JP2010030902A - Method for producing ethylene - Google Patents
Method for producing ethylene Download PDFInfo
- Publication number
- JP2010030902A JP2010030902A JP2006313770A JP2006313770A JP2010030902A JP 2010030902 A JP2010030902 A JP 2010030902A JP 2006313770 A JP2006313770 A JP 2006313770A JP 2006313770 A JP2006313770 A JP 2006313770A JP 2010030902 A JP2010030902 A JP 2010030902A
- Authority
- JP
- Japan
- Prior art keywords
- ethanol
- ethylene
- water
- reaction
- raw material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C1/00—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
- C07C1/20—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
- C07C1/24—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms by elimination of water
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
本発明は、エタノールの脱水反応により高転化率で高純度のエチレンを製造する方法に関するものである。 The present invention relates to a method for producing high-purity ethylene at a high conversion rate by a dehydration reaction of ethanol.
エチレンは、さまざまな低分子化合物や高分子化合物の原料として有用な化合物である。特に、種々ポリマーの原料としてナフサクラッカー由来のものが用いられている。一方で、従来から石油資源減少が叫ばれており、また、近年においては環境問題の観点から、石炭、天然ガス又はバイオマス由来の原料からのエチレンの製造が種々検討されている。 Ethylene is a useful compound as a raw material for various low-molecular compounds and high-molecular compounds. In particular, naphtha cracker-derived materials are used as raw materials for various polymers. On the other hand, a decrease in petroleum resources has been sought in the past, and in recent years, various production of ethylene from raw materials derived from coal, natural gas or biomass has been studied from the viewpoint of environmental problems.
そのなかで、メタノールやエタノールなどの低級アルコール又はジメチルエーテルなどの低級脂肪族エーテルの脱水反応によるエチレンの製造方法は、比較的簡便で有用な製造方法として期待されている。 Among them, a method for producing ethylene by dehydration of a lower alcohol such as methanol or ethanol or a lower aliphatic ether such as dimethyl ether is expected as a relatively simple and useful production method.
しかしながら、単にアルコールの脱水反応といえども、高転化率、高収率でエチレンを製造することは、非常に難しい技術である。特許文献1及び特許文献2は、アルコールの脱水反応により低級オレフィンを製造する方法に関する特許(出願)であるが、実施例では原料アルコールとしてメタノールを使用しており、得られるオレフィンもエチレン含量がそれほど高くはない。また、特許文献3は、エタノールの脱水反応によるエチレンの製造方法に関する特許出願であるが、転化率は比較的高いものの、他のオレフィンの生成量は決して少ないとは言えず、従って収率も満足のいくものではなかった。
本発明は、エタノールを原料として、高転化率で高純度のエチレンを高収率で製造する方法を見出すことを目的とする。 An object of the present invention is to find a method for producing high-purity ethylene at a high conversion rate in a high yield using ethanol as a raw material.
本発明者らは、上記課題を解決するために鋭意検討した結果、原料エタノールに含まれる水分量を調節することにより、高純度のエチレンを高転化率、高収率で得られることを見出した。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that high-purity ethylene can be obtained at a high conversion rate and a high yield by adjusting the amount of water contained in the raw material ethanol. .
即ち、本発明は以下のとおりである。
[1]エタノールの脱水反応によるエチレンの製造方法において、供給する含水エタノール中の水分が0.1wt%以上であることを特徴とするエチレンの製造方法、
[2]脱水反応の温度が250℃以上であること特徴とする[1]のエチレンの製造方法、及び、
[3]含水エタノールがバイオマス由来のエタノールであることを特徴とする[1]のエチレンの製造方法。
That is, the present invention is as follows.
[1] A method for producing ethylene by dehydration reaction of ethanol, characterized in that water in the supplied water-containing ethanol is 0.1 wt% or more,
[2] The method for producing ethylene according to [1], wherein the temperature of the dehydration reaction is 250 ° C. or higher, and
[3] The method for producing ethylene according to [1], wherein the water-containing ethanol is biomass-derived ethanol.
本発明の方法によれば、エタノールの脱水反応でも、高純度のエチレンを高転化率、高収率で製造することができ、プロセス上および経済上著しく優位に高品質のエチレンを生産することが出来る。また、原料エタノールとしてバイオマス由来のものを用いれば、環境中の二酸化炭素収支上極めて有用であり、その誘導体又は重合体としても地球環境への寄与は絶大である。
According to the method of the present invention, even in the dehydration reaction of ethanol, high-purity ethylene can be produced at a high conversion and high yield, and high-quality ethylene can be produced significantly and economically. I can do it. In addition, if a material derived from biomass is used as the raw material ethanol, it is extremely useful in terms of carbon dioxide balance in the environment, and its contribution to the global environment is tremendous also as a derivative or polymer thereof.
以下に本発明を詳しく説明する。 The present invention is described in detail below.
本発明において原料となるエタノールは、ナフサ由来の合成エタノール、バイオマス由来の発酵エタノール等いずれのエタノールでもよい。 The ethanol used as a raw material in the present invention may be any ethanol such as synthetic ethanol derived from naphtha and fermented ethanol derived from biomass.
バイオマス由来の発酵エタノールとは、植物より得られる炭素源を含む培養液にエタノールを生産する微生物またはその破砕物由来産物を接触させ、生産した後、精製されたエタノールを指す。培養液からのエタノールの精製は、蒸留、膜分離、抽出等、従来知られている技術が適用可能であるが、ベンゼン、シクロヘキサン等を添加し、共沸させるか、または膜分離等により水分を除去する等の方法が挙げられる。 Biomass-derived fermented ethanol refers to ethanol that has been purified by bringing a microorganism or ethanol-derived product from ethanol into contact with a culture solution containing a carbon source obtained from a plant. For purification of ethanol from the culture solution, conventionally known techniques such as distillation, membrane separation, extraction, etc. can be applied, but benzene, cyclohexane, etc. are added and azeotroped, or moisture is removed by membrane separation, etc. The method of removing etc. is mentioned.
本発明のエチレンを得るために、この段階でさらに高度な精製(例えば、エタノール中の不純物総量が1ppm以下)を行うことは、工業的には効率がよいと言えないが、これを否定するものではない。 In order to obtain ethylene of the present invention, it is not industrially efficient to carry out further refinement (for example, the total amount of impurities in ethanol is 1 ppm or less) at this stage, but this is denied. is not.
エタノールの脱水反応によりエチレンを得る際には通常触媒が用いられるが、この触媒は、特に限定はなく公知の触媒を用いることができる。プロセス上有利なのは、触媒と生成物の分離が容易な固定床流通反応であり、たとえばγ―アルミナなどが望ましいが他の公知の触媒でもかまわない。 When ethylene is obtained by a dehydration reaction of ethanol, a catalyst is usually used. However, this catalyst is not particularly limited, and a known catalyst can be used. A process advantage is a fixed bed flow reaction in which the catalyst and the product can be easily separated. For example, γ-alumina is desirable, but other known catalysts may be used.
この脱水反応は吸熱反応であるため、通常加熱条件で行う。商業的に有用な反応速度で反応が進行すればとくに限定はないが、100℃以上、好ましくは250℃以上、より好ましくは300℃以上の温度が適当である。上限も特に限定はないが、エネルギー収支及び設備上500℃以下、好ましくは400℃以下である。 Since this dehydration reaction is an endothermic reaction, it is usually carried out under heating conditions. The reaction is not particularly limited as long as the reaction proceeds at a commercially useful reaction rate, but a temperature of 100 ° C. or higher, preferably 250 ° C. or higher, more preferably 300 ° C. or higher is appropriate. The upper limit is not particularly limited, but is 500 ° C. or less, preferably 400 ° C. or less, in terms of energy balance and equipment.
反応圧力も特に制限はないが、後続の気液分離を容易にするため常圧以上の圧力が好ましい。工業的には触媒の分離の容易な固定床流通反応が好適であるが、液相懸濁床、流動床などでも差し支えない。 The reaction pressure is not particularly limited, but a pressure higher than normal pressure is preferable in order to facilitate subsequent gas-liquid separation. Industrially, a fixed bed flow reaction in which the catalyst is easily separated is suitable, but a liquid phase suspension bed, a fluidized bed, etc. may be used.
本発明において、最も重要なのは、原料として供給するエタノール中に含まれる水分量である。一般的に、脱水反応を行う場合には、水の除去効率を考えると水が無いほうが好ましい。しかしながら、固体触媒を用いたエタノールの脱水反応の場合、水が存在しないと他のオレフィン、特にブテンの生成量が増加する傾向にあることが判明した。恐らく、少量の水が存在しないと脱水後のエチレン二量化を押さえることができないためと推察している。許容される水の含有量の下限は、少なくとも0.1%以上、好ましくは0.5%以上必要である。上限は特に限定されないが、物質収支上及び熱収支上、50重量%以下、好ましくは30%以下、より好ましくは20%以下である。 In the present invention, the most important is the amount of water contained in ethanol supplied as a raw material. Generally, when performing a dehydration reaction, it is preferable that there is no water in view of water removal efficiency. However, in the case of ethanol dehydration reaction using a solid catalyst, it has been found that in the absence of water, the production of other olefins, particularly butene, tends to increase. It is presumed that ethylene dimerization after dehydration cannot be suppressed unless a small amount of water is present. The lower limit of the allowable water content is at least 0.1%, preferably 0.5% or more. The upper limit is not particularly limited, but is 50% by weight or less, preferably 30% or less, more preferably 20% or less, on the mass balance and heat balance.
このようにしてエタノールの脱水反応を行うことによりエチレン、水および少量の未反応エタノールの混合部が得られるが、常温において約5MPa以下ではエチレンは気体であるため、これら混合部から気液分離により水やエタノールを除きエチレンを得ることができる。この方法は公知の方法で行えばよい。 By performing a dehydration reaction of ethanol in this way, a mixed part of ethylene, water and a small amount of unreacted ethanol is obtained. Since ethylene is a gas at a temperature of about 5 MPa or less at normal temperature, gas and liquid separation is performed from these mixed parts. Ethylene can be obtained except water and ethanol. This method may be performed by a known method.
気液分離により得られたエチレンはさらに蒸留され、このときの操作圧力が常圧以上であること以外、蒸留方法・操作温度・滞留時間など特に制約はない。 The ethylene obtained by gas-liquid separation is further distilled, and there are no particular restrictions on the distillation method, operating temperature, residence time, etc., except that the operating pressure at this time is normal pressure or higher.
原料がバイオマス由来のエタノールの場合、得られたエチレンには、エタノール発酵工程で混入した不純物であるケトン、アルデヒド、エステルなどのカルボニル化合物及びその分解物である炭酸ガスや、酵素の分解物・きょう雑物であるアミン、アミノ酸など含窒素化合物及びその分解物であるアンモニアなどが極微量含まれる。エチレンの用途によっては、これら極微量の不純物が問題となるおそれがあるので、精製により除去しても良い。精製は、公知のいかなる方法でもよいが、好適な精製操作として吸着精製法をあげることができる。用いる吸着剤は特に限定されないが、高表面積の材料が好ましく、吸着剤の種類としては、バイオマス由来のエタノールの脱水反応により得られるエチレン中の不純物の種類・量に応じて選択される。 When the raw material is biomass-derived ethanol, the resulting ethylene contains carbonyl compounds such as ketones, aldehydes and esters, which are impurities mixed in the ethanol fermentation process, and carbon dioxide, which is a decomposition product thereof, as well as enzyme decomposition products and today. It contains trace amounts of nitrogen-containing compounds such as amines and amino acids that are miscellaneous substances and ammonia that is a decomposition product thereof. Depending on the use of ethylene, these trace amounts of impurities may cause a problem and may be removed by purification. Purification may be carried out by any known method, but as a suitable purification operation, an adsorption purification method can be mentioned. Although the adsorbent to be used is not particularly limited, a material having a high surface area is preferable, and the type of adsorbent is selected according to the type and amount of impurities in ethylene obtained by dehydration reaction of biomass-derived ethanol.
なお、エチレン中の不純物の精製方法として苛性水処理を併用しても差し支えない。苛性水処理をする場合は、吸着精製前に行うことが望ましい。その場合、苛性処理後、吸着精製前に水分除去処理を施す必要がある。 Note that a caustic water treatment may be used in combination as a method for purifying impurities in ethylene. In the case of performing caustic water treatment, it is desirable to perform it before adsorption purification. In that case, it is necessary to perform a water removal treatment after the caustic treatment and before the adsorption purification.
本発明の方法で得られたエチレン、またはエチレンを原料として製造されたポリプロピレン等のポリマーがバイオマス原料を利用していることは、質量数14の炭素の含有量及び質量数12または質量数13の炭素の含有量を測定することにより判別することができる。 The fact that ethylene obtained by the method of the present invention or a polymer such as polypropylene produced using ethylene as a raw material uses a biomass raw material means that the content of carbon of mass 14 and mass of 12 or mass 13 It can be determined by measuring the carbon content.
具体的には、ASTM(米国標準検査法) D6866 04 (Standard Test Method for Determining the Biobased Content of Natural Range Materials Using Radiocarbon and Isotope Ratio Mass Spectrometry Analysis)に記載されているように、サンプルを燃焼してCO2とし、正確に定量したCO2ガスをAMS(Accelerated Mass Spectrometry)装置に入れて質量数14、及び質量数12または質量数13の炭素量を計測し、大気中や石油化学品中に存在する質量数14の炭素の存在率と比較することにより判別できる。 Specifically, ASTM D6866 04 (Standard Test Method for Determining the Biobased Content of Natural Range Material RandomMandop is used as a sample of the Random Material Society of Radiocarbon and IS And put the accurately quantified CO2 gas into an AMS (Accelerated Mass Spectrometry) device to measure the mass number 14, and the mass number 12 or mass number 13 carbon mass, and the mass number present in the atmosphere or petrochemicals. It can be determined by comparing with the abundance of 14 carbons.
また、サンプルを燃焼し、得られたCO2をCO2吸収剤で吸収するか、ベンゼンに変換し、液体シンチレーションカウンターにより質量数14の炭素量を測定し、石油由来のものと比較することにより判別することもできる。 In addition, the sample is burned, and the obtained CO2 is absorbed with a CO2 absorbent or converted into benzene, and the amount of carbon having a mass number of 14 is measured with a liquid scintillation counter and compared with that derived from petroleum. You can also.
以下に、本発明の実施例を記載するが、本発明はこれらによって制限されるものではない。 Examples of the present invention will be described below, but the present invention is not limited by these.
[実施例1]
内径が3.8mm(3/16inch)、長さ200mmのステンレス製縦型反応器の中程に市販のγ-アルミナを粉砕して250〜500μmに整粒した粒状物100mgを充填した。反応器内の空気をアルゴンで置換した後、反応器を加熱した。
反応器が360℃に達したところで、反応器の上部から水8%を含む工業用エタノールを0.15ml/hrの割合で供給した。
反応の進行にともない、水を主成分とする液状生成物と、エチレンが主成分であるガス生成物が得られた。反応を一週間続け、得られた液状生成物とガス生成物をそれぞれガスクロマトグラフィーによって分析した結果を表1に示す。
[Example 1]
In the middle of a stainless steel vertical reactor having an inner diameter of 3.8 mm (3/16 inch) and a length of 200 mm, 100 mg of a granular material pulverized from commercially available γ-alumina and sized to 250 to 500 μm was packed. After the air in the reactor was replaced with argon, the reactor was heated.
When the reactor reached 360 ° C., industrial ethanol containing 8% water was supplied from the top of the reactor at a rate of 0.15 ml / hr.
As the reaction proceeded, a liquid product containing water as the main component and a gas product containing ethylene as the main component were obtained. The reaction was continued for one week, and the obtained liquid product and gas product were analyzed by gas chromatography, respectively.
[実施例2]
原料として水8%を含む蒸留精製されたバイオマス由来のエタノールを用いた以外は、実施例1と同様に反応を行った。結果を表1に示す。
[Example 2]
The reaction was carried out in the same manner as in Example 1 except that ethanol derived from distilled and purified biomass containing 8% water was used as a raw material. The results are shown in Table 1.
[比較例1]
原料として試薬エタノール(Aldrich社製:水分0.1wt%未満)を用いた以外は、実施例1と同様に反応を行った。結果を表1に示す。
[Comparative Example 1]
The reaction was carried out in the same manner as in Example 1 except that reagent ethanol (Aldrich, water content: less than 0.1 wt%) was used as a raw material. The results are shown in Table 1.
本発明の製造方法は、高転化率で高純度のエチレンを高収率で製造することができるため、プロセス上及び経済上非常に有用である。また、エチレン純度が高いため、低級オレフィンの需給バランスを調整するうえで特に有用である。さらに、原料としてバイオマス由来のエタノールを使用することは、環境中の二酸化炭素収支上極めて有用であり、その誘導体又は重合体としても地球環境への寄与は絶大である。 The production method of the present invention is very useful in terms of process and economy because it can produce ethylene with high conversion and high purity in high yield. Moreover, since ethylene purity is high, it is particularly useful for adjusting the supply and demand balance of lower olefins. Furthermore, the use of biomass-derived ethanol as a raw material is extremely useful in terms of carbon dioxide balance in the environment, and its derivative or polymer contributes greatly to the global environment.
Claims (3)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006313770A JP2010030902A (en) | 2006-11-21 | 2006-11-21 | Method for producing ethylene |
PCT/JP2007/072180 WO2008062709A1 (en) | 2006-11-21 | 2007-11-15 | Method for producing ethylene |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006313770A JP2010030902A (en) | 2006-11-21 | 2006-11-21 | Method for producing ethylene |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010030902A true JP2010030902A (en) | 2010-02-12 |
Family
ID=39429644
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006313770A Pending JP2010030902A (en) | 2006-11-21 | 2006-11-21 | Method for producing ethylene |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2010030902A (en) |
WO (1) | WO2008062709A1 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013060514A (en) * | 2011-09-13 | 2013-04-04 | Sekisui Plastics Co Ltd | Polyethylene-based resin foaming particle, polyethylene-based resin foam molding body, and method for producing polyethylene-based resin foaming particle |
EP2594547A1 (en) * | 2011-11-17 | 2013-05-22 | Solvay Sa | Process for the manufacture of at least one ethylene derivative compound from bioethanol |
JP2013136576A (en) * | 2011-12-20 | 2013-07-11 | IFP Energies Nouvelles | Method for producing octene by dimerizing ethylene to form butene and dimerizing butene to form octene |
JP2014125561A (en) * | 2012-12-26 | 2014-07-07 | Kureha Corp | Vinylidene chloride copolymer composition of plant origin, and heat-shrinkable film |
JP2016501267A (en) * | 2012-12-13 | 2016-01-18 | トタル リサーチ アンド テクノロジー フエリユイ | Methods for removing light components from ethylene streams |
JP2017193722A (en) * | 2017-07-24 | 2017-10-26 | 大日本印刷株式会社 | Polyolefin resin film |
JP2017226849A (en) * | 2017-07-24 | 2017-12-28 | 大日本印刷株式会社 | Polyolefin resin film |
KR101818180B1 (en) * | 2016-05-13 | 2018-02-21 | 한국화학연구원 | Method for oligomerization of ethylele |
WO2021006245A1 (en) * | 2019-07-05 | 2021-01-14 | 積水化学工業株式会社 | Method for producing ethylene, and method for producing polymer |
JP2022019803A (en) * | 2019-03-15 | 2022-01-27 | 大日本印刷株式会社 | Polyolefin resin film |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2938262B1 (en) * | 2008-11-13 | 2010-11-19 | Arkema France | FABRICATION OF ETHYLENE / CARBOXYLIC ACID COPOLYMERS FROM RENEWABLE MATERIALS, COPOLYMERS OBTAINED AND USES THEREOF |
JP5138664B2 (en) * | 2008-12-09 | 2013-02-06 | 直志 門馬 | Sprout training system |
JP2016150931A (en) * | 2015-02-19 | 2016-08-22 | 出光興産株式会社 | Method for producing light olefin |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR7705256A (en) * | 1977-08-09 | 1979-04-03 | Petroleo Brasileiro Sa | ETHENE PROCESS AND PREPARATION |
JPS56122318A (en) * | 1980-03-04 | 1981-09-25 | Teikoku Kako Kk | Preparation of ethylene |
JPH0639413B2 (en) * | 1988-12-08 | 1994-05-25 | フェリック株式会社 | Simple ethylene generating composition, simple ethylene generator using the same, and method of ripening fruits and vegetables using the simple ethylene generating composition |
JPH11217343A (en) * | 1998-01-30 | 1999-08-10 | Sangi Co Ltd | Synthesis of chemical industrial feedstock and high-octane fuel |
US6316683B1 (en) * | 1999-06-07 | 2001-11-13 | Exxonmobil Chemical Patents Inc. | Protecting catalytic activity of a SAPO molecular sieve |
SE526429C2 (en) * | 2003-10-24 | 2005-09-13 | Swedish Biofuels Ab | Intensifying fermentation of carbohydrate substrate for, e.g. producing one to five carbon alcohols, involves using amino acid leucine, isoleucine, and/or valine as source of nitrogen |
JP2006116439A (en) * | 2004-10-21 | 2006-05-11 | National Institute Of Advanced Industrial & Technology | Catalyst for producing ethylene and method for producing ethylene by using the catalyst |
-
2006
- 2006-11-21 JP JP2006313770A patent/JP2010030902A/en active Pending
-
2007
- 2007-11-15 WO PCT/JP2007/072180 patent/WO2008062709A1/en active Application Filing
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013060514A (en) * | 2011-09-13 | 2013-04-04 | Sekisui Plastics Co Ltd | Polyethylene-based resin foaming particle, polyethylene-based resin foam molding body, and method for producing polyethylene-based resin foaming particle |
EP2594547A1 (en) * | 2011-11-17 | 2013-05-22 | Solvay Sa | Process for the manufacture of at least one ethylene derivative compound from bioethanol |
JP2013136576A (en) * | 2011-12-20 | 2013-07-11 | IFP Energies Nouvelles | Method for producing octene by dimerizing ethylene to form butene and dimerizing butene to form octene |
JP2017171689A (en) * | 2011-12-20 | 2017-09-28 | イエフペ エネルジ ヌヴェルIfp Energies Nouvelles | Process for production of octene by dimerizing ethylene to form butene and dimerizing the butene to form octene |
JP2016501267A (en) * | 2012-12-13 | 2016-01-18 | トタル リサーチ アンド テクノロジー フエリユイ | Methods for removing light components from ethylene streams |
JP2014125561A (en) * | 2012-12-26 | 2014-07-07 | Kureha Corp | Vinylidene chloride copolymer composition of plant origin, and heat-shrinkable film |
US10329211B2 (en) | 2016-05-13 | 2019-06-25 | Korea Research Institute Of Chemical Technology | Method for oligomerization of ethylene |
KR101818180B1 (en) * | 2016-05-13 | 2018-02-21 | 한국화학연구원 | Method for oligomerization of ethylele |
JP2017226849A (en) * | 2017-07-24 | 2017-12-28 | 大日本印刷株式会社 | Polyolefin resin film |
JP2017193722A (en) * | 2017-07-24 | 2017-10-26 | 大日本印刷株式会社 | Polyolefin resin film |
JP2022019803A (en) * | 2019-03-15 | 2022-01-27 | 大日本印刷株式会社 | Polyolefin resin film |
JP7257001B2 (en) | 2019-03-15 | 2023-04-13 | 大日本印刷株式会社 | Polyolefin resin film |
WO2021006245A1 (en) * | 2019-07-05 | 2021-01-14 | 積水化学工業株式会社 | Method for producing ethylene, and method for producing polymer |
Also Published As
Publication number | Publication date |
---|---|
WO2008062709A1 (en) | 2008-05-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2010030902A (en) | Method for producing ethylene | |
US20150087866A1 (en) | Process for the production of olefins and use thereof | |
CN106458951B (en) | Method for producing furfural and method for producing furan | |
KR20100029763A (en) | Propylene production | |
CA2931704C (en) | Method for dehydrating a mixture containing ethanol and isopropanol | |
CN101304963A (en) | Method of producing propylene containing biomass-origin carbon | |
US9765007B2 (en) | Dehydration process | |
JP7422210B2 (en) | Bio-based liquefied petroleum gas production | |
CA2931705C (en) | Method for dehydrating a mixture containing ethanol and n-propanol | |
JP2015054819A (en) | Method for producing 3-butene-2-ol and 1,3-butadiene | |
JP6175319B2 (en) | Process for producing 1,3-butadiene and / or 3-buten-2-ol | |
RU2016146790A (en) | METHOD FOR JOINT PRODUCTION OF ACETIC ACID AND DIMETHYL ETHER | |
JPWO2018047773A1 (en) | Method for separating and purifying isobutylene and method for producing isobutylene | |
JP6553084B2 (en) | Acid catalyzed dehydration of ethanol | |
TWI422565B (en) | Production of dimethyl ether from crude methanol | |
JP7575547B2 (en) | ethanol | |
WO2013169589A1 (en) | Conversion of methyl-2-acetoxy propionate to methyl acrylate and acrylic acid | |
WO2022168695A1 (en) | Method for producing propylene | |
KR101935529B1 (en) | System for producing naphtha |