Nothing Special   »   [go: up one dir, main page]

JP2010151344A - Total heat exchanger - Google Patents

Total heat exchanger Download PDF

Info

Publication number
JP2010151344A
JP2010151344A JP2008328254A JP2008328254A JP2010151344A JP 2010151344 A JP2010151344 A JP 2010151344A JP 2008328254 A JP2008328254 A JP 2008328254A JP 2008328254 A JP2008328254 A JP 2008328254A JP 2010151344 A JP2010151344 A JP 2010151344A
Authority
JP
Japan
Prior art keywords
rib
wall surface
surface part
heat exchanger
total heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008328254A
Other languages
Japanese (ja)
Other versions
JP5191877B2 (en
Inventor
Sadao Odajima
貞雄 小田島
Kenzo Takahashi
健造 高橋
Makoto Okada
誠 岡田
Akira Inoue
彰 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TECHNO FRONTIER KK
Techno Frontier Ltd
Original Assignee
TECHNO FRONTIER KK
Techno Frontier Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TECHNO FRONTIER KK, Techno Frontier Ltd filed Critical TECHNO FRONTIER KK
Priority to JP2008328254A priority Critical patent/JP5191877B2/en
Publication of JP2010151344A publication Critical patent/JP2010151344A/en
Application granted granted Critical
Publication of JP5191877B2 publication Critical patent/JP5191877B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a total heat exchanger further improving total heat exchange efficiency. <P>SOLUTION: The total heat exchanger exchanges sensible heat and latent heat of two kinds of gases through a partition film 1 by vertically laminating a plurality of partition films 1 and heat exchange members 4 comprising air course forming members 3 bonded to the partition films 1 to form air courses 2. The air course forming member 3 is formed with a plurality of strip rib parts 14 with a predetermined small width dimension (w) by blanking a plurality of window parts 9 from a corrugated fiberboard material having an upper wall surface part 5, a lower wall surface part and a large number of parallel rib pieces 7 connecting the upper wall surface part 5 to the lower wall surface part. The strip rib part 14 is formed so that its longitudinal direction obliquely intersects the disposed direction of the rib pieces 7. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、仕切膜を介して新鮮な外気の給気と汚れた室内空気の排気を行なうことにより顕熱および潜熱を同時に熱交換させる全熱交換器に関するものであり、空調システムや換気機器に組み込んで用いられる対向流型又は直交流型の全熱交換器に関するものである。   The present invention relates to a total heat exchanger that simultaneously exchanges sensible heat and latent heat by supplying fresh outside air and exhausting dirty indoor air through a partition membrane. The present invention relates to a counter-flow type or cross-flow type total heat exchanger that is incorporated and used.

近年、冷暖房効果を高めるために居住空間の高断熱化、高機密化が進むにつれて、室内空気の汚染が問題となり、換気の重要性が再認識されてきている。冷暖房効果を損なわずに換気を行なう方法として、給気と排気の間で熱交換する方法が有効である。この時、温度(顕熱)と共に湿度(潜熱)の交換も同時に行なうことができればその効果は著しい。この要求に答えるものとして、例えば特許文献1の図面に記載されているような給気と排気を仕切板を介して全熱交換させる直向流型全熱交換器がある。
この直交流型全熱交換器は図14に示すように平らな熱交換板41と波形の風路形成板42(但し、図14ではこの風路形成板42は過大に描いているが実際は十分小さなピッチと高さの波形である)を貼り合わせた熱交換部材43を交互に積層する際に、風路形成板42の方向を一段おきに直交させることにより、給気風路と排気風路を形成する。例えば給気として冬期の戸外の新鮮であるが冷たくて乾燥した空気を通し、排気として暖房された室内の汚れているが暖かくて湿度の高い空気を通してやると、上記熱交換板41を介して温度と湿度の交換が行なわれ、給気は暖められ、加湿された室内に給気される。一方排気は冷やされ、減湿されて屋外に排気される。
In recent years, contamination of indoor air has become a problem as the heat insulation and high secrecy of living spaces have progressed in order to enhance the heating and cooling effect, and the importance of ventilation has been recognized again. As a method of performing ventilation without impairing the air conditioning effect, a method of exchanging heat between supply air and exhaust is effective. At this time, if the temperature (sensible heat) and the humidity (latent heat) can be exchanged simultaneously, the effect is remarkable. As a response to this requirement, for example, there is a direct flow type total heat exchanger that performs total heat exchange between supply air and exhaust gas via a partition plate as described in the drawing of Patent Document 1.
As shown in FIG. 14, this cross-flow type total heat exchanger has a flat heat exchange plate 41 and a corrugated air passage forming plate 42 (however, in FIG. 14, this air passage forming plate 42 is drawn excessively, it is actually sufficient. When alternately stacking the heat exchange members 43 with a small pitch and height waveform), the direction of the air passage forming plate 42 is made to be orthogonal to every other stage, so that the supply air passage and the exhaust air passage are Form. For example, if fresh air outside the winter in the winter is supplied as air supply, and air is passed through dirty and warm air that is heated and exhausted as exhaust air, the temperature is transferred via the heat exchange plate 41. The humidity is exchanged, and the supply air is warmed and supplied to the humidified room. On the other hand, the exhaust is cooled, dehumidified and exhausted outdoors.

平らな熱交換板41と波形をした風路形成板42を接着した前記直交流型全熱交換器は製造方法が容易であるので従来より市販されているが、接着部分が顕熱の伝熱は有効であるが潜熱の伝熱(水蒸気の透過)には無効である。また、直交流型全熱交換器は原理的に対交流型全熱交換器よりも熱交換効率が低く、上記二つの理由より全熱交換効率は50%〜60%が限界であった。   The cross-flow type total heat exchanger in which the flat heat exchange plate 41 and the corrugated air channel forming plate 42 are bonded is commercially available because it is easy to manufacture, but the bonded portion has sensible heat transfer. Is effective but not effective for latent heat transfer (water vapor transmission). Further, the cross flow type total heat exchanger has a lower heat exchange efficiency in principle than the counter-current type total heat exchanger, and the total heat exchange efficiency is limited to 50% to 60% for the above two reasons.

そこで、図12や図13に示すような段ボール素材8から、図15に示すように、複数の窓部44を打ち抜いた風路形成部材45を仕切膜(図示省略)と交互に積層させて、全熱交換効率を向上させたものがある。段ボール素材8は、上壁面部5と、下壁面部6と、上壁面部5と下壁面部6とを連結する平行な多数のリブ片7とが、一体成形されたプラスチックから成る。そして、従来は、例えば、図15に示すように、段ボール素材8が、(周囲枠部以外に)リブ片7の配設方向と平行な方向の(図15の左右方向の)5本の帯リブ部46と、リブ片7の配設方向と直交する方向の(図15の上下方向の)1本の帯リブ部46を残して、上記窓部44を打ち抜かれていた。
しかし、図16に示すように、強度上、帯リブ部46に少なくとも1本の段ボール素材8のリブ片7が配設されるように構成するために、リブ片7の間隔寸法p(図12・図13参照)に対して帯リブ部46を太くしなければならないという欠点があった。
Therefore, from the corrugated board material 8 as shown in FIG. 12 or FIG. 13, as shown in FIG. 15, the air passage forming member 45 in which the plurality of window portions 44 are punched is alternately laminated with a partition film (not shown), Some have improved total heat exchange efficiency. The cardboard material 8 is made of plastic in which an upper wall surface portion 5, a lower wall surface portion 6, and a large number of parallel rib pieces 7 that connect the upper wall surface portion 5 and the lower wall surface portion 6 are integrally formed. Conventionally, for example, as shown in FIG. 15, the corrugated cardboard material 8 (in addition to the peripheral frame portion) has five strips (in the left-right direction in FIG. 15) parallel to the direction in which the rib pieces 7 are arranged. The window portion 44 was punched out, leaving the rib portion 46 and one band rib portion 46 in the direction perpendicular to the direction in which the rib pieces 7 were arranged (in the vertical direction in FIG. 15).
However, as shown in FIG. 16, in order to construct the belt rib portion 46 so that at least one rib piece 7 of the corrugated cardboard material 8 is disposed on the belt rib portion 46 as shown in FIG. (Refer to FIG. 13) There is a disadvantage that the band rib portion 46 must be thickened.

図17は、他の従来例を示す。風路形成部材45が、リブ片7の配設方向と直交する方向の帯リブ部46を2本有するものである。   FIG. 17 shows another conventional example. The air passage forming member 45 has two band rib portions 46 in a direction orthogonal to the direction in which the rib pieces 7 are arranged.

図18は、さらに他の従来例を示す。この全熱交換器は、対交流型全熱交換器であって、風路形成部材45が、ひとつの四角形部45Aと、四角形部45Aの対辺に配設されたふたつの三角形部45Bをあわせた六角形状をしている。段ボール素材8が、リブ片7の配設方向と平行又は直交する方向の帯リブ部46を残して窓部44を打ち抜かれている。   FIG. 18 shows still another conventional example. This total heat exchanger is a counter-current type total heat exchanger, and the air path forming member 45 is composed of one square portion 45A and two triangular portions 45B disposed on opposite sides of the square portion 45A. It has a hexagonal shape. The corrugated cardboard material 8 is punched out of the window portion 44 leaving a band rib portion 46 in a direction parallel or perpendicular to the direction in which the rib pieces 7 are arranged.

図15,図17,図18のいずれも風路とリブ片7の長手方向は平行であり、エアー流は層流に近く、圧力損失は低いが仕切膜に対する熱伝達係数が小さいという問題があった。また、図17,図18の従来例でも、図15の従来例と同様に、リブ片7の間隔寸法pに対して帯リブ部46の幅寸法Wを太くしなければならないという欠点があった。
特公昭47−19990号公報
15, 17, and 18, the longitudinal direction of the air channel and the rib piece 7 are parallel, the air flow is close to the laminar flow, and the pressure loss is low, but the heat transfer coefficient to the partition membrane is small. It was. Further, the conventional examples of FIGS. 17 and 18 also have the disadvantage that the width dimension W of the band rib portion 46 must be increased with respect to the interval dimension p of the rib pieces 7 as in the conventional example of FIG. .
Japanese Patent Publication No.47-19990

解決しようとする課題は、リブ片の間隔寸法に対して帯リブ部を太くしなければならない点である。また、全熱交換効率が頭打ちになっている(一定の全熱交換効率以上に向上させることができない)点である。   The problem to be solved is that the band rib portion must be thicker than the interval between the rib pieces. In addition, the total heat exchange efficiency has reached its peak (it cannot be improved beyond a certain total heat exchange efficiency).

そこで、本発明に係る全熱交換器は、仕切膜と該仕切膜に接着されて風路を形成する風路形成部材から成る熱交換部材を、複数枚上下に積層し、該仕切膜を介して二種類の気体の顕熱および潜熱を熱交換させる全熱交換器において、上記風路形成部材が、上壁面部と、下壁面部と、該上壁面部と下壁面部とを連結する平行な多数のリブ片とを有する段ボール素材から複数の窓部を打抜いて、所定小幅寸法の複数本の細帯リブ部が形成され、かつ、該細帯リブ部の長手方向が上記リブ片の配設方向と、斜交するように構成されているものである。   Therefore, the total heat exchanger according to the present invention includes a plurality of heat exchange members, each of which is composed of a partition film and an air path forming member that is bonded to the partition film to form an air path, and is interposed through the partition film. In the total heat exchanger for exchanging sensible heat and latent heat of two kinds of gases, the air path forming member is a parallel connecting the upper wall surface portion, the lower wall surface portion, and the upper wall surface portion and the lower wall surface portion. A plurality of window portions are punched from a corrugated cardboard material having a large number of rib pieces to form a plurality of narrow strip rib portions having a predetermined small width dimension, and the longitudinal direction of the narrow strip rib portions is the same as that of the rib pieces. It is configured so as to be oblique to the arrangement direction.

また、仕切膜と該仕切膜に接着されて風路を形成する風路形成部材から成る熱交換部材を、複数枚上下に積層し、該仕切膜を介して二種類の気体の顕熱および潜熱を熱交換させる全熱交換器において、上記風路形成部材が、上壁面部と、下壁面部と、該上壁面部と下壁面部とを連結する平行な多数のリブ片とを有する段ボール素材から複数の窓部を打抜いて、所定小幅寸法の複数本の細帯リブ部が形成され、かつ、該細帯リブ部は、上り勾配部と下り勾配部とを交互に有する平面視ジグザグ形状であって、該細帯リブ部の上記上り勾配部と下り勾配部は、上記リブ片の配設方向と、斜交するよう構成されているものである。   In addition, a plurality of heat exchange members made up of a partition film and an air path forming member that is bonded to the partition film to form an air path are stacked one above the other, and sensible heat and latent heat of two kinds of gases are passed through the partition film. In the total heat exchanger for exchanging heat, the air path forming member has an upper wall surface portion, a lower wall surface portion, and a large number of parallel rib pieces connecting the upper wall surface portion and the lower wall surface portion. A plurality of narrow rib portions having a predetermined small width are formed by punching a plurality of window portions from, and the narrow rib portions are zigzag in a plan view having alternating ascending and descending gradient portions. And the said up slope part and down slope part of this narrow strip rib part are comprised so that it may cross | intersect with the arrangement | positioning direction of the said rib piece.

また、仕切膜と該仕切膜に接着されて風路を形成する風路形成部材から成る熱交換部材を、複数枚上下に積層し、該仕切膜を介して二種類の気体の顕熱および潜熱を熱交換させる全熱交換器において、上記風路形成部材が、上壁面部と、下壁面部と、該上壁面部と下壁面部とを連結する平行な多数のリブ片とを有する段ボール素材から複数の窓部を打抜いて、所定小幅寸法の複数本の細帯リブ部が形成され、かつ、該細帯リブ部は、山頂部と谷底部とを交互に有する波形であって、上記山頂部と谷底部を除いて、上記細帯リブ部の長手方向が、上記リブ片の配設方向と、斜交するように構成されているものである。
また、上記細帯リブ部の上記小幅寸法wと上記リブ片の間隔寸法pとの間に、 0.5p≦w≦1.2pなる関係式が成立するように設定したものである。
また、上記段ボール素材は、プラスチック,紙,あるいは,金属、又は、それ等を2種以上組合せた複合材から成るものである。
In addition, a plurality of heat exchange members made up of a partition film and an air path forming member that is bonded to the partition film to form an air path are stacked one above the other, and sensible heat and latent heat of two kinds of gases are passed through the partition film. In the total heat exchanger for exchanging heat, the air path forming member has an upper wall surface portion, a lower wall surface portion, and a large number of parallel rib pieces connecting the upper wall surface portion and the lower wall surface portion. A plurality of narrow rib portions having a predetermined small width are formed by punching a plurality of window portions, and the narrow rib portions are corrugated having alternating peaks and valleys, Except for the mountain top and the valley bottom, the longitudinal direction of the narrow rib portion is configured to obliquely intersect the arrangement direction of the rib pieces.
In addition, a relational expression of 0.5p ≦ w ≦ 1.2p is established between the narrow width w of the narrow band rib portion and the interval dimension p of the rib pieces.
The corrugated cardboard material is made of plastic, paper, metal, or a composite material obtained by combining two or more thereof.

本発明の全熱交換器によれば、リブ片の間隔寸法に対して帯リブ部を細くできる(細帯リブ部とすることができる)。その結果、有効透湿面積が拡大して潜熱交換効率が向上する。また、エアー流が乱流に近くなり、仕切膜に対する熱伝達係数が向上し、その結果、顕熱交換効率が向上する。以上より、全熱交換効率をさらに向上させることができる。   According to the total heat exchanger of the present invention, the band rib portion can be made thinner than the rib piece spacing dimension (can be formed as a narrow band rib portion). As a result, the effective moisture permeable area is expanded and the latent heat exchange efficiency is improved. In addition, the air flow becomes close to turbulent flow, the heat transfer coefficient for the partition film is improved, and as a result, the sensible heat exchange efficiency is improved. As described above, the total heat exchange efficiency can be further improved.

図1は、本発明の第1の実施の形態の使用状態の一例を示す図であり、室内Xと屋外Yとを分ける壁Zには、内部に直交流型全熱交換器40を備えたケーシング25が付設されている。また、ケーシング25内には、給気送風機12と排気送風機13とが設けられ、室内X側の吸込口26aと屋外Y側の吸込口26b近傍には、フィルタ24が取付けられている。給気送風機12は、給気風路10(図3参照)の下流側に配設されると共に、排気送風機13は、排気風路11(図3参照)の下流側に配設されて、この全熱交換器40は両吸込方式に形成される。Aは風路形成部材3により形成された給気風路10を流れる空気(給気空気)の流れを示し、Bは風路形成部材3により形成された排気風路11を流れる空気(排気空気)の流れを示す。すなわち、32は給気入口を示し、31は給気出口を示す。また、34は排気入口を示し、33は排気出口を示す。ケーシング25内で、給気空気と排気空気を混在させず全熱交換器40を通過させるために複数個の間仕切板27が設けられる。   FIG. 1 is a diagram showing an example of a usage state of the first embodiment of the present invention, and a wall Z separating an indoor X and an outdoor Y is provided with a cross-flow type total heat exchanger 40 inside. A casing 25 is attached. In addition, an air supply fan 12 and an exhaust fan 13 are provided in the casing 25, and a filter 24 is attached in the vicinity of the suction port 26a on the indoor X side and the suction port 26b on the outdoor Y side. The supply air blower 12 is disposed downstream of the supply air passage 10 (see FIG. 3), and the exhaust blower 13 is disposed downstream of the exhaust air passage 11 (see FIG. 3). The heat exchanger 40 is formed in a double suction system. A shows the flow of air (supply air) flowing through the supply air passage 10 formed by the air passage formation member 3, and B shows the air (exhaust air) flowing through the exhaust air passage 11 formed by the air passage formation member 3. Shows the flow. That is, 32 indicates an air supply inlet, and 31 indicates an air supply outlet. Reference numeral 34 denotes an exhaust inlet, and 33 denotes an exhaust outlet. In the casing 25, a plurality of partition plates 27 are provided in order to let the total heat exchanger 40 pass without mixing the supply air and the exhaust air.

図2〜図5は、本発明の第1の実施の形態を示す。この全熱交換器は、仕切膜1と仕切膜1に接着されて風路2を形成する風路形成部材3から成る熱交換部材4を、複数枚上下に積層し、仕切膜1を介して二種類の気体の顕熱および潜熱を熱交換させる全熱交換器である。仕切膜1は、例えば、ポリエチレン、ポリプロピレン、酢酸セルロース、ポリテトラフレオロエチレン等を素材とする多孔質シートの表面に親水性高分子の薄膜を塗布した透湿膜から成る。風路形成部材3が、図12又は図13に示すような、上壁面部5と、下壁面部6と、上壁面部5と下壁面部6とを連結する平行な多数のリブ片7とが、一体成形されたプラスチック(例えばポリプロピレン),紙,あるいは,金属、又は、それ等を2種以上適宜組合せた複合材から成る段ボール素材8から、複数の窓部9を打抜いて、所定小幅寸法wの複数本の細帯リブ部14が形成され、かつ、細帯リブ部14の長手方向がリブ片7の配設方向と、斜交するように構成されている。   2 to 5 show a first embodiment of the present invention. In this total heat exchanger, a plurality of heat exchange members 4 each consisting of a partition film 1 and an air path forming member 3 bonded to the partition film 1 to form an air path 2 are stacked one above the other. It is a total heat exchanger that exchanges sensible heat and latent heat of two kinds of gases. The partition membrane 1 is made of a moisture permeable membrane in which a hydrophilic polymer thin film is applied to the surface of a porous sheet made of, for example, polyethylene, polypropylene, cellulose acetate, polytetrafluoroethylene, or the like. The air passage forming member 3 includes an upper wall surface portion 5, a lower wall surface portion 6, and a large number of parallel rib pieces 7 that connect the upper wall surface portion 5 and the lower wall surface portion 6 as shown in FIG. However, a plurality of window portions 9 are punched out of a cardboard material 8 made of integrally molded plastic (for example, polypropylene), paper, metal, or a composite material obtained by appropriately combining two or more of them, and has a predetermined small width. A plurality of narrow strip rib portions 14 having a dimension w are formed, and the longitudinal direction of the narrow strip rib portions 14 is configured to be oblique to the arrangement direction of the rib pieces 7.

リブ片7の配設方向とは、リブ片7の長手方向(風路の方向)のことをいう。図4では、リブ片7の配設方向は、点線の矢印方向(図の左右方向)である。図5に示すように、細帯リブ部14の長手方向に沿った断面において、段ボール素材8のリブ片7が多数存在するので、細帯リブ部14が細くても強度的に優れる。   The arrangement direction of the rib pieces 7 refers to the longitudinal direction of the rib pieces 7 (the direction of the air path). In FIG. 4, the arrangement direction of the rib piece 7 is a dotted arrow direction (left-right direction in the figure). As shown in FIG. 5, in the cross section along the longitudinal direction of the narrow rib portion 14, there are a large number of rib pieces 7 of the corrugated cardboard material 8. Therefore, even if the narrow rib portion 14 is thin, the strength is excellent.

細帯リブ部14の上記小幅寸法w(図4参照)とリブ片7,7の間隔寸法p(図12・図13参照)との間に、 0.5p≦w≦ 1.2pなる関係式が成立するように設定されている。w< 0.5pの場合、強度不足となるおそれがある。また、 1.2p<wの場合、有効透湿面積が減少して潜熱交換効率が低下する。そして、全熱交換効率が低下する。   A relational expression of 0.5p ≦ w ≦ 1.2p is established between the small width w (see FIG. 4) of the narrow rib portion 14 and the spacing dimension p (see FIGS. 12 and 13) of the rib pieces 7 and 7. It is set to be. If w <0.5p, the strength may be insufficient. When 1.2p <w, the effective moisture permeable area decreases and the latent heat exchange efficiency decreases. And total heat exchange efficiency falls.

図6は、第2の実施の形態を示す。細帯リブ部14は、上り勾配部15と下り勾配部16とを交互に有する平面視ジグザグ形状であって、細帯リブ部14の上り勾配部15と下り勾配部16は、リブ片7の配設方向と、斜交するよう構成されている。その他の構成は、第1の実施の形態と同様である。   FIG. 6 shows a second embodiment. The narrow band rib portion 14 has a zigzag shape in plan view having alternating up slope portions 15 and down slope portions 16, and the up slope portion 15 and the down slope portion 16 of the narrow rib portion 14 are formed on the rib pieces 7. It is configured to be oblique to the arrangement direction. Other configurations are the same as those of the first embodiment.

図7は、第3の実施の形態を示す。細帯リブ部14は、山頂部17と谷底部18とを交互に有する波形であって、山頂部17と谷底部18を除いて、細帯リブ部14の長手方向が、リブ片7の配設方向と、斜交するように構成されている。その他の構成は、第1の実施の形態と同様である。   FIG. 7 shows a third embodiment. The narrow strip rib portion 14 is a waveform having alternating peak portions 17 and valley bottom portions 18, and the longitudinal direction of the narrow strip rib portion 14 except for the peak top portion 17 and the valley bottom portion 18 is the arrangement of the rib pieces 7. It is configured so as to be oblique to the installation direction. Other configurations are the same as those of the first embodiment.

図8は、第4の実施の形態の使用状態の一例を示す。ケーシング25は、内部に対向流型全熱交換器50を備えている。その他の構成は、第1の実施の形態の使用状態と同様である。   FIG. 8 shows an example of the usage state of the fourth embodiment. The casing 25 includes a counter flow type total heat exchanger 50 inside. Other configurations are the same as in the use state of the first embodiment.

図9は、第4の実施の形態の風路形成部材3を示す。この風路形成部材3は、四角形部19と四角形部19の対辺に配設されたふたつの三角形部20を有する。図9とは三角形部20の風路2の出入口を設ける辺21,22の位置が異なり、風路2(図3参照)の向きも異なるものを、六角形の仕切膜1を介して、図9の風路形成部材3と交互に積層する。その他の構成は、第1の実施の形態と同様である。   FIG. 9 shows the air passage forming member 3 of the fourth embodiment. The air passage forming member 3 has a square portion 19 and two triangular portions 20 disposed on opposite sides of the square portion 19. 9 is different from FIG. 9 in that the positions of the sides 21 and 22 for providing the entrance / exit of the air passage 2 of the triangular portion 20 and the direction of the air passage 2 (see FIG. 3) are different via the hexagonal partition film 1. Nine air path forming members 3 are alternately laminated. Other configurations are the same as those of the first embodiment.

図10は、第5の実施の形態の風路形成部材3を示す。この風路形成部材3は、四角形部19が、第2の実施の形態と同様の構成である。三角形部20は、第1の実施の形態と同様の構成である。   FIG. 10 shows the air passage forming member 3 of the fifth embodiment. The air passage forming member 3 has a rectangular portion 19 having the same configuration as that of the second embodiment. The triangular part 20 has the same configuration as in the first embodiment.

図11は、第6の実施の形態の風路形成部材を示す。この風路形成部材3は、四角形部19が、第3の実施の形態と同様の構成である。三角形部20は、第1の実施の形態と同様の構成である。   FIG. 11 shows an air passage forming member according to a sixth embodiment. In this air passage forming member 3, the rectangular portion 19 has the same configuration as that of the third embodiment. The triangular part 20 has the same configuration as in the first embodiment.

実施例1〜実施例6、および、比較例1〜比較例3として、次のものを作成した。いずれも、風路形成部材3を、厚さ寸法が2mmのプラスチック製段ボール素材を、トムソン打ち抜き加工機にて打ち抜いて製作した。
周囲枠部の幅寸法は実施例および比較例ともに12mm、実施例での細帯リブ部の幅寸法は 3.5mm、比較例での帯リブ部の幅寸法は5mmに設定した。実施例および比較例ともに、直交流型では、外形を一辺の長さ寸法が 225mmの正方形とし、仕切膜と上下に交互に積層させて接着し、全体の高さ寸法を 358mmとした。対交流型では、四角形部を一辺の長さ寸法が 225mmの正方形とした。
As Examples 1 to 6 and Comparative Examples 1 to 3, the following were prepared. In both cases, the air passage forming member 3 was manufactured by punching a plastic cardboard material having a thickness of 2 mm with a Thomson punching machine.
The width dimension of the peripheral frame part was set to 12 mm in both the examples and the comparative examples, the width dimension of the narrow rib part in the example was set to 3.5 mm, and the width dimension of the band rib part in the comparative example was set to 5 mm. In both the example and the comparative example, the cross flow type was a square with a side length of 225 mm, and was laminated with the partition film alternately on the top and bottom, and the total height was 358 mm. In the AC type, the square part is a square with a side length of 225 mm.

具体的には、実施例1は、図4の形状の風路形成部材3を用いた。実施例2は、図6の形状の風路形成部材3を用いた。実施例3は、図7の風路形成部材3を用いた。実施例4は、図9の風路形成部材3およびその向きを変えた風路形成部材3を用いた。実施例5は、図10の風路形成部材3およびその向きを変えた風路形成部材3を用いた。実施例6は、図11の風路形成部材3およびその向きを変えた風路形成部材3を用いた。比較例1は、図15の風路形成部材3を用いた。比較例2は、図17の風路形成部材3を用いた。比較例3は、図18の風路形成部材3およびその向きを変えた風路形成部材3を用いた。   Specifically, in Example 1, the air path forming member 3 having the shape of FIG. 4 was used. In Example 2, the air path forming member 3 having the shape shown in FIG. 6 was used. In Example 3, the air path forming member 3 of FIG. 7 was used. In Example 4, the air passage forming member 3 of FIG. 9 and the air passage forming member 3 whose direction was changed were used. In Example 5, the air passage forming member 3 of FIG. 10 and the air passage forming member 3 whose direction was changed were used. In Example 6, the air passage forming member 3 of FIG. 11 and the air passage forming member 3 whose direction was changed were used. In Comparative Example 1, the air path forming member 3 of FIG. 15 was used. In Comparative Example 2, the air path forming member 3 of FIG. 17 was used. In Comparative Example 3, the air passage forming member 3 of FIG. 18 and the air passage forming member 3 whose direction was changed were used.

実施例および比較例の全熱交換器について、熱交換効率および圧力損失の冬期暖房時の測定結果を表1に示し、夏期冷房時の測定結果を表2に示す。なお、風量は 250m3 /hとした。 Table 1 shows the measurement results of the heat exchange efficiency and pressure loss during winter heating for the total heat exchangers of the examples and comparative examples, and Table 2 shows the measurement results during summer cooling. The air volume was 250 m 3 / h.

Figure 2010151344
Figure 2010151344

Figure 2010151344
Figure 2010151344

上記測定結果より、次のようなことがわかる。すなわち、実施例では気流が乱流になるので圧力損失は高めであるが仕切膜1に対する熱伝達係数が向上し、顕熱交換効率が向上する効果があった。また、有効透湿面積が拡大するので潜熱交換効率も向上した。その結果、全熱交換効率が比較例に比べて約10%程度向上するという効果があった。   From the above measurement results, the following can be understood. That is, in the embodiment, since the air flow becomes turbulent, the pressure loss is high, but the heat transfer coefficient with respect to the partition film 1 is improved, and the sensible heat exchange efficiency is improved. In addition, since the effective moisture permeable area is expanded, the latent heat exchange efficiency is also improved. As a result, the total heat exchange efficiency was improved by about 10% as compared with the comparative example.

なお、本発明は、設計変更可能であって、例えば、対交流型全熱交換器用の六角形状の風路形成部材3が、全面的に平面視ジグザグ形状又は波形の細帯リブ部14を有するものとするも良い。   In the present invention, the design can be changed. For example, the hexagonal air passage forming member 3 for an AC type total heat exchanger has a zigzag-shaped or corrugated narrow rib portion 14 entirely in a plan view. It may be a thing.

以上のように、本発明は、仕切膜1と仕切膜1に接着されて風路2を形成する風路形成部材3から成る熱交換部材4を、複数枚上下に積層し、仕切膜1を介して二種類の気体の顕熱および潜熱を熱交換させる全熱交換器において、風路形成部材3が、上壁面部5と、下壁面部6と、上壁面部5と下壁面部6とを連結する平行な多数のリブ片7とを有する段ボール素材8から複数の窓部9を打抜いて、所定小幅寸法wの複数本の細帯リブ部14が形成され、かつ、細帯リブ部14の長手方向がリブ片7の配設方向と、斜交するように構成されているので、リブ片7,7の間隔寸法pに対して細帯リブ部14を細くできる。また、全熱交換効率をさらに向上させることができる。   As described above, according to the present invention, a plurality of heat exchange members 4 composed of the partition film 1 and the air path forming member 3 bonded to the partition film 1 to form the air path 2 are stacked in a vertical direction. In the total heat exchanger for exchanging sensible heat and latent heat of two kinds of gases, the air passage forming member 3 includes an upper wall surface portion 5, a lower wall surface portion 6, an upper wall surface portion 5 and a lower wall surface portion 6. A plurality of window portions 9 are punched out from a corrugated cardboard material 8 having a large number of parallel rib pieces 7 for connecting the plurality of thin rib portions 14 having a predetermined small width w, and the narrow rib portions Since the longitudinal direction of 14 is configured to obliquely intersect with the direction in which the rib pieces 7 are disposed, the narrow rib portion 14 can be narrowed with respect to the distance p between the rib pieces 7 and 7. Moreover, the total heat exchange efficiency can be further improved.

また、仕切膜1と仕切膜1に接着されて風路2を形成する風路形成部材3から成る熱交換部材4を、複数枚上下に積層し、仕切膜1を介して二種類の気体の顕熱および潜熱を熱交換させる全熱交換器において、風路形成部材3が、上壁面部5と、下壁面部6と、上壁面部5と下壁面部6とを連結する平行な多数のリブ片7とを有する段ボール素材8から複数の窓部9を打抜いて、所定小幅寸法wの複数本の細帯リブ部14が形成され、かつ、細帯リブ部14は、上り勾配部15と下り勾配部16とを交互に有する平面視ジグザグ形状であって、細帯リブ部14の上記上り勾配部15と下り勾配部16は、リブ片7の配設方向と、斜交するよう構成されているので、リブ片7,7の間隔寸法pに対して細帯リブ部14を細くできる。また、全熱交換効率をさらに向上させることができる。   In addition, a plurality of heat exchange members 4 composed of a partition film 1 and an air path forming member 3 that is bonded to the partition film 1 to form the air path 2 are stacked one above the other. In the total heat exchanger for exchanging sensible heat and latent heat, the air passage forming member 3 is connected to the upper wall surface portion 5, the lower wall surface portion 6, the upper wall surface portion 5 and the lower wall surface portion 6. A plurality of window portions 9 are punched from a corrugated cardboard material 8 having a rib piece 7 to form a plurality of narrow strip rib portions 14 having a predetermined small width dimension w. In plan view having alternatingly and downwardly inclined portions 16, and the upwardly inclined portion 15 and the downwardly inclined portion 16 of the thin strip rib portion 14 are configured to obliquely intersect with the direction in which the rib pieces 7 are disposed. Therefore, the narrow strip rib portion 14 can be made narrower than the interval dimension p between the rib pieces 7 and 7. Moreover, the total heat exchange efficiency can be further improved.

また、仕切膜1と仕切膜1に接着されて風路2を形成する風路形成部材3から成る熱交換部材4を、複数枚上下に積層し、仕切膜1を介して二種類の気体の顕熱および潜熱を熱交換させる全熱交換器において、風路形成部材3が、上壁面部5と、下壁面部6と、上壁面部5と下壁面部6とを連結する平行な多数のリブ片7とを有する段ボール素材8から複数の窓部9を打抜いて、所定小幅寸法wの複数本の細帯リブ部14が形成され、かつ、細帯リブ部14は、山頂部17と谷底部18とを交互に有する波形であって、山頂部17と谷底部18を除いて、細帯リブ部14の長手方向が、リブ片7の配設方向と、斜交するように構成されているので、リブ片7,7の間隔寸法pに対して細帯リブ部14を細くできる。また、全熱交換効率をさらに向上させることができる。   In addition, a plurality of heat exchange members 4 composed of a partition film 1 and an air path forming member 3 that is bonded to the partition film 1 to form the air path 2 are stacked one above the other. In the total heat exchanger for exchanging sensible heat and latent heat, the air passage forming member 3 is connected to the upper wall surface portion 5, the lower wall surface portion 6, the upper wall surface portion 5 and the lower wall surface portion 6. A plurality of window portions 9 are punched out from a corrugated cardboard material 8 having rib pieces 7 to form a plurality of narrow strip rib portions 14 having a predetermined small width dimension w. The corrugation has alternating valley bottoms 18, and the longitudinal direction of the narrow rib portion 14 is configured to be oblique to the arrangement direction of the rib pieces 7 except for the peak 17 and the valley bottom 18. Therefore, the narrow rib portion 14 can be made narrower than the interval dimension p between the rib pieces 7 and 7. Moreover, the total heat exchange efficiency can be further improved.

また、細帯リブ部14の小幅寸法wとリブ片7,7の間隔寸法pとの間に、 0.5p≦W≦ 1.2pなる関係式が成立するように設定したので、有効透湿面積を大きくとって潜熱交換効率を向上させることができるとともに、強度を確保することができる。
また、段ボール素材8は、プラスチック,紙,あるいは,金属、又は、それ等を2種以上組合せた複合材から成るので、容易に入手・製造することができる。
In addition, since the relational expression 0.5p ≦ W ≦ 1.2p is established between the narrow width w of the narrow band rib portion 14 and the interval dimension p of the rib pieces 7 and 7, the effective moisture permeable area is Largely, the latent heat exchange efficiency can be improved and the strength can be secured.
Further, the corrugated cardboard material 8 is made of plastic, paper, metal, or a composite material obtained by combining two or more of them, so that it can be easily obtained and manufactured.

第1の実施の形態の使用状態を示す平面図である。It is a top view which shows the use condition of 1st Embodiment. 第1の実施の形態を示す斜視図である。It is a perspective view which shows 1st Embodiment. 分解図である。It is an exploded view. 風路形成部材を示す平面図である。It is a top view which shows an air path formation member. 図4のA−A断面図である。It is AA sectional drawing of FIG. 第2の実施の形態を示す風路形成部材である。It is an air path formation member which shows 2nd Embodiment. 第3の実施の形態を示す風路形成部材である。It is an air path formation member which shows 3rd Embodiment. 第4の実施の形態の使用状態を示す平面図である。It is a top view which shows the use condition of 4th Embodiment. 第4の実施の形態の風路形成部材を示す平面図である。It is a top view which shows the air path formation member of 4th Embodiment. 第5の実施の形態を示す平面図である。It is a top view which shows 5th Embodiment. 第6の実施の形態を示す平面図である。It is a top view which shows 6th Embodiment. 段ボール素材の一例を示す斜視図である。It is a perspective view which shows an example of a cardboard material. 段ボール素材の他の例を示す斜視図である。It is a perspective view which shows the other example of a cardboard raw material. 従来例を示す斜視図である。It is a perspective view which shows a prior art example. 他の従来例の風路形成部材を示す平面図である。It is a top view which shows the air path formation member of another prior art example. 図15のB−B断面図である。FIG. 16 is a sectional view taken along line BB in FIG. さらに他の従来例の風路形成部材を示す平面図である。It is a top view which shows the air path formation member of another prior art example. 別の従来例の風路形成部材を示す平面図である。It is a top view which shows the air path formation member of another prior art example.

符号の説明Explanation of symbols

1 仕切膜
2 風路
3 風路形成部材
4 熱交換部材
5 上壁面部
6 下壁面部
7 リブ片
8 段ボール素材
9 窓部
14 細帯リブ部
15 上り勾配部
16 下り勾配部
17 山頂部
18 谷底部
p 間隔寸法
w 小幅寸法
DESCRIPTION OF SYMBOLS 1 Partition film 2 Air path 3 Air path formation member 4 Heat exchange member 5 Upper wall surface part 6 Lower wall surface part 7 Rib piece 8 Corrugated cardboard material 9 Window part
14 Ribbon rib
15 Ascending slope
16 Down slope
17 Summit
18 Valley bottom p Spacing dimension w Small width dimension

Claims (5)

仕切膜(1)と該仕切膜(1)に接着されて風路(2)を形成する風路形成部材(3)から成る熱交換部材(4)を、複数枚上下に積層し、該仕切膜(1)を介して二種類の気体の顕熱および潜熱を熱交換させる全熱交換器において、
上記風路形成部材(3)が、上壁面部(5)と、下壁面部(6)と、該上壁面部(5)と下壁面部(6)とを連結する平行な多数のリブ片(7)とを有する段ボール素材(8)から複数の窓部(9)を打抜いて、所定小幅寸法(w)の複数本の細帯リブ部(14)が形成され、かつ、該細帯リブ部(14)の長手方向が上記リブ片(7)の配設方向と、斜交するように構成されていることを特徴とする全熱交換器。
A heat exchange member (4) composed of a partition membrane (1) and an air passage forming member (3) that is bonded to the partition membrane (1) to form an air passage (2) is laminated in a vertical direction, In a total heat exchanger that exchanges sensible heat and latent heat of two kinds of gases through the membrane (1),
The said air path formation member (3) has many parallel rib pieces which connect an upper wall surface part (5), a lower wall surface part (6), this upper wall surface part (5), and a lower wall surface part (6). A plurality of window portions (9) are punched out of a corrugated cardboard material (8) having (7) to form a plurality of narrow rib portions (14) having a predetermined small width dimension (w), and the narrow strips A total heat exchanger, characterized in that the longitudinal direction of the rib portion (14) is oblique to the arrangement direction of the rib piece (7).
仕切膜(1)と該仕切膜(1)に接着されて風路(2)を形成する風路形成部材(3)から成る熱交換部材(4)を、複数枚上下に積層し、該仕切膜(1)を介して二種類の気体の顕熱および潜熱を熱交換させる全熱交換器において、
上記風路形成部材(3)が、上壁面部(5)と、下壁面部(6)と、該上壁面部(5)と下壁面部(6)とを連結する平行な多数のリブ片(7)とを有する段ボール素材(8)から複数の窓部(9)を打抜いて、所定小幅寸法(w)の複数本の細帯リブ部(14)が形成され、かつ、該細帯リブ部(14)は、上り勾配部(15)と下り勾配部(16)とを交互に有する平面視ジグザグ形状であって、該細帯リブ部(14)の上記上り勾配部(15)と下り勾配部(16)は、上記リブ片(7)の配設方向と、斜交するよう構成されていることを特徴とする全熱交換器。
A heat exchange member (4) composed of a partition membrane (1) and an air passage forming member (3) that is bonded to the partition membrane (1) to form an air passage (2) is laminated in a vertical direction, In a total heat exchanger that exchanges sensible heat and latent heat of two kinds of gases through the membrane (1),
The said air path formation member (3) has many parallel rib pieces which connect an upper wall surface part (5), a lower wall surface part (6), this upper wall surface part (5), and a lower wall surface part (6). A plurality of window portions (9) are punched out of a corrugated cardboard material (8) having (7) to form a plurality of narrow rib portions (14) having a predetermined small width dimension (w), and the narrow strips The rib portion (14) has a zigzag shape in plan view having alternately an ascending slope portion (15) and a descending slope portion (16), and the ascending slope portion (15) of the narrow rib portion (14) The total heat exchanger characterized in that the descending slope portion (16) is configured to obliquely intersect the direction in which the rib pieces (7) are arranged.
仕切膜(1)と該仕切膜(1)に接着されて風路(2)を形成する風路形成部材(3)から成る熱交換部材(4)を、複数枚上下に積層し、該仕切膜(1)を介して二種類の気体の顕熱および潜熱を熱交換させる全熱交換器において、
上記風路形成部材(3)が、上壁面部(5)と、下壁面部(6)と、該上壁面部(5)と下壁面部(6)とを連結する平行な多数のリブ片(7)とを有する段ボール素材(8)から複数の窓部(9)を打抜いて、所定小幅寸法(w)の複数本の細帯リブ部(14)が形成され、かつ、該細帯リブ部(14)は、山頂部(17)と谷底部(18)とを交互に有する波形であって、上記山頂部(17)と谷底部(18)を除いて、上記細帯リブ部(14)の長手方向が、上記リブ片(7)の配設方向と、斜交するように構成されていることを特徴とする全熱交換器。
A heat exchange member (4) composed of a partition membrane (1) and an air passage forming member (3) that is bonded to the partition membrane (1) to form an air passage (2) is laminated in a vertical direction, In a total heat exchanger that exchanges sensible heat and latent heat of two kinds of gases through the membrane (1),
The said air path formation member (3) has many parallel rib pieces which connect an upper wall surface part (5), a lower wall surface part (6), this upper wall surface part (5), and a lower wall surface part (6). A plurality of window portions (9) are punched out of a corrugated cardboard material (8) having (7) to form a plurality of narrow rib portions (14) having a predetermined small width dimension (w), and the narrow strips A rib part (14) is a waveform which has a peak part (17) and a valley bottom part (18) alternately, Comprising: Except the said mountain peak part (17) and a valley bottom part (18), the said thin strip rib part ( 14. A total heat exchanger characterized in that the longitudinal direction of 14) is configured to be oblique to the direction in which the rib pieces (7) are arranged.
上記細帯リブ部(14)の上記小幅寸法(w)と上記リブ片(7)(7)の間隔寸法(p)との間に、 0.5p≦w≦ 1.2pなる関係式が成立するように設定した請求項1,2又は3記載の全熱交換器。   The relational expression 0.5p ≦ w ≦ 1.2p is established between the narrow width dimension (w) of the thin strip rib portion (14) and the spacing dimension (p) of the rib pieces (7) and (7). The total heat exchanger according to claim 1, 2 or 3 set to 上記段ボール素材(8)は、プラスチック,紙,あるいは,金属、又は、それ等を2種以上組合せた複合材から成る請求項1,2,3又は4記載の全熱交換器。   The total heat exchanger according to claim 1, 2, 3 or 4, wherein the cardboard material (8) is made of plastic, paper, metal, or a composite material obtained by combining two or more of them.
JP2008328254A 2008-12-24 2008-12-24 Total heat exchanger Active JP5191877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008328254A JP5191877B2 (en) 2008-12-24 2008-12-24 Total heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008328254A JP5191877B2 (en) 2008-12-24 2008-12-24 Total heat exchanger

Publications (2)

Publication Number Publication Date
JP2010151344A true JP2010151344A (en) 2010-07-08
JP5191877B2 JP5191877B2 (en) 2013-05-08

Family

ID=42570646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008328254A Active JP5191877B2 (en) 2008-12-24 2008-12-24 Total heat exchanger

Country Status (1)

Country Link
JP (1) JP5191877B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014173787A (en) * 2013-03-08 2014-09-22 Techno Frontier:Kk Heat exchanging element
JP2014173786A (en) * 2013-03-08 2014-09-22 Techno Frontier:Kk Heat exchanging element
JP2021076291A (en) * 2019-11-07 2021-05-20 株式会社テクノフロンティア Heat exchange element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4859462U (en) * 1971-11-08 1973-07-28
JP2003262487A (en) * 2002-01-07 2003-09-19 Daikin Ind Ltd Heat exchange element
JP2006071149A (en) * 2004-08-31 2006-03-16 Nitta Ind Corp Heat exchanging element
WO2007104595A1 (en) * 2006-03-16 2007-09-20 Pierburg Gmbh Heat transfer unit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4859462U (en) * 1971-11-08 1973-07-28
JP2003262487A (en) * 2002-01-07 2003-09-19 Daikin Ind Ltd Heat exchange element
JP2006071149A (en) * 2004-08-31 2006-03-16 Nitta Ind Corp Heat exchanging element
WO2007104595A1 (en) * 2006-03-16 2007-09-20 Pierburg Gmbh Heat transfer unit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014173787A (en) * 2013-03-08 2014-09-22 Techno Frontier:Kk Heat exchanging element
JP2014173786A (en) * 2013-03-08 2014-09-22 Techno Frontier:Kk Heat exchanging element
JP2021076291A (en) * 2019-11-07 2021-05-20 株式会社テクノフロンティア Heat exchange element
JP6994775B2 (en) 2019-11-07 2022-01-14 株式会社テクノフロンティア Heat exchange element

Also Published As

Publication number Publication date
JP5191877B2 (en) 2013-05-08

Similar Documents

Publication Publication Date Title
JP5442058B2 (en) Total heat exchanger
US10317095B2 (en) Counter-flow energy recovery ventilator (ERV) core
US9404689B2 (en) Heat exchange matrix
JPH0211837B2 (en)
KR20080060932A (en) Heat exchanger for a ventilating apparatus
AU2012363660B2 (en) Heat exchanger plate and a fill pack of heat exchanger plates
JP5191877B2 (en) Total heat exchanger
JP4928295B2 (en) Sensible heat exchange element
JP2008070070A (en) Total heat exchanger
JP2008122042A (en) Ventilator
CN101571360B (en) Sensible heat exchange element
KR101443053B1 (en) Sensible heat exchange element
KR20130016586A (en) Heat exchanger for exhaust-heat recovery
EP1453623B1 (en) Patterned sheets for making heat exchangers and other structures
KR101276562B1 (en) Total heat exchanger and manufacturing method for the same
KR101189950B1 (en) Ventilating apparatus and heat exchanger thereof
JP3156162U (en) Total heat exchange element
WO2024053082A1 (en) Heat exchange element and heat exchange ventilation device
JP4021048B2 (en) Heat exchange element
JP6994775B2 (en) Heat exchange element
JP3156870U (en) Heat exchange structure
JP7126617B2 (en) Heat exchange element and heat exchange ventilator
JPS6114438B2 (en)
JP2011102688A (en) Heat exchanger and dehumidifying air conditioner
JPH03113292A (en) Heat exchanger

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120321

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120329

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20120420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130130

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5191877

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160208

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250