diffuser 3 is configured such that the opening direction of the discharge port 3a is substantially horizontal. Specifically, the air diffuser 3 is configured such that the axis in the opening direction is horizontal when it is disposed in the sludge mixed liquid. The air diffuser 3 is formed so that the opening surface of the discharge port 3a is perpendicular to the horizontal direction when disposed in the sludge mixed liquid. In other words, the opening surface of the discharge port 3 a is formed so as to be perpendicular to the axis of the air diffuser 3.

前記吐出口3aから吐出される気泡としては、コンプレッサ等の気体供給手段から供給される空気が用いられている。また、吐出口3aの開口端における気泡の線速度は、汚泥混合液の汚泥濃度にもよるが、好ましくは、4m/秒以上15m/秒以下、より好ましくは、8m/秒以上15m/秒以下となるように設定されている。なお、線速度とは、単位時間あたりに散気管3の断面積を通過する気泡の速度で、気泡の流量(単位時間当たりに流れる気泡の体積)を散気管3の断面積で割ることで算出されるものである。   As the bubbles discharged from the discharge port 3a, air supplied from gas supply means such as a compressor is used. Further, the linear velocity of the bubbles at the opening end of the discharge port 3a is preferably 4 m / second or more and 15 m / second or less, more preferably 8 m / second or more and 15 m / second or less, although it depends on the sludge concentration of the sludge mixed liquid. It is set to become. The linear velocity is the velocity of bubbles passing through the cross-sectional area of the diffuser tube 3 per unit time, and is calculated by dividing the flow rate of bubbles (volume of bubbles flowing per unit time) by the cross-sectional area of the diffuser tube 3. It is what is done.

前記散気管3を形成する素材としては、特に限定されるものではないが、剛性を有する素材を用いて形成されることが好ましい。例えば、ポリ塩化ビニル等の樹脂製素材を用いて形成されてもよく、SUS等の金属製素材を用いて形成されてもよい。   The material for forming the air diffuser 3 is not particularly limited, but is preferably formed using a material having rigidity. For example, it may be formed using a resin material such as polyvinyl chloride, or may be formed using a metal material such as SUS.

本実施形態の散気装置1は、貫通孔2aを囲み且つ最小となる円の直径Dに対する前記多孔板2の下面と前記吐出口3aの開口面の中心との距離Lの比(L/D)が、0.8〜1.2、好ましくは、0.9〜1.1となるように構成されてなる。
尚、多孔板2の下面と前記吐出口3aの開口面の中心との距離Lは、コンパクト化及び省エネルギー化の観点から、200mm以下であることが好ましく、150mm以下であることがより好ましい。
In the air diffuser 1 of this embodiment, the ratio (L / D) of the distance L between the lower surface of the porous plate 2 and the center of the opening surface of the discharge port 3a with respect to the diameter D of the circle that surrounds the through-hole 2a and is the smallest. ) Is 0.8 to 1.2, preferably 0.9 to 1.1.
The distance L between the lower surface of the perforated plate 2 and the center of the opening surface of the discharge port 3a is preferably 200 mm or less, more preferably 150 mm or less, from the viewpoint of compactness and energy saving.

また、本実施形態の散気装置1は、前記吐出口3aの開口面の中心が、前記多孔板2の貫通孔2aを囲み且つ最小となる円の中心の略真下に位置するように構成されてなる。   In addition, the air diffuser 1 of the present embodiment is configured such that the center of the opening surface of the discharge port 3a is located almost directly below the center of the circle that surrounds the through-hole 2a of the porous plate 2 and is the smallest. It becomes.

さらに、本実施形態の散気装置1は、貫通孔2aを囲み且つ最小となる円の直径Dが、好ましくは、吐出口3aの内径以上、より好ましくは、吐出口3aの内径の2倍以上の長さである。本実施形態の散気装置1は、貫通孔2aを囲み且つ最小となる円の直径Dが吐出口3aの内径以上の長さであることにより、多孔板2の全面から均一に気泡が吐出されやすくなるという利点がある。   Further, in the air diffuser 1 of this embodiment, the diameter D of the circle that surrounds the through-hole 2a and is the minimum is preferably not less than the inner diameter of the discharge port 3a, more preferably not less than twice the inner diameter of the discharge port 3a. Is the length of In the air diffuser 1 of the present embodiment, bubbles are uniformly discharged from the entire surface of the porous plate 2 because the diameter D of the circle that surrounds the through-hole 2a and is the minimum is equal to or longer than the inner diameter of the discharge port 3a. There is an advantage that it becomes easy.

また、本実施形態の散気装置1は、前記多孔板2の外周部に、下向きに延びるスカート部4が設けられてなる。該スカート部4は、多孔板2の外周の全周から延びて形成されてなる。また、本実施形態の散気装置1は、スカート部4の下端が吐出口3aよりも下側に位置するように形成されてなる。該スカート部4には、散気管3が挿入可能な散気管挿入孔4aが設けられてなる。   Further, the air diffusion device 1 of the present embodiment is provided with a skirt portion 4 extending downward on the outer peripheral portion of the perforated plate 2. The skirt portion 4 is formed to extend from the entire outer periphery of the perforated plate 2. Further, the air diffusion device 1 according to the present embodiment is formed so that the lower end of the skirt portion 4 is positioned below the discharge port 3a. The skirt portion 4 is provided with a diffuser tube insertion hole 4a into which the diffuser tube 3 can be inserted.

さらに、本実施形態の散気装置1は、スカート部4の下端部にスカート開口部が設けられてなる。図1の散気装置においては、スカート開口部は、散気管挿入孔4aとして設けられてなる。
また、本実施形態の散気装置1は、スカート部4がない場合に貫通孔2aから散気されずに他の部分から漏出される気泡が生じないようにスカート開口部4aが形成されてなる。本実施形態の散気装置1は、例えば、多孔板2の径が約124mmである場合には、吐出口3aの開口面の中心とスカート開口部の上端との鉛直方向の距離が、該開口面の中心が下方にある時、51mm以下であることが好ましい。
Further, the air diffuser 1 according to the present embodiment has a skirt opening provided at the lower end of the skirt 4. In the air diffuser of FIG. 1, the skirt opening is provided as the air diffuser insertion hole 4a.
Further, in the air diffuser 1 according to the present embodiment, when the skirt portion 4 is not provided, the skirt opening 4a is formed so that bubbles that are not diffused from the through hole 2a and are not leaked from other portions are generated. . For example, when the diameter of the perforated plate 2 is about 124 mm, the air diffuser 1 of the present embodiment has a vertical distance between the center of the opening surface of the discharge port 3a and the upper end of the skirt opening. When the center of the surface is below, it is preferably 51 mm or less.

本実施形態の散気方法は、本実施形態の散気装置1で、汚泥混合液中に気泡を散気させる方法である。   The air diffusing method of the present embodiment is a method of diffusing air bubbles in the sludge mixed solution with the air diffusing device 1 of the present embodiment.

次に、本実施形態に係る膜モジュールについて説明する。
図6に示すように、本実施形態に係る膜モジュール10は、本実施形態に係る散気装置1を備え、該散気装置1の多孔板2の上部には、複数の分離膜が束となって構成された分離膜部20が設けられて形成されてなる。
Next, the membrane module according to this embodiment will be described.
As shown in FIG. 6, the membrane module 10 according to the present embodiment includes the air diffuser 1 according to the present embodiment, and a plurality of separation membranes are bundled on the upper portion of the porous plate 2 of the air diffuser 1. The separation membrane part 20 configured as described above is provided and formed.

前記分離膜部20を構成する分離膜は、多数の微細孔が形成された多孔性膜が筒状に形成されてなるものであり、その下端部が閉塞された状態で多孔板2の上部に設けられ、上端部が開口した状態で吸引手段(図示せず)に連結されている。   The separation membrane constituting the separation membrane portion 20 is formed by forming a porous membrane in which a large number of micropores are formed into a cylindrical shape, with the lower end portion being closed, on the upper portion of the porous plate 2. It is provided and connected to a suction means (not shown) with its upper end opened.

前記分離膜を形成する素材は、特に限定されるものではないが、該素材としては、例えば、酢酸セルロース、芳香族ポリアミド、ポリビニールアルコール、ポリフッ化ビニリデン、ポリテトラフルオロエチレン等が挙げられる。   The material for forming the separation membrane is not particularly limited, and examples of the material include cellulose acetate, aromatic polyamide, polyvinyl alcohol, polyvinylidene fluoride, and polytetrafluoroethylene.

次に、本実施形態に係る膜分離装置及び膜分離方法について説明する。
本実施形態に係る膜分離装置は、汚泥混合液が収容される槽を備え、該槽たる膜分離槽内には、本実施形態に係る膜モジュールが浸漬膜として設けられてなる装置である。
また、本実施形態に係る膜分離方法は、本実施形態に係る膜モジュール10で、汚泥混合液を膜分離して浄化水を得る方法である。具体的には、本実施形態に係る膜分離方法は、微生物を含む膜分離槽内に前記膜モジュール10を汚泥混合液に浸漬状態で設置し、有機物等の処理対象物質を含む廃水を該槽内に供給して、微生物の作用により廃水中の処理対象物質を分解し、膜分離して浄化水を得る方法である。
Next, the membrane separation apparatus and the membrane separation method according to this embodiment will be described.
The membrane separation apparatus according to the present embodiment includes a tank in which a sludge mixed solution is accommodated, and the membrane module according to the present embodiment is provided as an immersion film in the membrane separation tank as the tank.
Further, the membrane separation method according to the present embodiment is a method for obtaining purified water by membrane separation of the sludge mixed solution with the membrane module 10 according to the present embodiment. Specifically, in the membrane separation method according to the present embodiment, the membrane module 10 is placed in a sludge mixed solution in a membrane separation tank containing microorganisms, and waste water containing a treatment target substance such as organic matter is placed in the tank. This is a method of supplying purified water by decomposing the substance to be treated in the wastewater by the action of microorganisms and separating the membrane to obtain purified water.

前記廃水は、特に限定されるものではないが、該廃水としては、例えば、生活廃水や、食品工場、化学工場、電子産業工場、パルプ工場等の工場の廃水等が挙げられる。   The waste water is not particularly limited, and examples of the waste water include domestic waste water and waste water from factories such as food factories, chemical factories, electronic industry factories, and pulp factories.

本実施形態に係る膜分離方法は、主に汚泥混合液のMLSS(固形物濃度)が30000mg/L以下、好ましくは、20000〜25000mg/Lとなるものにおいても用いることができる。このように、汚泥混合液中のMLSSが高い場合でも、散気管3の内径が16mm以上であることにより、散気管3が汚泥によって閉塞され難くなるため、散気管から必要量の気泡が正常に吐出され、貫通孔2aから略均一に気泡を散気させることができ、貫通孔2aの孔が目詰まりし難くなる。   The membrane separation method according to the present embodiment can also be used mainly in the case where the MLSS (solid matter concentration) of the sludge mixed solution is 30000 mg / L or less, preferably 20000 to 25000 mg / L. Thus, even when the MLSS in the sludge mixed liquid is high, the inner diameter of the air diffuser 3 is 16 mm or more, so that the air diffuser 3 is less likely to be blocked by the sludge. It is discharged and air bubbles can be diffused substantially uniformly from the through hole 2a, and the hole of the through hole 2a is less likely to be clogged.

本実施形態に係る膜分離方法は、気体供給手段から供給された気体を吐出口3aから気泡として吐出することにより、該気泡は、浮力で上昇しながら水平方向にも拡散して多孔板2まで到達する。そして、該気泡は、前記多孔板2の貫通孔2aを通って更に細かな気泡となり、分離膜を覆うようにして分離膜を揺り動かしながら上昇することとなる。これにより、該気泡は、分離膜に付着した付着物を剥がし取り、また、付着物が付着するのを抑制することが可能となる。   In the membrane separation method according to the present embodiment, the gas supplied from the gas supply means is discharged as bubbles from the discharge port 3a, so that the bubbles diffuse in the horizontal direction while rising by buoyancy and reach the porous plate 2. To reach. The bubbles pass through the through holes 2a of the perforated plate 2 to become finer bubbles, and rise while shaking the separation membrane so as to cover the separation membrane. Thereby, it becomes possible for the bubbles to peel off the adhering matter adhering to the separation membrane and to suppress adhering adhering matter.

本実施形態に係る散気装置、膜モジュール、膜分離装置、及び膜分離方法は、上記のように構成されているので、以下の利点を有するものである。   Since the air diffuser, the membrane module, the membrane separator, and the membrane separation method according to the present embodiment are configured as described above, they have the following advantages.

即ち、本実施形態に係る散気装置は、吐出口3aの開口方向が略水平方向となるように構成されてなることにより、吐出口3aの開口方向が下方となるように構成されている場合と異なり下方に屈曲した散気管を用いる必要がなくなり、散気管が配置される上下方向の空間を小規模化することが容易となるため、散気装置を配置する空間の小規模化をより一層図ることができるという利点がある。   That is, the diffuser according to the present embodiment is configured such that the opening direction of the discharge port 3a is downward by being configured so that the opening direction of the discharge port 3a is substantially horizontal. Unlike the above, it is no longer necessary to use a diffusing pipe bent downward, and it is easy to downsize the vertical space in which the diffusing pipe is arranged. Therefore, the space in which the diffusing apparatus is arranged can be further reduced in size. There is an advantage of being able to plan.

なお、本実施形態に係る散気装置、膜モジュール、膜分離装置、及び膜分離方法は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更が可能である。   The diffuser, the membrane module, the membrane separator, and the membrane separation method according to this embodiment are not limited to the above embodiment, and various modifications can be made without departing from the scope of the present invention. is there.

例えば、上記実施形態は、散気装置1を分離膜部20と共に用いているが、本発明は、これに限定されるものではなく、分離膜部20を用いずに散気装置1を用いても良い。   For example, although the said embodiment uses the diffuser 1 with the separation membrane part 20, this invention is not limited to this, The diffuser 1 is used without using the separation membrane part 20. Also good.

また、本実施形態に係る散気装置は、吐出口3aの開口方向が略水平方向となるように構成されてなるが、吐出口3aの開口方向が鉛直下方向、及び水平方向と鉛直下方向との間の方向の何れかの方向となるように構成されてもよい。   Further, the air diffuser according to the present embodiment is configured such that the opening direction of the discharge port 3a is substantially horizontal, but the opening direction of the discharge port 3a is vertically downward, and the horizontal direction and vertically downward direction. It may be configured to be in any direction between the two.

さらに、本実施形態に係る膜分離装置は、水処理槽が設けられ、該水処理槽に廃水が移送され、該水処理槽において微生物により該廃水中の処理対象物質が分解され、該水処理槽から排出された汚泥混合液の上澄水が前記膜分離槽に移送されて汚泥混合液として膜分離処理されるように構成されてもよい。   Furthermore, the membrane separation apparatus according to the present embodiment is provided with a water treatment tank, waste water is transferred to the water treatment tank, and a target substance in the waste water is decomposed by microorganisms in the water treatment tank. The supernatant water of the sludge mixture discharged from the tank may be transferred to the membrane separation tank and subjected to membrane separation treatment as a sludge mixture.

以下、本発明の実施例について説明する。   Examples of the present invention will be described below.

(1)散気管:下記表1に記載の吐出口の内径となる散気管を用いた。
(2)多孔板:前記多孔板の貫通孔(直径:約10mm)を囲み且つ最小となる円(以下、「囲み円」ともいう。)の直径Dが124mmとなる多孔板(貫通孔の個数:24個)を用いた。
(3)散気装置
上記散気管及び上記多孔板を以下のように配して散気装置を作製した。
即ち、吐出口の開口面の中心が、囲み円の直径の中心の略真下に位置し、吐出口の開口方向が、水平方向となり、多孔板の下面と吐出口の開口面の中心との距離(以下、「多孔板と吐出口との距離」ともいう。)Lが、下記表1のようになるように、実施例及び比較例の散気装置を作製した。
(1) Air diffuser tube: An air diffuser tube having the inside diameter of the discharge port described in Table 1 below was used.
(2) Perforated plate: A perforated plate (the number of through holes) in which the diameter D of a circle (hereinafter also referred to as “enclosed circle”) that surrounds and minimizes the through hole (diameter: about 10 mm) of the porous plate is 124 mm : 24).
(3) Air diffuser The air diffuser and the perforated plate were arranged as follows to produce an air diffuser.
That is, the center of the opening surface of the discharge port is located almost directly below the center of the diameter of the surrounding circle, the opening direction of the discharge port is the horizontal direction, and the distance between the lower surface of the perforated plate and the center of the opening surface of the discharge port (Hereinafter, also referred to as “distance between the perforated plate and the discharge port”.) Air diffusers of Examples and Comparative Examples were manufactured so that L was as shown in Table 1 below.

<試験例1:各貫通孔から散気される気泡の均一性>
実施例及び比較例の散気装置を水道水を入れる槽の中に配置し、多孔板の上面から1000mmの位置に液面が位置するように槽内に水道水を満たした。
そして、気体が吐出量10m3/hで吐出口から吐出するように気体供給手段で気体を散気装置に供給し、各貫通孔から散気される気泡の均一性を5分間目視で確認して評価した。
各貫通孔から散気される気泡の均一性は、以下の基準で評価した。
◎: 各貫通孔から常に略均一に気泡が散気した。
○: 外側の貫通孔から散気される気泡の量が若干少ない場合もあったが、観察時間を通してほとんど各貫通孔から略均一に気泡が散気した。
△: 外側の貫通孔から散気される気泡の量が少なかった。
×: 外側の貫通孔から気泡がでなかった。
<Test Example 1: Uniformity of bubbles diffused from each through hole>
The diffuser of Example and Comparative Example was placed in a tank into which tap water was placed, and the tank was filled with tap water so that the liquid level was located at a position 1000 mm from the upper surface of the perforated plate.
Then, gas is supplied to the diffuser by the gas supply means so that the gas is discharged from the discharge port at a discharge rate of 10 m 3 / h, and the uniformity of the bubbles diffused from each through hole is visually confirmed for 5 minutes. And evaluated.
The uniformity of bubbles diffused from each through hole was evaluated according to the following criteria.
A: Air bubbles were diffused almost uniformly from each through hole.
○: The amount of bubbles diffused from the outer through-holes was slightly small, but the bubbles were almost uniformly diffused from each through-hole throughout the observation time.
Δ: The amount of bubbles diffused from the outer through-hole was small.
X: Air bubbles were not generated from the outer through-holes.

<試験例2:散気管の目詰まり難さ>
実施例及び比較例の散気装置を汚泥混合液(MLSS:25000mg/L)を入れる槽の中に配置し、多孔板の上面から3000mmの位置に液面が位置するように槽内に汚泥混合液を満たした。
そして、気体が吐出量10m3/hで吐出口から吐出するように気体供給手段で気体を散気装置に供給し、2週間稼動させた後、散気管の目詰まり難さを目視で確認して評価した。
散気管の目詰まり難さは、以下の基準で評価した。
○: 散気管内が汚泥により閉塞されなかった。
×: 散気管内が汚泥により閉塞された。
<Test Example 2: Difficulty of clogging the diffuser tube>
The air diffuser of Example and Comparative Example is placed in a tank containing sludge mixed liquid (MLSS: 25000 mg / L), and sludge mixed in the tank so that the liquid level is located at a position of 3000 mm from the upper surface of the perforated plate. Filled with liquid.
The gas is supplied to the air diffuser by the gas supply means so that the gas is discharged from the discharge port at a discharge rate of 10 m 3 / h. After operating for 2 weeks, the difficulty of clogging the air diffuser is visually confirmed. And evaluated.
The difficulty of clogging the air diffuser was evaluated according to the following criteria.
○: The inside of the air diffuser was not blocked by sludge.
×: The inside of the air diffuser was blocked by sludge.

Figure 2010188278
Figure 2010188278

表1に示すように、吐出口の内径が16mmよりも小さい比較例1〜5の散気装置に比して、実施例の散気装置は、散気管が目詰まりし難かった。また、L/Dの値が0.8よりも小さい比較例1、2、6〜11の散気装置に比して、実施例の散気装置は、各散気孔から散気される気泡の均一性が良好の結果を示した。   As shown in Table 1, as compared with the diffusers of Comparative Examples 1 to 5 in which the inner diameter of the discharge port was smaller than 16 mm, the diffuser of the example was less likely to clog the diffuser tube. Moreover, compared with the diffuser of Comparative Examples 1, 2, and 6 to 11 in which the value of L / D is smaller than 0.8, the diffuser of the example has the bubble diffused from each diffuser hole. The results showed good uniformity.

1:散気装置、2:多孔板、2a:貫通孔、3:散気管、3a:吐出口、3b:屈曲部、3c:連結部、4:スカート部、4a:散気管挿入孔(スカート開口部)、10:膜モジュール、20:分離膜部   DESCRIPTION OF SYMBOLS 1: Air diffuser, 2: Perforated plate, 2a: Through-hole, 3: Air diffuser, 3a: Discharge port, 3b: Bending part, 3c: Connection part, 4: Skirt part, 4a: Air diffuser insertion hole (skirt opening) Part), 10: membrane module, 20: separation membrane part

Claims (7)

複数の貫通孔を有する多孔板と、汚泥混合液中に気泡を吐出する吐出口が前記多孔板の下方に位置するように配された散気管とを備えてなる散気装置であって、
前記吐出口の開口面の中心が、前記多孔板の貫通孔を囲み且つ最小となる円の中心の略真下に位置し、前記吐出口の開口方向が、水平方向、鉛直下方向、及び水平方向と鉛直下方向との間の方向の何れかの方向となるように構成されてなり、
前記吐出口の内径は、16mm以上であり、
前記円の直径Dに対する前記多孔板の下面と前記吐出口の開口面の中心との距離Lの比(L/D)は、0.8〜1.2であることを特徴とする散気装置。
A diffuser comprising: a porous plate having a plurality of through holes; and an air diffuser arranged so that a discharge port for discharging air bubbles in the sludge mixed solution is positioned below the porous plate,
The center of the opening surface of the discharge port is located substantially directly below the center of the circle that surrounds and is the smallest circle surrounding the through hole of the perforated plate, and the opening direction of the discharge port is a horizontal direction, a vertically downward direction, and a horizontal direction. Is configured to be any direction between the vertical direction and the vertical downward direction,
The discharge port has an inner diameter of 16 mm or more,
The ratio (L / D) of the distance L between the lower surface of the perforated plate and the center of the opening surface of the discharge port with respect to the diameter D of the circle is 0.8 to 1.2. .
前記多孔板の外周部に下向きに延びるスカート部が設けられてなることを特徴とする請求項1記載の散気装置。   The diffuser according to claim 1, wherein a skirt portion extending downward is provided on an outer peripheral portion of the perforated plate. 前記スカート部の下端部には、開口部が設けられてなることを特徴とする請求項2記載の散気装置。   The diffuser according to claim 2, wherein an opening is provided at a lower end portion of the skirt portion. 請求項1〜3の何れかに記載の散気装置を備え、該散気装置の多孔板の上部には、複数の分離膜が束になって構成された分離膜部が設けられて形成されてなる膜モジュール。   A gas diffusing device according to any one of claims 1 to 3 is provided, and an upper part of a perforated plate of the air diffusing device is formed by providing a separation membrane part configured by a plurality of separation membranes being bundled. Membrane module. 汚泥混合液が収容される槽を備え、該槽内には、請求項4記載の膜モジュールが浸漬膜として設けられてなる膜分離装置。   A membrane separation apparatus comprising a tank in which a sludge mixed solution is accommodated, wherein the membrane module according to claim 4 is provided as an immersion membrane in the tank. 請求項1〜3の何れかに記載の散気装置で、汚泥混合液中に気泡を散気させる散気方法。   The aeration apparatus according to any one of claims 1 to 3, wherein an air bubble is diffused into the sludge mixed liquid. 請求項4記載の膜モジュールで、汚泥混合液を膜分離して浄化水を得る膜分離方法。   5. A membrane separation method according to claim 4, wherein the sludge mixed solution is subjected to membrane separation to obtain purified water.
JP2009035138A 2009-02-18 2009-02-18 Gas diffuser, membrane module, membrane separator, gas diffusion method and membrane separation method Pending JP2010188278A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009035138A JP2010188278A (en) 2009-02-18 2009-02-18 Gas diffuser, membrane module, membrane separator, gas diffusion method and membrane separation method
PCT/JP2010/052243 WO2010095609A1 (en) 2009-02-18 2010-02-16 Diffuser, membrane module, membrane separation apparatus, diffusion method, and membrane separation method
CN2010800075440A CN102317217A (en) 2009-02-18 2010-02-16 Diffuser, membrane module, membrane separation apparatus, diffusion method, and membrane separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009035138A JP2010188278A (en) 2009-02-18 2009-02-18 Gas diffuser, membrane module, membrane separator, gas diffusion method and membrane separation method

Publications (1)

Publication Number Publication Date
JP2010188278A true JP2010188278A (en) 2010-09-02

Family

ID=42633889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009035138A Pending JP2010188278A (en) 2009-02-18 2009-02-18 Gas diffuser, membrane module, membrane separator, gas diffusion method and membrane separation method

Country Status (3)

Country Link
JP (1) JP2010188278A (en)
CN (1) CN102317217A (en)
WO (1) WO2010095609A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6405596B2 (en) * 2015-11-18 2018-10-17 三菱重工環境・化学エンジニアリング株式会社 Membrane module and water treatment system

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002004101A1 (en) * 2000-07-10 2002-01-17 Asahi Kasei Kabushiki Kaisha Hollow thread film cartridge, hollow thread film module using the cartridge, and tank type filter
JP2002525197A (en) * 1998-09-25 2002-08-13 ユー・エス・フィルター・ウェイストウォーター・グループ・インコーポレイテッド Cleaning device and cleaning method for filtration membrane module
JP2003024751A (en) * 2001-07-11 2003-01-28 Asahi Kasei Corp Hollow fiber membrane cartridge
JP2004008981A (en) * 2002-06-10 2004-01-15 Asahi Kasei Corp Membrane separation apparatus
JP2004344848A (en) * 2003-05-26 2004-12-09 Asahi Kasei Chemicals Corp Membrane separation method and device
JP2006021109A (en) * 2004-07-07 2006-01-26 Kobelco Eco-Solutions Co Ltd Hollow fiber membrane module and water treatment equipment using the same
JP2006508786A (en) * 2002-12-05 2006-03-16 ユー・エス・フィルター・ウェイストウォーター・グループ・インコーポレイテッド Mixing chamber
JP2006116495A (en) * 2004-10-25 2006-05-11 Sumitomo Electric Fine Polymer Inc Filter device
JP2007083129A (en) * 2005-09-21 2007-04-05 Asahi Kasei Chemicals Corp Membrane separation unit
WO2008001730A1 (en) * 2006-06-26 2008-01-03 Sumitomo Electric Fine Polymer, Inc. Filtration apparatus
JP2008194680A (en) * 2007-01-18 2008-08-28 Asahi Kasei Chemicals Corp Membrane separation unit
JP2009119354A (en) * 2007-11-14 2009-06-04 Kobelco Eco-Solutions Co Ltd Biological treatment apparatus and method
JP2009285532A (en) * 2008-05-27 2009-12-10 Kobelco Eco-Solutions Co Ltd Hollow fiber membrane module, membrane separation method, and water treatment apparatus
JP2010125360A (en) * 2008-11-26 2010-06-10 Daiki Ataka Engineering Co Ltd Membrane separation apparatus
JP2010125348A (en) * 2008-11-25 2010-06-10 Daiki Ataka Engineering Co Ltd Membrane separation apparatus
JP2011062696A (en) * 2010-11-25 2011-03-31 Kobelco Eco-Solutions Co Ltd Hollow-fiber membrane module and water treatment apparatus using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09131518A (en) * 1995-11-09 1997-05-20 Hitachi Ltd Filter
JP4143453B2 (en) * 2003-03-25 2008-09-03 株式会社神鋼環境ソリューション Membrane separation activated sludge treatment equipment
EP1640057B1 (en) * 2003-06-17 2011-01-05 Asahi Kasei Chemicals Corporation Membrane cartridge, membrane separating device, and membrane separating method

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002525197A (en) * 1998-09-25 2002-08-13 ユー・エス・フィルター・ウェイストウォーター・グループ・インコーポレイテッド Cleaning device and cleaning method for filtration membrane module
WO2002004101A1 (en) * 2000-07-10 2002-01-17 Asahi Kasei Kabushiki Kaisha Hollow thread film cartridge, hollow thread film module using the cartridge, and tank type filter
JP2003024751A (en) * 2001-07-11 2003-01-28 Asahi Kasei Corp Hollow fiber membrane cartridge
JP2004008981A (en) * 2002-06-10 2004-01-15 Asahi Kasei Corp Membrane separation apparatus
JP2006508786A (en) * 2002-12-05 2006-03-16 ユー・エス・フィルター・ウェイストウォーター・グループ・インコーポレイテッド Mixing chamber
JP2004344848A (en) * 2003-05-26 2004-12-09 Asahi Kasei Chemicals Corp Membrane separation method and device
JP2006021109A (en) * 2004-07-07 2006-01-26 Kobelco Eco-Solutions Co Ltd Hollow fiber membrane module and water treatment equipment using the same
JP2006116495A (en) * 2004-10-25 2006-05-11 Sumitomo Electric Fine Polymer Inc Filter device
JP2007083129A (en) * 2005-09-21 2007-04-05 Asahi Kasei Chemicals Corp Membrane separation unit
WO2008001730A1 (en) * 2006-06-26 2008-01-03 Sumitomo Electric Fine Polymer, Inc. Filtration apparatus
JP2008194680A (en) * 2007-01-18 2008-08-28 Asahi Kasei Chemicals Corp Membrane separation unit
JP2009119354A (en) * 2007-11-14 2009-06-04 Kobelco Eco-Solutions Co Ltd Biological treatment apparatus and method
JP2009285532A (en) * 2008-05-27 2009-12-10 Kobelco Eco-Solutions Co Ltd Hollow fiber membrane module, membrane separation method, and water treatment apparatus
JP2010125348A (en) * 2008-11-25 2010-06-10 Daiki Ataka Engineering Co Ltd Membrane separation apparatus
JP2010125360A (en) * 2008-11-26 2010-06-10 Daiki Ataka Engineering Co Ltd Membrane separation apparatus
JP2011062696A (en) * 2010-11-25 2011-03-31 Kobelco Eco-Solutions Co Ltd Hollow-fiber membrane module and water treatment apparatus using the same

Also Published As

Publication number Publication date
WO2010095609A1 (en) 2010-08-26
CN102317217A (en) 2012-01-11

Similar Documents

Publication Publication Date Title
JP2009183939A (en) Membrane separation unit
JP2006305443A (en) Filter
JP2001212587A (en) Method and apparatus for diffusing air of membrane separation activated sludge method
JP3831942B2 (en) Membrane separator
JPH10156159A (en) Mixing and aerating device
JP2008246357A (en) Membrane separation method and apparatus
JP5648387B2 (en) Aeration device and method of operating membrane separation device
JPWO2012117768A1 (en) Membrane separator
JP2008119609A (en) Gas diffusion system and gas diffusion method
WO2010095609A1 (en) Diffuser, membrane module, membrane separation apparatus, diffusion method, and membrane separation method
JP2007098368A (en) Immersed-membrane separation apparatus and method therefor
JPH04290590A (en) Membrane separator in septic tank
WO2010101152A1 (en) Device for membrane separation type activated-sludge treatment and method therefor
JP2002224685A (en) Activated sludge process equipment and method for operating the same
JP2007209908A (en) Microbubble generator
JP2006043631A (en) Immersion type flat membrane-used filtration apparatus
JP2010075875A (en) Cleaning machine of gas-liquid mixed water
JP2010172792A (en) Aeration method and aeration device
JP2016047492A (en) Membrane separation active sludge treatment apparatus
JP2007268415A (en) Immersion type membrane separation apparatus and water producing method
JP4724552B2 (en) Wastewater treatment equipment
JP2011115794A (en) Filter
JP2023073851A (en) Wastewater treatment apparatus and wastewater treatment method
JP2017209618A (en) Air diffuser and air diffusing method
JP2011056384A (en) Membrane separator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111214

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130906

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140124