JP2010024529A - Thermal spraying alloy, member provided with surface layer and method for producing the same - Google Patents
Thermal spraying alloy, member provided with surface layer and method for producing the same Download PDFInfo
- Publication number
- JP2010024529A JP2010024529A JP2008190626A JP2008190626A JP2010024529A JP 2010024529 A JP2010024529 A JP 2010024529A JP 2008190626 A JP2008190626 A JP 2008190626A JP 2008190626 A JP2008190626 A JP 2008190626A JP 2010024529 A JP2010024529 A JP 2010024529A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- alloy
- self
- surface layer
- boride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Laminated Bodies (AREA)
- Coating By Spraying Or Casting (AREA)
Abstract
Description
本発明は、耐摩耗性を向上させた溶射合金、表面層を備えた部材およびその製造方法に関し、特に硼化物を含む溶射合金、表面層を備えた部材およびその製造方法に関する。 The present invention relates to a thermal spray alloy with improved wear resistance, a member provided with a surface layer, and a method for manufacturing the same, and more particularly to a thermal spray alloy containing boride, a member provided with a surface layer, and a method for manufacturing the same.
金属材料の耐摩耗性、耐食性を向上させる種々の表面処理が知られている。溶射、肉盛溶接は物理的気相蒸着(PVD)や化学的気相蒸着(CVD)に比べて硬化層の厚さを大きくできる利点がある。プラズマアークで下地も溶解する肉盛溶接は降温時に割れを生じる問題がある。高速フレーム溶射やプラズマ溶射などの溶射は割れの問題もなく、施工可能な材料も鉄系材料、非鉄系材料、自溶合金、セラミックス、カーバイド等幅が広い。 Various surface treatments that improve the wear resistance and corrosion resistance of metal materials are known. Thermal spraying and overlay welding have the advantage that the thickness of the hardened layer can be increased as compared with physical vapor deposition (PVD) and chemical vapor deposition (CVD). Overlay welding, in which the substrate is melted by plasma arc, has a problem of causing cracks when the temperature is lowered. Thermal spraying such as high-speed flame spraying and plasma spraying has no problem of cracking, and the workable materials are wide such as ferrous materials, non-ferrous materials, self-fluxing alloys, ceramics, and carbides.
自溶合金は、Ni基、またはCo基にB,Siを混合して融点を例えば約960℃〜980℃に下げた合金であり、流動性に富み、溶射を施工しやすい材料である。耐食性、耐摩耗性を向上させるためにさらに、Cr,Zr,Mo,W、Cなどを添加することも行われる。溶射によって形成した溶射層は、例えば約980℃〜1000℃に加熱保持するフュージング処理を行なう。溶射層は半溶融し、溶射層内の気孔を減少させると共に溶射層の均一化を図り、接合界面において拡散を生じさせ密着性を向上させる。自溶合金の溶射層の硬さは、HRc60以上にもなる。添加したBは、自溶合金の融点を下げる他、Cr等他の添加物と硼化物を形成して硬さを向上させる。密着性、層内均一性、気孔の減少は、他の溶射材料と比べて、優れた特徴である。 The self-fluxing alloy is an alloy in which B and Si are mixed with Ni base or Co base and the melting point is lowered to, for example, about 960 ° C. to 980 ° C., and has high fluidity and is easy to apply thermal spraying. In order to improve the corrosion resistance and wear resistance, Cr, Zr, Mo, W, C and the like are further added. The thermal spray layer formed by thermal spraying is subjected to a fusing treatment that is heated and held at about 980 ° C. to 1000 ° C., for example. The sprayed layer is semi-melted to reduce pores in the sprayed layer and to make the sprayed layer uniform, thereby causing diffusion at the bonding interface and improving adhesion. The hardness of the sprayed layer of the self-fluxing alloy is HRc 60 or more. In addition to lowering the melting point of the self-fluxing alloy, the added B forms a boride with other additives such as Cr and improves the hardness. Adhesion, in-layer uniformity, and pore reduction are superior features compared to other thermal spray materials.
特開平08−311630号は、C,Si,Cr,Mo,Cu,Fe,Mn,Bを所定重量%含み、残部がNiおよび不可避不純物である溶射用自溶合金材料を提案する。 Japanese Patent Application Laid-Open No. 08-31630 proposes a self-fluxing alloy material for thermal spraying that contains C, Si, Cr, Mo, Cu, Fe, Mn, and B at a predetermined weight percent, with the balance being Ni and inevitable impurities.
特開平9−13161号は、Bを2−12wt%含むCo合金粉末に、Mo炭化物,W炭化物を10wt%以上、かつC量の合計がモル比でB量の1.5倍以下となるように配合した混合粉末を被処理物の表面に溶射した後、これを加熱処理して遊離炭素を析出させることを提案する。Co合金中のBがMo,Wと反応して複硼化物となり、Cが遊離し、析出する。全炭化物が硼化物と反応することはないので、炭化物の下限と炭素量の上限が規定されている。 Japanese Patent Application Laid-Open No. 9-13161 discloses a Co alloy powder containing 2-12 wt% of B, Mo carbide and W carbide of 10 wt% or more, and the total amount of C is 1.5 times or less of the B amount in molar ratio. It is proposed that the mixed powder blended in is sprayed on the surface of the object to be treated and then heat-treated to deposit free carbon. B in the Co alloy reacts with Mo and W to form double borides, and C is liberated and precipitates. Since all carbides do not react with borides, a lower limit for carbides and an upper limit for carbon content are specified.
特開2006−161131号は、CrおよびCを含むCo基自溶合金であって、アトマイズ法により作製され、Co基自溶合金の粒子内に,粒径5μm以下のクロムカーバイドが均一に析出させられた溶射用Co基自溶合金を提案する。 Japanese Patent Laid-Open No. 2006-161131 is a Co-based self-fluxing alloy containing Cr and C, which is produced by an atomizing method, and chromium carbide having a particle size of 5 μm or less is uniformly precipitated in Co-based self-fluxing alloy particles. A Co-based self-fluxing alloy for thermal spraying is proposed.
特開2008−115443号は、少なくともCr,C,およびCoを含み、粒形5μm以下のクロムカーバイドが粒子内部に均一に析出している溶射用Ni基自溶合金粉末を提案する。 Japanese Patent Application Laid-Open No. 2008-115443 proposes a Ni-based self-fluxing alloy powder for thermal spraying that contains at least Cr, C, and Co and in which chromium carbide having a particle size of 5 μm or less is uniformly deposited inside the particles.
自溶合金は融点が低いことがメリットであるが、高温での耐摩耗性、対かじり性、硬さ低下を克服することが望まれる。自溶合金における融点の低下はBとSiの添加によるものである。特にBは、融点低下に大きく寄与する。Bは硼化物を形成して硬さなどの特性にも大きく寄与する。 The self-fluxing alloy has a merit that the melting point is low, but it is desired to overcome wear resistance, galling resistance, and hardness reduction at high temperatures. The decrease in melting point in the self-fluxing alloy is due to the addition of B and Si. In particular, B greatly contributes to lowering the melting point. B forms a boride and greatly contributes to properties such as hardness.
高速摺動部での摩耗で比摩耗率を向上させるためには、材料の融点を上げることが重要である。Ni−B系、Co−B系自溶溶射合金において、溶射後にB組成を低くできれば、融点を上げ、耐摩耗性を向上できる。 In order to improve the specific wear rate due to wear at the high speed sliding portion, it is important to raise the melting point of the material. In Ni-B and Co-B based self-spraying alloys, if the B composition can be lowered after spraying, the melting point can be increased and the wear resistance can be improved.
本発明の目的は、Co−B系またはNi−B系自溶合金を溶射後に、自溶合金に固溶するB組成を下げて融点を高くし、耐摩耗性を向上することである。 An object of the present invention is to lower the B composition dissolved in the self-fluxing alloy after spraying a Co-B or Ni-B self-fluxing alloy to increase the melting point and improve the wear resistance.
本発明の1観点によれば、
Ni−(8〜12wt%)B基本系、またはCo−(8〜12wt%)B基本系に、Bモル数の39〜100%の硼化物生成元素を添加した溶射合金
が提供される。
According to one aspect of the present invention,
There is provided a thermal spray alloy obtained by adding a boride-forming element having 39 to 100% of the number of B moles to a Ni- (8 to 12 wt%) B basic system or a Co- (8 to 12 wt%) B basic system.
本発明の他の観点によれば、
Ni−(8〜12wt%)B基本系、またはCo−(8〜12wt%)B基本系の自溶合金粉末に、Bモル数の39〜100%の硼化物生成元素粉末を混合した混合粉末を準備する工程と、
前記混合粉末を基礎部材上に溶射して溶射層を形成する工程と、
前記溶射層をフュージングする工程と、
を含む、表面層を備えた部材の製造方法
が提供される。
According to another aspect of the invention,
Mixed powder obtained by mixing boride-forming element powders of 39 to 100% of B moles with Ni- (8 to 12 wt%) B basic system or Co- (8 to 12 wt%) B basic system self-fluxing alloy powder The process of preparing
Spraying the mixed powder on a base member to form a sprayed layer;
Fusing the sprayed layer;
The manufacturing method of the member provided with the surface layer containing is provided.
Co基またはNi基に添加する、BおよびBと化合し易い硼化物生成元素の添加量を調整することにより特性の優れた溶射層を得ることができる。 A sprayed layer having excellent characteristics can be obtained by adjusting the addition amount of a boride-forming element that is easily combined with B and B added to the Co group or Ni group.
図1Aは、Ni−B合金系の相図を示す。B組成3.6wt%、7.3wt%、10.7wt%、13.2wt%に共晶組成が認められる。Niの原子量58.71と比べて、Bの原子量は10.81と小さいので、atm%は、wt%よりかなり大きな数値となる。B組成3.6wt%、7.3wt%、10.7wt%を対象とすると、融点はそれぞれ1090℃、1125℃、1018℃となる。Niの融点は1455℃、Bの融点は2092℃であるが、B組成3.6−12wt%であれば、融点は1156℃以下になる。Siを添加することにより融点はさらに低下する。 FIG. 1A shows the phase diagram of the Ni-B alloy system. Eutectic compositions are observed at B composition of 3.6 wt%, 7.3 wt%, 10.7 wt%, and 13.2 wt%. Since the atomic weight of B is as small as 10.81 compared to the atomic weight of Ni of 58.71, atm% is a numerical value considerably larger than wt%. When the B composition is 3.6 wt%, 7.3 wt%, and 10.7 wt%, the melting points are 1090 ° C., 1125 ° C., and 1018 ° C., respectively. The melting point of Ni is 1455 ° C. and the melting point of B is 2092 ° C. However, if the B composition is 3.6-12 wt%, the melting point is 1156 ° C. or lower. Addition of Si further lowers the melting point.
図1Bは、Co−B合金系の相図を示す。B組成4wt%、10wt%、22wt%に共晶組成があり、融点は1110℃、1250℃、1350℃となる。Coの原子量58.93と較べて、Bの原子量は10.81と小さいので、atm%は、wt%よりかなり大きな数値となる。B組成4wt%、10wt%を対象とすると、融点はそれぞれ1110℃、1250℃となる。BおよびCoの融点は図中両端に示す2092℃、1495℃であるが、B組成4−10wt%であれば、融点は1280℃以下になる。共晶組成近傍であれば、低融点を実現できる。Siを添加することにより融点はさらに低下する。 FIG. 1B shows the phase diagram of the Co—B alloy system. The B composition has a eutectic composition of 4 wt%, 10 wt%, and 22 wt%, and the melting points are 1110 ° C., 1250 ° C., and 1350 ° C. Since the atomic weight of B is as small as 10.81 compared with the atomic weight of Co. 58.93, atm% is a numerical value much larger than wt%. When the B composition is 4 wt% and 10 wt%, the melting points are 1110 ° C. and 1250 ° C., respectively. The melting points of B and Co are 2092 ° C. and 1495 ° C. shown at both ends in the figure, but if the B composition is 4 to 10 wt%, the melting point is 1280 ° C. or less. A low melting point can be realized in the vicinity of the eutectic composition. Addition of Si further lowers the melting point.
低融点の自溶合金を用いて溶射層を形成した後に、Ni−B合金系の場合はB組成を3.6wt%より小さく、Co−B合金系の場合はB組成を4wt%より小さくできれば、B組成の減少と共に融点は上昇する。Ni基、Co基に溶け込んでいるB量を減らすために、Bと化合し易い元素を添加することを考察した。 If a sprayed layer is formed using a low melting point self-fluxing alloy, the B composition can be smaller than 3.6 wt% in the case of Ni-B alloy system, and the B composition can be smaller than 4 wt% in the case of Co-B alloy system. As the B composition decreases, the melting point increases. In order to reduce the amount of B dissolved in the Ni group and Co group, it was considered to add an element that easily combines with B.
熱力学的な自由エネルギの計算により、WおよびMoが効果的であることが判った。例えばFe下地上にNi−B−Cr−W自溶合金を溶射してフュージングを行うと、W>Fe>Cr>Niの順で硼化物を作りやすい。つまり、WはBと優先的に化合する。このWとBとの化合により、Ni基中のB量を少なくすることが可能になる。Moの場合も同様である。析出するWB(MoB)は、耐摩耗性を向上する。析出物量をできるだけ多く、微細に分散させるためには、原材料製造可能な範囲で、母合金のB量を通常の自溶合金より多くすることが好ましい。 Thermodynamic free energy calculations have shown that W and Mo are effective. For example, when fusing by spraying a Ni—B—Cr—W self-fluxing alloy on a Fe base, it is easy to make a boride in the order of W> Fe> Cr> Ni. That is, W preferentially combines with B. This combination of W and B makes it possible to reduce the amount of B in the Ni base. The same applies to Mo. Precipitated WB (MoB) improves wear resistance. In order to disperse the amount of precipitates as finely as possible, it is preferable that the amount of B in the master alloy is larger than that of a normal self-fluxing alloy within the range in which the raw material can be manufactured.
自溶合金の粉末はアトマイズ法で製造する。製造上の問題からBの添加量は12wt%が上限となる。従って、Bの添加量は、8wt%〜12wt%となる。そこで、Ni−10B(Niに10wt%のBを混合)を基本自溶合金とした。 The self-fluxing alloy powder is manufactured by the atomizing method. Due to manufacturing problems, the upper limit of the amount of B added is 12 wt%. Therefore, the amount of B added is 8 wt% to 12 wt%. Therefore, Ni-10B (Ni mixed with 10 wt% B) was used as the basic self-fluxing alloy.
Wの場合、析出するW硼化物はWBの形態で、B1モルに対してW1モルが化合する。基本自溶合金の粉末はアトマイズ法で形成する。Wは融点が高いので、別にW粉末を用意する。Ni−10Bの基本合金粉末に対して、種々の混合比でW粉末を混合し、混合粉末を溶射し、溶射層をフュージングする実験を重ねた。添加Bモル数より極端に少ないモル数のW添加では、フュージング時に余剰Bが基材のFeと硼化物を生成し、粗大化し、硬さが約HRc50〜55程度と低くなってしまうことが判った。WがBの相当部分と反応した場合には、溶射後のフュージングを最適化すれば、硬さは従来自溶合金と同等以上で、耐摩耗性、対かじり性に優れた特性が現れることが判った。余剰Bが溶射層に多く残るW量では、優れた特性は得られないと考えられる。 In the case of W, the precipitated W boride is in the form of WB, and W1 mole is combined with B1 mole. The basic self-fluxing alloy powder is formed by an atomizing method. Since W has a high melting point, W powder is prepared separately. An experiment was conducted in which W powder was mixed at various mixing ratios with Ni-10B basic alloy powder, the mixed powder was sprayed, and the sprayed layer was fused. It can be seen that when W is added in an extremely smaller number of moles than the number of moles of added B, surplus B generates Fe and boride of the base material during fusing, becomes coarse, and the hardness becomes as low as about HRc 50 to 55. It was. When W reacts with the corresponding part of B, if fusing after spraying is optimized, the hardness is equal to or higher than that of conventional self-fluxing alloys, and characteristics with excellent wear resistance and anti-galling properties may appear. understood. It is considered that excellent characteristics cannot be obtained with a W amount in which a large amount of surplus B remains in the sprayed layer.
種々実験の結果、溶射用自溶合金としてNi−10B−12Cr−5Siを設定し、溶射用自溶合金粉末とW粉末の混合比を変えて、プラズマ溶射、フュージングを行った。サンプルS1−S6において、溶射用自溶合金とWとの重量比をS1(100:0)、S2(92:8),S3(87:13)、S4(64:36)、S5(60:40)、S6(38:62)と変化させた。比較例Cとして、通常の自溶合金であるNi−3.5B−17Cr−4Siもプラズマ溶射した。フュージング処理した溶射層サンプルの硬さHRcを測定し、さらに大越式摩耗試験で比摩耗量を測定した。 As a result of various experiments, Ni-10B-12Cr-5Si was set as the self-fluxing alloy for thermal spraying, and plasma spraying and fusing were performed by changing the mixing ratio of the self-fluxing alloy powder for thermal spraying and the W powder. In samples S1-S6, the weight ratio of the self-fluxing alloy for thermal spraying to W is S1 (100: 0), S2 (92: 8), S3 (87:13), S4 (64:36), S5 (60: 40) and S6 (38:62). As Comparative Example C, a normal self-fluxing alloy, Ni-3.5B-17Cr-4Si, was also plasma sprayed. The hardness HRc of the thermal sprayed layer sample subjected to the fusing treatment was measured, and the specific wear amount was further measured by the Ogoshi type abrasion test.
図2Aは、大越式摩耗試験の概略を示す。試験片Spの上から、荷重wでリングを押し付け、リングを回転させて所定摩擦速度で摺動距離L摩擦させる。潤滑剤は用いず、ドライ状態で行った。摩擦速度は2.4m/secの高速に設定した。試験片に掘られた体積をVとする。S=V/w・Lが比摩耗量である。比摩耗量は小さい程耐摩耗性が高い。 FIG. 2A shows an outline of the Ogoshi type abrasion test. From above the test piece Sp, the ring is pressed with a load w, the ring is rotated, and the sliding distance L is rubbed at a predetermined friction speed. The test was performed in a dry state without using a lubricant. The friction speed was set at a high speed of 2.4 m / sec. Let V be the volume dug into the specimen. S = V / w · L is the specific wear amount. The smaller the specific wear amount, the higher the wear resistance.
図2Bは、測定によって得た各サンプルの硬さHRcと比摩耗量の値をまとめた表である。比較例Cの硬さ55〜60、比摩耗量2.0E−07(2.0×10−7)mm2/kgfを基準として考察する。W添加なしのサンプルS1は、硬さは比較例と同程度、比摩耗量は約1桁向上している。W組成が8wt%、13wt%のサンプルS2,S3では、硬さが比較例より低下している。比摩耗量は、比較例よりは小さいが、W添加なしのサンプルS1より大きい。W組成が36wt%のサンプルS4は、サンプルS3よりは高い硬さ、低い比摩耗量を示している。但し、W添加なしのサンプルS1より硬さは低く、比摩耗量は大きい。サンプルS2,S3、S4では、W添加によるメリットは得られていない。 FIG. 2B is a table summarizing the values of hardness HRc and specific wear of each sample obtained by measurement. The hardness of Comparative Example C will be considered based on the hardness of 55-60 and the specific wear amount of 2.0E-07 (2.0 × 10 −7 ) mm 2 / kgf. The sample S1 without addition of W has the same hardness as the comparative example, and the specific wear amount is improved by about one digit. In the samples S2 and S3 having the W composition of 8 wt% and 13 wt%, the hardness is lower than that of the comparative example. The specific wear amount is smaller than that of the comparative example, but larger than the sample S1 without addition of W. Sample S4 having a W composition of 36 wt% shows higher hardness and lower specific wear than sample S3. However, the hardness is lower and the specific wear amount is larger than that of the sample S1 without W addition. In the samples S2, S3, and S4, the merit by adding W is not obtained.
W組成が40wt%のサンプルS5は、W添加なしのサンプルS1より高い硬さ63.8、低い比摩耗量9.46E−9を示した。W組成62wt%のサンプルS6は、更に高い硬さ64.0、更に低い比摩耗量8.10E−9を示した。 Sample S5 having a W composition of 40 wt% showed a hardness of 63.8 and a lower specific wear rate of 9.46E-9 than sample S1 without W addition. Sample S6 having a W composition of 62 wt% showed a higher hardness of 64.0 and a lower specific wear amount of 8.10E-9.
サンプルS6は、自溶合金粉末とW粉末の合計量を100gとすると、(Ni−10B−12Cr−5Si)が38g、内Bは3.8g、Wが62gである。モル数で表すとBが0.35モル、Wが0.34モルであり、ほぼ等モルである。W1原子がB1原子と化合すると、Ni基中に溶け込んでいるほぼ全てのBが、化合してWBとなることになる。B組成が大幅に減少するので、融点も高くなると考えられる。サンプルS5は、自溶合金粉末とW粉末の合計量を100gとすると、(Ni−10B−12Cr−5Si)が60g、内Bは6.0g、Wが40gである。Wのモル数は、Bのモル数の約39%となる。 In sample S6, assuming that the total amount of self-fluxing alloy powder and W powder is 100 g, (Ni-10B-12Cr-5Si) is 38 g, inner B is 3.8 g, and W is 62 g. In terms of the number of moles, B is 0.35 mol and W is 0.34 mol, which is almost equimolar. When the W1 atom combines with the B1 atom, almost all B dissolved in the Ni group combines to become WB. Since the B composition is greatly reduced, it is considered that the melting point is also increased. In sample S5, assuming that the total amount of self-fluxing alloy powder and W powder is 100 g, (Ni-10B-12Cr-5Si) is 60 g, inner B is 6.0 g, and W is 40 g. The number of moles of W is about 39% of the number of moles of B.
サンプルS5の特性はサンプルS6の特性には及ばないものの、硬さが63.8と高く、比摩耗量が9.46E−9と低い優れた特性を示している。サンプルS4は、B6.4gに対してW36gに相当し、Wのモル数はBのモル数の約33%となる。サンプルS4は、W添加なしのサンプルS1と比べて性能の向上を示していない。これらの実験結果から、添加するWのモル数はBのモル数の約39%〜100%が好ましいであろう。 Although the characteristics of sample S5 do not reach the characteristics of sample S6, the hardness is as high as 63.8 and the specific wear amount is as low as 9.46E-9. Sample S4 corresponds to 36 g of W with respect to 6.4 g of B, and the number of moles of W is about 33% of the number of moles of B. Sample S4 does not show an improvement in performance compared to sample S1 without W addition. From these experimental results, it is preferable that the number of moles of W added is about 39% to 100% of the number of moles of B.
図3は、サンプルS6の走査型2次電子顕微鏡の観察像を示す。かじりの傾向も認められなかった。融点が上って、対かじり性がよくなったと考えられる。 FIG. 3 shows an observation image of the sample S6 with a scanning secondary electron microscope. There was no galling tendency. It is thought that the melting point has increased and the galling property has improved.
溶射プロセスで製造するNi基B含有合金において、B量を上げ、Bのモル数の39%〜100%のモル数のWを添加した混合粉末原料を作成し、溶射によって溶射層を作り、さらにフュージングを行うことにより、WとBを反応させてWBを析出させ、Ni基中のB濃度を下げて融点を上げて高摺動速度域で良好な耐摩耗性を得ることが可能と判明した。Ni基中のB固溶量が下がるので、NiとBとの金属間化合物Ni3B等も存在しなくなり、WB粒子が靭性のあるNi中に存在する形態の硬化層が形成されると考えられる。 In a Ni-based B-containing alloy manufactured by a thermal spraying process, a mixed powder raw material is prepared by increasing the amount of B and adding W in a mole number of 39% to 100% of the mole number of B, creating a sprayed layer by spraying, It has been found that by fusing, W and B are reacted to precipitate WB, and the B concentration in the Ni base is lowered to raise the melting point to obtain good wear resistance in a high sliding speed range. . Since the amount of B solid solution in the Ni group decreases, the intermetallic compound Ni 3 B between Ni and B does not exist, and a hardened layer having a form in which WB particles exist in tough Ni is formed. It is done.
なお、添加元素がWの場合、溶射条件を適切に設定しないと、よい溶射層が得られないことも判った。38(Ni−10B−12Cr−5Si)・62Wを例にとって説明する。 It was also found that when the additive element is W, a good sprayed layer cannot be obtained unless the spraying conditions are set appropriately. 38 (Ni-10B-12Cr-5Si) · 62W will be described as an example.
図4に、W粉末とNi−10B−12Cr−5Si(Ni−10Bと略記する)粉末の粒径、及びプラズマ条件を種々に変えた実験結果を示す。条件を変えて、サンプルS11−S18を作成した。 FIG. 4 shows experimental results in which the particle diameters of the W powder and Ni-10B-12Cr-5Si (abbreviated as Ni-10B) powder and the plasma conditions are variously changed. Samples S11 to S18 were prepared by changing the conditions.
サンプルS11においては、溶射に用いたW粉末の粒径は、75μm〜150μmであった。Ni−10B粉末の粒径は63μm〜125μmであった。プラズマ条件は標準的な条件とした。即ち、
粉末のキャリアガスAr流量:99SCFH(標準状態時間当り立方フィート)、
熱量供給用H2流量:15SCFH、
電流:500A、
電圧:65V,
キャリアガス流量:18.5SCFH、
であった。
In sample S11, the particle size of the W powder used for thermal spraying was 75 μm to 150 μm. The particle size of the Ni-10B powder was 63 μm to 125 μm. The plasma conditions were standard conditions. That is,
Powder carrier gas Ar flow rate: 99 SCFH (cubic feet per standard state time),
H 2 flow rate for heat supply: 15 SCFH,
Current: 500A
Voltage: 65V,
Carrier gas flow rate: 18.5 SCFH,
Met.
サンプルS11においては、W粉末を吹き付けたのに、溶射層にWはなかった。また、溶射層に気孔も生じた。W粉末の粒径が大きく、基材にはじかれて、溶射層にW粉末が残らないことが考えられた。対策としてW粉末の粒径を、40μm以下に下げた。用いた材料において、W粉末の粒径は、5μm〜40μmであった。以下のサンプルは、このW粉末を用いている。 In sample S11, although W powder was sprayed, there was no W in the sprayed layer. In addition, pores were formed in the sprayed layer. It was considered that the particle size of the W powder was large and repelled by the base material, leaving no W powder in the sprayed layer. As a countermeasure, the particle size of the W powder was lowered to 40 μm or less. In the material used, the particle size of the W powder was 5 μm to 40 μm. The following samples use this W powder.
サンプルS12においては、粒径を40μm以下としたW粉末を用いた。その他の条件はサンプルS11と同様である。溶射層にWが入った。溶射層にW粉末を取り込むためには、W粉末の粒径を小さくすることが有効であると判明した。但し、気孔は生じている。 In sample S12, W powder having a particle size of 40 μm or less was used. Other conditions are the same as those of the sample S11. W entered the sprayed layer. In order to incorporate the W powder into the sprayed layer, it has been found effective to reduce the particle size of the W powder. However, pores are generated.
サンプルS13においては、H2流量を26SCFHと増大して、発生する熱量を増大した。電圧は少し下げて60Vとし、キャリアガス流量は13.5SCFHに下げた。サンプルS12同様、Wは入ったが、気孔が抜けなかった。 In sample S13, the amount of heat generated was increased by increasing the H 2 flow rate to 26 SCFH. The voltage was lowered slightly to 60 V, and the carrier gas flow rate was reduced to 13.5 SCFH. Like sample S12, W entered, but the pores did not escape.
サンプルS14においては、Ni−10B粉末の粒径を32μm〜63μmと小さくし、粉末のキャリアガスAr流量を175SCFHと増大して粉末を強く吹き付け、H2流量は11SCFHと下げて、熱量を下げた。電圧は66V、キャリアガス流量は13.5SCFHとした。この時、Wは入らず、気孔も抜けなかった。 In sample S14, the particle size of Ni-10B powder was reduced to 32 μm to 63 μm, the carrier gas Ar flow rate of the powder was increased to 175 SCFH, and the powder was blown strongly, and the H 2 flow rate was lowered to 11 SCFH to lower the heat quantity. . The voltage was 66 V and the carrier gas flow rate was 13.5 SCFH. At this time, W did not enter and the pores did not escape.
サンプルS16においては、粉末のキャリアガスAr流量は116SCFHとし、H2流量を9.5SCFHと下げて熱量を下げ、電流を400Aと下げ、電圧は63Vとしてプラズマを弱めた。キャリアガス流量は、13.5SCFHとした。その他の条件は、サンプルS12と同様である。Wは入らず、気孔も抜けなかった。プラズマエネルギが不足すると、W粒子取り込みが旨く行かないようである。 In sample S16, the powder carrier gas Ar flow rate was 116 SCFH, the H 2 flow rate was lowered to 9.5 SCFH, the heat amount was lowered, the current was lowered to 400 A, and the voltage was 63 V to weaken the plasma. The carrier gas flow rate was 13.5 SCFH. Other conditions are the same as those of the sample S12. W did not enter and the pores did not escape. If the plasma energy is insufficient, W particle uptake does not seem to work.
サンプルS15においては、Ni−10B粉末の粒径を63μm〜125μmに戻し、H2流量を20SCFHと増大して熱量を増やし、粉末のキャリアガスAr流量を212SCFHと更に高くし、電圧を80Vと高く設定し、キャリアガス流量も20.5SCFHと増大した。Wは入ったが、気孔は抜けなかった。 In sample S15, the particle size of the Ni-10B powder is returned to 63 μm to 125 μm, the H 2 flow rate is increased to 20 SCFH to increase the amount of heat, the powder carrier gas Ar flow rate is further increased to 212 SCFH, and the voltage is increased to 80V. The carrier gas flow rate was increased to 20.5 SCFH. W entered, but the pores did not escape.
サンプルS17においては、Ni−10B粉末の粒径を32μm〜63μmと小さくした。他の条件はサンプルS12と同様である。Wが入り、気孔が抜けた。満足できる結果である。 In sample S17, the particle size of the Ni-10B powder was reduced to 32 μm to 63 μm. Other conditions are the same as those of the sample S12. W entered and the pores escaped. It is a satisfactory result.
サンプルS18においては、Ni−10B粉末の粒径を63μm〜90μmに変更した。他の条件はサンプルS17と同様である。Hが入り、気孔が抜けた。満足できる結果である。 In sample S18, the particle size of the Ni-10B powder was changed to 63 μm to 90 μm. Other conditions are the same as in sample S17. H entered and pores escaped. It is a satisfactory result.
以上の結果から、W粉末の粒径、Ni−10B粉末の粒径を適切に設定しないと、Wを入れ、かつ気孔を抜くことは困難と考えられる。Wの粒径は40μm以下が好ましく、実際の材料においては5μm〜40μmであった。特に、平均粒径14.5μmのW粉末の実験結果が優れていた。Ni−10B粉末の粒径は、32μm〜90μmであればよいであろう。更にプラズマ条件を適切に設定しないと、Wを入れ、かつ気孔を抜くことが困難と考えられる。例えば、H2流量は、15SCFH以上が好ましい。 From the above results, it is considered that it is difficult to insert W and remove pores unless the particle size of the W powder and the particle size of the Ni-10B powder are appropriately set. The particle size of W is preferably 40 μm or less, and in the actual material, it was 5 μm to 40 μm. In particular, the experimental results of W powder having an average particle diameter of 14.5 μm were excellent. The particle size of the Ni-10B powder may be 32 μm to 90 μm. Furthermore, if the plasma conditions are not set appropriately, it is considered difficult to insert W and remove pores. For example, the H 2 flow rate is preferably 15 SCFH or more.
以上Ni−10B合金粉末とW粉末を混合溶射し、フュージングして表面層を形成する場合を説明した。Co−10B合金粉末とW粉末を用い、硼化物の形成までは確認できた。Co−10B合金粉末とW粉末を用いた時も同様の結果が予想される。 The case where the surface layer is formed by mixing and spraying Ni-10B alloy powder and W powder has been described above. Using the Co-10B alloy powder and W powder, the formation of borides could be confirmed. Similar results are expected when using Co-10B alloy powder and W powder.
Wに代えて、Moを用いた場合にも、同様の現象が生じると期待される。 The same phenomenon is expected to occur when Mo is used instead of W.
以上、実施例に沿って本発明を説明したが、本発明はこれに限定されるものではない。例えば、プラズマ溶射以外の溶射法を用いても良い。その他、種々の変更、置換、組み合わせ、改良等が可能なことは当業者に自明であろう。 As mentioned above, although this invention was demonstrated along the Example, this invention is not limited to this. For example, a spraying method other than plasma spraying may be used. It will be apparent to those skilled in the art that various modifications, substitutions, combinations, improvements, and the like can be made.
Claims (11)
前記表面に形成された表面層であり、請求項1〜5のいずれか1項記載の溶射合金で形成され、硼化物が微細に析出している析出領域を多数含む表面層と、
を有する表面層を備えた部材。 A base member having a surface that requires wear resistance;
A surface layer formed on the surface, the surface layer formed of the thermal spray alloy according to any one of claims 1 to 5 and including a large number of precipitation regions in which borides are finely precipitated;
A member provided with a surface layer.
前記混合粉末を基礎部材上に溶射して溶射層を形成する工程と、
前記溶射層をフュージングする工程と、
を含む、表面層を備えた部材の製造方法。 Mixed powder obtained by mixing boride-forming element powders of 39 to 100% of B moles with Ni- (8 to 12 wt%) B basic system or Co- (8 to 12 wt%) B basic system self-fluxing alloy powder The process of preparing
Spraying the mixed powder on a base member to form a sprayed layer;
Fusing the sprayed layer;
The manufacturing method of the member provided with the surface layer containing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008190626A JP5292007B2 (en) | 2008-07-24 | 2008-07-24 | Thermal spray alloy, member provided with surface layer and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008190626A JP5292007B2 (en) | 2008-07-24 | 2008-07-24 | Thermal spray alloy, member provided with surface layer and method for manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010024529A true JP2010024529A (en) | 2010-02-04 |
JP5292007B2 JP5292007B2 (en) | 2013-09-18 |
Family
ID=41730617
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008190626A Expired - Fee Related JP5292007B2 (en) | 2008-07-24 | 2008-07-24 | Thermal spray alloy, member provided with surface layer and method for manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5292007B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012107299A (en) * | 2010-11-18 | 2012-06-07 | Sumitomo Heavy Ind Ltd | Thermal spraying alloy, and method of producing alloy thermal-spray coating on member |
JP2016108585A (en) * | 2014-12-03 | 2016-06-20 | 第一高周波工業株式会社 | Wear resistant plate and method for manufacturing the same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06240436A (en) * | 1993-01-22 | 1994-08-30 | Perkin Elmer Corp:The | Method of forming high wear resisting film on base material, internal combustion engine block produced by said method and composite thermal spray powder for use in said method |
JPH0913161A (en) * | 1995-06-27 | 1997-01-14 | Sumitomo Jukikai Chiyuutan Kk | Surface-hardening coating film containing free carbon |
JPH11209863A (en) * | 1998-01-27 | 1999-08-03 | Asahi Glass Co Ltd | Production of wear resistant parts |
JP2001020056A (en) * | 1999-07-06 | 2001-01-23 | Praxair St Technol Inc | Titanium carbide/tungsten boride coating |
JP2006122918A (en) * | 2004-10-26 | 2006-05-18 | Tohoku Univ | Molded product comprising metal glass laminate and method for producing the same |
-
2008
- 2008-07-24 JP JP2008190626A patent/JP5292007B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06240436A (en) * | 1993-01-22 | 1994-08-30 | Perkin Elmer Corp:The | Method of forming high wear resisting film on base material, internal combustion engine block produced by said method and composite thermal spray powder for use in said method |
JPH0913161A (en) * | 1995-06-27 | 1997-01-14 | Sumitomo Jukikai Chiyuutan Kk | Surface-hardening coating film containing free carbon |
JPH11209863A (en) * | 1998-01-27 | 1999-08-03 | Asahi Glass Co Ltd | Production of wear resistant parts |
JP2001020056A (en) * | 1999-07-06 | 2001-01-23 | Praxair St Technol Inc | Titanium carbide/tungsten boride coating |
JP2006122918A (en) * | 2004-10-26 | 2006-05-18 | Tohoku Univ | Molded product comprising metal glass laminate and method for producing the same |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012107299A (en) * | 2010-11-18 | 2012-06-07 | Sumitomo Heavy Ind Ltd | Thermal spraying alloy, and method of producing alloy thermal-spray coating on member |
JP2016108585A (en) * | 2014-12-03 | 2016-06-20 | 第一高周波工業株式会社 | Wear resistant plate and method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
JP5292007B2 (en) | 2013-09-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107151751B (en) | Wearability acid bronze alloy | |
TWI258509B (en) | Corrosion resistant powder and coating | |
CN103429773B (en) | It is plated with the engine valve of Ni-Fe-Cr system alloy | |
CN106435247B (en) | Wear-resistant copper-based alloy, clad and valve system component and sliding component for internal combustion engine | |
JP2004522861A (en) | Coating material and products coated with this material | |
JPS6054389B2 (en) | Ferrous metal substrate with alloy coating | |
KR101542447B1 (en) | Engine valve | |
JP6431012B2 (en) | Method for producing wear-resistant iron-based sintered alloy and wear-resistant iron-based sintered alloy | |
JP5292007B2 (en) | Thermal spray alloy, member provided with surface layer and method for manufacturing the same | |
TWI683035B (en) | Thermal spray powder, thermal spray coating, coating, and roll in molten metal bath | |
JP6271269B2 (en) | Ni-based self-fluxing alloy powder that suppresses hot-water flow during remelting during thermal spraying and parts with excellent corrosion resistance and wear resistance using the powder | |
CA2567089C (en) | Wear resistant alloy powders and coatings | |
JP2001105177A (en) | Overlay powder | |
JP2017137535A (en) | Method for producing wear-resistant iron-based sintered alloy, compact for sintered alloy, and wear-resistant iron-based sintered alloy | |
JP2005061389A (en) | Piston ring for internal combustion engine | |
JP5235598B2 (en) | Thermal spray powder made of iron-silicon based intermetallic compound and manufacturing method thereof, thermal spray coating made of thermal spray powder, and substrate coated with the thermal spray coating | |
JP4058807B2 (en) | Hard molybdenum alloy, wear-resistant alloy, wear-resistant sintered alloy and method for producing the same | |
WO2014073392A1 (en) | Powder for use in formation of sprayed layer | |
JPH06190588A (en) | Ni-base alloy for filling | |
JP2010018868A (en) | Member provided with surface layer and method for producing the same | |
JP2011058080A (en) | Co-BASED ALLOY EXCELLENT IN ABRASION RESISTANCE AND LUBRICITY, METHOD FOR PRODUCING THE SAME, AND SINTERED COMPACT THEREOF | |
JP2024027860A (en) | EASILY FUSIBLE Fe-BASED ALLOY | |
TW201631182A (en) | Thermal spray powder, thermal spray coating, coating, and roll in molten metal bath | |
JP2023144384A (en) | Ni-based self-fluxing alloy | |
JPH06155074A (en) | Ni-based alloy filling of engine valve |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20101213 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110720 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121218 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130215 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130312 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130510 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130528 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130610 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5292007 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |